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Replica exchange with dynamical scaling
Steven W. Ricka�

Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148

�Received 2 November 2006; accepted 14 December 2006; published online 7 February 2007�

A replica exchange method is presented which requires fewer replicas and is designed to be used for
large systems. In this method, dynamically scaled replicas are placed between conventional replicas
at broadly spaced temperatures. The potential of the scaled replicas is linearly scaled by a dynamical
variable which varies between 0 and 1. When the variable is near either end point the replica can
undergo exchanges with one of its neighboring replicas. Two different versions of the method are
presented for a model system of a small peptide in water. The scaled replica can replace many
replicas and the method can be up to ten times more efficient than conventional replica exchange.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2431807�

I. INTRODUCTION

Molecular dynamics and Monte Carlo simulations often
encounter energetic barriers leading to incomplete sampling
of configuration space, or broken ergodicity. Replica ex-
change, or parallel tempering, is a powerful method for over-
coming ergodicity problems �for a recent review, see Ref. 1�.
At a high enough temperature, the system is assumed to have
enough energy to overcome barriers and the simulations will
be ergodic. In replica exchange �RE�, a high temperature
replica is simulated along with the desired temperature and
exchanges between replicas are accepted with the appropri-
ate Boltzmann weighting, thereby introducing configurations
from larger regions of phase space into the low temperature
simulation. In order for exchanges to be accepted, there must
be sufficient overlap between the energy distributions of the
different replicas. A number of replicas can then be required
to span the range of temperatures. As the number of degrees
of freedom, fs, increases, the number of replicas needed in-
creases as approximately fs

1/2.2

The system size dependence is made more severe by the
requirement that all replicas cycle through the span of tem-
peratures because implicitly only through reaching the high-
est temperature can the simulation achieve ergodicity.3,4 For
a larger number of replicas, more swaps need to be made to
reach the highest temperature replica and the time required to
cycle through all replicas increases. This dependence on sys-
tem size place some practical limits on applications of RE.
Some of the largest RE simulations are of the order of 10–20
amino acid peptides with 1000–3000 water molecules.5,6

These are at least 5–10 times smaller then most biologically
relevant proteins, indicating there is a need for improvement
of RE for many applications.

Several methods have been proposed to improve the ef-
ficiency of RE. Two such methods involve the multicanoni-
cal algorithm �MUCA�7,8 and simulated tempering �ST�.9,10

Both these methods involve a one-dimensional Monte Carlo
walk in potential energy space, in the case of MUCA, and in
temperature, in the case of ST. In methods combining

MUCA and RE, replicas are in the multicanonical ensemble,
which have broader energy distributions than canonical en-
semble replicas.11–13 Fewer replicas are then required �4
rather than 10 �Ref. 11� or 6 rather than 18 �Ref. 13�� relative
to conventional RE. In methods combining ST and RE, each
replica uses ST to sample a range of temperatures which has
some overlap with the temperature spanned by neighboring
replicas.14,15 The MUCA and ST methods both require the
determination of weight factors to ensure uniform sampling
over the energy or temperature variable. The weights are not
known initially and have to be determined through an itera-
tive process using simulations preceding those for data col-
lecting. Other methods, including smart walking, smart dart-
ing, and cool walking, work by increasing the acceptance
probability of a swap with a high temperature replica, which
may have no overlap in energy with the low temperature
walker, by quenching the energy.16–18 In order for the replica
swaps between the low temperature replica and the quenched
high temperature replica to satisfy detailed balance, the
weights associated with the quenching must be determined.

An alternate approach called Hamiltonian RE scales all
or part of the potential.2,14,19–22 This may involve modifica-
tion of the entire potential through a Tsallis
transformation19,20 or linear scaling of parts of the
potential.2,14,21,22 Replica exchanges are then made between a
replica with the original potential and replicas with the modi-
fied potential at the same or a different temperature. The
modified potential is presumed either to have smaller barri-
ers, to otherwise promote sampling by stabilizing certain
conformations, or to have a higher acceptance ratio for a
given temperature difference. The method can lead to a re-
duction in the number of replicas �2 rather than 5 �Ref. 20� or
5 rather than 22 �Ref. 21�� with little or no added computa-
tional cost. On the other hand, Hamiltonian RE which just
scales part of the potential is not so generalizable to systems
which do not separate into obvious parts. In addition, be-
cause only one replica samples the original potential, high
temperature data is not generated like it is in conventional
RE or ST.

