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A PRIORI Lρ ERROR ESTIMATES
FOR GALERKIN APPROXIMATIONS

TO POROUS MEDIUM AND FAST DIFFUSION EQUATIONS

DONGMING WEI AND LEW LEFTON

Abstract. Galerkin approximations to solutions of a Cauchy-Dirichlet prob-
lem governed by the generalized porous medium equation

∂u

∂t
−

N∑
i=1

∂

∂xi
(|u|ρ−2 ∂u

∂xi
) = f(x, t)

on bounded convex domains are considered. The range of the parameter ρ
includes the fast diffusion case 1 < ρ < 2. Using an Euler finite difference
approximation in time, the semi-discrete solution is shown to converge to the

exact solution in L∞(0, T ; Lρ(Ω)) norm with an error controlled by O(∆t
1
4 )

for 1 < ρ < 2 and O(∆t
1
2ρ ) for 2 ≤ ρ < ∞. For the fully discrete problem,

a global convergence rate of O(∆t
1
4 ) in L2(0, T ; Lρ(Ω)) norm is shown for

the range 2N
N+1

< ρ < 2. For 2 ≤ ρ < ∞, a rate of O(∆t
1
2ρ ) is shown in

Lρ(0, T ; Lρ(Ω)) norm.

1. Introduction

Consider the Cauchy-Dirichlet problem governed by the generalized porous
medium equation

∂u

∂t
−

N∑
i=1

∂

∂xi

(
|u|ρ−2 ∂u

∂xi

)
= f(x, t), (x, t) ∈ Ω× [0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],(1.1)

u(x, 0) = u0(x), x ∈ Ω,

where 1 < ρ <∞, 0 < T <∞, and Ω is a bounded convex polygonal domain in RN .
The above equation is one of the simplest and best-known nonlinear equations of
degenerate (ρ > 2) or singular (ρ < 2) parabolic type. We refer to Kalashnikov [15]
and the references therein for background of the basic theory and for applications
which motivate the study of this equation. The case ρ ≥ 2 is the classical porous
medium equation. The case 1 < ρ < 2 is referred to as the fast diffusion equation
and includes applications in plasma physics [1] and diffusion of impurities in silicon
[13]. In this paper we will establish error estimates for both semi-discrete and fully
discrete approximations to solutions of (1.1) for a range of ρ which includes both
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972 DONGMING WEI AND LEW LEFTON

porous medium and fast diffusion behavior. We employ a backward Euler difference
approximation in t and a Galerkin finite element approximation in x.

In the first of our main results we obtain error estimates for semi-discrete ap-
proximations over the full range 1 < ρ < ∞ in the L∞(0, T ;Lρ(Ω)) norm. In
particular, we establish a convergence rate of O(∆t

1
4 ) for 1 < ρ < 2 and O(∆t

1
2ρ )

for 2 ≤ ρ < ∞. This result can be compared to work of Rulla [25]. His analysis
covers the semi-discrete problem for the full range of ρ. In the fast diffusion case,
Rulla obtains a better rate of O(∆t) in the space L∞(0, T ;H−1(Ω)). He also ob-
tains the rate O(∆t) for the porous medium case using the norm L2(0, T ;L2(Ω)).
Rulla’s results apply to a general class of maximal monotone operators which can
be written as a subgradient. Another result for the semi-discrete approximation
to solutions of (1.1) in the fast diffusion case is obtained by Eden, Michaux, and
Rakotoson [8, Theorem 6.1]. They establish an L∞(0, T ;H−1(Ω)) error estimate
of O(∆t

1
2 ) under the assumption that u0 ∈ L∞. We also mention a related paper

by LeRoux [16] where she constructs approximate solutions using a semi-discrete
scheme for a fast diffusion problem. Of interest is that her discretized solutions
exhibit the same phenomenon known to hold for true solutions in the fast diffusion
case, namely that there exists a finite extinction time T after which the solution is
zero. For other related results, see Farago [10] and Garcia [11].

We also establish error estimates for fully discrete approximations in this work
by using estimates of the form

max
1≤i≤m

‖Ui − Ui−1‖ρ

∆t
1
ρ

≤ C for 2 ≤ ρ <∞,

and

max
1≤i≤m

‖Ui − Ui−1‖ρ

∆t
1
2

≤ C for 1 < ρ < 2,

where Ui is the fully discrete approximation. In particular, let

ρ∗ =
2N
N + 1

.

We show that the global convergence rate is O(∆t
1
4 ) for ρ∗ < ρ < 2 and O(∆t

1
2ρ ) for

2 ≤ ρ <∞. These rates are obtained by taking the spatial mesh size h = O(∆tβ),
where β = ρ

ρ(N+2)−2N and β = (ρ−1)ρ
ρ(N+2)−2N , respectively. Note that these error

estimates are in the space L2(0, T ;Lρ(Ω)) when ρ∗ < ρ < 2 and Lρ(0, T ;Lρ(Ω))
when 2 ≤ ρ <∞.

Our fully discrete result compares to a recent paper by Rulla and Walkington [26]
where the optimal rate of O(∆t) is proved for two-dimensional problems in the norm
L∞(0, T ;H−1(Ω)). Rulla and Walkington also obtain L2(0, T ;L2(Ω)) estimates for
the classical porous medium case 2 ≤ ρ <∞. We note that in order to obtain the
appropriate L∞ bounds in [26] their analysis is restricted to two dimensions. A
fully discrete error analysis for a closely related fast diffusion problem is studied by
Lesaint and Pousin in [17]. They consider the problem vvt − vxx = 0, which is a
one-dimensional version of (1.1) with ρ = 3/2 after the change of variable u = v2.
Assuming nonzero boundary data, they obtain a O(∆t

h + h1/2) error estimate in
L∞(0, T ;L2(Ω)) norm.

An error analysis for the case ρ > 2 was done by Rose [24] who worked on the
Neumann problem for the porous medium equation. A related effort by Jerome
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POROUS MEDIUM AND FAST DIFFUSION EQUATIONS 973

and Rose [14] considered the Stefan problem with Neumann boundary conditions.
These results were greatly extended and improved by Nochetto, Verdi, and Elliott
[9], [19], [20], [29], who developed a theory which covers a wide class of singular
and degenerate problems under rather general assumptions about the initial and
boundary data. Further references can be found in these papers.

A key idea used in [24] to study the fully discretized porous medium equation is
to regularize the original equation by considering the nondegenerate problem

∂u

∂t
−

N∑
i=1

∂

∂xi

(
gε(u)

∂u

∂xi

)
= f(x, t),(1.2)

where gε(x) = |x|ρ−2x outside a small neighborhood of x = 0 and gε(x) ≥ ε > 0
near the origin. The solution uε of (1.2) is then approximated using finite differences
in time and finite elements in space. Error estimates in terms of the regularization
parameter ε, the time step ∆t, and the finite element size h for the fully discrete
problem can then be obtained. By choosing an appropriate relationship between
these parameters, a global rate of convergence can be established in terms of ∆t
or h. The work of Nochetto and Verdi [19], [20] also uses a regularizing pertur-
bation to establish a global rate of convergence in the L∞(0, T ;H−1(Ω)) norm
of O(∆t

1
2 ) by taking h = O(∆t

ρ−1
ρ ), ε = O(∆t

ρ−2
ρ ) and assuming solutions are in

L∞(0, T ;L∞(Ω)). In addition to the L∞(0, T ;H−1(Ω)) error estimates, they derive
a rate of O(∆t

1
ρ ) in the L∞(0, T ;Lρ(Ω)) norm under the assumption that

meas{x ∈ Ω : 0 < u(x) < ε
1

ρ−2 } ≤ Cε,

which is shown to be true for dim(Ω) = 1 in [3]. It is important to point out that
the analysis in [20] includes the errors induced by numerical integration.

