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The complex-amplitude reflection coefficients of p- and s-polarized light by a transparent freestanding,
embedded, or deposited quarter-wave layer (QWL) are derived as explicit functions of the angle of in-
cidence and layer refractive index. This provides the basis for the design of 50%–50% beam splitters for
incident s-polarized or unpolarized light that use a high-index (e.g., TiO2 or Ge) QWL embedded in a glass
cube in the visible and near infrared spectral range. These simple devices have good angular and spectral
response and are insensitive to small film thickness errors to the first order. © 2008 Optical Society of
America

OCIS codes: 230.1360, 260.5430, 310.6860.

1. Introduction

The reflection of linearly polarized light, with the
electric field vector parallel (p) and perpendicular
(s) to the plane of incidence, by a film–substrate sys-
tem, Fig. 1, is governed by complex-amplitude reflec-
tion coefficients Rp and Rs that are given by

Rν �
r01ν � r12νX
1� r01νr12νX

; ν � p; s; �1a�

X � exp�−j2πd=Dϕ�: �1b�

In Eqs. (1a) and (1b) r01ν, r12ν are the Fresnel reflec-
tion coefficients at the ambient–film (01) and film–

substrate (02) interfaces for the ν polarization, d is
the metric film thickness,

Dϕ � �λ=2��ε1 − ε0sin2ϕ�−1=2 �2�

is the film-thickness period, λ is the vacuum wave-
length of light, ϕ is the angle of incidence in
medium 0, and ε0, ε1 are the wavelength-dependent
dielectric functions of the transparent ambient and
film, respectively. All media are assumed to be
optically isotropic, homogeneous, and separated by
parallel-plane boundaries. The reflection coeffici-
ents of Eqs. (1a) and (1b) play a key role in ellipso-
metry [1], and their properties have been studied
in detail [1–3].

The special case of a freestanding or embedded
layer, when the ambient and substrate are the same,
and the layer thickness is one or an odd multiple of
the quarter-wave optical thickness at oblique inci-
dence, i.e.,

ε2 � ε0; �3�

d � Dϕ=2 � �λ=4��ε1 − ε0sin2ϕ�−1=2; �4�

is of particular interest. Quarter-wave layers (QWLs)
or sections are widely used in optical interference
coatings [4] and transmission lines [5].
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In Section 2 explicit expressions are derived for Rp
and Rs as functions of the angle of incidence ϕ and
the layer-to-ambient relative dielectric function:

ε � ε1=ε0: �5�

These expressions provide the basis for the de-
sign of 50%–50% beam splitters (BSs) for incident
s-polarized or unpolarized light that use a high-index
QWL, which is embedded in a glass cube (ϕ � 45°). In
Section 3 an s-polarization BS is described that uses
a TiO2 thin film embedded in a glass cube for visible
light. In Section 4 a near-IR BS for incident unpolar-
ized light is presented that uses a Ge QWL embedded
in an N-LAK12 Schott-glass cube. The angular, spec-
tral, and film-thickness sensitivities of these designs
are evaluated. In Section 5 the reflection coefficients
of a QWL that is deposited on a substrate are ob-
tained in terms of (1) the corresponding reflection
coefficients of the same QWL embedded in the ambi-
ent, and (2) the ambient–substrate Fresnel reflection
coefficient evaluated at the same angle of incidence.
Section 6 is a brief summary of the paper.

2. Complex-Amplitude Reflection Coefficients Rp and
Rs of an Embedded Quarter-Wave Layer

When the ambient and substrate have the same op-
tical properties, Eq. (3), we have

r12ν � r10ν � �r01ν; ν � p; s: �6�

For a QWL (d � Dϕ=2), Eq. (1b) gives

X � −1: �7�

Substitution of Eqs. (6) and (7) in Eq. (1a) gives

Rν �
2r01ν

1� r01ν2
; ν � p; s: �8�

The interface Fresnel coefficient r01ν of partial exter-
nal reflection for the ν polarization can be written as
the tangent of an angle:

r01ν � tan αν; ν � p; s; −45° ≤ αp ≤ 45°;

− 45° ≤ αs ≤ 0: �9�

The ranges of αp, αs given by Eq. (9) are consistent
with the Nebraska–Muller conventions [1,6], which
we adopt here. From Eqs. (8) and (9), we obtain

Rν � sin�2αν�; ν � p; s: �10�

Equation (10) is probably the simplest form of the re-
flection coefficients of an embedded QWL for the p
and s polarizations at oblique incidence.