In this paper, a Hamiltonian RE approach, replica ex-a�Electronic address: srick@uno.edu
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change with dynamical scaling �REDS�, is presented which
can generate data over the full range of temperatures and
requires less replicas than conventional RE.

II. METHODS

Exchanges between replicas i and j, with potentials Ei

and Ej, are accepted with a probability

P = min�1, e−�ij� , �1�

where

�ij = �i�Ei�ri� − Ei�rj�� + � j�Ej�rj� − Ej�ri�� , �2�

where rk denotes the configuration of replica k, �k is 1 /kBTk,
and Tk is the temperature of replica k. Consider two replicas,
A and B, with the potential energy, E�r�, and temperatures TA

and TB far enough apart so that there is no energy overlap
between the two. A third replica, m, with a temperature, Tm,
intermediate between TA and TB has the potential

Em�r,�� = ���A + �1 − ���B�/�m E�r� + Ebias
�m� ��� , �3�

where � is an additional variable of the system, constrained
to be in the interval 0 to 1, and Ebias

�m� ��� is a biasing potential
acting only on �. Because swaps will be attempted with rep-
licas A and B, the other replicas need to have a � variable,
which will be uncoupled to the system, and subject only to a
biasing potential, or Ek�r ,��=E�r�+Ebias

�k� ��� for k=A and B.
Swaps between replicas k and m will depend on

�km = E�rm���m�A + �1 − �m��B − �k� − E�rk���k�A

+ �1 − �k��B − �k� + �k�Ebias
�k� ��k� − Ebias

�k� ��m��

+ �m�Ebias
�m� ��m� − Ebias

�m� ��k�� . �4�

If �A and �m are about equal, so that the terms involving
in Ebias will cancel, and both equal to 1, then �1m will be 0.
In this case, all swaps between replicas A and m will be
accepted. If �B and �m both equal 0, then �2m will be 0 and
all swaps between replicas B and m will be accepted. Replica
m can then exchange with both its neighboring replicas as
long as � samples evenly from 0 to 1. For the other replicas,
�A and �B should be kept near 1 and 0, respectively. Replica
exchanges will include exchanges of �, as well as the posi-
tions of the atoms.

The variable � is treated as a dynamical variable, given a
mass and subject to equations of motion, just as in the
�-dynamics applications used for free energy
calculations23–26 and constant pH simulations27–29 and simi-
lar to other extended Lagrangian methods, including constant
pressure,30 Car–Parinello,31 fluctuating charge,32 and Nosé–
Hoover simulations.33,34 To keep � between 0 and 1, a new
dynamical variable is used, �=sin2���, and � is propagated29

with the equation of motion

M��̈ = −
�Em

��
= − 2 cos���sin���

�Em

��

= − 2 cos���sin���

���A − �B

�m
E�r� −

�Ebias
�m�

��
� . �5�

The � variables for the unscaled replicas 1 and 2 will just
feel a force from Ebias

�k� .
In the REDS method, not only will the unscaled replicas

generate data for the original potential, but the scaled repli-
cas will as well. For the scaled replicas, the average of prop-
erty A for a particular value of � is

�A�� = �n��

=
	drd�A�r���� − �n�e−��n�A−�1−�n��B�E�r�e−�mEbias

�m� ��n�

	drd�e−���A−�1−���B�E�r�e−�mEbias
�m� ���

=
e−�mEbias

�m� ��n�	drA�r�e−�nE�r�

Z
, �6�

where �n= ��n�A− �1−�n��B�. The probability distribution
function for � is given by

�P�1 − �n�� =
	drd���� − �n�e−��n�A−�1−�n��B�E�r�e−�mEbias

�m� ��n�

	drd�e−���A−�1−���B�E�r�e−�mEbias
�m� ���

=
e−�mEbias

�m� ��n�	dre−�nE�r�

Z
. �7�

Then

�A�n =
	drAe−�nE�r�

	dre−�nE�r� =
�A�� = �n��
�P�� = �n��

�8�

and the scaled replica gives averages with the original poten-
tial, �A�n over the range of temperatures, Tn, from TA to TB.
Any average calculated from Eq. �8� will not depend on the
biasing potential, so accurate values of Ebias are not required.
The biasing potential is only needed to help sample over the
� variable.