The regularizing approximation (1.2) is avoided in [29] where L∞(0, T ;H−1(Ω))
error estimates are derived for the fully discrete approximation of a general class
of monotone operators. Using numerical integration, C0 piecewise linear finite
elements in space, and backward differences in time, a global rate of O(∆t

1
2 ) in the

L∞(0, T ;H−1(Ω)) norm is established with h = O(∆t). We note that this result
assumes f = 0 and initial data u0 ∈ L2. Verdi’s analysis is clearly applicable to
the range 2 ≤ ρ <∞. Moreover, from [21] it appears that by combining the results
of [9], [20], [29], Verdi’s work can be modified to cover the fast diffusion case for
ρ∗ < ρ < 2 in the L∞(0, T ;H−1(Ω)) norm with the same rate O(∆t

1
2 ).

This paper unifies results for finite element error estimates for solutions of (1.1)
covering both the fast diffusion case and the porous medium case. We avoid any
regularizing approximation; however, our work does not include numerical integra-
tion as in [20] and [29]. We prove our results under Dirichlet boundary conditions,
and assume that the initial function u0 satisfies |u0|ρ−2u0 ∈ H1

0 ∩ Lρ′ . In partic-
ular, we do not assume the solution u is in L∞. Our global convergence rates are
not as strong as the optimal ones obtained in [25] and [26], but we are working in
the space Lρ which has a more practical norm than H−1. We also provide explicit
proofs which extend fast diffusion results that exist only implicitly in the literature.

The paper is organized as follows. In Section 2 we state existence, uniqueness,
and other preliminary results. In Section 3 we derive regularity estimates and error
estimates for the semi-discrete approximations. In Section 4 we treat the fully
discrete problem.
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974 DONGMING WEI AND LEW LEFTON

2. Preliminaries

Throughout this work, we assume that f : [0, T ] → L2 is Lipschitz continuous,
i.e., there exists L > 0 such that ‖f(t)−f(t′)‖2 ≤ L|t−t′|. Existence and uniqueness
of solutions to (1.1) has been studied by many authors (see, e.g., Raviart [22], [23],
Lions [18], Tsutsumi [28], and the references therein). In particular, it can be shown
using the abstract theory of evolution equations governed by accretive operators
(see, e.g., Brézis and Crandall [2], and Brézis and Friedman [3]) that if u0 ∈ L1,
then there is a unique solution to (1.1) in C([0, T ], L1). We say that a function u
satisfies (1.1) if

∫ T

0

〈
du

dt
, v

〉
+

1
ρ− 1

〈∇(|u|ρ−2u),∇v〉 dt =
∫ T

0

〈f, v〉 dt,(2.1)

for all v ∈ Lρ(0, T ;H1
0 ∩ Lρ′), where 〈f, g〉 =

∫
f(x)g(x) dx.

By (2.1) and a proof similar to that in Žeńı̌sek [30, Theorem 43.3], we have〈
∂u

∂t
, v

〉
+

1
ρ− 1

〈∇(|u|ρ−2u),∇v〉 = 〈f, v〉, ∀v ∈ H1
0 ∩ Lρ′ ,(2.2)

for almost every t in [0, T ]. Henceforth, we shall use (2.2) without repeating that
it holds for almost every t in [0, T ].

Let Φ(x) = |x|ρ−2x, where x ∈ R1. Note that Φ−1(x) = |x|ρ′−2x, where
ρ′ = ρ

ρ−1 . The following estimates hold for all x, y ∈ R1; the constant C > 0
is independent of x and y (for proofs, see DiBenedetto [6]).

For 2 ≤ ρ <∞, |x− y|ρ ≤ C(Φ(x) − Φ(y))(x − y),

|Φ(x)− Φ(y)| ≤ C|x − y|(|x|+ |y|)ρ−2.
(2.3)

For 1 < ρ < 2, |x− y|2 ≤ C(Φ(x) − Φ(y))(x − y)(|x|+ |y|)2−ρ,

|Φ(x)− Φ(y)| ≤ C|x − y|ρ−1.
(2.4)

Throughout this paper we assume our initial data satisfies Φ(u0) ∈ H1
0 ∩Lρ′ . In

particular, since |Φ(u0)| = |u0|ρ−1, it is clear that Φ(u0) ∈ Lρ′ if and only if u0 ∈ Lρ.
Thus, if ρ ≤ 2 we have u0 ∈ L2. Also, since p∗ < ρ < 2 implies 1 < 2

ρ−1 <
2N

N−2 , we

can conclude from the Sobolev imbedding that Φ(u0) ∈ L
2

ρ−1 and hence u0 ∈ L2 in
this case also. Thus, our assumption on initial data implies u0 ∈ Lρ ∩ L2 provided
p∗ < ρ <∞.

We use capital C’s for generic positive constants and the standard Lρ norms are
denoted by ‖ · ‖ρ. We use ‖ · ‖−1 to denote the norm in H−1, the dual space of H1

0 .
All integrals and function spaces will be over the domain Ω unless otherwise noted.
We use a dot to denote the time derivative, e.g., u̇ = du

dt . For ψ ∈ H1
0 and g ∈ H−1

we can write the duality pairing (g, ψ)H−1 = 〈∇(−∆)−1g,∇ψ〉. In light of this, we
henceforth simplify our notation by writing (g, ψ)H−1 as 〈g, ψ〉. The appropriate
inner product will be clear from context.
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POROUS MEDIUM AND FAST DIFFUSION EQUATIONS 975

3. Error estimates for the semi-discrete approximation

Let {ti}m
i=0 be a partition of the interval [0, T ], i.e., 0 = t0 < t1 < t2 < · · · <

tm = T and ∆ti = ti − ti−1 for i = 1, . . . ,m. We denote the mesh of this partition
by ∆t = max1≤i≤m ∆ti. We construct a sequence {ui}m

i=0 by solving the following
recurrence nonlinear elliptic problem. Given ui−1, find ui such that〈

ui − ui−1

∆ti
, v

〉
+

1
ρ− 1

〈∇(|ui|ρ−2ui),∇v〉 = 〈fi, v〉, ∀v ∈ H1
0 ∩ Lρ′ ,(3.1)

where u0 = u0(x), fi = f(x, ti), i = 1, . . . ,m.
We first show that solutions ui exist for (3.1). Consider the following auxiliary

recurrence problem obtained from (3.1) by writing vi = Φ(ui). Given vi−1, find vi

such that 〈
|vi|ρ

′−2vi − |vi−1|ρ
′−2vi−1

∆ti
, v

〉
+

1
ρ− 1

〈∇vi,∇v〉 = 〈fi, v〉,(3.2)

for v ∈ H1
0 ∩ Lρ′ , where i = 1, . . . ,m, and v0 = Φ(u0). The operator defined by

v → |v|ρ
′−2v −K∆v, where K > 0,

is bounded, hemicontinuous, strictly monotone and coercive fromH1
0∩Lρ′ to H−1+

Lρ, which is the dual space of H1
0 ∩ Lρ′ [22]. Therefore, a unique sequence {vi}m

i=1

in H1
0 ∩ Lρ′ can be generated from (3.2) and the standard theory of monotone

operators (see Browder [4]) with the assumption that v0 = Φ(u0) ∈ H1
0 ∩Lρ′ . Now

since ui = Φ−1(vi) for i = 1, . . . ,m, we conclude that the sequence {ui}m
i=1 satisfies

