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GLOBAL EXISTENCE OF SOME INFINITE ENERGY SOLUTIONS
FOR A PERFECT INCOMPRESSIBLE FLUID∗

RALPH SAXTON† AND FERIDE TIĞLAY†

Abstract. This paper provides results on local and global existence for a class of solutions to
the Euler equations for an incompressible, inviscid fluid. By considering a class of solutions which
exhibits a characteristic growth at infinity we obtain an initial value problem for a nonlocal equation.
We establish local well-posedness in all dimensions and persistence in time of these solutions for three
and higher dimensions. We also examine a weaker class of global solutions.
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problem for periodic initial data, infinite energy
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1. Introduction. A fundamental question in the study of fluids concerns the
possibility of finite time blow up of solutions to the Euler equations for a perfect,
incompressible fluid. It is well known that blow up cannot take place in the two-
dimensional case for solutions defined over a bounded domain subject to Dirichlet
boundary conditions (see, for example, the work of Wolibner [17] and Ebin [7]), since
smooth data in this case lead to solutions remaining smooth for all time. However,
the question remains open in higher dimensions.

A separate class of solutions consists of those having “stagnation-point” form,
which attracted early attention by Weyl [16] and Lin [13], and provides a set of
equations which depend on only a single spatial variable and time. The resulting
equations, once solved, provide exact solutions to the full Euler equations. However,
the associated growth of the full solutions in certain directions means that the flows
possess, at best, only locally finite kinetic energy. Nevertheless, one may discuss such
questions as finite time blow up for this class, and it has been shown by Stuart in
[15] that this can take place when the reduced equations are defined over the real line
and those solutions decay at infinity. In this case the corresponding spatial domain
for the full equations is R

n for n = 2 and n = 3, with the full set of solutions growing
linearly in the other direction(s).

The evolution of two-dimensional solutions, which can blow up on the unbounded
domain R

2, therefore differs significantly from the class of globally defined solu-
tions which exists for bounded subdomains of R

2. So the consequences of higher-
dimensional stagnation-point solutions blowing up might be thought to result simply
from their behavior at infinity rather than bearing on the question of singularity for-
mation. This view is in some sense strengthened by the results of Childress et al.
in [3] (see also a related result by Cox in [5]), where solutions defined over a two-
dimensional, infinite strip were examined. Since blow up was still found over this,
smaller, semi-infinite domain, stagnation-point solutions defined over such domains
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1500 RALPH SAXTON AND FERIDE TIĞLAY

would give the appearance of behaving, generally, much as those defined on the full
space.

A similar approach is implemented by Constantin in [4] to reduce the three-
dimensional Euler equations, periodic in two directions, to a nonlocal Riccati equation
and prove the blow up in finite time by solving these equations on characteristics.

In this paper we consider a stagnation-point class of solutions defined over R
n

which is spatially periodic in one coordinate direction. In two dimensions, the equa-
tions reduce to those of [3] and, although we examine slightly different boundary
conditions, the same blow up results essentially apply. In three and higher dimen-
sions, however, we find a “regularizing” effect not present in solutions which decay to
zero at infinity in the same coordinate direction, and this leads to the existence for
all time of all such solutions, stemming from sufficiently smooth initial data.

Section 2 sets out the fundamental field equations, which in a basic sense date
back to [13], [16]. Section 3 is devoted to local well-posedness (existence, uniqueness,
and continuous dependence on initial data) of classical solutions to the initial value
problem for the pseudodifferential equation derived in section 2. We establish this
result by rewriting the problem on the topological group D of C1 class diffeomorphisms
as an initial value problem for an ordinary differential equation. Section 4 provides
a priori estimates for more regular classes of solutions, leading to global existence of
such solutions in three and higher dimensions.

In section 5, we reconsider a class of piecewise affine solutions previously men-
tioned in [3]. These solutions are less regular than those arising in our existence results.
It is found that they exist globally, independently of the underlying dimension.

2. The n-dimensional equation. Consider the n-dimensional Euler equations
for an ideal, inviscid and incompressible fluid

∂tu + u.∇u + ∇p = 0,(2.1a)

∇.u = 0,(2.1b)

where x = (x1, . . . xn) ≡ (x1,x′). Denoting x1 by x, u(x,x′, t) represents the spatial
velocity field of the fluid and p(x,x′, t) its pressure. We impose the ansatz

u(x,x′, t) = (u(x, t),−∂xu(x, t)v(x′, t)),(2.2)

where the (n− 1)-dimensional vector field, v, will be chosen below. As a consequence
of (2.2), (2.1a) may be written as

∂tu+ u∂xu+ ∂xp = 0,(2.3)

together with

∂t∂xuv + ∂xu ∂tv + u∂2
xuv − (∂xu)2v · ∇′v −∇′p = 0,(2.4)

where the primed operators refer to the variable x′. Using (2.2) and (2.3), one sees
that ∇′∂xp = 0. Hence, differentiating (2.4) in x eliminates the pressure term to give

∂x(∂t∂xu+ u∂2
xu) v + ∂2

xu ∂tv − ∂x((∂xu)2)v · ∇′v = 0.(2.5)

Applying the ∇′· operator to (2.5) and using (2.1b) with (2.2) to find that ∇′ ·v = 1
shows

