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ABSTRACT

We find a positive relation between returns and Book-to-Market ratio (BE/ME) and a

negative relation between returns and Market Value (MVE) in all the countries we study. 

The BE/ME and MVE “effects” are international in character and remain strong under a

general stochastic pricing function that does not depend on a specific asset pricing model

and avoids potentially serious simultaneity biases inherent in the Fama & French

three-factor model.  Finally, potentially important macro and financial variables that we

add to the pricing functions do not offer an explanation of the BE/ME effect. 

Applicable JEL Classifications:  G10, G12, G15, G30.



1.   INTRODUCTION

Several papers show that, in the U.S., stock returns are correlated with the lagged

values of their Book-Value to Market-Value ratio (BE/ME) and their market value

(MVE), and that average returns are greater the higher the BE/ME or the smaller the

MVE.1  These anomalous findings are referred to as the “book-to-market effect” and the

“size effect”; the BE/ME effect is stronger and more reliable than the MVE effect.2 

Furthermore, these variables “explain” the average return differences across portfolios that

cannot be accounted for by the market portfolio beta (see Fama and French 1992). 

Researchers have begun to document that these empirical phenomena are

international in scope and not confined to U.S. data, dispelling the suspicion that the

BE/ME and MVE effects are due to “data snooping” (see Lo & MacKinlay 1991, Black

1993, and MacKinlay 1995).  Early papers find evidence of a “value growth factor” in

some international data.3  More recent papers by Fama & French (1997), Heston,

Rouwenhorst & Wessels (1997), and Rouwenhorst (1998) extend these early findings. 

They find cross sectional evidence of the BE/ME and MVE effects within several

international markets.  The tests reported by Fama & French (1997) Heston, Rouwenhorst

& Wessels (1997) and Rouwenhorst (1998) use a three-factor CAPM variant that includes

                                               
1   See Banz (1981), Basu (1983), Keim (1983) for the MVE (Size) effect, and Stattman (1980), Fama &
French (1992), and more recently Daniel & Tittman (1997) for the BE/ME effect.  A related but less
pronounced empirical regularity exists between a firm’s earnings-price, E/P ratio and expected returns. 
Basu (1977, 1983) and Reinganum (1981) document that firms with high E/P ratios have higher average
returns than those with low E/P ratios. 
2   There have been several but as yet not wholly successful attempts to find a theoretical explanation for
this empirical regularity.  The most obvious explanation is that BE/ME or MVE proxies for an
unobservable risk factor.  However, there is no satisfactory theoretical model that makes this connection
clear.  Ikenberry, Lakonishok, and Vermaelen (1994) relate this behavior of average returns to share
repurchase programs;  Loughran and Ritter (1994) and Spiess and Affleck-Graves (1994) connect this
behavior to the price behavior of IPOs.  Fama and French (1995) find links between returns, earnings, and
Size and BE/ME factors.  An intriguing possibility is advanced by Ferguson and Shockley (1999), that the
BE/ME effect is created by the mismeasurement of the market portfolio due to the omission of corporate
bonds.
3   Capaul, Rowley, and Sharpe (1993) find a significant “value-growth factor” when they compare the
risk-adjusted rates of return from indices composed of value and growth stocks in all five international
markets they study (France, Germany, Switzerland, U.K., and Japan).  Chan, Hamao, and Lakonishok
(1991) find a strong relation between BE/ME and average returns in Japan, using a SUR procedure. 
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the HML portfolio as a factor that accounts for the BE/ME effect.4,5  These papers report

that cross-sectional return differences of portfolios sorted according to BE/ME ratios

disappear; furthermore, they report R2 close to one.  The authors attribute their results to

the significance of the HML portfolio, hence the BE/ME effect. 

Tests of the significance of the BE/ME and MVE effects reported to-date suffer

from two potentially serious shortcomings.  The first is that they use variants of the

CAPM to account for systematic risk.6  As a result, these tests depend on a specific

benchmark model.  If the wrong benchmark is chosen, then differences in average returns

(or risk premia) may be incorrectly attributed to the existence BE/ME or MVE effects. 

Evidence that rejects the CAPM is common in the literature, and there is no agreed-upon

empirical model to replace it.  Therefore, it is extremely important to construct tests that

do not rely on any specific asset pricing model. 