(3.1). Note that v ∈ Lρ′ if and only if u = Φ−1(v) ∈ Lρ. The semi-discrete solution
of (1.1) is defined, for a given partition {ti}m

i=1, by linear interpolation in Lρ, that
is

um(t) =
t− ti−1

∆ti
ui +

ti − t

∆ti
ui−1, for ti−1 < t ≤ ti, i = 1, . . . ,m,(3.3)

um(0) = u0.(3.4)

We observe um(t)− ui = (t−ti)
∆ti

(ui − ui−1) and

dum(t)
dt

=
ui − ui−1

∆ti
, for ti−1 < t ≤ ti, i = 1, . . . ,m.

Definition 3.1. We say that a partition 0 = t0 < t1 < t2 < · · · < tm = T with
∆ti = ti − ti−1 is nonincreasing if it satisfies ∆ti ≤ ∆ti−1 for i = 2, . . . ,m.

Lemma 3.1. Suppose that 1 < ρ <∞ and the partition {ti}m
i=0 is a nonincreasing

partition of [0, T ] as defined above. Let Φ(u0) ∈ H1
0 ∩ Lρ′ . Suppose {ui}m

i=1 is the
sequence generated by (3.1) and let um(t) be the corresponding semi-discrete solution
defined by (3.3), (3.4). Then there exists a positive constant C = C(Ω, ρ, f, u0),
independent of {ti}m

i=0, such that

max
1≤i≤m

‖ui‖ρ ≤ C,

max
1≤i≤m

‖∇Φ(ui)‖2 ≤ C,

and

max
0≤t≤T

∥∥∥∥dum(t)
dt

∥∥∥∥
−1

≤ C.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



976 DONGMING WEI AND LEW LEFTON

Proof. Fix 1 ≤ i ≤ m and let v = vi in (3.2). We have〈
|vi|ρ

′−2vi − |vi−1|ρ
′−2vi−1

∆ti
, vi

〉
+

1
ρ− 1

〈∇vi,∇vi〉 = 〈fi, vi〉.(3.5)

Using (3.5) and the following inequality (see [22]),

1
ρ
(‖vi‖ρ′

ρ′ − ‖vi−1‖ρ′
ρ′) ≤ 〈|vi|ρ

′−2vi − |vi−1|ρ
′−2vi−1, vi〉,

we get

1
∆ti

(‖vi‖ρ′
ρ′ − ‖vi−1‖ρ′

ρ′) + ρ′‖∇vi‖2
2 ≤ ρ〈fi, vi〉.

We have, for any ε > 0, |〈fi, vi〉| ≤ 1
2ε‖fi‖2

−1 + ε
2‖∇vi‖2

2; therefore,

‖vi‖ρ′
ρ′ − ‖vi−1‖ρ′

ρ′ +
(
ρ′ − ερ

2

)
∆ti‖∇vi‖2

2 ≤
ρ∆ti
2ε

‖fi‖2
−1.(3.6)

In (3.6), using the Sobolev inequality ‖fi‖−1 ≤ C‖fi‖2 and summing, we get

‖vi‖ρ′
ρ′ +

(
ρ′ − ερ

2

) i∑
s=1

∆ts‖∇vs‖2
2 ≤

ρC

2ε

i∑
s=1

∆ts‖fs‖2
2 + ‖v0‖ρ′

ρ′ .(3.7)

By choosing 0 < ε < 2
ρ−1 in (3.7), we find that both terms on the left are nonnega-

tive; thus, ‖vi‖ρ′ ≤ C(f, v0) and
∑i

s=1 ∆ts‖∇vs‖2
2 ≤ C(f, v0). The first inequality

in Lemma 3.1 follows since ‖v‖ρ′
ρ′ = ‖u‖ρ

ρ.
Letting v = vi− vi−1 in (3.2) for i = 1, . . . ,m and using (2.3) and (2.4), we have

0 ≤ (|vi|ρ
′−2vi − |vi−1|ρ

′−2vi−1)(vi − vi−1).

Therefore,

1
ρ− 1

〈∇vi,∇vi −∇vi−1〉 ≤ 〈fi, vi − vi−1〉,

which gives

‖∇vi‖2
2 − ‖∇vi−1‖2

2 − 2(ρ− 1)(〈fi, vi〉 − 〈fi−1, vi−1〉) ≤ 2(ρ− 1)〈fi−1 − fi, vi−1〉.

Summing this inequality from 1 to i and using the Lipschitz continuity of f we get

‖∇vi‖2
2 − ‖∇v0‖2

2 − 2(ρ− 1)(〈fi, vi〉 − 〈f0, v0〉) ≤ 2(ρ− 1)L
i∑

s=1

∆ts‖vs−1‖2,

which implies

‖∇vi‖2
2 ≤ C1‖∇vi‖2 + C2

i∑
s=1

∆ts‖vs−1‖2 + C3,(3.8)
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where C1, C2, and C3 depend only on ρ, f and v0. Since ∆ts ≤ ∆ts−1 for s ≥ 2
and

∑i
s=1 ∆ts‖∇vs‖2

2 ≤ C(f, v0) we have

i∑
s=1

∆ts‖vs−1‖2 ≤ ∆t1‖v0‖2 +
i∑

s=2

∆ts−1‖vs−1‖2

≤ ∆t1‖v0‖2 +

(
i∑

s=2

∆ts−1‖∇vs−1‖2
2

) 1
2
(

i∑
s=2

∆ts−1

) 1
2

≤ C(f, v0),

and we deduce from (3.8) that

‖∇vi‖2
2 ≤ C1‖∇vi‖2 + C2.(3.9)

From (3.9) we conclude that there exists a positive constant C(f, v0) such that
‖∇vi‖2 ≤ C(f, v0). Thus ‖∇Φ(ui)‖2 ≤ C(f, v0) which gives the second inequality
in Lemma 3.1.

To prove the third inequality, we use (3.1) and write∣∣∣∣〈ui − ui−1

∆ti
, v

〉∣∣∣∣ ≤ ∣∣∣∣− 1
ρ− 1

〈∇(|ui|ρ−2ui),∇v〉 + (fi, v)
∣∣∣∣ , ∀v ∈ H1

0 ∩ Lρ′ .

