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Abstract

We examine the stability of equilibrium in sunspot-driven real business cycle (RBC) models
under adaptive learning. We show that the general reduced form of this class of models can admit
rational expectations equilibria that are both indeterminate and stable under adaptive learning.
Indeterminacy of equilibrium allows for the possibility that non-fundamental “sunspot” variable
realizations can serve as the main driving force of the model, and several researchers have
put forward calibrated structural models where sunspot shocks play such a role. We show
analytically how the structural restrictions that researchers have imposed on this type of model
lead to reduced form systems where equilibrium is indeterminate but always unstable under
adaptive learning. We thereby resolve a “stability puzzle” identified by Evans and McGough
(2002).



1 Introduction

It is now well known that dynamic general equilibrium real business cycle models with production

externalities and other types of nonconvexities may admit equilibria that are locally non-unique

or indeterminate. Some researchers, following the lead of Farmer and Guo (1994) have exploited

this possibility to derive models where realizations of non-fundamental “sunspot” variables play

a prominent role in driving business cycle fluctuations.1 One critique of this approach has been

that the calibrations of the structural models necessary to obtain indeterminacy are empirically

implausible.2 However, a more recent generation of RBC models with a variety of different non-

convexities has been successful at delivering indeterminate equilibria using empirically plausible

calibrations of the structural model. Furthermore, sunspot-shock processes in these models can ex-

plain a variety of features of the macroeconomic data at business cycle frequencies that RBC models

with determinate equilibria and technology shocks have a difficult time explaining. Consequently,

many have come to view these models of sunspot-driven business cycles as quite promising.

A second critique of sunspot equilibria in RBC models with nonconvexities is that these equi-

libria are not stable under adaptive learning dynamics. In assessing whether an equilibrium is

stable under learning, one typically posits that agents have the correct reduced form equations

of the model but must learn the true (i.e. rational expectations equilibrium) parameterization of

the model using some kind of adaptive inference technique such as recursive least squares. Thus,

stability under learning, or “expectational stability” (E-stability) provides an important robustness

check on the plausibility of rational expectations equilibria (REE). 3 For the Farmer-Guo model,

Packalén (1999) and Evans and Honkapohja (2001) report that the sunspot equilibrium is unstable

under adaptive learning when the model is calibrated according to Farmer and Guo’s own speci-

fication. Evans and McGough (2002) look at the Farmer-Guo model as well as some more recent

models due to Benhabib and Farmer (1996) and to Schmitt-Grohé and Uribe (1997) that yield

indeterminate equilibria for more empirically plausible calibrations. They identify what they call

a “stability puzzle”. For a general reduced form system of equations that includes all three of

1See, e.g. Farmer (1999) or Benhabib and Farmer (1999) for discussions of this literature.
2See, e.g. Aiyagari (1995).
3See, e.g. Evans and Honkapohja (2001) for an introduction to the stability of REE under adaptive learning. The

stability of sunspot equilibria under adaptive learning dynamics has been demonstrated e.g. by Woodford (1990),
Duffy (1994) and Evans and Honkapohja (1994), in the context of simple, dynamic nonlinear models, e.g. overlapping
generations models. Demonstrating the stability of sunspot equilibria in multivariate, RBC—type models has proved
to be more elusive.
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the models they examine as special cases, they can find parameter regions for which the rational

expectations equilibrium is both indeterminate and stable under adaptive learning. However, when

they restrict attention to versions of the reduced form model consistent with calibrations of the

three structural models, they find that the sunspot equilibria are always unstable under learning.

These puzzling findings are based on a numerical analysis of the equilibria of all three models using

the same calibrations adopted by the researchers who developed those models.

In this paper we resolve this stability puzzle. In particular, we provide analytic conditions for

indeterminacy and stability under learning for a general reduced form system of equations that

is consistent with a number of one—sector RBC business cycle models. We then show precisely

why the conditions for stability under learning will always be violated when the general reduced

form system is restricted to be consistent with calibrations of the structural model that give rise to

indeterminacy. Finally we show how three RBC models with nonconvexities that have appeared in

the literature on sunspot-driven business cycles — models due to Farmer and Guo (1994), Schmitt-

Grohé and Uribe (1997) and Wen (1998) — have reduced forms that map into our general reduced

form system. We then show how the structural parameter restrictions imposed on these models

prevent equilibria from being simultaneously indeterminate and stable under adaptive learning

behavior.