The second serious shortcoming is that most of the reported tests use OLS

methodology.  It is at best doubtful that these tests satisfy the OLS requirement that the

explanatory variables are independent of the LHS variable, because the tested portfolios

constitute a significant portion of the market index, which is the explanatory variable. 

In this paper we report results of tests that are free of these shortcomings.  We use

a very general asset pricing function to investigate the BE/ME and MVE effects in seven

national equity markets.  This pricing model does not rely on the CAPM or ICAPM, and it

encompasses all pricing functions that can be constructed from linear combinations of

returns.  At the same time, our methodology explicitly takes into account the endogeneity

of the various portfolios relative to the market portfolio.  Our tests are by country and

therefore do not rely on the assumption of international capital market integration. 

                                               
4   The HML portfolio is an arbitrage portfolio that consists of the difference in returns of the high BE/ME
and the low BE/ME portfolios.
5   In a recent paper Ferson, Sergei & Sarkissian (1999) point out plausible conditions under which this
approach gives entirely misleading results. 
6   Exceptions are Huberman and Kandel (1987), MacKinlay and Richardson (1991), and Ferson,
Foerster, and Keim (1993), who use the Latent Variables model to test if a subset of size-sorted portfolios
span a larger set of size-sorted portfolios in the U.S.  De Santis (1993) derives the spanning test we use
based on the Hansen-Jagannathan methodology.  He uses spanning tests to compute gains from
international diversification and to assess the role of foreign exchange risk, and De Santis (1994) reports
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Our tests of the BE/ME and MVE effects are “spanning” tests that use Stochastic

Discount Factors or SDFs.  These SDFs are constructed with the methodology proposed

by Hansen & Richard (1987) and Hansen & Jagannathan (1991).  Since they encompass

all rational asset pricing models, they impose the fewest restrictions on the ability of asset

returns to price risk; they insure only that the Law of One Price is not violated.  Spanning

tests consist of constructing candidate SDFs from a subset of portfolios (reference

portfolios) and using these to price or “span” all the assets in the market.  Successful

pricing or spanning implies that the SDFs adequately replicate the average returns of all

the portfolios.  Unconditional SDFs are constructed using only portfolio returns, while

conditional SDFs are augmented with lagged values of other variables. 

Our results confirm many but not all of the results in the recent literature.  The

BE/ME and MVE effects survive this very general pricing model for all the countries

examined.  We find that spanning with the unconditional SDFs is overwhelmingly rejected

for all the countries, unless the largest and smallest ranked BE/ME (or MVE) portfolios

are included in the SDF.  When they are included, spanning is much more frequent but not

universal.  This finding supports the procedure of including the HML portfolio as a

“factor” in augmented CAPM models.  We formally test the significance of the BE/ME

and MVE variables by inserting their lagged values as instruments in the SDFs; the

evidence is very strong that either of these variables should be included.  We conclude that

the Book-to-Market and Size effects are not artifacts of CAPM’s shortcomings. 

Next we test if the BE/ME- or MVE-augmented SDFs (conditional SDFs) span

better than the unconditional ones.  We find the same pattern as for the unconditional

SDFs; the overall spanning performance is not satisfactory. 

Finally, we examine if the significance of BE/ME as an instrument in the SDF is

robust against 15 plausible macroeconomic and financial variables for each country, and if

any of these variables helps improve spanning performance. 

We find that the significance of BE/ME is not diminished when we test it against

each of these variables.  At the same time, some of these new variables help price the

                                                                                                                                           
tests on diversification that includes emerging markets.  No comparable tests have been reported for
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assets better, together with BE/ME.  We also find that even when the SDFs are augmented

by BE/ME and the 15 macro/financial variables, they do not always span.  The additional

macro/financial variables improve spanning performance only slightly.  Thus, the SDFs we

estimate do not account completely for the cross-sectional variation of average returns. 

This finding is in contrast with the current conclusion in the literature that BE/ME

accounts completely for the cross sectional variation in returns, through the HML

portfolio. 