Again using that ‖fi‖−1 ≤ C‖fi‖2 we estimate∣∣∣∣〈ui − ui−1

∆ti
, v

〉∣∣∣∣ ≤ ( 1
ρ− 1

‖∇vi‖2 + C‖fi‖2

)
‖∇v‖2.(3.10)

The third inequality now follows from (3.10) since ‖∇vi‖2 and ‖fi‖2 are both
bounded.

We suspect our hypothesis that the partition of [0, T ] be nonincreasing is only an
artifact of our method of proof and could perhaps be relaxed to include arbitrary
partitions. However, we have not found a way to estimate (3.8) without this as-
sumption. Note that many related results (e.g., Verdi [24]) assume a uniform mesh
which is clearly nondecreasing.

Using the above H−1 estimate on dum(t)
dt we can write ‖ui − ui−1‖−1 ≤ C∆ti.

Let 1 ≤ l ≤ m and sum from i = 1, . . . , l to conclude ‖ul‖−1 − ‖u0‖−1 ≤ CT . We
conclude

‖um(t)‖−1 ≤ C,(3.11)

where C is independent of ∆t.

Theorem 3.1. Let u be the exact solution of (1.1) with initial data satisfying
Φ(u0) ∈ H1

0 ∩ Lρ′ . And let um(t) be the semi-discrete solution defined by (3.3),
(3.4). Then

‖u(t)− um(t)‖−1 ≤ C∆t
1
2 , for 1 < ρ <∞.

Proof. Let {ti}m
i=0 and {ti′}m′

i′=0 be two partitions of the interval [0, T ]. Let um(t)
and um′(t) be the semi-discrete solutions defined by (3.3) and (3.4) corresponding
to the partitions, respectively. For each g ∈ Hs, s ≥ −1, let Tg denote the unique
solution u of −∆u = g in H1

0 . Then ‖Tg‖2 ≤ C‖g‖2 (see, e.g., Gilbarg and
Trudinger [12]).
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Let em,m′(t) = um(t) − um′(t), and define ρm,m′(t) ∈ H1
0 by −∆ρm,m′(t) =

em,m′(t). Then by (3.1) we have, for t ∈ (ti−1, ti] ∩ (ti′−1, ti′ ],

1
2
d

dt
‖∇ρm,m′(t)‖2

2 =
〈
d

dt
(∇ρm,m′(t)),∇ρm,m′(t)

〉
=
〈
d

dt
(−∆ρm,m′(t)), ρm,m′(t)

〉
=
〈
dum(t)
dt

− dum′(t)
dt

, T em,m′(t)
〉

= 〈fi − fi′ , T em,m′(t)〉

− 1
ρ− 1

〈Φ(ui)− Φ(ui′), em,m′(t)〉.

(3.12)

Using (3.11), the Lipschitz continuity of f , and the fact that −∆w = em,m′ implies
‖∇w‖2

2 ≤ ‖em,m′‖−1‖∇w‖2, we have

|〈fi − fi′ , T em,m′(t)〉| ≤ ‖fi − fi′‖−1‖∇Tem,m′(t)‖2

≤ C‖fi − fi′‖2‖em,m′(t)‖−1

≤ LC|ti − ti′ |.
(3.13)

Now, since 〈Φ(ui)− Φ(ui′), ui − ui′〉 ≥ 0, we derive from (3.12) and (3.13) that

1
2
d

dt
‖∇ρm,m′(t)‖2

2 ≤ LC|ti − ti′ |

+
1

ρ− 1
|〈Φ(ui)− Φ(ui′), um(t)− ui + ui′ − um′(t)〉|.

(3.14)

We also have
|〈Φ(ui)− Φ(ui′), um(t)− ui + ui′ − um′(t)〉|

=
∣∣∣∣〈Φ(ui)− Φ(ui′),

t− ti
∆ti

(ui − ui−1)−
t− ti′

∆ti′
(ui′ − ui′−1)

〉∣∣∣∣
≤ ‖∇(Φ(ui)− Φ(ui′))‖2

×
(
|ti − t|
∆ti

‖ui − ui−1‖−1 +
|ti′ − t|
∆ti′

‖ui′ − ui′−1‖−1

)
.

(3.15)

Therefore, by (3.14), (3.15) and Lemma 3.1, we get

1
2
d

dt
‖∇ρm,m′(t)‖2

2 ≤ C1|ti − t|+ C2|ti′ − t| ≤ C(∆ti + ∆ti′),

which implies that

‖∇ρm,m′(t)‖2
2 ≤ C(∆t+ ∆t′).(3.16)

Since −∆ρm,m′(t) = em,m′(t), we have ‖em,m′(t)‖−1 ≤ ‖∇ρm,m′(t)‖2. There-
fore, by (3.16), we have

‖em,m′(t)‖2
−1 ≤ C(∆t+ ∆t′).(3.17)

From (3.17) we see that for 1 < ρ <∞, {um(t)}∞m=1 is Cauchy in C(0, T ;H−1) and
um(t) → u(t) for some u(t) in C(0, T ;H−1) as m → ∞. This u(t) is the unique
solution of the Cauchy-Dirichlet problem. Taking the limit as ∆t′ → 0 (and hence
m′ →∞) in (3.17) gives the estimates of Theorem 3.1.
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Lemma 3.2. Let u be the exact solution (1.1) with initial data satisfying Φ(u0) ∈
H1

0 ∩ Lρ′ . Let um(t) be the piecewise constant approximation (in time) defined by

um(t) = ui, for ti−1 ≤ ti, i = 1, . . . ,m, um(0) = u0.

Then

‖u(t)− um(t)‖ρ ≤ C∆t
1
2ρ , for 2 ≤ ρ <∞,

‖u(t)− um(t)‖ρ ≤ C∆t
1
4 , for 1 < ρ < 2.

Proof. Let em,m′(t) = um(t) − um′(t) and em,m′(t) = ui − ui′ for t ∈ (ti−1, ti] ∩
(ti′−1, ti′ ]. In this interval we have

‖em,m′(t)− em,m′(t)‖−1

≤
∥∥∥∥ ti − t

∆ti
(ui − ui−1)

∥∥∥∥
−1

+
∥∥∥∥ ti′ − t

∆ti′
(ui′ − ui′−1)

∥∥∥∥
−1

= |ti − t|
∥∥∥∥dum(t)

dt

∥∥∥∥
−1

+ |ti′ − t|
∥∥∥∥dum′(t)

dt

∥∥∥∥
−1

.

Combining the above inequality with Lemma 3.1 gives

‖em,m′(t)− em,m′(t)‖−1 ≤ C1∆ti + C2∆ti′ .(3.18)

Using −∆ρm,m′(t) = em,m′(t) and (2.3), we have for 2 ≤ ρ <∞∫
|em,m′ |ρ dx ≤ C〈em,m′ ,Φ(ui)− Φ(ui′)〉

= 〈em,m′ + em,m′ − em,m′,Φ(ui)− Φ(ui′)〉
= 〈∇ρm,m′(t),∇(Φ(ui)− Φ(ui′))〉

+ 〈em,m′ − em,m′ ,Φ(ui)− Φ(ui′)〉
≤ (‖∇ρm,m′(t)‖2 + ‖em,m′ − em,m′‖−1)

× ‖∇(Φ(ui)− Φ(ui′))‖2.