The connection between ensemble averages from the un-
scaled and scaled replicas provides a simple method for de-
termining the biasing potential. The purpose of the biasing
potential is to ensure that � evenly samples the entire the
entire region from 0 to 1. The biasing potential will cause �
to evenly sample range if the average force on � �or �� is
zero. From Eq. �3�


 �E�� = �n�
��

� =
�A − �B

�m
�E�n −

�Ebias
�m� �� = �n�

��
�9�

and the derivative of Ebias
�m� should cancel the average of the

force from the potential energy so that ��E /��� equals zero
for all �. Standard simulations can find �E� at the endpoints �
�=0 and 1, corresponding to Tn=TA and TB� as well as in-
termediate points. A good estimate of Ebias

�m� can be made prior
to the RE simulation, just from knowing the potential energy
at a few temperatures. For the present applications, a cubic
form for the biasing potential works well, Ebias

�m� =A�+B�2

+C�3. The coefficients can be fitted to �E� calculated at TA,
Tm, and TB. For replica A, Ebias

�A� is chosen to keep �A near 1
and Ebias

�A� ��=1�=Ebias
�m� ��=1� to minimize �1m when �m is

near 1. For replica B, Ebias
�B� is chosen to keep �B near 0 and

Ebias
�B� ��=0�=Ebias

�m� ��=0�. The set-up time for REDS is com-
parable to that of conventional RE, in which choosing the
number and temperatures of the replicas has to be done, for
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example by choosing them to get 20% acceptance ratios or
through a more involved criteria.3,4,35,36 It is also possible to
find the parameters for the biasing potential while the simu-
lation is running by periodically fitting to an average force,
similar to what is done in self-guided molecular dynamics.37

Other scalings can be used as well. For example, for a
solvent/solute system the solute could be unscaled so it is
utilizes the full potential and the solvent scaled, so that the
solvent parts, which can contain most of the degrees of free-
dom, do not contribute to the acceptance ratio in the �=0
and 1 limits. This scaled potential is given by

Em�r,�� = Esolute + ���A + �1 − ���B�/�m Esolvent�r�

+ ���A + �1 − ���B + �m�/�2�m�

�Esolvent-solute�r� + Ebias
�m� ��� . �10�

The solute-solvent interactions are scaled by an interme-
diate amount. This form, in the limit where � is fixed at 1, is
what was proposed by Liu et al.21 Another possibility is to
use the Tsallis scaling of the potential38

Em�r� = q���/���q��� − 1�ln�1 − �1 − q�����E�r� , �11�

where q��� equals 1+��q, taking the potential from the
original potential �q=1� to some maximum value, 1+�q. In
these scaling, Eq. �8� is not valid and the expression for the
force on � is different. The biasing potential would have to
be fit not to �E� but the � derivative of the scaled potential.
Values for the fitting could be found by running a single
replica with the potential given by Eq. �10� with � fixed at 0,
1/2, and 1.

While the scaling given by Eq. �3� suggests that the tem-
perature is a variable, reminiscent of ST, the temperature is a

constant, and molecular dynamics are run at a constant tem-
perature. In addition, as has been pointed out elsewhere,21

the partial scaling indicated by Eq. �10� does not mean that
the various parts of the system are at different temperatures.
The fact that the potential rather than the temperature is be-
ing changed also results in a simpler form for the biasing
potential.

A. Constant pressure

For the isothermal-isobaric ensemble, the probability
density is proportional to exp�−��E+ PV��, where P is the
external pressure and V is volume. The REDS method in this
ensemble scales the enthalpy, H=E+ PV, according to

Hm�r,�� = ���A + �1 − ���B�/�m�E�r� + PV� + Ebias
�m� ��� .

�12�

Both the energy and the pressure are scaled, so the pres-
sure is not constant during the simulation but depends on the
value of �. Swaps between the scaled and an unscaled rep-
lica, at �k and pressure P, will depend on

�km = �E�rm� + PVm���m�A + �1 − �m��B − �k� − �E�rk�

+ PVk���k�A + �1 − �k��B − �k� + �k�Ebias
�k� ��k�

− Ebias
�k� ��m�� + �m�Ebias

�m� ��m� − Ebias
�m� ��k�� . �13�

where replica swaps exchange volumes as well
coordinates.39 The method is similar to the canonical version
and exchanges with the neighboring replicas will be accepted
with high probability when � equals 0 or 1.

