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Conditions for the production of near-circular polarization states of the evanescent field present in the
rarer medium in total internal reflection of incident monochromatic p-polarized light at a dielectric–
dielectric planar interface are determined. Such conditions are satisfied if high-index (>3:2) transparent
prism materials (e.g., GaP and Ge) are used at angles of incidence well above the critical angle but suffi-
ciently below grazing incidence. Furthermore, elliptical polarization of incident light with nonzero p and
s components can be tailored to cause circular polarization of the resultant tangential electric field in the
plane of the interface or circular polarization of the transverse electric field in a plane normal to the
direction of propagation of the evanescent wave. Such polarization control of the evanescent field is sig-
nificant, e.g., in the fluorescent excitation of molecules adsorbed at solid–liquid and solid–gas interfaces
by total internal reflection. © 2011 Optical Society of America
OCIS codes: 240.0240, 240.6690, 260.0260, 260.5430, 260.6970.

1. Introduction

Total internal reflection (TIR) of an incident mono-
chromatic plane wave of arbitrary polarization state
(with nonzero p and s components present) at the
planar interface between two transparent media
generates an evanescent field in the rarer medium
whose state of polarization is in general elliptical
and three-dimensional [1–4]. In this paper, we con-
sider conditions that lead to circular or near-circular
polarization of the evanescent refracted wave. The
transparent media of incidence and refraction of re-
fractive indices n0 and n1 are assumed to be linear,
homogeneous, optically isotropic, and nonmagnetic.
The ejωt time dependence, Nebraska–Muller conven-
tions [5,6], and the xyz coordinate system shown in
Fig. 1 are adopted.

The 3 × 1 generalized Jones vectors of the incident
(i) and evanescent (e) refracted waves are written as

Ei ¼ ½Eix Eiy Eiz �t
¼ ½ ðsinϕÞEip Eis ð− cosϕÞEip �t; ð1Þ

Ee ¼ ½Eex Eey Eez �t; ð2Þ

where t indicates the transpose. In Eq. (1),Eip andEis
are phasors that represent the time-harmonic p and s
components of the incident electric field and ϕ is the
angle of incidence that exceeds the critical angle of
TIR, ϕ > ϕc ¼ sin−1ðn1=n0Þ. Application of boundary
conditions to the normal (x) and tangential (y and z)
components of the electric field at the dielectric–
dielectric interface leads to the following relations
between the Cartesian components of the evanescent
and incident fields:

Eex ¼ T11Eix; Eey ¼ T22Eiy; Eez ¼ T33Eiz;

ð3Þ0003-6935/11/336272-05$15.00/0
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T11 ¼ N2ð1þ rpÞ;
T22 ¼ ð1þ rsÞ;
T33 ¼ ð1 − rpÞ: ð4Þ

In Eqs. (4), N ¼ n0=n1 is the high-to-low refractive
index ratio of the two dielectrics, and rp, rs are the
TIR interface Fresnel coefficients that are pure
phase factors:

rp ¼ expðjδpÞ; rs ¼ expðjδsÞ: ð5Þ

The TIR phase shifts δp, δs are functions of N, ϕ
given by [7]

tanðδp=2Þ ¼ N secϕðN2 sin2 ϕ − 1Þ1=2;
tanðδs=2Þ ¼ N−1 secϕðN2 sin2 ϕ − 1Þ1=2:

ð6Þ

The rest of the paper proceeds as follows: In
Section 2, incident p-polarized light (Eis ¼ 0) is as-
sumed; such light produces elliptical polarization
of the evanescent refracted field in the xz plane of in-
cidence (plane of the page in Fig. 1) [1,8]. We show
that near-circular polarization is achieved at suffi-
ciently large but realistic values ofN, ϕ. In Section 3,
the incident polarization state χi ¼ Eis=Eip that
causes circular polarization of the resultant of the
y and z tangential components of the electric field
in the plane boundary is determined. In Section 4,
the incident polarization state χi ¼ Eis=Eip that
causes circular polarization of the combined x and
y transverse components of the electric field of the
evanescent wave propagating in the z direction is
also obtained. Polarization control of the evanescent
field is important in studies of fluorescent excitation
of molecules adsorbed at solid–liquid and solid–gas
interfaces using TIR [8–10]. Finally, Section 5 gives
a brief summary of this work.

