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Analogy Between Linear Optical Systems and
Linear Two-Port Electrical Networks

R. M. A. Azzam and N. M Bashara

Attention is called to the analogy between linear optical systems and linear two-port electrical networks.
For both, the transformation of a pair of oscillating quantities between input and output is of interest.
The mapping of polarization by an optical system and of impedance (admittance) by a two-port network

is deseribed by a bilinear transformation.

Therefore for each transfer property of a system of one type,

there is a similar property for the system of the other type. Two-port electrical networks are synthesized
whose impedance-(or admittance-) mapping properties are the same as the polarization-mapping prop-
erties of a given optical system. The opposite problem of finding the optical analogs of two-port net-
works is also considered. Besides unifying the methods of handling these two different kinds of systems,
the analogy appears fruitful if used reciprocally to simulate electrical networks by optical systems, and
vice versa. Linear mechanoacoustic systems have optical analogs besides their well-known electrical

analogs.

I. Introduction

The advent of microwaves and more recently of lasers
has stimulated the interest of electrical engineers in
optics and optical systems. Kstablishing analogies
between electrical networks and optical systems would
be useful in (1) unifying the methods of treating both
kinds of systems and (2) the reciprocal simulation of
systems of one type by systems of the other.

I1l. Basis of the Analogy

The basis of the analogy between optical systems and
two-port electrical networks! is explained with reference
to Fig. 1. For the optical system S, shown in Fig. 1(a),
nonlinear optical effects and other frequeney-changing
phenomena (such as Brillouin or Raman scattering) are
assumed absent. Also, incoherent scattering processes
are excluded. Under these conditions the incident and
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Fig. 1. (a) Linear optical system S; (b) linear two-port network

W. TFor S and W the transformation of a pair of oscillating
quantities between input and output is of interest.
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outgoing waves are monochromatic and of the same
frequency, and both are totally polarized. The polari-
zation states of these waves can be specified with refer-
ence to any chosen pair of bases staies, which are gener-
ally elliptic. Any polarization state can be generated
by a linear superposition of the basis states 1 and 2 using
complex coefficients F; and E, respectively. These
coefficients transform linearly after propagation through

the system S

Ey Tu Te\[E\

)= ’ 1)

E, Ta Tu/\E:
where T';; denote the complex elements of the generalized
Jones matrix? of the optical system. The matrix T
depends both on the internal structure of S and on the
basis states used at the input and output of the optical

system, which need not be the same. When two orthog-
onal linear polarizations are chosen as basis states, Eq.

(1) beCOIlleS
(EV> ( 21 22)(E1/> ( )

where (T7) refers to the ordinary cartesian Jones ma-
trix and the elements of the vector E correspond to the
cartesian components of the electric vector of the light
wave.

In many cases we are interested in the polarization-
mapping properties of the system S overlooking any
over-all amplitude or phase changes between input and ,
output. The polarization forms (or the ellipses of
polarization) of the incident and outgoing waves are
determined by the complex ratios x and x’, respectively,
where



X = Ez/El,
According to Eq. (1) x’ and x are interrelated by
x' = (Tex + Tu)/(Tex + Tu), 4)

which is a bilinear transformation. The result in Eq.
(4) has been utilized3 ¢ to investigate various aspects of
polarization transfer by optical systems and to provide
a procedure’ (generalized ellipsometry) to measure the
matrix 7.

The two-port network shown in Fig: 1(b) is assumed
linear and may contain active elements operating in the
linear domain.” The voltage and current V’ and I’ at
one port, are related to the voltage and current V and 1
at the other port by a linear transformation

x' = E/E\. (3)

<I'> _ (I/Vn le)([), ).
v’ A\Wu Wa/\V

where W,; are the complex elements of the network
transfer matrix.8 The impedances at the two ports
are defined by

7z =V, Z =V, (6)

and according to Eq. (5) they are related by
Z' = (WaZ + Wa)/(WeZ + W), )

which is a bilinear transformation. Obviously, the
transformation of admittance between the two ports is
also bilinear,

Y’ = (WuY + Wm)/(WzlY + W22)~ (8)

The analogy between optical systems and two-port
networks is clearly demonstrated by the similarity of
Eqgs. (1) and (5) and Egs. (4) and (7) or (8). In both
cases we deal with the transformation of (the complex
amplitudes of) a pair of oscillating quantities between
the input and output. These are the two oscillating
components of the light vector along the two chosen
basis states in the case of optical systems and the voltage
and current oscillations in the case of two-port networks.