2 General conditions for E-stability and Indeterminacy

We begin by presenting a general reduced form system of equations that characterizes equilibria in a

variety of different one-sector RBC models. We derive our main findings using this general reduced

form. In particular, we provide conditions under which the rational expectations equilibrium is 1)

“learnable” or expectationally stable (E—stable) under adaptive learning behavior and 2) indetermi-

nate, thereby allowing non—fundamental sunspot variable realizations to drive the business cycle,

either together with fundamental technology shocks, or, as in the analysis here, in the absence of

technology shocks.4 We then combine the two sets of conditions to yield necessary conditions for

both E—stability and indeterminacy of equilibrium.

4If the REE of an RBC model of the class we examine is determinate or unique, then expectational errors must
be a unique function of fundamentals (e.g. technology shocks) alone; sunspots variable realizations cannot matter.
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2.1 Reduced form model

The general reduced form of a sunspot-driven RBC model can be characterized by the following

system of 2 equations:

kt+1 = dkkt + dcct (1)

ct = bkEtkt+1 + bcEtct+1 (2)

where, for simplicity, we assume there are no fundamental shocks. The equilibrium is found by

assuming that agents use these equations to form rational expectations of Etkt+1 and Etct+1. Since

we are interested in the stability of this equilibrium under adaptive learning, we instead assume

that while agents possess knowledge of the functional form of these equations, they are initially

uniformed as to the correct parameter values in these equations. Specifically, they have a “perceived

law of motion” (PLM) of the form:

yt = a1 + ayyt−1 + asst + ²t

where y0t denotes the 2 × 1 vector of endogenous variables, (kt, ct), st represents a vector of non-
fundamental expectation errors or sunspot variables and ²t is a vector of random variables with 0

mean. This perceived law of motion corresponds to a particular, minimal state variable (MSV),

AR(1) solution class. In particular, it is assumed that agents cannot observe current consumption

and capital, though capital is predetermined, and so is known at time t. It is possible to relax this

assumption for capital, as we show below, without changing any of our results.

As equation (1) is already in this AR(1) form, does not depend on any expectations and therefore

on any expectation errors or sunspots, we can assume that agents know the coefficients of equation

(1), dk, dc.
5 Alternatively, the coefficients of this equation could be learned as well, though this

will not change any of our results. Hence the relevant perceived law of motion consists of the single

equation for ct which we write as

ct = a1 + akkt−1 + acct−1 + afft + εt, (3)

where ft is a sunspot variable, and ε is a noise variable with 0 mean.

5Packalén (1999) and Evans and McGough (2002) make the same simplifying assumption.

3



2.2 REE Solution

Given the PLM, agents form expectations (in lieu of rational expectations) as follows:

Etct = ct = a1 + akkt−1 + acct−1 + afft (4)

Etkt = dkkt−1 + dcct−1 (5)

Etkt+1 = dkkt + dcEtct (6)

Etct+1 = a1 + akEtkt + acEtct (7)

Substituting (4) - (5) into (6) and (7) and collecting terms, we get

Etct+1 = a1(1 + ac) + ak(dk + ac)kt−1 + (a2c + akdc)ct−1 + acafft (8)

Etkt+1 = a1dc + (d
2
k + dcak)kt−1 + dc(dk + ac)ct−1 + dcafft (9)

Next, substitute (8) and (9) into (2), to get a mapping, T , between the perceived law of motion

and the actual law of motion.

T (a1) = a1[dcbk + bc(1 + ac)]

T (ak) = bk(d
2
k + dcak) + bc(akdk + acak)

T (ac) = bkdc(dk + ac) + bc(a
2
c + akdc)

T (af ) = af (bkdc + bcac)

The actual law of motion for consumption is

ct = T (a1) + T (ak)kt + T (ac)ct−1 + T (af )ft + εt, (10)

This actual law of motion (10) together with (1) comprise the data generating process for the

economy under adaptive learning.