∂x(∂t∂xu+ u∂2
xu) − ∂x((∂xu)2) ∇′v : ∇′v = 0,(2.6)
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where ∇′v : ∇′v = tr(∇′v)2 = ∂jvk ∂kvj (summing over j, k from 2 to n). For
compatibility, we must choose v such that ∇′v : ∇′v is independent of x′. This can
be done, for instance, by choosing v = 1

n−1 x′, in which case ∇′v : ∇′v = 1
n−1 and

(2.4) takes the form(
∂t∂xu+ u∂2

xu− 1
n− 1

(∂xu)2
)

v −∇′p = 0.(2.7)

We note that this particular choice of v corresponds to the stagnation-point form
solution referred to in the introduction. As a result, the solution becomes unbounded
in the x′ direction, and hence has infinite energy when considered over the entire n-
dimensional domain. We next examine the periodic, initial-boundary value problem,
with boundary conditions for x ∈ T � R/Z, t ≥ 0, given by

u(0,x′, t) = u(1,x′, t)(2.8)

and

p(0,x′, t) = p(1,x′, t).(2.9)

Since (2.6) now becomes

∂x(∂t∂xu+ u∂2
xu) − 1

n− 1
∂x((∂xu)2)) = 0,(2.10)

which we remark happens to be the x-derivative of a Calogero-class equation (see [2])

∂x∂tu+ u∂2
xu− Φ(∂xu) = 0,

we obtain the equation

∂t∂xu+ u∂2
xu− 1

n− 1
(∂xu)2 = f(2.11)

with f purely a function of time. This implies, by (2.7), that

∇′p =
f

n− 1
x′,(2.12)

while by (2.3), −∂2
xp = n

n−1 (∂xu)2 + f and so Δp = − n
n−1 (∂xu)2. Finally, for suffi-

ciently smooth functions u(x, t), using (2.8) and integrating (2.11) we have

f = − n

n− 1

∫
T

(∂xu)2dx,(2.13)

while (2.3), (2.8), and (2.9) imply that

d

dt

∫
T

u dx = 0.(2.14)

Let us introduce the operator ∂−1
x defined by

∂−1
x φ(x, t) =

∫ x

x0

φ(y, t)dy −
∫

T

∫ x

x0

φ(y, t) dydx.
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1502 RALPH SAXTON AND FERIDE TIĞLAY

We make the observation that ∂x and ∂−1
x generally do not commute since [∂x, ∂

−1
x ]φ =∫

T
φdx, where [P,Q] = PQ−QP. Consider (2.11), written in the form

∂x(∂tu+ u∂xu) =
n

n− 1
(∂xu)2 + f(t)(2.15)

with n > 1. As a result of (2.13) and the fact that ∂−1
x ∂xφ = φ − ∫

T
φdx, we may

write (2.15) in a nonlocal form as

∂x(∂tu+ u∂xu) =
n

n− 1
∂−1

x ∂x((∂xu)2)(2.16)

and then, using the periodicity of u, we obtain

∂tu+ u∂xu =
n

n− 1
∂−2

x ∂x((∂xu)2).(2.17)

Okamoto and Zhu [14] previously established local existence for (2.10) with u ∈ H2,
using a method introduced by Kato and Lai. Their approach requires showing unique-
ness separately and then using uniqueness to prove continuous dependence on initial
data. Here we instead derive a local well-posedness result in C1 which follows from
Picard iteration after rewriting the equation as an ordinary differential equation on
an infinite-dimensional Banach space. This method can also be used to prove well-
posedness in Sobolev spaces Hs(T) for s > 3/2 (see [10] and [12], for example, for a
similar result for the Camassa–Holm equation).

3. Local existence of classical solutions. In [1], Arnold observed that the
initial value problem for the classical Euler equations of a perfect fluid can be stated as
a geometric problem of finding geodesics on the group of volume preserving diffeomor-
phisms. Following this observation, Ebin and Marsden [8] developed the functional
analytic tools to establish sharp local well-posedness results for the Euler equations.
This method has since been used for other equations with similar geometric inter-
pretations; for example, Misio�lek [12] obtained local well-posedness in C1(T) for the
Camassa–Holm equation, which is the equation for geodesics of the H1 metric on the
Virasoro group.

In this section we develop an appropriate analytic framework for (2.17), using a
similar approach to prove the following theorem.

Theorem 3.1. Suppose that n > 1. Then there exists a unique solution

u ∈ C0([0, T ), C1(T)) ∩ C1([0, T ), C0(T))

to the Cauchy problem for (2.17) with initial data u0 ∈ C1(T) for some T > 0, and
the solution depends continuously on the initial data.

Let γ be the flow generated by u, that is,

dγ

dt
(x, t) = u(γ(x, t), t),

or u = γ̇ ◦ γ−1. Then we obtain the equation

γ̈ =
n

n− 1
∂−2

x ∂x

(
(∂x(γ̇ ◦ γ−1))2

) ◦ γ(3.1)

from (2.17). Therefore it is sufficient to prove that

F (X, γ) =
n

n− 1
(
∂−2

x ∂x

(
(∂x(X ◦ γ−1))2

)) ◦ γ
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defines a continuously differentiable vector field in a neighborhood of the identity on
the topological group D of C1 class diffeomorphisms. Then Theorem 3.1 follows by
Picard iteration over Banach spaces.

We remark that the smooth dependence on initial data for (3.1) implies only
continuous dependence on initial data for (2.17). The map γ → γ−1 is continuous but
not locally Lipschitz [8], and this prevents obtaining more regularity for the initial
data to solution map by this method. The question of whether the regularity of the
solution map u0 → u(t) can be improved, or not, is open. It is known, for instance,
that it is not possible to improve the regularity of this map for the Camassa–Holm
equation in Sobolev spaces [11].