Rumsey has previously shown the similarity of the
definition of impedance and polarization ratios and
suggested the use of impedance charts (Smith or Carter)
to represent elliptical polarizations.® Deschamps briefly
mentioned the similarity between the mapping of
polarization by optical systems and of impedance by
electrical networks. 10

lIl. Analagous Properties of Optical Systems
and Two-Port Networks

From the previous section we have seen that the
mapping of polarization by an optical system and of
impedance (or admittance) by a two-port electrical
network between input and output is described by a
bilinear transformation. It follows that for each ter-
minal characteristic of a system of one type there is a
similar characteristic for the system of the other type.

First we note that a bilinear transformation can al-
ways be found that maps any three points ({1, ¢, {3) in
the complex ¢ plane into the three points (1, ne, 93) in
the complex 7 plane and is given by *!!

(= m)/(n—m) = [(m — m)& — &)/ — m) (§5 — 1)
X [ = )/ = 1. (9)

This means that if the transformation of three polariza-
tion states by an optical system S or three impédances
by a network W is known, the mapping of all other
polarizations or impedances is completely determined:
The bilinear transformation is referred to as the polari-
zation transfer function (PTF) or the impedance
transfer function (ITF). According to Egs. (4) and (7),
the coeflicients of the PTF and the ITF determine the
matrices 7' and W of Eqs. (1) and (5), respectively, up to
a complex multiplier. Besides the mapping of three
polarizations or three impedances, a fourth measure-
ment is needed to determine these matrices completely.
This involves the determination of the over-all phase
delay and attenuation of a light wave of a given polari-
zation by the optical system and a complex voltage- or
current-transfer ratio for the network.

For any choice of the basis states Eq. (3) leads to a
complex-plane representation in which the loei of elliptic
polarizations of the same azimuth-and of the same ellip-
ticity constitute two orthogonal sets of circles. These
equiazimuth and equiellipticity families of cireles re-
spectively pass through and enclose the two points in
the complex plane that represent the right and left
circular polarizations. If the latter polarizations are
chosen as the basis states, the equiazimuth and equi-
ellipticity contours become straight lines and concentric
circles through and around the origin, respectively. In
the impedance plane these straight lines and cireles
through and around the origin eorrespond to the loci of
impedances of constant angle and of constant magnitude,
respectively. The origin and the point at infinity cor-
respond to the left and right circular polarizations in one
case and to zero impedance (short circuit) and infinite
impedance (open circuit) in the other.

An important property of bilinear transformations
between two complex planes is that a cirele in one plane
is mapped into a circle in the other plane. Applying
this property, it is seen that if an incident polarization
x is of a fixed azimuth (ellipticity), the polarization x’
exiting from the optical system S will traverse a circle
in the complex plane as the ellipticity (azimuth) of x is
varied to scan all possible values.® Similarly, for the
two-port network, W, if an impedance Z of constant
angle (magnitude) is connected at one port of the impe-
dance, Z’ that appears at the other port will follow a
circle in the complex plane as the magnitude (angle) of
Z is varied to cover all possible valies. The optical
system S and the two-port network W map the two
orthogonal families of straight lines and concentric
circles through and arcund the origin in the polariza-
tion—impedance (x-Z) plane into two orthogonal sets of
circles in the (x'~Z’) plane (Fig. 2). The preservation
of orthogonality is a consequence of the conformal na-
ture of the transformation. The two points A’ and B’
in the (x’~Z’) plane are the images of the origin 4 and
the point at infinity B of the (x-Z) plane. 4’ and B’
represent the response of S to incident left and right
circular polarizations and they also represent the impe-
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Tig. 2. The two orthogonal families of straight lines (—) and
concentric ¢ircles (—) through and around the origin in the
polarization-impedance (x-Z) plane (left) represent polarization
states of equiazimuth and equiellipticity and impedances of
constant angle and constant magnitude, respectively. These
are mapped by the optical system S and the two-port netowrk W
into the orthogonal families of circles passing through and en-
closing the two points A’ and B’ (right). A’ and B’ in the (x"-
Z') plane are the images of the origin (4) and the point at in-
finity (B) of the (x—Z) plane.