The rational expectations solution is just a fixed point of this T-mapping and is found by

application of the method of undetermined coefficients, i.e. by setting the coefficients of (2) equal

to their T-map coefficients in (10). This yields the RE solution:

ac =
1− bkdc
bc

, ak = −bkdk
bc
, a1 = 0,with af indeterminate. (11)
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2.3 Conditions for E-stability

We now examine the stability of the RE solution under adaptive learning. The specific question we

seek to address is whether the RE solution is stable under some unspecified adaptive adjustment

process by which the parameters of the perceived law of motion are slowly adjusted toward the

actual law of motion parameters. Specifically, let a be the vector of parameters in the perceived law

of motion and T (a) the vector of parameters in the actual law of motion. The rational expectations

solution is said to be expectationally stable, or E-stable if it is locally asymptotically stable under

the equation
da

dτ
= T (a)− a.

That is, if this differential equation evaluated at the RE solution values for a is locally stable. The

time variable τ in this equation refers to notional time.6 Intuitively, we are checking whether the

adjustment of the PLM parameters toward the ALM parameters is leading agents toward the RE

solution, and not away form it, within a small neighborhood of the RE solution.

The RE solution is said to be E-stable if all eigenvalues of d(T (a)−a)da , when evaluated at the RE

solution, have negative real parts. It is easy to derive the expression for d(T (a)−a)da (evaluated at the

REE values) as 
bc 0 0 0
0 bcdk −bkdk 0
0 bcdc 1− bkdc 0
0 0 bcaf 0

 , (12)

where af is the REE value of af . The eigenvalues of this matrix are determined by the equation

−λ(bc − λ)[λ2 + (bkdc − bcdk − 1)λ+ bcdk] = 0

Obviously,

λ1 = 0 (13)

λ2 = bc (14)

The other two eigenvalues are determined by the quadratic formula

1− bkdc + bcdk ±
p
(1− bkdc + bcdk)2 − 4bcdk
2

6It turns out that there is a deep connection between the stability of the RE solution under this differential
equation, and the stability of the RE solution under a real-time adaptive learning algorithm such as recursive least
squares learning. See Evans and Honkapohja (2001) for details.
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The necessary conditions for both of these roots to be negative are

λ3λ4 = bcdk > 0 (15)

λ3 + λ4 = 1− bkdc + bcdk < 0 (16)

The presence of a zero eigenvalue can be problematic in assessing the stability of a system under

adaptive learning. The zero eigenvalue is clearly due to the presence of the sunspot variable ft in

the perceived law of motion. As it turns out, the differential equation for af is given by

daf
dτ

= af (bkdc + bcac − 1),

which is a separable equation that can be directly integrated as:

af (τ) = af (0) exp

½Z τ

0
(bkdc + bcac(u)− 1)du

¾
.

So long as ac → 1−bkdc
bc

exponentially as τ → +∞, af will also converge to a finite value, so the
zero eigenvalue need not hinder our analysis of the stability of the system under adaptive learning.

Proposition 1 The necessary conditions for the system (1) and (2) to be E-stable are (15), (16)

and

bc < 0 (17)

As noted above, the perceived law of motion (3) assumes that kt is not known at time t, when

in fact it is predetermined by decisions made in period t− 1. Thus it is might be more reasonable
to assume that agents use the alternative perceived law of motion,

ct = a1 + akkt + acct−1 + afft + εt (18)

in place of (3). Following the same steps as outlined above, one can show that if agents use (18) as

their perceived law of motion, the actual law of motion will be given by:

ct = T (a1) + T (ak)kt + T (ac)ct−1 + T (af )ft + εt,

where

T (a1) = a1[dcbk + bc(1 + akdc + ac)]

T (ak) = bkdk + bkdcak + bcak(dk + akdc + ac)

T (ac) = bkdcac + bcac(ac + akdc)

T (af ) = af [bkdc + bc(akdc + ac)]
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The matrix d(T (a)−a)
da (evaluated at the REE values) then becomes

bc 0 0 0
0 bcdk − bkdc −bk 0
0 dc 1 0
0 −bcdcaf bcaf 0

 , (19)

where af is again the REE value of af (c.f. (12)). The eigenvalues of (19) are determined by the

equation

λ(bc − λ)[λ2 + (bkdc − bcdk − 1)λ+ bcdk] = 0,

which is precisely the same characteristic equation we obtained for the matrix (12). It follows that

Proposition 1 also holds in the case where agents use the alternative perceived law of motion (3).