2. Near-Circular Polarization of the Evanescent Field
Generated by Incident p-Polarized Light

The state of polarization of the evanescent refracted
field generated by incident p-polarized (Eis ¼ 0) light
is defined by the complex ratio [6]

χe ¼ Eez=Eex: ð7Þ

From Eqs. (1)–(4) and (7),

χe ¼ ðcotϕ=N2Þ½ðrp − 1Þ=ðrp þ 1Þ� ð8Þ

is obtained. With rp ¼ expðjδpÞ, Eq. (8) simplifies to

χe ¼ ðcotϕ=N2Þ½j tanðδp=2Þ�: ð9Þ

Substitution of tanðδp=2Þ from Eqs. (6) in Eq. (9)
leads to the simple result

χe ¼ jb=a ¼ je ¼ j½1 − ðcscϕ=NÞ2�1=2: ð10Þ

χe of Eq. (10) describes an ellipse of polarization
with semimajor and semiminor axes a and b aligned
with the x and z axes, respectively, and with ellipti-
city e ¼ b=a. In Appendix A we provide an alternate
derivation of Eq. (10), which is based on Gauss’s
law ∇ · ~Ee ¼ 0:

Near-circular polarization is achieved if e ¼ b=a ≥

0:95: For illustration, Fig. 2 shows a circular state
(CS) and an elliptical near-circular state (ENCS) that
correspond to e ¼ 1 and e ¼ 0:95, respectively.

Figure 3 shows e ¼ b=a of Eq. (10) plotted as a
function of ϕ from the critical angle ϕ ¼ ϕc ¼
arcsinð1=NÞ to grazing incidence ϕ ¼ 90° at constant
values of the index ratio N from 2 to 6 in steps of 1.
Note that e ¼ 0, which represents linear polarization
in the x direction, occurs at the critical angle ϕc and
that e asymptotically reaches maximum saturation
value

emax ¼ ½1 − ð1=NÞ2�1=2 ¼ cosϕc ð11Þ

at ϕ ¼ 90°. The value of N required to achieve a
certain emax is readily obtained from Eq. (11) as

N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2max

q
: ð12Þ

Fig. 1. Total internal reflection of p- and s-polarized light at a
dielectric–dielectric interface at angle of incidence ϕ and the
reference xyz coordinate system used to describe the incident
and evanescent refracted wave fields.
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Fig. 2. (Color online) Circular polarization state (CS, e ¼ 1) and
an elliptical near-circular state (ENCS) with e ¼ b=a ¼ 0:95.
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Equation (12) indicates that emax ≥ 0:95 is achieved
if N ≥ 3:2026:

As a specific example consider TIR at the GaP–air
interface. GaP is transparent in the 620–760nm red
visible spectrum and also in the near- and middle-IR
and has a refractive index of 3.3 at the He–Ne laser
wavelength λ ¼ 633nm [11]. With N ¼ 3:3, Eq. (11)
gives emax ¼ 0:953. And according to Eq. (10), e in-
creases slightly from 0.950 at ϕ ¼ 76:04° to emax ¼
0:953 at ϕ ¼ 90°. This confirms that ENCSs can be
achieved in TIR at the GaP–air interface at incidence
angles sufficiently below 90°.

As another example, consider TIR of IR radiation
at the Ge–air interface for which N ≈ 4 over a broad
bandwidth [12]. Substitution of N ¼ 4 in Eq. (11)
gives emax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p ¼ 0:968. Equation (10) indi-
cates that e increases from 0.950 at ϕ ¼ 53:19° to
emax ¼ 0:968 at ϕ ¼ 90°. Once again this proves that
ENCSs are realizable in TIR of IR radiation at the
Ge–air interface at incidence angles well below 90°.