Alternatively, substitution of the standard Fresnel
reflection coefficients

r01p � ε cos ϕ − �ε − sin2ϕ�1=2
ε cos ϕ� �ε − sin2ϕ�1=2 ; �11�

r01s �
cos ϕ − �ε − sin2ϕ�1=2
cos ϕ� �ε − sin2ϕ�1=2 ; �12�

in Eq. (8) yields

Rp � ε2cos2ϕ − ε� sin2ϕ
ε2cos2ϕ� ε − sin2ϕ ; �13�

Rs �
1 − ε

cos 2ϕ� ε : �14�

Equations (13) and (14) are the desired explicit ex-
pressions of the reflection coefficients for the p and
s polarizations of a freestanding or embedded
QWL in terms of the layer’s relative dielectric func-
tion ε and angle of incidence ϕ.

At normal incidence, ϕ � 0, Eqs. (13) and (14) sim-
plify to

Rp�0� � −Rs�0� �
ε − 1
ε� 1

: �15�

To attain 50% reflectance for incident light of any po-
larization by an embedded QWL or pellicle at and
near normal incidence, we set Rs�0� � −1=

���

2
p

in
Eq. (15). This gives

ε � �
���

2
p

� 1�2; n � �
���

2
p

� 1� � 2:4142: �16�

The refractive index given by Eq. (16) is that of a dia-
mond or ZnSe [7] pellicle in air for visible light. It is
also the relative index of a Si layer embedded in SiO2
in the near-IR [8].

In the limit of the grazing incidence, ϕ � 90°,
Eqs. (13) and (14) reduce to Rp�90°� � Rs�90°� � −1
independent of ε.

Fig. 1. Reflection of p- and s-polarized light at an angle ϕ by a
film–substrate system. Media 0, 1, and 2 are the ambient, film,
and substrate, respectively, and d is the film thickness.
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At ϕ � 45°, Eqs. (13) and (14) become

Rp�45°� �
ε2 − 2ε� 1

ε2 � 2ε − 1
; �17�

Rs�45°� � −1� �1=ε�: �18�

Equation (18) indicates that Rs�45°� of an embedded
QWL differs from −1 by the reciprocal of the relative
dielectric function ε and provides one of the simplest
explicit relations between an external reflection
property and an intrinsic optical property. Figure 2
shows a family of curves of the function Rp�ϕ; ε�
[Eq. (13)] versus ϕ for constant values of the relative
refractive index n � ���εp

from 1.5 to 6.0 in steps of 0.5.
Note that Rp � 0 (dashed line) at the Brewster angle
ϕB � tan−1n of the 01 interface. Figure 3 shows the
corresponding family of curves of the function
Rs�ϕ; ε� [Eq. (14)] for the s polarization. In Fig. 3 it
is evident that Eq. (18) is satisfied at point P on
the n � 2 curve at ϕ � 45°.

3. Visible Beam Splitter for s-Polarized Light using a
TiO2 Quarter-Wave Layer Embedded in a Glass Cube

BSs for s-polarized light are important in interfero-
metry, holography, and the recording of fiber-Bragg
gratings. The desired 50%–50% split can be obtained
by light reflection at the Brewster angle of an air–
dielectric or dielectric–dielectric interface [9]. To at-
tain 50% reflectance for incident s-polarized light by
a QWL embedded in a cube, Fig. 4, Rs�45°� � −1=

���

2
p

is substituted in Eq. (18). This gives

ε �
���

2
p

� 2; n � 1:84776: �19�

The relative refractive index of Eq. (19) is achievable
in the visible by a TiO2 layer embedded in a glass

(SiO2) cube. Single-crystal TiO2 is uniaxially aniso-
tropic, and the dispersion of its ordinary (o) and ex-
traordinary (e) refractive indices is given by [10]

ni
2 � Ai �

Bi

λ2 − Ci
; i � o; e: �20�

In Eq. (20)