2.4 Conditions for indeterminacy

Indeterminacy refers to local nonuniqueness of the solution paths leading to a RE solution. To

assess whether the RE solution is indeterminate, let us rewrite the general reduced form system

(1-2) as "
1 0
bk bc

# "
kt+1
ct+1

#
=

"
dk dc
0 1

# "
kt
ct

#
or equivalently, "

kt+1
ct+1

#
= J

"
kt
ct

#
, (20)

J =

"
dk dc
− bkdkbc 1−bkdc

bc

#
(21)

where the determinant and trace of the Jacobian can be obtained as

det(J) =
dk
bc

tr(J) =
1− bkdc + dkbc

bc

Indeterminacy in this model requires that both eigenvalues of J lie inside the unit circle. Since

the trace of the Jacobian measures the sum of the roots and the determinant measures the product,

the necessary conditions for indeterminacy are

−1 < det(J) < 1 (22)

−1− det(J) < tr(J) < 1 + det(J) (23)
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Proposition 2 The necessary conditions for the system (1) and (2) to have stationary sunspot

equilibria are

−1 < det(J) =
dk
bc
< 1 (24)

−1− det(J) < tr(J) =
1− bkdc + dkbc

bc
< 1 + det(J) (25)

2.5 Necessary conditions for both E-stability and indeterminacy

If the reduced form model has indeterminate equilibria that are also E-stable, conditions (15) -

(17), (24) and (25) must be satisfied simultaneously. Consider the condition (15). It implies that

det(J) = dk/bc > 0. With (24) this requires that the determinant of the Jacobian must satisfy

0 < det(J) =
dk
bc
< 1 (26)

Furthermore, (17) and (26) imply that

dk < 0.

Similarly, the combination of (16), (17) and (25) requires that

0 < tr(J) =
1− bkdc + dkbc

bc
< 1 + det(J) (27)

Proposition 3 The E-stability requirement imposes further restrictions on the parameters of the

sunspot model (RBC model with indeterminate equilibria). It requires that conditions (17), (26),

and (27) hold simultaneously. In particular, (17) states that

bc < 0

Note that a positive determinant implies that both roots of J have the same sign, and a positive

trace implies that the sign of the roots is positive. Hence we have the following corollary.

Corollary 1 The necessary conditions for the stationary sunspot equilibria in (1) and (2) to be

E-stable are that both roots of the Jacobian matrix (21) have positive real parts and bc < 0.

2.6 Further modifying the PLM

A closer look at the matrix (12) (or 19) reveals that the eigenvalue bc comes solely from the T-map

of the parameter a1, the constant term in the agent’s perceived law of motion. One could argue
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that the variables in the reduced form model are all deviations from the steady states, therefore it

is not necessary to incorporate a constant term in the PLM. Indeed in all RBC models the reduced

form equations do not involve constant terms.

On the other hand, the presence of the constant term can be regarded as a slight model misspec-

ification; agents could, after all, learn that coefficient on this constant term is zero in the rational

expectations equilibrium.

Suppose however, that we eliminate the constant term. The PLM (3) now becomes

ct = akkt−1 + acct−1 + afft + εt,

With this modification, the necessary conditions for indeterminacy and E-stability need to be re-

derived. With bc < 0, the necessary conditions will be the same, so we focus on the case where

bc > 0.

Note that bc > 0 and (16) immediately imply that

tr(J) =
1− bkdc + dkbc

bc
< 0 (28)

(15) again implies that

det(J) =
dk
bc
> 0 (29)

A negative trace and a positive determinant imply that both eigenvalues of J have negative real

parts. This is problematic because all sunspot models rely on eigenvalues that have positive real

parts to generate dampened cycles. If J has negative eigenvalues, the system oscillates around the

steady state at each period, which is empirically implausible.

Proposition 4 When the PLM has no constant term, the REE of calibrated sunspot models are

not E-stable because they would necessarily violate (28) and (29).