dance that appears at one part 6f W when the other port
is short- and open-circuited, respectively.

. For each optical system there are two polarization
states that pass through the system unchanged. These
etgenpolarizations® are obtained from Eq. (4) by setting
x’ = x. Thisyields

xer2 = (1/2T12)
X {(Te — Tu) £ [(Te — Tu)? + 4TuTal?}. (10)

Corresponding to the eigenpolarizations x» and x.. of
the optical system S, the two-port network W has two
terative impedances Z 4 and Z » that when connected at
one port appear unchanged at the other. By analogy,
Eq. (7) gives

Ze = (1/2Wie)
X {(Wa — Wu) = (W — Wu)? + AWLeWalt}. (11)

Because Eqs. (10) and (11) involve ratios of the elements
of the transfer matrices 7' and W, the eigenpolarizations
and iterative impedances are uniquely determined by
the PTT and ITT, respectively.

The loci of polarization states that preserve either
ellipticity or azimuth after propagation through an
" optical system® are analogous to the loci of impedances

that if connected at one port would appear at the other -

with either magnitude or angle unchanged, respectively.
To determine the cartesian equation of these loci, both
Egs. (4) and (7) are put in the form

7 = (A¢ + B)/(Ct + D), (12)
where { = x or Z; 7 = x’ or Z’, and the coefficients 4,
B, C, and D correspond to the elements of either the T
matrix of the optical system or the W matrix of the
two-port network. The locus of polarizations that
preserve their ellipticity or impedances that preserve
their magnitude is determined by!2
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|| =[], (13)
or
[(4¢ + B)/(Ct + D)| = [¢]- (14)

Similarly the locus of polarizations that preserve their
azimuth or impedances that preserve their angle is
given by!?

Arg(n) = Arg(t), (15)
or
Argl(Ar + B)/(Ct + D)) = Arg(s). (16)
Expanding Eqgs. (14) and (16) yields
(x? + ¥ — Q2 = 0, 17)
and
Qs — yQs = 0, (18)
respectively. In Eqgs. (17) and (18) we have
=z + jy, (19)

and the @’s are quadratics in x and y given by
@ = (C-C)2® + y?) + (C-D)z 4 2(C X D)y + (D-D),
Q: = (A-A)(=* + y*) + 2(A-B)z + 2(A X B)y + (B-B),

Q= CXAz+3)— BXC—DXAx
- (B-C—D-Ay + (D X B),

Qi = (C-A)=z* + ¢*) + (B:C + D-A)
— (BXC4 D XAy + (D-B).

In Eq. (20) A, B, C, and D are the complex coefficients
of the PTT or the ITT considered as vectors in the com-
plex plane. The operations of the dot and cross prod-
ucts have their usual meanings except that for the
cross product only the magnitude (with proper sign) is
to be taken. Equations (17)-(20) can be easily used to
determine these loci for any optical system or two-port
network. The explicit form of the equations of the loci
of invariant-ellipticity states and invariant-azimuth
states of an optical system in the cartesian complex-
plane representation can be found in Ref. 6.

(20)

IV. Simulation of Optical Systems by
Equivalent Two-Port Networks and Vice Versa

Because .of the analogy between theaterminal char-
acteristics/of optical systems and two-port networks, it
is possible to simulate systems of one type by systems of
the other. The equivalence is achieved when the PTF
of the optical system [Eq. (4)] and the ITF (or the
admittance transfer function) of the two-port network
[Eq. (7) or (8)] are identical.