In the remainder of this section, Cγ will represent a generic constant depending
only on the C1 norms of γ and γ−1.

Proof of Theorem 3.1. Let us denote by Pγ the operator given by conjugation

Pγ(φ) := P (φ ◦ γ−1) ◦ γ
for any γ ∈ D and pseudodifferential operator P . Using this notation we write

F (X, γ) =
n

n− 1
(∂−2

x ∂x)γ((∂x)γX)2.

Next we compute the directional derivative ∂γF(X,γ) and prove that it is a bounded
linear map.

Note that (∂−2
x ∂x)f = ∂−1

x {f − ∫ 1

0 f dx} is a bounded operator from C0(T) into
C1(T). Furthermore we abuse the notation slightly and denote by D the connected
component of orientation preserving C1 diffeomorphisms of T.

Let s → γs be a smooth curve in D such that γ0 = id and ∂sγs|s=0 = W for
W ∈ C1(T). Then we have

∂γF(X,γ)(W ) =
n

n− 1
{(∂εGε)|ε=0 ◦ γ +W (∂xGε)ε=0 ◦ γ},(3.2)

where Gε = ∂−2
x ∂x{(∂x(X ◦ γ−1

ε ))2}. We know that ∂x∂
−1
x gives the identity; hence

the second summand on the right in (3.2) can be written as

W∂xGε|ε=0 ◦ γ =
{

((∂x)γX)2 −
∫ 1

0

(∂x(X ◦ γ−1))2dx
}
W.(3.3)

Moreover, the computation of the first summand on the right in (3.2) is reduced by

(∂εGε)|ε=0 = ∂−2
x ∂x(∂εHε|ε=0)(3.4)

to determine ∂εHε|ε=0, where Hε = (∂x(X ◦ γ−1
ε ))2. Here a straightforward compu-

tation leads to

∂εHε|ε=0 = − (
∂x(X ◦ γ−1)

)2
∂x(W ◦ γ−1) − ∂x{(W ◦ γ−1)

(
∂x(X ◦ γ−1)

)2}.(3.5)

Then, after an integration by parts, we obtain

∂εGε|ε=0 = − (
∂x(X ◦ γ−1)

)2 (W ◦ γ−1) +
∫ 1

0

(
∂x(X ◦ γ−1)

)2 (W ◦ γ−1)dx

− ∂−2
x ∂x{(∂x(X ◦ γ−1))2∂x(W ◦ γ−1)}

+
(
x− 1

2

)
{(∂x(X ◦ γ−1)

)2 (W ◦ γ−1)}|10.
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The last term on the left-hand side of the above inequality vanishes since X and W
are periodic functions and γ is an orientation preserving diffeomorphism. Therefore
we have

∂γF(X,γ)(W ) =
n

n− 1

{
− ∂−2

x ∂x{(∂x(X ◦ γ−1))2∂x(W ◦ γ−1)} ◦ γ

+
∫ 1

0

(∂x(X ◦ γ−1))2W ◦ γ−1dx(3.6)

− W

∫ 1

0

(∂x(X ◦ γ−1))2dx
}
.

The linearity of the map W → ∂γF(X,γ)(W ) is clear. Thus we proceed to show
that it is bounded. It is sufficient to estimate the C1 norms of all three summands on
the right in (3.6). The second and third terms are both bounded by Cγ‖W‖C0‖X‖2

C1.
For the first term on the right in (3.6), we have

‖(∂−2
x ∂x)γ{((∂x)γX)2(∂x)γW}‖C1 ≤‖(∂−2

x ∂x)γ{((∂x)γX)2(∂x)γW}‖C0

+ ‖((∂x)γX)2(∂x)γW‖C0‖γ‖C1,(3.7)

which is bounded by Cγ‖X‖2
C1‖W‖C1.

In the direction of X , the Gâteaux derivative of F is given by

∂XF(X,γ)(W ) =
2n
n− 1

(∂−2
x ∂x)γ ((∂x)γX(∂x)γW ) ,

and this is a bounded map since

‖∂XF(X,γ)(W )‖C1 ≤ Cn‖(∂−2
x ∂x)γ ((∂x)γX(∂x)γW ) ‖C0

+
∥∥∥∥(∂x)γX(∂x)γW −

∫
T

(∂x)γX(∂x)γW dx

∥∥∥∥
C0

‖γ‖C1

≤ Cn,γ‖X‖C1‖W‖C1,

where Cn,γ depends only on n and C1 norms of γ and γ−1.
In order to complete the proof of Theorem 3.1 it is sufficient to show that F is

Fréchet differentiable; i.e., both directional derivatives ∂γF and ∂XF are continuous
maps.

Continuity of (X, γ) → ∂γF(X,γ)(W ). The following inequality reduces the proof
of continuity of ∂γF(X,γ)(W ) to estimating the two summands on the right-hand side:

‖∂γF(X1,γ1)(W ) − ∂γF(X2,γ2)(W )‖C1 ≤ ‖∂γF(X1,γ1)(W ) − ∂γF(X2,γ1)(W )‖C1

+ ‖∂γF(X2,γ1)(W ) − ∂γF(X2,γ2)(W )‖C1

where the inequality holds up to a constant depending on n. We rewrite the C1 norm
that we wish to estimate to show continuity in X as
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‖∂γF(X1,γ) − ∂γF(X2,γ)‖C1 ≤‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

} ‖C1

+
∣∣∣∣
∫ 1

0

(∂x(X1 ◦ γ −X2 ◦ γ))2W ◦ γ−1dx

∣∣∣∣(3.8)

+ |W |
∣∣∣∣
∫ 1

0

(∂x(X1 ◦ γ −X2 ◦ γ))2 dx
∣∣∣∣ .