In the next three sections, we examine three real business cycle models that have appeared in

the literature and show how they map into the reduced form system (1-2) that we have examined in

this section. We then demonstrate that under the parameter restrictions placed on the structural

models, the REE cannot be simultaneously indeterminate and stable under adaptive learning.
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3 The Wen (1998) model

The economy in Wen’s (1998) model consists of a large number of identical consumer-producer

households who solve:

max
{ct,nt,kt,ut}

E0

∞X
t=0

βt
Ã
log ct − n1+γt

1 + γ

!
(30)

subject to:

ct + xt = et (utk
α
t )n

1−α
t (31)

kt+1 = xt + (1− δt)kt (32)

et = (utkt)
αηn

(1−α)η
t (33)

δt =
1

θ
uθt (34)

for a given initial stock of capital, k0 > 0. We adopt Wen’s (1998) notation. The choice variables

are consumption, ct, the number of hours worked, nt, the capital stock, kt, and the rate of capacity

utilization, ut ∈ (0, 1). The parameters restrictions are: 0 < α < 1, 0 < β < 1, γ ≥ 0, η > 0,

and θ > 1. The production externality, et, is a function of the mean productive capacity, utkt,

and mean labor hours, nt. The rate of depreciation of the capital stock, δt ∈ (0, 1) is an increasing
function of the capacity utilization rate, ut. The restriction that θ > 1 ensures that the optimal

capacity utilization rate ut lies in (0, 1). The restriction that η > 1 ensures increasing returns to

scale in production, which in important both for generating indeterminacy and for allowing capacity

utilization to affect the extent of aggregate returns to scale. Indeed, Wen (1998) showed that the

addition of variable capital utilization could significantly reduce the degree of increasing returns to

scale needed to deliver indeterminate equilibria (e.g. by comparison with Farmer and Guo (1994)),

from empirically implausible to empirically plausible levels. This feature of the Wen model has made

it an attractive choice for other researchers interested in empirical applications of sunspot-driven

RBC models e.g. Harrison and Weder (2002) use the Wen model with sunspot shocks to explain a

number of features of the data found over the Great Depression era. Benhabib and Wen (2002) use

the Wen model to show how shocks to aggregate demand can explain a number of business cycle

anomalies that have eluded standard RBC models (without indeterminate equilibria).

Following Wen (1998), we can first solve for the optimal capacity utilization rate ut, and using

this expression, derive a reduced—form aggregate production function of the form:

yt = k
a∗
t n

b∗
t ,
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where a∗ = α(1 + η)τk, b
∗ = (1− α)(1 + η)τn, and τk =

θ−1
θ−α(1+η) , τn =

θ
θ−α(1+η) .

3.1 The reduced form

The Wen (1998) model can be written as a reduced form system of 2 equations:"
kt+1
nt+1

#
= J

"
kt
nt

#
, (35)

where

J =

"
1 (1 + γ)c/k

(1−β)(1−a∗)
1+γ−βb∗

1+γ−b∗+[1+β(a∗−1)](1+γ)c/k
1+γ−βb∗

#
,

3.2 Requirements for indeterminacy

For this model to have multiple stationary sunspot equilibria, the conditions (22) and (23) must

be satisfied. After lengthy algebra, one can show that

det(J) =
1 + γ − b∗ + a∗(1 + γ)c/k

1 + γ − βb∗
(36)

=
1

β
(1 +

η(1 + γ)(1− β)τn
1 + γ − βb∗

) (37)

tr(J) = 1 + det(J) +
(1 + γ)(1− β)(1− a∗)c/k

1 + γ − βb∗
(38)

The crucial insight of (37) is that when there is no externality (η = 0), det(J) = 1/β > 1, which

violates the condition (22). For there to be indeterminacy, therefore, the second term of (37) must

become negative as externality becomes positive. Since η(1 + γ)(1 − β)τn > 0, this requires that

the denominator be negative:

1 + γ − βb∗ < 0 (39)

Proposition 5 A necessary condition for the system (35) to possess multiple sunspot equilibria is

(39)

3.3 E-stability

To check the conditions for E-stability, we need to convert the system (35) into the form of (1) and