We study stock returns for Australia, Canada, Germany, France, Japan, the U.K.,

and the U.S.  These are the only national stock markets in the COMPUSTAT Global

Vantage database with a sufficiently large number of equities traded over the sample

period to allow us to form at least seven well-diversified, country-specific portfolios for

our tests.  This database is shorter than that used by Fama & French (1997) but it includes

more stocks for each country. 

The pattern of average returns for all our countries is very similar to that of the

U.S.  Average returns generally increase as the portfolio’s BE/ME increases or its MVE

decreases.  For all our countries, the largest returns accrue to the highest BE/ME and to

the smallest MVE portfolios, and there is a flat relation between average returns and

portfolio betas for all the countries.  Jensen’s alphas increase as the BE/ME of the

portfolios increases or as their MVE decreases, and the inclusion of an international HML

portfolio (Fama & French 1997) drives the Jensen’s alphas to zero.  Sharpe ratio plots

also indicate that the risk-to-reward ratio also increases with BE/ME and MVE.7 

The statistical features of our data and the results of the standard tests are very

similar to those reported by researchers that use the IFC or other datasets.  This suggests

that the new results we present are not dataset-dependent. 

Section 2 describes the data used in the study and the construction of the relevant

variables and portfolios.  Section 3 presents summary statistics for the data and

                                                                                                                                           
BE/ME. 
7   Haugen (1994) examines Sharpe ratios for the U.S. and concludes that low volatility “value stocks”
outperform their higher volatility “growth” counterparts over five-year investment horizons. 
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replications of existing results, while section 4 presents our new tests.  Section 5 offers

concluding comments.  The appendices contain some technical information. 
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2.   DATA

The firm level equity market data are from COMPUSTAT Global Vantage,

compiled by Standard and Poor’s Inc.8  Data for stock indices, other financial variables,

and the macro variables, are obtained from DataStream. 

The rest of this section outlines in more detail the data used, the selection of the

sample, the portfolio formation process, and the construction of the BE/ME and MVE

variables.  We discuss the particulars of the macro and other financial variables when they

are introduced into our analysis. 

 2.1  Equity Market Data:

The COMPUSTAT database lists firms that, (i) are included in the MSCI World

Index, (ii) are included in the MSCI country indices, (iii) are included in the major stock

exchange indices of the countries, or, (iv) five or more analysts report on the firm. 

COMPUSTAT also reports that some shares are included because of direct client

requests.  For the U.S., the database includes all the NYSE and AMEX stocks, and some

of the largest companies in the NASDAQ.  This indicates that international COMPUSTAT

carries only relatively large firms.  Since 1991, firms that have stopped trading, for

whatever reason, are retained in the database.

There are potential survivorship biases in the COMPUSTAT data that can

erroneously lead to finding a BE/ME effect.  Survivorship has been extensively studied in

the U.S. data.  Kothari, Shanken, & Sloan (KSS, 1995) and Breen & Korajczyk (1995)

find that if a survivorship bias exists, it is more likely to be found among the smallest

firms, most of which are listed on the NASDAQ.  The international COMPUSTAT dataset

is less likely to have survivorship bias problems, because it contains the relatively larger

firms of each country.  Thus, it is unlikely that our results are influenced by survivorship

bias. 

We construct well-diversified portfolios for each country in order to reduce

random noise in the returns.  Based on the literature and the number of stocks traded in
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the various national markets, we form 7 portfolios for tests that involve one-way sorts,

and 9 (3x3) portfolios for tests that involve two-way sorts.9  Therefore, we consider only

countries that list a substantial number of stocks.  Of the 62 countries represented in

COMPUSTAT, only 7 meet this criterion:  Australia (AUS), Canada (CAN), Germany

(DEU), France (FRA), the U.K. (GBR), Japan (JPN), and the U.S. (USA).  Together

these countries account for over 80% of the 7,623 firms included in the dataset.  Among

these, Germany lists the smallest number of stocks; 167.10  We include in our sample only

the common stock of private non-financial firms that report accounting figures in the same

currency as the nationality of their exchange.11, 12  The database contains monthly data

from January 1982 through October 1994 for the U.S. and Canada, and December 1985

through October 1994 for Australia, Canada, France, Germany, Japan, and the U.K.  We

exclude October 1987 from all estimation because of the unusual and extreme character of

the events related to Black Monday. 