The last two summands in (3.8) are bounded by Cγ‖X1 −X2‖2
C1‖W‖C0 . For the

remaining term, we have

‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

} ‖C1

≤ ‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

} ‖C0

+ ‖ (
(∂x(X1 ◦ γ−1))2 − (∂x(X2 ◦ γ−1))2

)
∂x(W ◦ γ−1)‖C0‖∂xγ‖C0,

which is bounded by Cγ‖X1 −X2‖C1‖X1 +X2‖C1‖W‖C1.
Our next estimate establishes continuity of γ → ∂γF(X,γ)(W ). Note that it is

sufficient to consider

‖∂γF(X,γ)(W ) − ∂γF(X,id)(W )‖C1

≤ ‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

} − ∂−2
x ∂x((∂xX)2∂xW )‖C1(3.9)

+
∣∣∣∣
∫ 1

0

{
(∂x(X ◦ γ−1))2(W ◦ γ−1) − (∂xX)2W

}
dx

∣∣∣∣(3.10)

+ ‖W‖C0

∣∣∣∣
∫ 1

0

{
(∂x(X ◦ γ−1))2 − (∂xX)2

}
dx

∣∣∣∣ ,(3.11)

where the inequality is up to a constant depending on n. After adding and subtracting
the appropriate terms, (3.10) is bounded by

‖W‖C0‖∂xX‖C0‖(∂xX ◦ γ−1)∂xγ
−1 − ∂xX‖C0 + ‖∂xX‖2

C0‖W‖C1‖γ − id‖C0 ,(3.12)

which is bounded (up to a constant Cγ) by ‖X‖2
C1‖W‖C1‖γ − id‖C1 . The term in

(3.11) is estimated similarly. Hence in order to establish continuity in γ it is sufficient
to bound

‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

} − ∂−2
x ∂x((∂xX)2∂xW )‖C1

≤ ‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

} − ∂−2
x ∂x((∂xX)2∂xW )‖C0(3.13)

+ ‖{
(∂x(X ◦ γ−1)2∂x(W ◦ γ−1)

} ◦ γ∂xγ − (∂xX)2∂xW‖C0 .(3.14)

The norm in (3.14) is equal to

‖∂xW (∂xX)2
{

(∂xγ
−1)2 ◦ γ − 1

} ‖C0 ,(3.15)

which is bounded by Cγ‖∂xX‖2
C0‖∂xW‖C0‖γ − id‖C1. For (3.13) it is sufficient to

estimate

‖(∂−2
x ∂x)γS − ∂−2

x ∂xS‖C0 + ‖∂−2
x ∂xS − ∂−2

x ∂x((∂xX)2∂xW )‖C0 ,(3.16)
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where

S = S(X, γ,W ) = (∂x(X ◦ γ−1))2 ◦ γ∂x(W ◦ γ−1) ◦ γ.

After a change of variables we regroup the terms in the first summand of (3.16)
to obtain

(∂−2
x ∂x)γS − ∂−2

x ∂xS =
∫ 1

0

∫ x

γ−1(x)

S(y)∂xγ(y)dydx+
∫ x

x0

S(y)(∂xγ(y) − 1)dy

(3.17)

−
∫ 1

0

∫ x

x0

S(y)(∂xγ(y) − 1)dydx(3.18)

−
(
γ(x) − 1

2

) ∫ 1

0

S ◦ γ−1(y)dy +
(
x− 1

2

) ∫ 1

0

S(y)dy.(3.19)

The right-hand side of this equality can be simplified further as

(∂−2
x ∂x)γS − ∂−2

x ∂xS =
∫ 1

0

∫ x

γ−1(x)

S(y)∂xγ(y)dydx(3.20)

+ ∂−2
x ∂x(S(∂xγ − 1)) − (γ(x) − x)

∫ 1

0

S ◦ γ−1(y)dy.(3.21)

Clearly the sup norms of all three summands in (3.20)–(3.21) vanish in the limit
as γ goes to id in C1. The second summand in (3.16) is equal to the C0 norm of

∂−2
x ∂x

(
∂xW (∂xX)2

{
(∂xγ

−1)3 ◦ γ − 1
})
,(3.22)

which is bounded by Cγ‖W‖C1‖X‖2
C1‖γ−id‖C1. Hence the continuity of γ → ∂F(X,γ)

follows.
The continuity of (X, γ) → ∂XF(X,γ) can be shown analogously. Therefore

F (X, γ) defines a continuously differentiable map in a neighborhood of (id, u0). This
completes the proof of Theorem 3.1.

4. Global existence for n ≥ 3. In this section we investigate the persistence
of solutions of the initial value problem for (2.17) and show that, unlike the two-
dimensional case where solutions may blow up in finite time (see [3], [5]), they persist
for n ≥ 3 in the appropriate function spaces.

For the theorem below let us use the following notation:

Xn(T) =

{
W 2,∞(T), n = 3,

W 2, n−1
n−3 (T), n > 3,

and

Yn(T) =

{
W 1,∞(T), n = 3,

W 1, n−1
n−3 (T), n > 3.
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Theorem 4.1. Let n ≥ 3 and assume that u0(x) ∈ Xn(T). Then the solution
u(x, t) from Theorem 3.1 has a unique extension to all T < ∞ such that u(x, t) ∈
C0([0, T ], Xn(T)) ∩ C1([0, T ], Yn(T)).