(3.19)

By Lemma 3.1 we have ‖∇(Φ(ui)−Φ(ui′))‖2 ≤ C. Therefore, by (3.16), (3.18) and
(3.19), we have for small ∆t,∆t′

‖em,m′(t)‖2
ρ ≤ C(∆ti + ∆ti′ )

1
ρ .

A similar situation holds for 1 < ρ < 2. By taking ρ
2 roots in (2.4) and using

Hölder’s inequality and Lemma 3.1 we have

‖em,m′(t)‖ρ
ρ ≤ C

[∫
(Φ(ui)− Φ(ui′))(ui − ui′)

] ρ
2

(‖ui‖ρ
ρ + ‖ui′‖ρ

ρ)
2−ρ
2

≤ C

[∫
(Φ(ui)− Φ(ui′))(ui − ui′)

] ρ
2

.

(3.20)

Therefore, by (3.17), (3.18) and Lemma 3.1, we have for small ∆t and ∆t′

‖em,m′(t)‖2
ρ ≤ C〈Φ(ui)− Φ(ui′), ui − ui′〉
≤ ‖∇(Φ(ui)− Φ(ui′))‖2‖em,m′(t)‖−1

≤ C‖em,m′ − em,m′ + em,m′‖−1

≤ C(∆t + ∆t′)
1
2 .
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Now we may use the same argument at the end of Theorem 3.1 to prove the result.

Lemma 3.3. Let {ui}m
i=1 be the sequence generated by (3.1). Then there exists a

positive constant C = C(Ω, ρ, f, u0) independent of {ti}m
i=0 such that

max
1≤i≤m

‖ui − ui−1‖ρ

∆t
1
ρ

≤ C for 2 ≤ ρ <∞,

and

max
1≤i≤m

‖ui − ui−1‖ρ

∆t
1
2

≤ C for 1 < ρ < 2.

Proof. Fix 1 ≤ i ≤ m. Taking v = Φ(ui)− Φ(ui−1) in (3.1) we write〈
ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
+

1
ρ− 1

〈∇Φ(ui),∇Φ(ui)−∇Φ(ui−1)〉

= 〈fi,Φ(ui)− Φ(ui−1)〉.

(3.21)

Subtracting 1
ρ−1 〈∇Φ(ui−1),∇Φ(ui)−∇Φ(ui−1)〉 from both sides of (3.21) and using

standard estimates gives〈
ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
+

1
ρ− 1

‖∇Φ(ui)−∇Φ(ui−1)‖2
2

≤
(
C‖fi‖2 +

1
ρ− 1

‖∇Φ(ui−1)‖2

)
‖∇Φ(ui)−∇Φ(ui−1)‖2

≤ 1
2ε

(
C‖fi‖2 +

1
ρ− 1

‖∇Φ(ui−1)‖2

)2

+
ε

2
‖∇Φ(ui)−∇Φ(ui−1)‖2

2.

(3.22)

Choose 0 < ε < 2
ρ−1 and subtract the last term in (3.22) from both sides to get〈

ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
+
(

1
ρ− 1

− ε

2

)
‖∇Φ(ui)−∇Φ(ui−1)‖2

2

≤ 1
2ε

(
C‖fi‖2 +

1
ρ− 1

‖∇Φ(ui−1)‖2

)2

.

(3.23)

By (3.23) and Lemma 3.1 we have〈
ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
≤ C.

Using the estimates of (2.3) and (2.4) and arguing as in (3.20) for the case 1 < ρ < 2
we have

‖ui − ui−1‖ρ
ρ

∆ti
≤ C

〈
ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
for 2 ≤ ρ <∞,

and
‖ui − ui−1‖2

ρ

∆ti
≤ C

〈
ui − ui−1

∆ti
,Φ(ui)− Φ(ui−1)

〉
for 1 < ρ < 2.
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The conclusion follows by taking appropriate roots and using the fact that
∆ti ≤ ∆t.

Theorem 3.2. Let u be the exact solution of (1.1) with initial data satisfying
Φ(u0) ∈ H1

0 ∩ Lρ′ . And let um(t) be the semi-discrete solution defined by (3.3),
(3.4). Then

‖u(t)− um(t)‖ρ ≤ C∆t
1
2ρ for 2 ≤ ρ <∞,

and

‖u(t)− um(t)‖ρ ≤ C∆t
1
4 for 1 < ρ < 2.

Proof. For t ∈ (ti−1, ti] we have

‖u(t)− um(t)‖ρ ≤ ‖u(t)− um(t)‖ρ + ‖um(t)− um(t)‖ρ

= ‖u(t)− um(t)‖ρ +
∥∥∥∥ ti − t

∆ti
(ui − ui−1)

∥∥∥∥
ρ

≤ ‖u(t)− um(t)‖ρ + ‖ui − ui−1‖ρ.

The conclusion follows for small ∆t by applying Lemma 3.2 and Lemma 3.3 to the
above inequality.

4. Error estimates for the fully discrete approximation

Let Th be a simplicial subdivision of Ω with maximum mesh size h =
maxK∈Th

diam(K). In this discretization, K denotes an N -simplex, diam(K) de-
notes the diameter of K, and ρK denotes the radius of the largest closed ball
contained in K. We assume that Th is regular, i.e., there exists a constant γ inde-
pendent of h such that

max
K∈Th

diam(K)
ρK

≤ γ.

Let Sh
0 be the standard C0 finite element space in H1

0 consisting of piecewise poly-
nomials of degree r in Ω. Thus, ∀v ∈ Sh

0 and ∀K ∈ Th, v|K ∈ PN
r , where PN

r

denotes the set of r degree polynomials in N variables (see Ciarlet [5] for further
details).

Let Π be the interpolation operator defined by Scott and Zhang [27, p. 486] which
is associated with Sh

0 . This operator differs from standard Lagrange interpolation by
using local averaging to generate nodal values for functions in Sobolev spaces which
may not be pointwise well defined. We will need an estimate of the interpolation
error in Sobolev norms. Toward this end, let v ∈W `,p(Ω), where ` > 1

p and p > 1.
Suppose further that 1 < q < +∞, 0 ≤ m ≤ ` ≤ r + 1, and there is a constant σ
satisfying

0 < σ ≤ 1
q
− 1
p

+
`−m

N
.(4.1)

Then we claim

‖v −Πv‖W m,q(Ω) ≤ Ch`−m+N( 1
q−

1
p )‖v‖W `,p(Ω).(4.2)

This estimate is a slightly generalized version of that proved in [27, p. 490] where
it is proved for the case p = q. In Lemma 4.1 we will use (4.2) in the case ` = 2,
m = 1, and q = 2. In this setting, our assumption ρ∗ < ρ implies (4.1). We will
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only sketch the proof of (4.2). The interested reader is referred to [27] and [7] for
further details.