�Ao;Bo;Co� � �5:913; 0:2441; 0:0803�;
�Ae;Be;Ce� � �7:197; 0:3322; 0:0843�;

for the o and e indices, respectively, and the wave-
length λ is in the range 0:425 ≤ λ ≤ 1:5 μm. A vacuum-
deposited thin film is polycrystalline with random
orientation of the optic axis and hence is essentially
optically isotropic with an average refractive index
that can be approximated by na � �no � ne�=2. The
average of the two principal indices of TiO2 is fitted

Fig. 2. Family of curves of the reflection coefficient Rp�ϕ; ε�
of a QWL for the p polarization, Eq. (13), as a function of the angle
of incidence ϕ for constant values of layer-to-ambient relative
refractive index n � ���εp

from 1.5 to 6.0 in steps of 0.5. Note that
Rp � 0 (dashed line) at the Brewster angle ϕB � tan−1n of the
01 interface.

Fig. 3. Family of curves of the reflection coefficient Rs�ϕ; ε� of a
QWL for the s polarization, Eq. (14), as a function of the angle
of incidence ϕ for constant values of layer-to-ambient relative re-
fractive index n � ���εp

from 1.5 to 6.0 in steps of 0.5. Note that
Eq. (18) is satisfied at point P on the n � 2 curve at ϕ � 45°.

Fig. 4. Cross section of an s-polarization BS that uses a high-
index QWL embedded in a cube.
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accurately by a dispersion formula of the same form
as Eq. (20) with coefficients given by

�Aa;Ba;Ca� � �6:5390; 0:2866; 0:08252�; �21�

and residual root-mean-square error of ≤ 2:2 × 10−6.
Fused-silica (SiO2) also has a dispersion relation of

the form of Eq. (20) with coefficients [11]:

�A;B;C� � �1; 1:09877; �0:0924317�2�: �22�
The relative dielectric function ε � n2�TiO2�=
n2�SiO2� is calculated using Eqs. (20)–(22) and is
plotted versus λ in the spectral range 0:425 ≤ λ ≤
1:5 μm in Fig. 5.
The dashed lines in Fig. 5 show that ε �

���

2
p

� 2,
n � 1:84776 at λ � 704:6nm. The refractive indices
of TiO2 and SiO2 at this wavelength are 2.6891
and 1.4553, respectively, and the QWL thickness is
70:9nm.
The wavelength at which an embedded TiO2 QWL

achieves 50%–50% split for incident s-polarized light
at ϕ � 45° can be shifted downward by replacing the
fused-silica prism with an appropriate Schott glass.
This is also shown in Fig. 5, where fused silica is re-
placed by N-FK5 Schott glass. The published disper-
sion relation for this glass [12] is used to generate
the second curve in Fig. 5, which intersects the line
ε �

���

2
p

� 2 at λ � 605:4nm. The refractive indices of
TiO2 and N-FK5 Schott glass at this wavelength are
2.7474 and 1.4869, respectively, and the QWL thick-
ness is 59:6nm. The angular, spectral, and film-
thickness sensitivity of the s-polarization BS that
uses a TiO2 QWL layer embedded in a fused silica
cube is now considered.
Figure 6 shows the intensity reflectancesℛν � Rν

2

(ν � p, s, a) for incident p- and s-polarized light, and
their average as the internal angle of incidence ϕ
is increased from 40° to 50°. In this calculation the

wavelength and metric film thickness are held con-
stant at λ � 704:6nm, d � 70:9nm. In Fig. 6 the s
reflectance increases approximately linearly at the
rate of 1% per degree change of ϕ. The reflectance
for the p polarization decreases at almost the same
rate, which leaves the average reflectance nearly
constant with respect to ϕ at ≈ 30%. Therefore, the
device performs as a wide-angle 30%–70% BS for
incident unpolarized light.

Figure 7 shows the reflectance response over the
650–750nm wavelength range. Here the angle of
incidence and metric film thickness are constant
(ϕ � 45°, d � 70:9nm), λ is varied, and the material
dispersion is taken into consideration. In Fig. 7 all
reflectances are nearly constant with respect to λ;

Fig. 5. Relative dielectric function ε � n2�TiO2�=n2 (glass) is
plotted versus wavelength λ in the spectral range 0:4 ≤ λ ≤
1:5 μm for a TiO2 layer embedded in fused silica (SiO2) and N-
FK5 Schott glass. The dashed lines show that ε �

���

2
p

� 2, n �
1:84776 at λ � 704:6nm and λ � 605:4nm for the SiO2 and N-
FK5 Schott glass substrates, respectively.