Proof. Consider (2.10), expressed in the form

∂t∂
2
xu+ u∂3

xu+
n− 3
n− 1

∂xu∂
2
xu = 0.(4.1)

Using the flow γ of u (γ̇ = u ◦ γ) in (4.1), we first solve for ∂2
xu:

∂2
xu ◦ γ(t) = u′′0 exp

(
−n− 3
n− 1

∫ t

0

∂xu ◦ γ(s)ds
)
.(4.2)

By the identity ∂xγ̇ = ∂xu ◦ γ ∂xγ, we also have

∂xγ(t) = exp
(∫ t

0

∂xu ◦ γ(s)ds
)
.(4.3)

Therefore

∂2
xu ◦ γ(t)(∂xγ(t))

n−3
n−1 = u′′0 .(4.4)

Note that Theorem 3.1 implies that γ ∈ C1 locally in time and it follows, given
∂xγ(0) = 1, that there exists an interval, t ∈ [0, τ(ε)), over which 0 < ε ≤ infx∈T

∂xγ(t) ≤ supx∈T ∂xγ(t) ≤ ε−1. Equation (4.4) then implies that, locally, u ∈ Xn(T),
since γ maps T diffeomorphically to itself. In turn, (2.16) shows that ∂tu ∈ Yn(T) over
the same time interval. (With additional assumptions on the data, further regularity
can also be bootstrapped to higher derivatives.)

Assuming then that sufficient smoothness holds locally in time, we find on mul-
tiplying (4.1) by |∂2

xu|p−2 ∂2
xu that

∂t|∂2
xu|p + u∂x|∂2

xu|p + p
n− 3
n− 1

∂xu|∂2
xu|p = 0.(4.5)

Since (2.2) and (2.8) imply that both u and ∂xu are periodic functions of x, the same
is true of ∂2

xu, by (2.11). One therefore obtains, on integrating (4.5) over T,

d

dt

∫
T

|∂2
xu|pdx+

(
p
n− 3
n− 1

− 1
) ∫

T

∂xu|∂2
xu|pdx = 0,(4.6)

from which it follows that the L
n−1
n−3 (T) norm of ∂2

xu is uniformly conserved in time
for n > 3. The case n = 3 can either be considered as the limit n → 3 with p → ∞
in (4.6), or directly using (4.1) which shows that ∂2

xu is constant along characteristics
and hence its L∞(T) norm is uniformly conserved.

Periodicity of u(x, t) in x implies there exists a zero for ∂xu, say at x = x0(t),
and so for x, x0 ∈ T,

∂xu(x, t) =
∫ x

x0

∂2
yu(y, t)dy.

For n > 3, we therefore have the estimate

|∂xu(x, t)| ≤ |x− x0| 2
n−1 ||u′′0 ||n−1

n−3
≤ ||u′′0 ||n−1

n−3
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using Hölder’s inequality, and so

||∂xu||∞ ≤ ||u′′0 ||n−1
n−3

.

If n = 3, then

||∂2
xu||∞ = ||u′′0 ||∞,

which means

|∂xu(x, t)| ≤ |x− x0|||u′′0 ||∞ ≤ ||u′′0 ||∞
for all x ∈ T, and so

||∂xu||∞ ≤ ||u′′0 ||∞
for all t > 0.

Further, since u(x, t) − u0(x) has mean zero by (2.14), there exists x = x1(t),
where u(x1, t) = u0(x1) and, for x, x1 ∈ T, we have

u(x, t) = u0(x) +
∫ x

x1

(∂yu(y, t) − u′0(y))dy.

It follows that

|u(x, t)| ≤ ||u0||∞ + |x− x1|(||∂xu||∞ + ||u′0||∞)

for all x ∈ T, which gives the inequality

||u||∞ ≤ ||∂xu||∞ + ||u0||C1 .

Combining the results of the previous two paragraphs shows that

||u||C1 ≤ ||u0||C2 for n = 3,(4.7)

and

||u||C1 ≤ ||u0||C1 + ||u′′0 ||n−1
n−3

for n > 3.(4.8)

Finally, on using the properties of the operators ∂−1
x ∂x and ∂−2

x ∂x in (2.16) and (2.17)
together with the above estimates, it is seen that ||∂tu||∞ and ||∂t∂xu||∞ are majorized
by a function of ||u0||C2 for n = 3, while ||∂tu||∞ and ||∂t∂xu||n−1

n−3
are majorized by

a function of ||u0||
W

2,
n−1
n−3

for n > 3.

In both of these cases it follows that the C1(T) norm of u and the C0(T) norm
of ∂tu remain uniformly bounded in time over any interval of local existence and, by
bootstrapping the arguments of Theorem 3.1, the solution can be continued, globally,
in time.

As a remark, we note here how a blow up argument made in [3], which involves
a nontrivial class of separable solutions to (2.10) for n = 2, fails to apply in the case
n > 3. In particular, the possible appearance of a (τ − t)−1 factor, τ > 0, in the
two-dimensional case no longer exists in higher dimensions.