(2). After this is done, the mapping from the parameters of the model to those of (1) and (2) are:

bc =
βb∗ − (1 + γ)

b∗ − (1 + γ)
(40)

11



bk =
(β − 1)[b∗ − (1 + γ)(1− a∗)]

b∗ − (1 + γ)
(41)

dk = 1− a
∗(1 + γ)c/k

b∗ − (1 + γ)
(42)

dc =
(1 + γ)c/k

b∗ − (1 + γ)
(43)

We can now use the conditions derived in the previous section to examine if the REE of this model

is E-stable. Start with (40). In proposition 5 we have shown that βb∗−(1+γ) > 0. Since 0 < β < 1,

this implies that b∗ − (1 + γ) > 0. It is immediately evident that

bc =
βb∗ − (1 + γ)

b∗ − (1 + γ)
> 0,

which exactly violates the required condition for E-stability (17).

Proposition 6 The REE of the Wen (1998) model is not E-stable under adaptive learning since

it violates condition (17).

4 The Farmer and Guo (1994) model

In Farmer and Guo’s (1994) model a large number of identical consumer-producer households solve:

max
Ct,Lt

E0

∞X
t=0

ρt
Ã
logCt −AL

1−γ
t

1− γ

!

subject to:

Kt+1 ≤ Yt + (1− δ)Kt − Ct
Yt = ZtK

α
t L

β
t

Zt = Zθ
t−1ηt

Here we are using the same notation as in Farmer and Guo (1994): Ct denotes consumption, Lt

denotes labor supply, Kt is the capital stock, Yt is output, Zt is a productivity shock and ηt is

an i.i.d random variable with unit mean. The parameters satisfy γ > 0, 0 < ρ < 1, 0 < δ < 1,

0 < θ < 1 and, most importantly, α + β > 1, so that the technology exhibits increasing returns.7

However, from the perspective of individual producers, the production technology is Cobb-Douglas

7An alternative interpretation of the latter restriction involving monopolistically competitive firms is also possible
— see Farmer and Guo (1994) for the details.
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with constant returns, where a and b represent capital and labor’s shares of output, respectively,

and a+ b = 1. Farmer and Guo assume that

α = a/λ, β = b/λ (44)

with 0 < λ < 1 to insure increasing returns to scale.

4.1 The reduced form

Omitting fundamental shocks, Zt, the model can be reduced to:

Yt = Kα
t L

β
t (45)

ACt/L
γ
t = bYt/Lt (46)

Kt+1 = Yt + (1− δ)Kt − Ct (47)

1

Ct
= ρEt[

1

Ct+1
(a
Yt+1
Kt+1

+ 1− δ)], (48)

where equations (46) and (48) are the first order conditions from the representative agent’s problem.

The two dynamic equations can be linearized as

ct = Etct+1 + ρ
y

k
(Etkt+1 −Etyt+1) (49)

kt+1 =
y

k
yt + (1− δ)kt − c

k
ct (50)

Combining the linearized versions of (45) and (46)

yt = αkt + βlt

ct + (1− γ)lt = yt

we can get

yt =
β

β − 1 + γ
ct − α(1− γ)

β − 1 + γ
kt

Plugging this equation into the two (linearized) dynamic equations, we get

ct = (1 + ρa
y

k

β

1− β − γ
)Etct+1 + ρa

y

k
[1− α(1− γ)

1− β − γ
]Etkt+1

kt+1 = [
y

k

α(1− γ)

1− γ − β
+ 1− δ]kt − ( c

k
+
y

k

β

1− γ − β
)ct

13



Mapped into our general representation in equations section 2.1, the first critical parameter is

bc = 1 + ρa
y

k

β

1− β − γ

=
1− γ − βρ(1− δ)

1− β − γ
,

where the second equality comes from the steady state version of (48): ρayk = 1 − ρ(1 − δ). The

second critical parameter is

dk =
y

k

α(1− γ)

1− γ − β
+ 1− δ

=

1−ρ(1−δ)
ρa α(1− γ) + (1− δ)(1− γ − β)