Let K ∈ Th and write

‖v −Πv‖W m,q(K) ≤ C‖v − p̃‖W m,q(K) + ‖Π(p̃− v)‖W m,q(K),(4.3)

for any p̃ ∈ PN
r . This uses the fact (see [27]) that Π is a projection on Sh

0 . To
estimate the first term in (4.3) we will use

inf
p̃∈PN

r

‖v − p̃‖W m,q(K) ≤ Ch`−m+N( 1
q−

1
p )|v|W `,p(SK),(4.4)

where SK = int(
⋃
{Ki|Ki ∩K 6= ∅, Ki ∈ Th}). The estimate in (4.4) follows from

Dupont and Scott [7, Theorem 3.2]. Although the explicit power of h shown in
(4.4) is not given in [7], it can be computed in the case when (4.1) holds. The
second term in (4.3) is bounded by using [27, Theorem 3.1] and (4.4) to get

‖Π(p̃− v)‖W m,q(K) ≤ Ch`−m+N( 1
q−

1
p )|v|W `,p(SK).

The estimate in (4.2) now follows by taking inf p̃∈PN
r

on both sides of (4.3) and
summing for each K ∈ Th, as done in [27, p. 490].

For simplicity, from this point on we will assume linear interpolating functions
and henceforth r = 1. Let s ≥ −1 and define T : Hs → H1

0 by Tg = u, where
u ∈ H1

0 is the unique solution of −∆u = g. Thus, T = (−∆)−1. Similarly, we
define Th : H−1 → Sh

0 such that u = Thg denotes the finite element solution of
−∆u = g in Sh

0 . Since ‖∇Tg‖2
2 = 〈g, u〉, and ‖∇Thg‖2

2 = 〈g, Thg〉, we have

‖∇Tg‖2 ≤ ‖g‖−1 and ‖∇Thg‖2 ≤ ‖g‖−1(4.5)

for g ∈ Hs for s ≥ −1. We recall the following standard L2 error estimates [5] in
the case s = 0

‖Tg − Thg‖2 ≤ Ch2,

‖∇Tg −∇Thg‖2 ≤ Ch.
(4.6)

The constant C depends on ‖g‖2. The elliptic projection operator P : H1
0 → Sh

0 is
defined by P = ThT

−1. Thus, Tg = u implies Thg = Pu for any g ∈ Hs.
We will also need the following Lρ′ version of the Aubin-Nitsche Lemma for the

case s = −1.

Lemma 4.1. Let ρ∗ ≤ ρ < +∞ and suppose u ∈ H1
0 . Let −∆u = g ∈ H−1. Then

‖u− Pu‖ρ′ ≤ C(Ω, ‖g‖−1, ρ, γ)hN( ρ−2
2ρ )+1.

Proof. We begin with ‖u − Pu‖ρ′ = supf∈Lρ
〈u−Pu,f〉
‖f‖ρ

. Rewrite f = −∆Tf , inte-
grate by parts, and use the definition of elliptic projection to obtain

〈u− Pu, f〉 = 〈∇u−∇Pu,∇Tf −∇ψ〉 for all ψ ∈ Sh
0 .

Thus, using (4.5) we have

‖u− Pu‖ρ′ ≤ ‖∇u−∇Pu‖2 sup
f∈Lρ

‖∇Tf −∇ψ‖2

‖f‖ρ

≤ C(Ω, ‖g‖−1) sup
f∈Lρ

‖∇Tf −∇ψ‖2

‖f‖ρ
,

(4.7)

where ψ ∈ Sh
0 is arbitrary.
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From standard regularity theory [12] we have if f ∈ Lρ, then Tf ∈W 2,ρ ∩W 1,ρ
0

and

‖Tf‖W 2,ρ ≤ C‖f‖ρ.(4.8)

Combining (4.8) with the interpolation error estimate (4.2) in the case ` = 2,
m = 1, and q = 2, we obtain

‖∇Tf −∇ΠTf‖2

‖f‖ρ
≤ ChN( ρ−2

2ρ )+1.

Writing ψ = ΠTf in (4.7) then gives the result.

Suppose we have a nonincreasing partition 0 = t0 < t1 < t2 < · · · < tm = T
with ∆ti = ti − ti−1. Recall Φ(u0) ∈ H1

0 ∩ Lρ′ . Define U0 = Φ−1(PΦ(u0)) and let
{Ui}m

i=1 be the sequence in Sh
0 defined by〈

Ui − Ui−1

∆ti
, V

〉
+

1
ρ− 1

〈∇(|Ui|ρ−2Ui),∇V 〉 = 〈fi, V 〉, ∀V ∈ Sh
0 .(4.9)

The solutions Ui exist by the same argument used to show existence of solutions to
(3.1). The fully discrete solution is defined by

Um(t) =
t− ti−1

∆ti
Ui +

ti − t

∆ti
Ui−1, for ti−1 < t ≤ ti, i = 1, . . . ,m,(4.10)

Um(0) = U0.(4.11)

Lemma 4.2. Suppose 1 < ρ < ∞ and the partition {ti}m
i=0 is a nonincreasing

partition. Let {Ui}m
i=1 be the sequence generated by (4.9) and Um(t) be the corre-

sponding fully discrete solution defined by (4.10) and (4.11). Then there exists a
positive constant C = C(Ω, ρ, f, u0) independent of {ti}m

i=0 such that

max
1≤i≤m

‖Ui‖ρ ≤ C,

max
1≤i≤m

‖∇Φ(Ui)‖2 ≤ C,

and

max
0≤t≤T

∥∥∥∥dUm(t)
dt

∥∥∥∥
−1

≤ C.

Lemma 4.3. Let {Ui}m
i=1 be the sequence generated by (4.9). Then there exists a

positive constant C = C(Ω, ρ, f, u0) independent of {ti}m
i=0 such that

max
1≤i≤m

‖Ui − Ui−1‖ρ

∆t
1
ρ

≤ C for 2 ≤ ρ <∞,

and

max
1≤i≤m

‖Ui − Ui−1‖p

∆t
1
2

≤ C for 1 < ρ < 2.

The proofs of Lemma 4.2 and Lemma 4.3 are almost identical to those of Lemma
3.1 and Lemma 3.3, respectively, so we omit the details. We now state and prove
our main error estimate in Lρ norm for the fully discrete case.

Theorem 4.1. Let u be the exact solution of the Cauchy-Dirichlet problem (1.1).
Let Um(t), defined by (4.10) and (4.11), be the fully discrete solution of the problem
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with a nonincreasing partition of [0, T ]. Suppose initial data u0 satisfies Φ(u0) ∈
H1

0 ∩ Lρ′ . Then∫ T

0

‖u(t)− Um(t)‖ρ
ρ dt ≤ C1∆t

1
2 + C2h

1
ρ−1 (N( ρ−2

2ρ )+1) + C3h for 2 ≤ ρ <∞

and ∫ T

0

‖u(t)− Um(t)‖2
ρ dt ≤ C1∆t

1
2 + C2h

N( ρ−2
2ρ )+1 + C3h for ρ∗ < ρ < 2,

where the constants C1, C2, and C3 depend only on Ω, T, u0, ρ, γ, and f .