Given the solution form u(x, t) = X(x)T (t), (2.10) reduces to

λX ′′(x) +
n− 3
n− 1

X ′(x)X ′′(x) +X(x)X ′′′(x) = 0, x ∈ T,(4.9)
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where

Ṫ (t) − λT (t)2 = 0, t ≥ 0,(4.10)

and λ is a constant. Multiplying (4.9) by |X ′′(x)| 5−n
n−3X ′′(x) now gives

λ|X ′′(x)|n−1
n−3 +

n− 3
n− 1

(X ′(x)|X ′′(x)|n−1
n−3 + X(x)(|X ′′(x)|n−1

n−3 )′) = 0.(4.11)

By using periodicity, an integration of (4.11) over T for n > 3 therefore shows

λ

∫
T

|X ′′(x)|n−1
n−3dx = 0(4.12)

and the result then follows. We note that there are in general one or more points of
inflection in nontrivial, periodic solutions, which prevents this argument from holding
in two dimensions.

5. Weak solutions. In this section, we construct a basic, piecewise differentiable
class of weak solutions u(x, t) ∈ C0([0, T ), PC1(T)) ∩ C1([0, T ), PC0(T)) to (2.11),
which are found to exist for all T > 0, regardless of the underlying dimension.

For every vector field Φ(x, t) ∈ C∞
0 ([0, T ) × T × R

n−1; R
n) such that ∇ · Φ = 0,

and for every scalar function θ(x, t) ∈ C∞
0 ([0, T ) × T × R

n−1; R), the velocity field
u(x, t) in (2.1b) satisfies∫

Q

∂tΦ · u + (∇Φ u) · u dx dt+
∫

T×Rn−1
Φ(x, 0) · u(x, 0) dx = 0,(5.1)

∫
Rn

∇θ · u dx = 0,(5.2)

where Q = [0, T ) × T × R
n−1.

In terms of (2.2), (5.1) and (5.2) reduce to∫
Q

∂tφu − ∂tΦ′ · v ∂xu dx dt

+
∫

Q

∂xφu
2 − (∂xΦ′ + ∇′φ) · v u∂xu+ (∇′Φ′ v) · v (∂xu)2 dx dt

+
∫

T×Rn−1
φ(x, 0)u(x, 0) − Φ′(x, 0) · v(x, 0)∂xu(x, 0) dx = 0,(5.3)

∫
T×Rn−1

∂xθ u−∇′θ · v ∂xu dx = 0,(5.4)

in which we have used the notation Φ = (φ,Φ′) to distinguish the first component
from the remaining n− 1 components of Φ. Denoting by [u] = u+ − u− the jump in
u across any smooth surface of discontinuity, S, and considering test functions whose
support crosses S, (5.2) shows that

[u] · n = 0,(5.5)
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where n = (n,n′) is normal to S. Then, by (5.4), we have

[u]n − [∂xu]v · n′ = 0, where v =
1

n− 1
x′.(5.6)

In examining weak, frontlike, piecewise continuous solutions for which [u] = 0 and
[∂xu] = 0 (see [6]), it follows that these discontinuities propagate so that n′ · x′ =
0. A weak formulation specific to such discontinuities may be derived by means of
appropriate choice of test functions from (5.3), or by observing that (2.11) may be
written in conservation form as

∂t((∂xu)1−n) + ∂x(u(∂xu)1−n) + (n− 1)(∂xu)−nf = 0, x ∈ T.(5.7)

We will admit weak solutions, u(x, t), which satisfy the relation∫
Q

∂tϕ (∂xu)1−n + ∂xϕu(∂xu)1−n − (n− 1)fϕ(∂xu)−n dx dt(5.8)

+
∫

T

ϕ(x, 0)(∂xu)1−n(x, 0) dx = 0(5.9)

for all ϕ(x, t) ∈ C∞
0 (Q), where Q = [0, T ) × T. Using standard Rankine–Hugoniot-

type arguments [6], discontinuities in ∂xu that jump across a curve x = ψ(t) are seen
to satisfy

(−ψ̇ + u(ψ, t))[(∂xu)1−n] = 0,(5.10)

and such discontinuities therefore propagate with the flow of (2.11); i.e., ψ(t) is a
member of the characteristic family γ̇ = u ◦ γ.

5.1. Piecewise affine solutions. We begin by commenting on the general case
of periodic, N -phase, piecewise affine solutions. Given that both ∂xu and ∂tu may
be discontinuous across the curves x = ψi(t), 1 ≤ i ≤ N − 1, in order for u to remain
continuous there we must have [u](γ(t), t) = 0, and so d

dt [u](γ(t), t) = 0. As a result,
∂t[u] + u∂x[u] = 0, and first derivative jumps are seen to satisfy the relations

[∂tu] + u[∂xu] = 0 and [∂xp] = 0(5.11)

from (2.3). Under these conditions on u, the expression for f(t), which was obtained
in (2.13) by integrating (2.11) for u ∈ C1(T), remains unchanged:

f = − n

n− 1

∫
T

(∂xu)2dx.(5.12)

In the special case, N = 2, which we consider here, our form of solution is given by
the periodic extension of the function

u(x, t) = α+

⎧⎪⎨
⎪⎩

x p, x ∈ (0, φ̃),

φ̃p+ (x− φ̃) q, x ∈ (φ̃, ψ̃),

φ̃p+ (ψ̃ − φ̃) q + (x− ψ̃) p, x ∈ (ψ̃, 1),

(5.13)

where φ̃ = φ − [[φ]], ψ̃ = ψ − [[ψ]], with [[.]] denoting the “integer part” of the ar-
gument. The functions φ̃(t) and ψ̃(t) are the representatives in [0, 1] of the phase
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curves φ(t), ψ(t) ∈ (−∞,∞), which start out from φ(0), ψ(0) ∈ [0, 1] and separate
those regions where ∂xu(x, t) periodically takes on values of p(t) or q(t).