Averages of the property A for a particular value of � in
this ensemble is

�A�� = �n�� =
e−�mEbias

�m� ��n�	drdVd�A�r���� − �n�e−���A−�1−���B��E�r�+PV�

	drdVd�e−���A−�1−���B��E�r�+PV�e−�mEbias
�m� ���

�14�

and the probability distribution function for � is

�P�� = �n�� =
e−�mEbias

�m� ��n�	drdVd���� − �n�e−���A−�1−���B��E�r�+PV�

	drdVd�e−���A−�1−���B��E�r�+PV�e−�mEbias
�m� ���

. �15�

The ratio of these two will give averages for the
isothermal-isobaric ensemble over the temperature range TA

to TB and a pressure P,

�A�n =
	drdVAe−�n�E�r�+PV�

	drdVe−�n�E�r�+PV� =
�A�� = �n��
�P�� = �n��

. �16�

By scaling the pressure while keeping the temperature
constant, the scaled replicas retain the important features of
canonical REDS: good acceptance ratios with neighboring
replicas and the generation of ensemble averages over a
range of temperatures. The scaling given by Eq. �12� is op-
timal for linking different constant pressure replicas, as can

be demonstrated by looking at the � dependence of the pres-
sure. The instantaneous pressure, Pi, is the sum of an ideal
gas, kinetic energy part and a virial part, which, at atmo-
spheric pressure, have about the same magnitude and oppo-
site signs. The instantaneous pressure for the scaled replica is
given by

Pi =
1

3V � miṙi
2 − ���A − �1 − ���B�/�m

�E

�V
�17�

from which it can be seen that the kinetic energy part is not
scaled by � �because the temperature is fixed at Tm� and the
virial part is scaled. For a given value of �, �n, the volume

054102-3 Replica exchange with dynamical scaling J. Chem. Phys. 126, 054102 �2007�
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will adjust so that on average the instantaneous pressure is
equal to the external pressure, which is itself scaled by �,

�Pi�n = 
 1

3V � miṙi
2�

n

− ��n�A − �1

− �n��B�/�m
 �E

�V
�

n

= ��n�A − �1 − �n��B�/�mP . �18�

Using the fact that the volume and the velocities are
independent and �1/3�miṙi

2�n=NkTm gives


 1

V
�

n
NkTm − ��n�A − �1 − �n��B�/�m
 �E

�V
�

n

= ��n�A − �1 − �n��B�/�mP �19�

or


 1

V
�

n
NkTm/���n�A − �1 − �n��B�/�m − 
 �E

�V
�

n

= P .

�20�

From

��n�A − �1 − �n��B�/�m = Tm��n/TA + �1 − �n�/TB�

= Tm/Tn, �21�

where Tn=1/ ��n /TA+ �1−�n� /TB�, we get


 1

V
�

n
NkTm/�Tm/Tn� − 
 �E

�V
�

n

= P �22�

or


 1

V
�

n
NkTn − 
 �E

�V
�

n

= P . �23�

Equation �23� is identical to standard T , P , N simula-
tions at a temperature Tn and a pressure P, so REDS will
give the same volume on average with �n value as conven-
tional T , P , N simulations at Tn. This also must be true from
Eq. �16� for the volume or any equilibrium average.

The simulations described in this paper are all in the
canonical ensemble, but, as demonstrated here, the REDS
method will also work in the isothermal, isobaric ensemble.
To our knowledge, this is the first time that a Hamiltonian
RE approach has been described for constant pressure simu-
lations. Prior Hamiltonian RE applications have all been con-
stant volume.2,14,19–22 Hamiltonian RE will change the virial
contribution to the pressure and so the volume will be differ-
ent from that of the original Hamiltonian. The REDS method
gets around this by a suitable scaling of the pressure.