3. Circular Polarization of the Tangential Electric Field
of the Evanescent Wave in the Plane of the Interface

For TIR of incident monochromatic light of arbitrary
polarization,

χi ¼ Eis=Eip; ð13Þ

the polarization state of the tangential (t) electric
field of the evanescent wave in the plane of the inter-
face is given by

χet ¼ Eez=Eey: ð14Þ

From Eqs. (1)–(4), (13), and (14) we obtain

χet ¼ ðcosϕ=χiÞ½ðrp − 1Þ=ðrs þ 1Þ�: ð15Þ

Circular polarization of the tangential field is
achieved if

χet ¼ �j: ð16Þ
We take χet ¼ þj and use Eqs. (5), (13), and (15) to

obtain

χi ¼ Eis=Eip

¼ cosϕ½sinðδp=2Þ= cosðδs=2Þ� exp½jðδp − δsÞ=2�:
ð17Þ

Use of χet ¼ −j instead of χet ¼ þj simply changes
the phase angle of the last term of Eq. (17) by π.

Equation (17) specifies the incident elliptical polar-
ization state that causes the tangential electric field
of the evanescent wave in the yz plane to be circularly
polarized. From Eqs. (6) and (17) the required ratio of
amplitudes of the s and p components of incident
light is given by

jχij ¼ jEisj=jEipj
¼ ðN2 sin2 ϕ − 1Þ1=2=½ðN2 þ 1Þ sin2 ϕ − 1�1=2; ð18Þ

and the associated phase difference is

δis − δip ¼ arctan½ðN2 sin2 ϕ − 1Þ1=2=ðN sinϕ tanϕÞ�:
ð19Þ

From Eq. (18) it is apparent that jχij < 1. Figure 4
shows jχij plotted as a function of ϕ from the critical
angle ϕ ¼ ϕc ¼ arcsinð1=NÞ to grazing incidence
ϕ ¼ 90° for constant values of N from 2 to 6 in steps
of 1. Notice that jχij initially rises steeply just above
the critical angle and saturates at larger angles as
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Fig. 3. (Color online) Ellipticity e ¼ b=a of the evanescent electric
field [Eq. (10)] is plotted as a function of ϕ from the critical angle to
grazing incidence at constant values of N from 2 to 6 in steps of 1.
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Fig. 4. (Color online) Amplitude ratio jχij ¼ Eis=Eip [Eq. (18)] re-
quired to produce circular polarization of the tangential electric
field in the plane of the interface is plotted as a function of ϕ from
the critical angle to grazing incidence for constant values ofN from
2 to 6 in steps of 1.
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ϕ → 90°. From Eq. (18) the saturation value of jχij at
ϕ ¼ 90° is given by

jχij90 ¼ ðN2 − 1Þ1=2=N: ð20Þ

Also of interest is jχij at the angle of incidence
ϕm ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN2 þ 1Þ

p
at which the TIR differen-

tial phase shift (δp − δs) is maximum [7]. At ϕ ¼ ϕm,
Eq. (18) simplifies to

jχij ¼ ðN2 − 1Þ1=2=ðN2 þ 1Þ1=2: ð21Þ

Figure 5 shows the amplitude ratios given by
Eqs. (20) and (21) plotted versus N for 2 ≤ N ≤ 6.

In Fig. 6, the phase difference between the incident
s and p components at which the tangential electric
field becomes circularly polarized [Eq. (19)] is plotted
as a function of ϕ from the critical angle to grazing
incidence for constant values ofN from 2 to 6 in steps
of 1.

Figures 4 and 6 indicate that to produce circular
polarization (χet ¼ þj) of the tangential electric field
in the plane of the boundary the incident polarization
χi is limited to the first quadrant of the unit circle in
the complex plane. A polarization state generator,
e.g., a combination of a linear polarizer and a quar-
ter-wave retarder, is used to polarize the incident
light in any desired state [6].