Proceeding heuristically for the moment, periodicity of u(x, t) requires that

N (t) = φ(t)p(t) + (ψ(t) − φ(t))q(t) + (1 − ψ(t))p(t) = 0.(5.14)

Given the spatial periodicity in pressure (see (2.9)), we recall that integration of (2.3)
over one period showed the integral

∫ 1

0
u(x, t)dx to be independent of time. This

allows (5.13) to be used to give an expression for α(t). The result may be written, for
instance, in terms of p, φ̃, and ψ̃, as

α+
p

2
(φ̃+ ψ̃ − 1) = c,(5.15)

where we have set c =
∫ 1

0
u(x, 0) dx = α(0) + p(0)−q(0)

2 (ψ(0) − φ(0))(φ(0) + ψ(0) − 1).
We will assume that 0 < φ(0) < ψ(0) < 1. Choosing, for convenience, c = 0, the
“average characteristic” must propagate with speed zero and we will see, consequently,
that both φ(t) and ψ(t) remain in [0, 1] for all time. The distinctions between φ̃ and
φ, ψ̃, and ψ will therefore not be made further here.

Combining (2.11), (5.12), and (5.13) now gives

ṗ =
1

n− 1
p2 + f, q̇ =

1
n− 1

q2 + f,(5.16)

where

f = − n

n− 1
(φp2 + (ψ − φ)q2 + (1 − ψ)p2).(5.17)

Also, by (5.10),

φ̇ = α+ φp(5.18)

and

ψ̇ = α+ φp+ (ψ − φ)q.(5.19)

We next verify that (5.14) follows from the system of equations (5.16)–(5.19). Differ-
entiation and some simplification gives

Ṅ = −(ψ − φ)(p − q)q + (ψ − φ)q2 + (φ+ (1 − ψ))
(

p2

n− 1
+ f

)
+ (ψ − φ)

(
q2

n− 1
+ f

)

= −(ψ − φ)(p− q)q − ((φ + (1 − ψ))p2 + (ψ − φ)q2)

= −p(q(ψ − φ) + p(φ+ (1 − ψ)))

= −pN ,

and so N (t) = N (0)e−
∫

t
0 p(s)ds. In particular, taking periodic data, N (0) = 0, means

that N (t) = 0, t > 0. We may therefore use (5.14) to write (5.19) as

(1 − ψ)̇ = −α+ (1 − ψ)p,(5.20)
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and again employ (5.14) to express the following phase fractions as functions of p and
q:

ψ − φ =
p

p− q
, φ+ (1 − ψ) =

−q
p− q

.(5.21)

Using these relations in (5.17) leads to

f =
n

n− 1
pq(5.22)

from which (5.16) reduces to the autonomous system

ṗ =
1

n− 1
(p2 + n pq),(5.23)

q̇ =
1

n− 1
(q2 + n pq).(5.24)

Subtracting (5.18) from (5.19) implies

ψ(t) − φ(t) = (ψ(0) − φ(0)) exp
(∫ t

0

q(s)ds
)
,(5.25)

which means that the center phase fraction does not collapse as long as
∫ t

0 q(s)ds
remains bounded away from −∞. Similarly, adding (5.18) and (5.20) gives

φ(t) + (1 − ψ(t)) = (φ(0) + (1 − ψ(0)) exp
(∫ t

0

p(s)ds
)
,(5.26)

and the outer phase fraction exists as long as
∫ t

0
p(s)ds > −∞. Comparing (5.25) and

(5.26) shows also that periodicity imposes the following requirement on p(t) and q(t)
in terms of their initial phase fractions:

(φ(0) + (1 − ψ(0)) exp
(∫ t

0

p(s)ds
)

+ (ψ(0) − φ(0)) exp
(∫ t

0

q(s)ds
)

= 1.(5.27)

Using (5.16) to compute p− q next gives

p(t) − q(t) = (p(0) − q(0)) exp
(

1
n− 1

∫ t

0

p(s) + q(s) ds
)
,(5.28)

which shows p(t)−q(t) cannot change sign. By (5.21), p(t) and q(t) consequently keep
their signs as long as neither phase fraction collapses. This can alternatively be seen
by considering a sketch of u and observing that p and q have opposite signs and can
vanish only simultaneously. Thus, without loss of generality, we subsequently assume
p(t) > 0 > q(t), for at least some t ≥ 0.

In the following lemma, we solve the system (5.23), (5.24) implicitly in order to
show that two-phase solutions of the type (5.13) exist for all time.

Lemma 5.1. Let (p(t), q(t)) satisfy (5.23), (5.24) with initial data p(0) > 0 > q(0)
(respectively, p(0) < 0 < q(0)). Then (p(t), q(t)) exists for all t ∈ (−∞,∞) and
satisfies p(t) > 0 > q(t) (respectively, p(t) < 0 < q(t)). Further, (p(t), q(t)) → (0, 0)
as t→ ±∞, and ||u(., t)||C1 + ||∂tu(., t)||C0 → 0 as t → ±∞.
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Proof. Writing (5.23) and (5.24) using polar variables p(t) = r(t) cos θ(t), q(t) =
r(t) sin θ(t), r(t) ≥ 0, leads to the following:

ṙ(t) =
r2

n− 1
(cos3(θ(t)) + n(cos θ(t) + sin θ(t)) cos θ(t) sin θ(t) + sin3(θ(t))),(5.29)

and

θ̇(t) = r(cos θ(t) − sin θ(t)) cos θ(t) sin θ(t).(5.30)

In the case p(0) > 0 > q(0), θ(0) ∈ (−π/2, 0), so by (5.30) θ̇(0) < 0 and, as long as
θ(t) ∈ (−π/2, 0), θ̇(t) < 0.