B. Simulation details

The alanine dipeptide, using the OPLS-AA/L
potential,40,41 with 512 TIP4P �Ref. 42� water molecules is
used to test the method. The molecular dynamics simulations
are done in the canonical �constant T , V , N� ensemble with
Nosé–Hoover chains for thermostating,43 SHAKE for con-
straining bond lengths and Ewald sums for the long-ranged
electrostatic interactions.44 A value of 2.0�kcal/mol�ps2 was

used for M�. Three different RE methods are used, all span-
ning the same range of temperature. The first method is con-
ventional RE with 22 replicas spread so that the acceptance
ratio between adjacent replicas is about 20%. The second is
REDS with five replicas: three unscaled replicas at 300, 420,
and 600 K and two scaled replicas at 350 K �with TA

=300 K and TB=420 K� and 494 K �TA=600 K and TB

=420 K�. For the second scaled replica, TA�TB so that both
scaled replicas can make exchanges with the T=420 K rep-
lica with �=0. The third method is RE with partial dynami-
cal scaling �REPDS�, as defined by Eq. �10�, with five repli-
cas just like the REDS setup. For all three methods, replica
exchanges are attempted between adjacent replicas once ev-
ery 1 ps. With the REDS method, the coefficients for the
biasing potentials are 1632+60��−1�2, 1512�+131�2

−11.3 �3, 60 �2, −1601�+99�2+11.3 �3, and −1491+60��
−1�2 for replicas 1–5, respectively �all in units of kcal/mol�.
With the REPDS method, the biasing potentials are 1571.5
+60��−1�2, 1452�+129.5�2 −10 �3, 60 �2, −1536�+96�2

+12 �3, and −1428+60��−1�2 for replicas 1–5, respectively.
For all three methods, simulations were repeated twice, start-
ing with different initial conditions. The conventional RE
simulations were simulated for 1 ns and the REDS and
REPDS were simulated for 2 ns.

III. RESULTS

Figure 1 shows a short trajectory for �2 and �4 �the
scaled replicas� from the REDS simulation. The trajectories
are plotted so that they meet in the middle at �=0, where
they both can make transitions with replica 3 at T=420 K.
Both undergo many transitions between 0 and 1 during this
period, indicating that in a relatively short time the scaled
replicas can make swaps with both adjacent replicas. The
symbols indicate the points where successful replica swaps
have occurred, which are all near, but not exactly at, 0 or 1.

FIG. 1. The variable � as a function of time for REDS with five replicas for
the two scaled replicas, replica 4 �dashed line, top� and 2 �solid line, bot-
tom�. The symbols indicate successful replica exchanges ��, 1↔2; �,
2↔3; �, 3↔4; �, 4↔5�.

054102-4 Steven W. Rick J. Chem. Phys. 126, 054102 �2007�
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Transitions from 0 to 1 occur with a similar frequency for the
REPDS method, but the acceptance ratios are less because
the unscaled part of the potential will increase �ij. For
REDS, the acceptance ratio averaged 0.13 and for REPDS it
averaged 0.09. The acceptance ratio of RE was 0.26.

The movement of a replica through each temperature is
shown in Fig. 2 for REDS �A� and RE �B�. The REDS rep-
lica moves much quicker from the lowest to the highest tem-
perature and in 1 ns, cycles through all temperatures twice.
The RE replica has to move through 22 temperatures and the
process is much slower. The time for transitions across all
the replicas can be quantified by calculating the time it takes
to go from the lowest to higher temperatures �Fig. 3�. The
time required to go from the lowest to the highest tempera-

ture will depend on the acceptance ratio, the number of rep-
licas, and the time scale for energy fluctuations. For REDS,
the time scale for the fluctuations required to have successful
exchanges with one neighboring replica then another can be
seen in Fig. 1. RE will have its own time scale for fluctua-
tions from low energy, where exchanges will the lower tem-
perature replica are likely to occur, to high energy, where
exchanges with the higher temperature replica are more
likely to occur. For RE, the average time to move over the
range of temperatures is 0.76±0.1 ns. The time is over twice
as fast for REDS �0.30±0.08 ns�. For REDS, the time is
0.45±0.2 ns.

The efficiency of sampling can be measured using er-
godic metrics, which give the rate that averages from inde-
pendent simulations become equal.45,46 One metric is defined
as

dX�t� = ��X�t��A − �X�t��B� , �24�

where �X�t�� is the average of a property X after a time t and
A and B represent the two independent simulations. The met-
rics for the total energy, the torsional energy, and constant
volume heat capacity, Cv, are shown in Fig. 4. The heat
capacity is calculated through

FIG. 2. The temperature of a given replica as a function of time for �a�
REDS, with five replicas and �b� RE, with 22 replicas.