1− γ − β

4.2 Requirements for indeterminacy

We only need a subset of the necessary conditions for indeterminacy to make our point. As we

proved in section 2.4, one necessary condition for indeterminacy is

−1 < dk
bc
< 1

In this model we have

dk
bc
=

1−ρ(1−δ)
ρa α(1− γ) + (1− δ)(1− γ − β)

1− γ − βρ(1− δ)

Plugging equation (44) into the expression and simplify terms, we get

dk
bc

=

1
ρ{ 1λ(1− γ)[1− ρ(1− δ)] + ρ(1− δ)(1− γ − b

λ)}
1− γ − b

λ(1− δ)ρ

=
1

ρ
{1 + (1−

1
λ)(1− γ)[ρ(1− δ)− 1]
1− γ − b

λ(1− δ)ρ
}

Suppose the economy has constant returns to scale (λ = 1), then dk
bc
= 1/ρ > 1, since the discount

factor ρ must be less than 1. In this case the condition for indeterminacy is violated. To have

indeterminacy, we need increasing returns (λ < 1), and the second term in the bracket must

be negative. It is easy to see that the numerator is positive, given 1 − 1/λ < 0, γ < 0, and

ρ(1− δ)− 1 = −ρay/k < 0. Therefore the denominator must be negative, that is,

βρ(1− δ) > 1− γ (51)

Since 0 < ρ < 0 and 0 < 1− δ < 1, this also implies

β > 1− γ (52)
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4.3 E-instability

Now we show that if the Farmer and Guo (1994) model satisfies the above necessary condition for

indeterminacy, then it must be E-unstable under adaptive learning. We only have to check the

necessary condition

bc < 0

In this model

bc =
βρ(1− δ)− (1− γ)

β − (1− γ)

If condition (52) holds, the numerator must be positive. Combining condition (51), we have

bc =
βρ(1− δ)− (1− γ)

β − (1− γ)

>
1− γ − (1− γ)

β − (1− γ)
= 0

It follows that the equilibrium of this model is E-unstable under adaptive learning.

5 The Schmitt-Grohé and Uribe (1997) model

We focus on the simpler version of Schmitt-Grohé and Uribe’s (1997) model where there is no capital

income tax. We consider a discrete-time version of the model with labor income taxes only and

adopt Schmitt-Grohé and Uribe’s (1997) notation. A large number of identical consumer-producer

households solve:

max
Ct,Ht

E0

∞X
t=0

βt (logCt −AHt)

subject to:

Kt+1 ≤ Yt + (1− δ)Kt − Ct −G
Yt = Ka

t L
b
t

G = τtbYt

Here, Ct denotes consumption, Ht is hours worked, Kt is the capital stock, and Yt is output

produced according to a Cobb-Douglas technology with constant returns, a+ b = 1. Government

revenue, G, is obtained through taxes on labor income at rate τt ∈ (0, 1). The discount factor
satisfies 0 < β < 1, as does the rate of depreciation of the capital stock, 0 < δ < 1, and we assume

A > 0.
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5.1 The reduced form

This model can be reduced to

Yt = Ka
tH

b
t (53)

ACt = b(1− τt)Yt/Ht (54)

Kt+1 = Yt + (1− δ)Kt − Ct −G (55)

1

Ct
= βEt[

1

Ct+1
(a
Yt+1
Kt+1

+ 1− δ)] (56)

G = τtbYt, (57)

Equations (54) and (56) are the first order conditions from the representative agent’s problem.

Letting lower case letters denote deviations from steady state values. We can eliminate yt and τt

by using the linearized version of (53), (54) and (57):

yt = akt + bht

ct = yt − ht − τ

1− τ
τt

0 = τt + yt,

which implies

yt =
(1− τ)b

b− 1 + τ
ct − (1− τ)a

b− 1 + τ
kt

. Substituting this equation into the two dynamic equations, we get

ct = [1− βa
y

k

(1− τ)b

b− 1 + τ
]Etct+1 + aβ

y

k
[1 +

(1− τ)a

b− 1 + τ
]Etkt+1

kt+1 = (
y

k

b(1− τ)

b− 1 + τ
− c
k
)ct + [

y

k

(1− τ)α

1− b− τ
+ 1− δ]kt

Again, the two critical parameters are

bc = 1− βa
y

k

(1− τ)b

b− 1 + τ

=
b− 1 + τ − [1− β(1− δ)]b(1− τ)

b− 1 + τ

dk =
y

k

(1− τ)α

1− b− τ
+ 1− δ

=
[1/β − (1− δ)](1− τ) + (1− δ)(1− b− τ)