We will show that θ(t) → −π/2 as t→ ∞ (θ(t) → 0 as t→ −∞) by using (5.29)
and (5.30). Integrating the resulting expression for d ln r

dθ gives

r(θ) = c| cos θ sin θ| 1
n−1 | cos θ − sin θ|− n+1

n−1 ,(5.31)

where c > 0 denotes a generic constant. Inserting this expression for r(θ) in (5.30)
results in

θ̇(t) = c| cos θ sin θ| 1
n−1 | cos θ − sin θ|− n+1

n−1 (cos θ − sin θ) cos θ sin θ

= −c| cos θ sin θ| n
n−1 | cos θ − sin θ|− 2

n−1(5.32)

for θ(t) ∈ (−π/2, 0), and so

∫ θ(t)

θ(0)

| cos θ − sin θ| 2
n−1

| cos θ sin θ| n
n−1

dθ = −ct, −π
2
< θ(0) < 0, c > 0.(5.33)

Since n
n−1 > 1, the integral expression diverges, both as θ(t) → −π/2 (t → +∞) and

as θ(t) → 0 (t → −∞). Thus θ(t) and, from (5.31), r(t), are bounded, continuous
functions of time, with θ(t) ∈ (−π/2, 0). By (5.31) then, r(t) → 0 as t → ±∞, and,
noting that from (5.14), (5.15),

α(t) = −p(t) − q(t)
2

(ψ(t) − φ(t))(φ(0) + ψ(0) − 1) ,

it follows from (5.35) and (5.36) that

p(t), q(t), α(t), and u(x, t) → 0 as t→ ±∞.

The remaining conclusions are easily obtained.
Finally, we show that for c = 0 the phases remain in the interval [0, 1] for all time.
Theorem 5.1. Suppose c = 0 and 0 < φ(0) < ψ(0) < 1. Then the phases φ, ψ

stay in [0, 1]. In particular

φ(t) ∈ [φ(0), 1
2 (φ(0) + ψ(0)) and ψ(t) ∈ (1

2 (φ(0) + ψ(0)), ψ(0)]

for all t > 0. Further, the time asymptotic behavior satisfies

lim
t→∞φ(t) = 1

2 (φ(0) + ψ(0)) = limt→∞ ψ(t).
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Proof. With (5.15) giving α (for c = 0), substituting into (5.18) and (5.20) shows
that, by (5.26),

(5.34)

φ̇(t) = (1 − ψ(t))̇ =
p

2
(φ+ (1 − ψ)) =

1
2

(φ(0) + (1 − ψ(0)))p(t) exp
(∫ t

0

p(s)ds
)
,

and the individual phases therefore satisfy

φ(t) = φ(0) +
1
2

(φ(0) + (1 − ψ(0)))
(

exp
(∫ t

0

p(s)ds
)
− 1

)
(5.35)

and

ψ(t) = ψ(0) − 1
2

(φ(0) + (1 − ψ(0)))
(

exp
(∫ t

0

p(s)ds
)
− 1

)
.(5.36)

Now we examine (5.27). Assuming q < 0 < p, the first term is monotonically increas-
ing in time and must converge, for 0 < φ(0) < ψ(0) < 1, to a positive limit. The
second term is positive but monotonically decreasing, so it may converge, as t → ∞,
either to a positive limit or to zero. Formally, setting 0 <

∫ ∞
0
p(t)dt = L < ∞ and

−∞ ≤ ∫ ∞
0
q(t)dt = M < 0, (5.27) and (5.28) imply

(φ(0) + (1 − ψ(0)))eL + (ψ(0) − φ(0))eM = 1(5.37)

and

lim
t→∞(p(t) − q(t)) = (p(0) − q(0))e

L+M
n+1 .(5.38)

If M is finite and p(0) = q(0), then (5.38), together with the necessity for p(t) to
approach zero as t → ∞, means that limt→∞ q(t) = 0. However, this implies that
M = −∞, a contradiction. On the other hand, if M = −∞, then, since L <∞, (5.38)
requires that limt→∞ q(t) = 0, which is permitted. We conclude that, for smooth
solutions p(t), q(t) to exist with p(0) > 0 > q(0), we require that L =

∫ ∞
0 p(t)dt <∞

and M =
∫ ∞
0 q(t)dt = −∞. Thus, by (5.37),

eL =
1

φ(0) + 1 − ψ(0)
.(5.39)

Writing (5.35) in the form

φ(t) =
1
2

(φ(0) − (1 − ψ(0))) +
1
2

(φ(0) + (1 − ψ(0))) exp
∫ t

0

p(s)ds,(5.40)

it follows that

lim
t→∞φ(t) =

1
2

(φ(0) + ψ(0))(5.41)

and, similarly,

lim
t→∞ψ(t) =

1
2

(φ(0) + ψ(0)).(5.42)

By the monoticity in time of
∫ t

0
p(s)ds, therefore φ(t) ∈ [φ(0), 1

2 (φ(0) + ψ(0)) and
ψ(t) ∈ (1

2 (φ(0) + ψ(0)), ψ(0)] for all t > 0.
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