FIG. 3. The average time for a replica to move from the lowest temperature,
300 K, to a higher temperature for RE �solid line, ��, REDS �dashed line,
��, and REPDS �dotted lined, ��.

FIG. 4. The ergodic metric for the total potential energy �a�, the torsional
energy �b�, and the constant volume heat capacity �c� for RE �solid line�,
REDS �dashed line� and REPDS �dotted line� at T=298 K as a function of
total simulation time.

054102-5 Replica exchange with dynamical scaling J. Chem. Phys. 126, 054102 �2007�
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CV =
1

kT2 ��E2� − �E�2� +
1

2
fsR , �25�

where E is the potential energy, fs is the total number of
degrees of freedom, and R is the ideal gas constant. The
results are plotted versus the simulation time for each replica
times the number of replicas for the various methods, since
this represents the total CPU cost. Both REDS and REPDS
the averages of the energies and CV from the independent
simulations approach each other much more rapidly than RE.
Even with over twice the total simulation time, the metrics
are still greater for RE. By a total simulation time of 5 ns for
REDS and REPDS, which corresponds to simulating each of
the five replicas for 1 ns, the metrics are much less than the
metrics for RE at a total simulation time of 22 ns, which also
corresponds to a simulation time of 1 ns for each replica.
That means that comparing simulation time per replica, and
not considering the extra time necessary to simulate more
replicas, the dynamical scaling methods have a greater rate
of self-averaging, because it takes less time to cycle through
all temperatures.

Error estimates representing two standard deviations can
be found from

�x =
2

�N − 1
� 1

N
�
i=1

N

xi
2 − � 1

N
�
i=1

N

xi�2

, �26�

where the data has been split up into N 0.1 ns intervals. The
error estimates for the total energy, the torsional energy, and
Cv are shown in Fig. 5 as a function of total simulation time.
The data represent the average of the error bars from the two
independent simulations. For the energy, the error estimates
are considerably smaller for REDS and REPDS than for RE,
consistent with quicker self-averaging. Even comparing the
same amount of time per replica �1 ns� corresponding to 5 ns
for REDS and REPDS and 22 ns for RE in Fig. 5, the error
estimates are smaller. This again must be due to faster rate at
which replicas cycle through all temperatures. The total en-
ergy and the heat capacity are largely determined by the
solvent, which represents the majority of the degrees-of-
freedom. The torsional energy only involves the peptide sol-
ute, including the � , 	 backbone torsional angles. The tor-
sional energy error bars are smallest for the REDS method.
The REPDS method has error bars closer to the RE method,
unlike the other properties shown in Fig. 5 for which they are
essentially the same as REDS. The torsional energy repre-
sents the highest energy barriers of the system, so for this
property it is likely to be most critical to reach the highest
temperature replica, which is done quickest for the REDS
method. For the heat capacity, the decrease in the error bars
is not as pronounced, but there is still a noticeable reduction
for REDS and REPDS over RE. Taken together with Fig. 4,
both dE and �E are smaller for REDS and REPDS after 2 ns
than RE is after the complete 22 ns. For the torsional energy,
the ergodic measure and the error estimate show about the
same improvement as the total energy for the REDS method.
The REPDS method shows an improvement over RE for the
torsional energy similar to that of the heat capacity. For CV,
dCV is less for REDS and REPDS after 3 ns and for �CV

after 8 ns. So, depending on what property is looked at,
REDS and REPDS is 3–10 times faster than RE.

One advantage of REDS over some other Hamiltonian
RE methods is that REDS, like conventional RE, gives en-
semble averages for other temperatures. This is true for the
unscaled replicas �3 and 5 in this implementation� and also
for the scaled replicas, which can each give ensemble aver-
ages over a large range of temperature from Eq. �8�. The
temperature dependences of E and CV from the 22 replicas
and from the two scaled REDS replicas are shown in Fig. 6.
The solid line shows the data from replica 2 �from 300 to
420 K� and the dotted lines shows the data from replica 4
�from 420 to 600 K�. The temperature range of the data
determined from 1/kT= ���A− �1−���B�, with �A and �B

being the inverse temperatures neighboring each scaled rep-
lica. The RE values use 2 ns of data for each replica �from
the total of the two independent simulations� and the REDS
curve uses 2 ns of data for both replicas as well. This means
that the RE points represent about ten times more data than
the REDS curves �22�2 ns versus 2�2 ns� For the energy,
there is very close agreement between the two methods. The
error bars for the energy from the RE are about the size of