1− b− τ
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5.2 Requirements for indeterminacy

We again check the condition

−1 < dk
bc
< 1

In this model

dk
bc

=
1/β{[1− β(1− δ)](τ − 1) + β(1− δ)(τ + b− 1)}

b− 1 + τ − [1− β(1− δ)]b(1− τ)

=
1

β
{1 + −τb[1− β(1− δ)]

b− 1 + τ − [1− β(1− δ)]b(1− τ)
}

When there is no labor income tax (τ = 0), this expression is equal to 1/β > 1, the equilibrium

is always determinate. To have indeterminacy, we need τ > 0, and the second expression in the

bracket must be negative. It is obvious that the numerator is negative, so the denominator must

be positive to have indeterminacy. That is,

b− 1 + τ > b(1− τ)[1− β(1− δ)] (58)

Since the right-hand side of the equation is positive, we must also have

b− 1 + τ > 0 (59)

5.3 E-instability

Next we show that when indeterminacy holds, the condition for E-stability bc < 0 will be violated.

Combining the expression for bc with (58) and (59), we have

bc = 1− b(1− τ)[1− β(1− δ)]

b− 1 + τ

> 1− b− 1 + τ

b− 1 + τ
= 0

This equilibrium of this model is therefore E-unstable under adaptive learning.

6 Conclusions

In this paper we have examined the conditions for indeterminacy and stability under adaptive

learning for a general reduced form model that characterizes a number of one-sector real business

cycle models. We have found simple, analytic conditions under which the equilibrium of this

system is both indeterminate and stable under adaptive learning behavior. To our knowledge, such
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conditions have not previously appeared in the literature. These conditions imply that, in principle,

it is possible for agents to learn the REE of sunspot-driven RBC models, giving such models added

plausibility as explanations for business cycle fluctuations. Furthermore, these conditions help us to

understand why Evans and McGough (2002) can (numerically) find large regions of the parameter

space of a general reduced form model (such as the one we consider) where sunspot solutions

are stable under learning, but cannot find any regions where sunspot solutions of structural RBC

models are stable under adaptive learning. Our findings serve to resolve this “stability puzzle.”

In particular, we show how the parameter restrictions implied by structural models rule out the

possibility that REE can be simultaneously indeterminate and learnable. We do this in the context

of three RBC models with nonconvexities that allow for the possibility of indeterminate equilibria.

While we have applied our conditions for indeterminacy and stability under learning to just

three RBC models, we believe that our instability conclusion is even more general. Consider the

perceived law of motion (3). Imagine the case where bc < 0, the necessary condition for E-stability.

If the actual law of motion turns out to be the same as the perceived law of motion, as when agents

have learned the REE, then we would have:

ct = a1 − bkdk
bc
kt−1 +

1− bkdk
bc

ct−1 + afft + εt,

where we have substituted in the REE values for the parameters of the PLM. A negative value for

bc implies that the autoregressive coefficient on consumption is negative.
8 That is, consumption

will oscillate around its steady state period by period. This is obviously empirically implausible.

Any structural model calibrated to match the data must have bc > 0. We therefore conclude with

Conjecture 1 If a structural model is calibrated to match empirical regularities in the data, then

its REE are E-unstable under adaptive learning, as condition (17) will necessarily be violated.

Our findings cast doubt on the plausibility of equilibria in calibrated RBCmodels where business

cycles are driven in whole or in part by non-fundamental sunspot variables, as such equilibria

are found to be unstable under adaptive learning even when agents possess knowledge of the

correct reduced form. On the other hand, our results only apply to one-sector models; recently

researchers have shown that indeterminacy of equilibria is more readily obtained in multi-sector

models. Hence, it need not be the case that our findings imply that all sunspot-driven RBC models

8The same result holds for the alternative PLM (18).
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are unstable under adaptive learning behavior. We leave an analysis of the stability under learning

of indeterminate equilibria in multi-sector models to future research.
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