Fig. 6. Intensity reflectancesℛν � Rν
2 (ν � p, s, a) for incident p-

and s-polarized light and their average as functions of the internal
angle of incidence ϕ from 40° to 50° of an s-polarization BS that
uses a QWL of TiO2 embedded in a fused-silica cube. The wave-
length of light and the metric thickness of the TiO2 thin film
are kept constant at λ � 704:6nm and d � 70:9nm, respectively.

Fig. 7. Intensity reflectancesℛν � Rν
2 (ν � p, s, a) for incident p-

and s-polarized light and their average as functions of wavelength
λ from 650 to 750nm of an s-polarization BS that uses a QWL of
TiO2 embedded in a fused-silica cube. The angle of incidence and
the metric thickness of the TiO2 thin film are fixed at ϕ � 45° and
d � 70:9nm, respectively.
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hence the device is essentially achromatic over the
650–750nm range.
Figure 8 shows the effect of shifting the film thick-

ness d by �5nm around 71nm, while keeping ϕ and
λ fixed at their designated values. The reflectance
shifts in Fig. 8 are of second order (quadratic with
respect to Δd) and negligible, which is expected for
operation near the quarter-wave condition. The an-
gular, spectral, and film-thickness sensitivity of the
s-polarization BS that uses a TiO2 QWL embedded
in N-FK5 Schott-glass cube is similar to that de-
scribed above and is not repeated here.

4. Infrared Beam Splitter for Incident Unpolarized
Light using a Ge Quarter-Wave Layer Embedded
in a Glass Cube

To achieve 50% reflectance for incident unpolarized
light by an embedded QWL at ϕ � 45°, it is required
that

R2
s �45°� �R2

p�45°� � 1: �23�
Substitution of Eqs. (17) and (18) into Eq. (23) leads
to a sixth-degree equation:

ζ6 − 16ζ4 − 48ζ3 − 52ζ2 − 24ζ − 4 � 0; ζ � ε − 1;

�24�
which has only one acceptable root:

ζ � 5:2223; ε � 6:2223: �25�
This value of the relative dielectric function ε �
6:2223 can be realized by an embedded Ge film in
N-LAK12 Schott glass. From the known dispersion
of these two optical materials [12,13], ε � 6:2223 is
obtained at λ � 1:8584 μm. The refractive indices of
Ge and N-LAK12 Schott glass at this wavelength
are 4.1225 and 1.6527, respectively, and the thick-
ness of the Ge QWL is d � 117:5nm. The extinction

coefficient of Ge is < 0:0001 at and near λ � 1:86 μm,
which is negligible [13].

The reflectance of this BS for incident unpolarized
light varies by ≈ ∓1% as ϕ is shifted by �5° around
45°, while λ and d are kept constant. With ϕ � 45°
and d � 117:5nm, the reflectance for incident un-
polarized light deviates from 50% by < 0:1% over
the 1:8–1:9 μm spectral range (e.g., of an InGaAsP
laser [14]), Changes of the thickness d of the Ge film
by �5nm around 117:5nm, while keeping ϕ and λ
fixed, reduce the reflectance by ≈ 1%. Therefore, this
BS has good angular and spectral responses and
is insensitive to small film-thickness errors to the
first order.

The results of Section 4 complement those pub-
lished recently [15] regarding QWL that produce
50% reflectance for incident unpolarized light at
any angle of incidence. If the incident light is totally
polarized (instead of being unpolarized) and its p
and s components have equal amplitudes and an
arbitrary but fixed phase difference, the two beams
that are reflected and transmitted by this QWL
buried-in-a-cube BS become orthogonally polarized.
Further details regarding this interesting function
appear elsewhere [15,16]. The cube BS has an im-
portant practical advantage over the previous prism
design [15].

5. Complex-Amplitude Reflection Coefficients of a
Quarter-Wave Layer Deposited on a Substrate

For a transparent QWL (X � −1) that is deposited
on an optically isotropic substrate which may be
absorbing, Eq. (1a) gives

R012ν �
r01ν − r12ν
1 − r01νr12ν

; ν � p; s: �26�

For a freestanding or embedded QWL (i.e., if the am-
bient and substrate have the same refractive index),
Eq. (26) becomes

R010ν �
2r01ν

1� r01ν2
; ν � p; s: �27�

Except for a slight change of notation, Eq. (27) is the
same as Eq. (8).