FIG. 5. Error estimates for the total energy �a�, the torsional energy �b�, and
the constant volume heat capacity �c� for RE �solid line�, REDS �dashed
line� and REPDS �dotted line� at T=298 K as a function of total simulation
time.
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the diamond in Fig. 6�a�, averaging 1.5 kcal/mol for the 22
replicas. For the REDS replicas, the error bars are about
three times greater than this, averaging 3.3 kcal/mol. This is
consistent with the fact that they represent ten times less data
as the error should decrease as the square root of the simu-
lation time. The heat capacity error bars for RE are shown in
Fig. 6�b� and for REDS the errors can be judged by the
oscillations in the lines. Even though there is some noise the
two REDS replicas give the same overall shape of the tem-
perature dependence of CV as the 22 replicas. The unscaled
replicas in REDS �at 300, 420, and 600 K� will give smaller
error estimates than the RE replicas, as was demonstrated for
the 300 K data.

IV. CONCLUSIONS

In this paper, a replica exchange method is presented
which combines conventional replicas at a set of tempera-
tures �here 300, 420, and 600 K� with dynamically scaled
replicas at temperatures in between the conventional replicas
�350 and 494 K�. In the dynamically scaled replicas, the
potential is linearly scaled by a dynamical parameter � which
ranges from 0 to 1. When the parameter is near 0 or near 1,
the scaled replica will have a good probability of a successful
replica exchange with one or the other of its neighboring
replicas. A scaled replica was shown to be able to replace ten
conventional replicas. The method, replica exchange with
dynamical scaling �REDS� and a variant, replica exchange
with partial dynamical scaling �REPDS�, increases the sam-
pling efficiency by about a factor of 10 for some properties.
This is more than simply the gain in time from having less
replicas �22 versus 5, giving a factor of 4.4� and represents a
combination of two factors: the reduction in the number of
replicas and the increased speed at which the replicas cycle

through all temperatures. The scaled replicas can move from
replica 1 �at 300 K� to replica 3 �at 420 K� or from replica 3
to replica 5 �at 600 K� much faster than conventional RE can
go from replica 1 to replica 12 �420 K� or replica 12 to
replica 22 �at 600 K�. The overall time to go from the lowest
temperature to the highest replica is 2.5 times faster for
REDS than for RE and 1.7 times faster for REPDS �Fig. 3�.
This factor of about two times the factor of 4.4 for having
less replicas gives the overall increase in efficiency.

The scaled replicas require a biasing potential to ensure
that the � variable evenly samples the range from 0 to 1. As
discussed in the Introduction, other methods developed to
increase the efficiency of RE �multicanonical,11–13 simulated
tempering,14,15 smart darting,17 smart walking18� also require
some sort of biasing, or weight factor. An advantage of the
REDS approach is that the biasing potential is relatively
straightforward to determine. The biasing potential can be
estimated from knowing the potential energy at a few differ-
ent temperatures. This is much simpler than calculating the
simulated tempering weights, which are the Helmholtz free
energies at the different temperatures, or the multicanonical
weight, which is the microcanonical entropy. In addition, the
scaled replicas require no more computational expense than
standard replicas and are easy to implement.

Another advantage of the method is that it does not re-
quire that the potential separate into different parts, like
solvent/solute21,22 or hydrophobic/hydrophilic.2 The method
can be applied to arbitrary systems, but it is flexible enough
that the system can be separated into scaled and unscaled
parts if that is advantageous �see Eq. �9� and �10��. It can be
used in both the canonical ensemble or isothermal isobaric
ensemble. In the present study, done in the canonical en-
semble, only one setup of scaled and unscaled replicas was
examined, envisioning a need for precise ensemble averages
at certain temperatures, which would have unscaled replicas,
as well as an unscaled replica at the highest temperature to
help with sampling. As demonstrated in Fig. 6 all replicas,
scaled and unscaled, can give the correct ensemble averages,
but the unscaled replicas give more precise averages. There
are many other combinations of scaled and unscaled replicas,
depending on the needs of the study. It is possible to have
only one single scaled replica, for example. Different imple-
mentations of the model could be explored in future studies.
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