For a given optical system (two-port network) there
is one and only one PTTF (ITF). However, the opposite
is not true, namely, that there can be many optical
systems (two-port networks), all of which have the
same PTF (ITF). In other words, there can be many
possibilities for the internal structure of S or W, all of
which lead to the same terminal polarization- or impe-
dance-mapping properties.



Consider the following problem. Given an optical
system S, find a two-port network W whose impedance-
or admittance-transforming properties are the same as
the polarization-mapping properties of S. The first
step in the solution is to find the PTF of 8. As is evi-
dent from Eq. (4), the Jones matrix 7" has to be deter-
mined apart from a complex multiplying factor. Be-
cause T depends on the internal structure of S as well as
the basis polarization states, the latter have to be ¢chosen.
Such a choice is determined by the system under con-
sideration and in most cases it is between a pair of or-
thogonal linear polarizations, the right and left circular
polarizations or a mixture of these. Once the basis
states have been decided upon, the Jones matrix T is
obtained from

T =Ty...TT, (21)

where Ty, T . . ., and Ty are the matrices of the indi-
vidual devices encountered by the light beam, with T4
referring to the first-to-be-encountered optical element.
Substituting the elements of the matrix T of Eq. (21)
into Eq. (4) the PTF of the optical system is found.
The ITF or the admittance transfer function of an
equivalent two-port network W is obtained from Eq.
(4) simply by substituting Z or ¥ for x and Z’ or Y for

4

x’. This gives

Z' = (TunZ + Tu)/(TuZ + Tu), 22)
or
Y' = (TeY 4+ Ta)/(TeY 4 Tu). (23)

Thus the equivalence is between the polarization-map-
ping properties of S and either the impedance- or the
admittance-mapping properties of W. To synthesize
a two-port network that maps an impedance Z con-
nected at one port into an impedance Z’ at the other
port in accordance with Eq. (22) we can rewrite the
latter equation in the form

Z' = Zy + 22/(Z + 7)), (24)
where
7y = Tu/le,

Zy = (det T)}/ T, Zy = Ty/Tr, (25)

and det T denotes the determinant of the bilinear trans-
formation,

det T = TuTws — T1Ta. (26)

Equation (24) leads to the network of Fig. 3(a), which
shows two series impedances Z; and Z; with a \/4 sec-

(a) (b)

Fig. 3. Two-port electric networks with impedance-mapping

properties identical to the polarization-mapping properties of a

given optical system. The parameters of the networks (a) and
(b) are given by Egs. (25) and (27), respectively.

tion of a transmission line of characteristic impetlance
Z, between them. A simpler (and more practical)
synthesis is the T network of Fig. 3(b) whose impe-
dances Zy, Z,, and Z; are given by

Zy = (Tu/Tw) — Z, Z, = (det T)}/Ths,

Zy = (Ty/Tw) — Zy. (27)

The corresponding alternative solutions based on the
mapping of admittance instead of impedance between
the two ports according to Eq. (23) are the duals of
those shown in Fig. 3. Other network configurations
with three independent impedances or admittances can
be found that satisfy either Eq. (22) or Eq. (23). ‘

The opposite problem is to find the optical analog S
of a given two-port network W. A direct procedure
would be to search for an optical system S with six real
independent parameters (e.g., two dichroic retarders and
a rotater) whose PTF is the same as the ITF or the ad-
mittance transfer function of W. In general the syn-
thesis is not a$ straightforward as in the first case, when
Sis given and W is to be synthesized.

If Wy, Wy, . . ., W, represent the two-port-network
analogs of the optical systems Sy, Se, . . . , S, then the
network formed by connecting Wi, W,, . . ., and W,
in suceession will correspond to the cascade of the opti-
cal systems Si, Sz, . . ., and S, placed one after the
other along the direction of propagation and in the same
order in which the networks are connected.