Proof. Let u(t) be the exact solution of (1.1) in the sense of (2.1) and um(t) be the
semi-discrete solution defined by (3.3) and (3.4). Then for 2 ≤ ρ <∞ we have, by
convexity of f(x) = |x|ρ,∫ T

0

‖u(t)− Um(t)‖ρ
ρ dt ≤ C

∫ T

0

‖u(t)− um(t)‖ρ
ρ dt+ C

∫ T

0

‖em(t)‖ρ
ρ dt,(4.12)

where em(t) = um(t)− Um(t). For ρ∗ < ρ < 2 we consider∫ T

0

‖u(t)− Um(t)‖2
ρ dt ≤ C

∫ T

0

‖u(t)− um(t)‖2
ρ dt+ C

∫ T

0

‖em(t)‖2
ρ dt.(4.13)

By Theorem 3.2, the first term in both (4.12) and (4.13) is O(∆t
1
2 ). To estimate

the second term, we observe from Hölder’s inequality
d

dt
‖em(t)‖ρ

ρ ≤ ρ‖em(t)‖ρ−1
ρ ‖ėm(t)‖ρ;

therefore,
d

dt
‖em(t)‖ρ ≤ ‖ėm(t)‖ρ.(4.14)

Integrating (4.14) from ti−1 to t where i = 1, . . . ,m, we obtain

‖em(t)‖ρ ≤ ‖em(ti−1)‖ρ +
∫ t

ti−1

‖ėm(τ)‖ρ dτ for ti−1 ≤ t < ti.

By Lemma 3.3 and Lemma 4.3 we have for 2 ≤ ρ < ∞ that ‖ėm(t)‖ρ ≤ C(∆t)
−1
ρ′

and hence

‖em(t)‖ρ
ρ ≤ C‖em(ti−1)‖ρ

ρ +O(∆t).

Similarly for ρ∗ < ρ < 2 we obtain

‖em(t)‖2
ρ ≤ C‖em(ti−1)‖2

ρ +O(∆t).

It remains to estimate
∫ T

0
‖em(ti−1)‖ρ

ρ dt and
∫ T

0
‖em(ti−1)‖2

ρ dt for 2 ≤ ρ ≤ ∞ and
ρ∗ < ρ < 2, respectively.

For i = 0, . . . ,m, let Wi = Φ−1(Pvi) where vi = Φ(ui), and ui is defined by
(3.1). Then by the definition of P

〈∆Φ(Wi), V 〉 = 〈∆Φ(ui), V 〉, ∀V ∈ Sh
0 .(4.15)

For 2 ≤ ρ <∞ we write∫ T

0

‖em(ti−1)‖ρ
ρ dt ≤ C

∫ T

0

‖ui−1 −Wi−1‖ρ
ρ dt+ C

∫ T

0

‖Wi−1 − Ui−1‖ρ
ρ dt
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and for ρ∗ < ρ < 2 we write∫ T

0

‖em(ti−1)‖2
ρ dt ≤ C

∫ T

0

‖ui−1 −Wi−1‖2
ρ dt+ C

∫ T

0

‖Wi−1 − Ui−1‖2
ρ dt.

We begin by estimating the integrand of the first term in each of these expres-
sions. For 2 ≤ ρ <∞ we have, by (2.3),

‖ui−1 −Wi−1‖ρ
ρ ≤ C〈|ui−1|ρ−2ui−1 − |Wi−1|ρ−2Wi−1, ui−1 −Wi−1〉

= C〈vi−1 − Pvi−1, ui−1 −Wi−1〉
≤ C‖vi−1 − Pvi−1‖ρ′‖ui−1 −Wi−1‖ρ.

We conclude

‖ui−1 −Wi−1‖ρ−1
ρ ≤ C‖Pvi−1 − vi−1‖ρ′ for i = 1, . . . ,m.

From Lemma 3.1 we observe that vi−1 ∈ H1
0 ; therefore, −∆vi−1 ∈ H−1. Apply the

estimate from Lemma 4.1 and use ρ ≥ 2 to get ‖Pvi−1 − vi−1‖ρ′ ≤ ChN( ρ−2
2ρ )+1.

Thus

‖ui−1 −Wi−1‖ρ
ρ ≤ Chρ′(N( ρ−2

2ρ )+1), for i = 1, . . . ,m.(4.16)

For ρ∗ ≤ ρ < 2 we take ρ
2 roots in (2.4), integrate, and use Hölder’s inequality

with β = 2
2−ρ and β′ = 2

ρ to obtain

‖ui−1 −Wi−1‖ρ
ρ ≤ C〈vi−1 − Pvi−1, ui−1 −Wi−1〉

ρ
2 ‖ |ui−1|+ |Wi−1| ‖

ρ(2−ρ)
2

ρ .

Thus,

‖ui−1 −Wi−1‖2
ρ

≤ C‖vi−1 − Pvi−1‖ρ′‖ui−1 −Wi−1‖ρ(‖ui−1‖ρ + ‖Wi−1‖ρ)2−ρ.
(4.17)

We now establish a uniform bound for ‖Wi‖ρ independent of i. By Lemma 3.1
vi−1 ∈ H1

0 . Since P : H1
0 → Sh

0 ⊂ H1
0 we conclude that Φ(Wi−1) = Pvi−1 ∈ H1

0 .
By the Sobolev imbedding for N ≥ 3 we have

‖w‖ρ ≤ ‖∇w‖2 for 1 < ρ ≤ 2N
N − 2

and w ∈ H1
0 .(4.18)

In the case that N = 1 or 2, we note that (4.18) holds for any 1 < ρ < ∞. When
ρ∗ < ρ < ∞ we have 1 < ρ′ < 2N

N−2 , and we conclude ‖Wi−1‖ρ = ‖Φ(Wi−1)‖ρ′ ≤
C‖∇Φ(Wi−1)‖2. By taking V = Φ(Wi) in (4.15) and using Lemma 3.1 we conclude

max
1≤i≤m

‖Wi‖ρ ≤ C.(4.19)

Thus by (4.17), (4.19), Lemma 3.1 and using (4.18) to estimate ‖vi−1 − Pvi−1‖ρ′ ,
we obtain

‖ui−1 −Wi−1‖ρ ≤ C‖vi−1 − Pvi−1‖ρ′ .

Therefore, by Lemma 4.1

‖ui−1 −Wi−1‖2
ρ ≤ Ch2(N( ρ−2

2ρ )+1).(4.20)

Toward estimating
∫ T

0
‖Wi−1−Ui−1‖ρ

ρ dt and
∫ T

0
‖Wi−1 −Ui−1‖2

ρ dt, we observe
that by (2.3), (2.4), Lemma 4.2, and (4.19) we have

‖Wi − Ui‖ρ
ρ ≤ C〈Φ(Wi)− Φ(Ui),Wi − Ui〉, for 2 ≤ ρ <∞, and

‖Wi − Ui‖2
ρ ≤ C〈Φ(Wi)− Φ(Ui),Wi − Ui〉, for ρ∗ < ρ < 2.

(4.21)
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Thus, it suffices to estimate
∫ T

0
〈Φ(Wi)−Φ(Ui),Wi−Ui〉 dt, which we do as follows.

Let ρm(t) = Tem(t). Then, for ti−1 < t ≤ ti, we have

〈∇ρ̇m(t),∇ρm(t)〉 = 〈−∆ρ̇m(t), ρm(t)〉
= 〈ėm(t), T em(t)〉
= 〈ėm(t), T (um(t)−Wi + Ui − Um(t))〉

+ 〈ėm(t), [T − Th](Wi − Ui)〉
+ 〈ėm(t), Th(Wi − Ui)〉.