4. Circular Polarization of the Transverse Electric
Field of the Evanescent Wave

The polarization of the transverse (T) electric field
of the z-traveling evanescent wave in the xy plane
is given by

χeT ¼ Eey=Eex: ð22Þ

From Eqs. (1)–(4), (13), and (22) we obtain

χi ¼ χeTðN2 sinϕÞ½ðrp þ 1Þ=ðrs þ 1Þ�: ð23Þ

Circular polarization of the transverse field is
achieved when χeT ¼ �j: We take χeT ¼ þj and follow
steps similar to those used in Section 3 to obtain

jχij ¼ jEisj=jEipj ¼ ðN sinϕÞ=½ðN2 þ 1Þ sin2 ϕ − 1�1=2;
ð24Þ

δis − δip ¼ arctan½ðN2 sin2 ϕ − 1Þ1=2=ðN sinϕ tanϕÞ�
þ π=2: ð25Þ

If χeT ¼ −j is selected instead of χeT ¼ þj the right-
most term of Eq. (25) changes from þπ=2 to −π=2.
Equation (25) differs from Eq. (19) only in the
þπ=2 added term.

Figure 7 shows jχij of Eq. (24) plotted as a function
of ϕ from the critical angle to grazing incidence at
constant values of N from 2 to 6 in steps of 1. Note
that jχij > 1 for all values of N and ϕ and that the
limiting values of jχij at ϕc and 90° are N and 1,
respectively. For χeT ¼ þj, χi occupies the region of
the second quadrant of the complex plane outside
the unit circle.

5. Summary

Near-circular polarization of the evanescent field
present in the rarer medium under conditions of
TIR of incident p-polarized light at a dielectric–
dielectric planar interface is achieved with high-
index (>3:2) transparent prism materials (e.g.,
GaP and Ge) and at angles of incidence well above
the critical angle but sufficiently below grazing inci-
dence. Elliptical polarization of incident light with
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Fig. 6. (Color online) Phase difference δis − δip [Eq. (19)] between
the incident s and p components of incident light, which is required
to produce circular polarization of the tangential electric field, is
plotted as a function of ϕ from the critical angle to grazing inci-
dence for constant N values from 2 to 6 in steps of 1.
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nonzero p and s components can be selected to pro-
duce circular polarization of the resultant tangential
electric field in the plane of the interface or circular
polarization of the transverse electric field in a plane
normal to the direction of propagation of the evanes-
cent wave. Control of the polarization of the evanes-
cent light field in TIR influences its interaction
with oriented molecules adsorbed at solid–liquid and
solid–gas interfaces via the dot and cross products of
the optical electric field with the electric dipole mo-
ments of such molecules [13].

Appendix A

The complex wave vector of the evanescent refracted
plane wave in the Cartesian coordinate system of
Fig. 1 is given by

~ke ¼ −jkexx̂þ kezẑ; ðA1Þ
and x̂, ẑ are unit vectors along the positive x and z
axes. Phase matching across the boundary requires
that the z components of the incident and refracted
wave vectors be equal, i.e.,

kez ¼ kiz ¼ ð2πn0=λÞ sinϕ; ðA2Þ
where λ is the vacuum wavelength of light. We also
have

~ke ·~ke ¼ ð2πn1=λÞ2 ¼ k2ez − k2ex: ðA3Þ
From Eqs. (A2) and (A3)

kex ¼ ð2πn1=λÞðN2 sin2 ϕ − 1Þ1=2 ðA4Þ
is obtained, where N ¼ n0=n1:

For incident p-polarized light the evanescent wave
field is given by

~Eeðx; y; zÞ ¼ ½Eex 0 Eez �t expð−kexxÞ expð−jkezzÞ:
ðA5Þ

In the absence of free charge in the medium of
refraction, the wave field of Eq. (A5) must satisfy
Gauss’s law

∇ · ~Ee ¼ 0: ðA6Þ
Setting the divergence of the right-hand side of

Eq. (A5) equal to zero leads to

χe ¼ Eez=Eex ¼ jkex=kez: ðA7Þ
If kez and kex of Eqs. (A2) and (A4) are substituted

in Eq. (A7) we obtain

χe ¼ j½1 − ðcscϕ=NÞ2�1=2; ðA8Þ

in agreement with Eq. (10).
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Fig. 7. (Color online) Amplitude ratio jχij ¼ Eis=Eip [Eq. (24)],
which is required to produce circular polarization of the transverse
electric field of the evanescent wave, is plotted as a function of ϕ
from the critical angle to grazing incidence forN values from 2 to 6
in steps of 1.
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