In the absence of a film (d � 0, X � 1), Eq. (1a)
gives the identity

R012ν � r02ν �
r01ν � r12ν
1� r01νr12ν

; ν � p; s: �28�

Equation (28) can be solved for the Fresnel coefficient
of internal reflection at the film–substrate inter-
face r12ν in terms of the Fresnel coefficients of exter-
nal reflection r01ν and r02ν at the ambient–film and
ambient–substrate interfaces, respectively, at the
same angle of incidence ϕ. This gives

r12ν �
r02ν − r01ν
1 − r01νr02ν

; ν � p; s: �29�

Fig. 8. Intensity reflectancesℛν � Rν
2 (ν � p, s, a) for incident p-

and s-polarized light and their average as functions of the thick-
ness d of a TiO2 layer, which is embedded in a fused-silica cube.
The thickness d is varied by�5nm around 71nm, while the angle
of incidence ϕ � 45° and wavelength λ � 704:6nm are fixed. The
device performance as a 50%–50% s-polarization BS is essentially
independent of small film thickness changes to first order.
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Finally, if r12ν of Eq. (29) is substituted into Eq. (26)
we obtain

R012ν �
R010ν − r02ν
1 − r02νR010ν

; ν � p; s: �30�

Equation (30) provides a direct relation between the
complex reflection coefficients R012ν, ν � p, s of a
transparent QWL that is deposited on a transparent
or absorbing substrate and the corresponding real
reflection coefficients R010ν, ν � p, s of the same
QWL embedded in the same ambient at the same
angle of incidence. This enables the application of
the results obtained in Section 2 to the more general
case of a QWL between dissimilar ambient and sub-
strate media.
As an example, consider the reflection of p-

polarized light by a QWL that is deposited on a
transparent substrate at the Brewster angle of the
ambient–substrate interface, ϕB02 � tan−1�ε2=ε0�.
In this case, r02p � 0, and Eq. (30) reduces to

R012p � R010p: �31�

Equation (31) shows that p-polarized light is re-
flected by the QWL at the Brewster angle ϕB02 as
if the substrate were not present.
It is also of interest to determine the reflection co-

efficient of the QWL for incident s-polarized light at
the same Brewster angle ϕB02. For the s polarization

r02s � cos�2ϕB02�; �32�

R010s �
1 − ε1

cos 2ϕB02 � ε1
: �33�

From Eqs. (30), (32), and (33) we obtain

R012s �
1 − cos�2ϕB02� − ε1

ε1
: �34�

Finally, by substituting

cos�2ϕB02� � −�ε2 − 1�=�ε2 � 1� �35�
into Eq. (34), we get

R012s�ϕB02� �
2ε2 − ε1ε2 − ε1
ε1�ε2 � 1� : �36�

Equation (36) predicts that the reflection coefficient
R012s of the coated substrate for s-polarized light at
the Brewster angle ϕB02 is zero if

ε1 � 2ε2=�ε2 � 1�; n1 �
���

2
p

n2=�n2
2 � 1�1=2: �37�

In Eqs. (33)–(37), ε1 and ε2 are used to represent
ε1=ε0 and ε2=ε0, respectively. The above analysis pro-
vides an alternative approach to the conditions for
achieving spatial (or temporal) binary polarization
modulation based on light reflection by a coated
surface [17,18].

6. Summary

An analytical procedure is presented for the design of
50%–50% cube BS for incident s-polarized or unpo-
larized light that uses a high-index (e.g., TiO2 or
Ge) QWL that is embedded in glass. The approach
is based on new explicit expressions for the com-
plex-amplitude reflection coefficients of the QWL
for the p and s polarizations at oblique incidence.
These BSs exhibit small shifts from ideal perfor-
mance over an internal field of view of �5°, a
100nm spectral bandwidth, or in the presence of
�5% film-thickness errors. A direct relation has also
been obtained between the reflection coefficients of a
QWL that is embedded between similar and dissim-
ilar bulk media.
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