(4.22)

Subtracting (4.9) from (3.1) we have〈
dum(t)
dt

− dUm(t)
dt

, V

〉
+

1
ρ− 1

〈∇Φ(ui)−∇Φ(Ui),∇V 〉 = 0, ∀V ∈ Sh
0 .(4.23)

By (4.15), (4.23), integration by parts, and the fact that −∆ : H1
0 → H−1 is an

isometry we get〈
dum(t)
dt

− dUm(t)
dt

, V

〉
+

1
ρ− 1

〈Φ(Wi)− Φ(Ui),−∆V 〉 = 0, ∀V ∈ Sh
0 .(4.24)

In (4.24), let V = Th(Wi − Ui). Then, we have

〈ėm(t), Th(Wi − Ui)〉

= − 1
ρ− 1

〈Φ(Wi)− Φ(Ui), (−∆)Th(Wi − Ui)〉

= − 1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui + (−∆)[Th − T ](Wi − Ui)〉.

(4.25)

By (4.22) and (4.25) we have

1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui〉+
1
2
d

dt
‖∇ρm(t)‖2

2 ≤ I + II + III,(4.26)

where

I = 〈ėm(t), T (um(t)−Wi + Ui − Um(t))〉,
II = 〈ėm(t), [T − Th](Wi − Ui)〉,

and

III =
−1
ρ− 1

〈Φ(Wi)− Φ(Ui), (−∆)[Th − T ](Wi − Ui)〉.

First we obtain a bound for I. By Lemma 3.1 and Lemma 4.2, we have
‖ėm(t)‖−1 ≤ C. Therefore, using (4.6) we have,

|I| ≤ ‖ėm(t)‖−1‖∇T (um(t)−Wi + Ui − Um(t))‖2

≤ ‖ėm(t)‖−1‖um(t)−Wi + Ui − Um(t)‖−1

≤ C(‖um(t)−Wi‖−1 + ‖Ui − Um(t)‖−1)

≤ C

(
∆t
∥∥∥∥ui − ui−1

∆ti

∥∥∥∥
−1

+ ‖ui −Wi‖−1 + ∆t
∥∥∥∥Ui − Ui−1

∆ti

∥∥∥∥
−1

)
≤ C1∆t+ C2‖ui −Wi‖−1.

(4.27)
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To estimate ‖ui −Wi‖−1 we recall that for ρ∗ < ρ <∞ we have H1
0 ⊂ Lρ′ ; hence,

Lρ ⊂ H−1. By (4.16) and (4.20) we have

‖Wi − ui‖−1 ≤ ‖Wi − ui‖ρ ≤ Ch
1

ρ−1 (N( ρ−2
2ρ )+1) for 2 ≤ ρ <∞,

‖Wi − ui‖−1 ≤ ‖Wi − ui‖ρ ≤ ChN( ρ−2
2ρ )+1 for ρ∗ < ρ < 2.

(4.28)

From (4.27) and (4.28) we conclude

|I| ≤ Ci∆t+ C2h
1

ρ−1 (N( ρ−2
2ρ )+1) for 2 ≤ ρ <∞, and

|I| ≤ C1∆t+ C2h
N( ρ−2

2ρ )+1 for ρ∗ < ρ < 2.
(4.29)

An estimate for II can be established using Lemma 3.1, Lemma 4.1, and the
second inequality in (4.5) as follows:

|II| ≤ ‖ėm(t)‖−1‖∇[T − Th](Wi − Ui)‖2

≤ C‖∇[T − Th](Wi − Ui)‖2

≤ Ch.

(4.30)

As noted in the remark following (4.5), the constant in (4.30) depends on
‖Wi − Ui‖L2. We claim Ui and Wi are bounded in L2 = H0 independent of i.
First consider 2 ≤ ρ. By Lemma 4.2, Ui ∈ Lρ ⊂ L2 = H0. Moreover, we note that

‖Wi‖2 ≤ C + ‖Wi − Ui‖2 ≤ C‖Wi − ui‖2 + ‖ui − Ui‖2,

which is bounded by (4.16), Lemma 3.1, and Lemma 4.2. Similarly, ρ∗ < ρ < 2
implies 1 < 2

ρ−1 <
2N

N−2 . Using the Sobolev imbedding (4.18) we conclude Φ(Wi) ∈
L

2
ρ−1 and hence Wi ∈ L2. The same argument shows Ui ∈ L2. In both cases we

have ‖Wi − Ui‖2 bounded.
We can estimate the third term on the right hand side of (4.26) in a similar

manner. Observe using Lemma 3.1, Lemma 4.2, and (4.15) with V = Φ(Wi) that

|III| ≤ C‖∇(Φ(Wi)− Φ(Ui))‖2‖∇[Th − T ](Wi − Ui)‖2

≤ C‖∇[Th − T ](Wi − Ui)‖2

≤ Ch.

(4.31)

Combining (4.29), (4.30), (4.31), (4.26), and assuming 0 < h ≤ 1, we have for
2 ≤ ρ <∞

1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui〉+
1
2
d

dt
‖∇ρm(t)‖2

2

≤ C1∆t+ C2h
1

ρ−1 (N( ρ−2
2ρ )+1) + C3h,

(4.32)

and for ρ∗ < ρ < 2

1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui〉+
1
2
d

dt
‖∇ρm(t)‖2

2

≤ C1∆t+ C2h
N( ρ−2

2ρ )+1 + C3h.

(4.33)

Using (4.5) we have ‖∇ρm(0)‖2 ≤ ‖em(0)‖−1 = ‖u0 − U0‖−1 = ‖u0 −W0‖−1 ≤
‖u0 −W0‖ρ, which is controlled by (4.16) or (4.20). Therefore, integrating (4.32)
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and (4.33) over [ti−1, ti] and summing on i gives the following: for 2 ≤ ρ <∞,
m∑

i=0

∫ ti

ti−1

1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui〉 dt+ ‖∇ρm(t)‖2

≤ C1∆t+ C2h
1

ρ−1 (N( ρ−2
2ρ )+1) + C3h;

(4.34)

and for ρ∗ < ρ < 2,
m∑

i=0

∫ ti

ti−1

1
ρ− 1

〈Φ(Wi)− Φ(Ui),Wi − Ui〉 dt

≤ C1∆t+ C2h
N( ρ−2

2ρ )+1 + C3h.

(4.35)

Combining (4.21) with (4.34) and (4.35) gives∫ T

0

‖Wi − Ui‖ρ
ρ ≤ C1∆t+ C2h

1
ρ−1 (N( ρ−2

2ρ )+1) + C3h for 2 ≤ ρ <∞

and ∫ T

0

‖Wi − Ui‖2
ρ ≤ C1∆t+ C2h

N( ρ−2
2ρ )+1 + C3h for ρ∗ < ρ < 2.

This completes our estimates for
∫ T

0
‖em(ti−1)‖ρ

ρ dt and
∫ T

0
‖em(ti−1)‖2

ρ dt. Thus,
we have established Theorem 4.1.
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