It is interesting to find the electrical analogs of some
of the simple optical elements. A polarizer is by defini-
tion an optical device that transforms any of the various
polarization forms of an incident light wave into a
unique polarization state at its output. In this case the
determinant TeT1: — T2 T of the bilinear transforma-
tion vanishes and Eq. (4) becomes

x' = x0 = Toe/Tw = Tu/Ty, (28)

where x, represents the outgoing polarization state,
which is generally elliptic. The equivalent ecircuit
analog is shown in Fig. 4(a), where Zp = xo. A polarizer
is said to exhibit leakage if it has a small, nonzero trans-
mission for the incident polarization state that is ortho-
gonal with x,. This condition is taken care of by replac-
ing the short circuit of Fig. 4(a) by a small impedance
Zy such that |Z, < |Z,| [Fig. 4(b)]. As another ex-
ample, a linear dichroic plate shows nonequal but in-
phase transmittances along two orthogonal principal
directions in its plane. In this case it can be easily
shown that Eq. (4) degenerates to the simple linear
transformation

X' = KX) (29)

where K is the ratio of the amplitude transmittances
along the two principal axes of dichroism. Obviously
the circuit analog is an ideal transformer [Fig. 4(c)]
whose turns ratio is K% A rotator is a device that
rotates the major axis of the polarization ellipse through
a fixed angle in a fixed sense for all orientations and
ellipticities of the incident polarization ellipse. The
cartesian Jones matrix is

October 1972 / Vol. 11, No. 10 / APPLIED OPTICS 2213
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Fig. 4. The circuit analogs of some of the simple optical de-
vices: (a) ideal polarizer, (b) imperfect polarizer with leakage
1Z1] « |Zl, (c) purely dichroic plate, and (d) optical rotator.

, coSa Sina
T, = . ’ (30)
—Sina COSo

which when substituted in Eq. (4) gives
x' = (x cosa — sina)/(x sina + cosa). (31)
The parameters of the equivalent 7’ network are

Zy = — tan(e/2), Z» = csca, Z3 = — tan(a/2), (32)

which follows from Eqs. (27) and ¢30), and leads to the
resistive cireuit of Fig. 4(d). Note that in this case the
equivalent circuit analog is not as simple as those en-
countered in the above two examples. _

The simplicity of producing and measuring light of
known polarization coupled with the fact that the optical
analogs of negative impedence networks are readily
realizable may make the optical simulation of elec-
trical two-port networks of considerable practical value.
However, the opposite does not appear to be as simple,
namely, to simulate optical systems by electrical two-
port networks as can be seen from the example of the
optical rotator.

Finally, it should be noted that linear mechanoacou-
stic systems are deseribed by equations similar to Eqgs.
(1) and (5). In this case the pair of oscillating quanti-
ties are the mechanical force (or pressure) and veloeity
(or displacement). Therefore these systems have their
optical analogs as well as their well-known electrical
analogs.

V. Conclusions

Analogy between optical systems and two-port elec-
trical networks is demonstrated. In each case we deal
with the transformation of a pair of oscillating quanti-
ties between input and output. The mapping of polari-
zation by an optical system and of impedance by a two-

2214 APPLIED OPTICS / Vol. 11, No. 10 / October 1972

port network is deseribed by a bilinear transformation.
For each terminal characteristic of a system of one type
there is a similar characteristic for the system of the
other type. For example, the two eigenpolarizations of
the optical system are the analogs of the two iterative
impedances of the two-port network. The loci of
polarization states that preserve ellipticity or azimuth
and those of impedances (or admittance) that preserve
magnitude or angle are described by the same equations
in the complex plane. Two-port electrical networks are
synthesized whose impedance- (or admittance-) mapping
properties are the same as the polarization-mapping
properties of a given optical system. The opposite
problem is also considered. The analogy presented in
this paper is useful because (1) it unifies the methods of
treating both kinds of systems and (2) it leads to the
reciprocal simulation of systems of one type by systems
of the other, which is of practical value.

This work was supported by the National Science
Foundation.
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