The MSCI world index is used to proxy for the world market portfolio. 

2.2  Portfolio Formation:

Equally-weighted portfolios for each country are formed at the end of each

October of year t by sorting stocks by Market Value of Equity (MVE) and

Book-to-Market Equity (BE/ME) separately (for one-way sorts), and by sorting first by

MVE and then by BE/ME for two-way sorts.  For the MVE sorting, the Market Value of

                                                                                                                                           
8   This seems to be the most complete generally available database that contains the necessary accounting
information. 
9   It is desirable to keep the number of portfolios small because the reliability of the test statistics we use
deteriorate when larger models are tested on small samples. 
10   Of the base set of 7,623 firms from 48 countries, a total of  6,401 firms from 7 countries satisfy our
criteria, that each firm reports at least 2 prices, 1 shares outstanding figure, and 1 book value for the entire
period.  The proportion of the selected firms to total firms by country is:  USA-42%, JPN-14%, GBR-13%,
CAN-6%, AUS-3%, FRA-3%, DEU-2%. 
11   No preferred stock or identifiable issues of subsidiaries are considered.
12   There are a total of 41 firms that have accounting and market information in two different currencies. 
This occurs mostly with firms incorporated in New Zealand that trade in Australia and Irish firms that
trade in the UK.  These firms are excluded from the portfolios.  In general, cross-listing of the same firm
on two national exchanges is not an issue in this dataset.  This is because market information is linked
with accounting data, and COMPUSTAT reports consolidated balance sheets in the country of
incorporation. 
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Equity for each stock is the product of the year t October price and the number of shares

outstanding last reported. 

For the BE/ME sorts, the Book Value (BE) is from the balance sheet reported no

later than the end of April of year t.  It includes shareholders' equity plus balance sheet

deferred taxes (for Japan deferred taxes are zero).13  Book Value is net of goodwill (for

Canada, Japan, and U.S. goodwill is zero).  For these sortings the Market Equity (ME) is

the end of April price (of year t) times the number of shares last reported.14 

Portfolios are formed once a year, starting in November of year t.  To be included

in a year t portfolio, firms must have reported an April market value, an April or earlier

book value, an October market value, and prices for at least 11 of the 12 following

months.15  Firms that report negative Book Value are excluded from that year’s BE/ME

but not the MVE portfolios. 

The April deadline for accounting data attempts to minimize look-ahead bias by

allowing at least six months to elapse between the time accounting data are recorded and

when they are known to the market.16  Firms included in any year’s portfolios must also

have balance sheet data reported as of April of year t.  If that is not available, it is taken

from the prior year.17 

We construct time series for (BE/ME)i,t and (MVE)i,t for each portfolio (i=1 to 7

[9]).  The (BE/ME)i,t variable for the ith portfolio is the average of the BE/MEs of the

stocks included in each portfolio.  We use the latest April Book Value (the same value

                                               
13   These definitions are consistent with Fama and French (1992). 
14   A consequence of these conventions is that, for sorting purposes, MVE ≠ ME.  Share splits are
accounted for in the data. 
15   Firms that fail to meet the October portfolio criteria are only excluded for that year’s portfolios.  If
there is a missing price (maximum of 1), the missing return is replaced by the prior year’s average return
for the firm; and if that is unavailable, the firm is excluded.  Firms that are delisted in the post-formation
period are not subject to the eleven of the twelve month criterion; instead the final price or the final
distribution is used.  After such a delisting, the affected portfolio is re-weighted to reflect the increased
investment to other firms within the portfolio. 
16   This is consistent with FF (1992).  Financial reports of U.S. firms often are not available to the public
until four months after fiscal year-end.  The fiscal year in Japan is in March for most firms and
accounting information is promptly reported (Chan and Lakonishok, 1991).  Thus, the six month
reporting lag is conservative for the countries that are analyzed. 
17   The maximum reporting lag is 2.5 years for firms with fiscal years ending in May for which data are
missing for the prior year but have earlier data. 
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used for the portfolio selection process, BE) but the market value is updated monthly,

using the current price and the October number of shares outstanding.  The (MVE)i,t

variable for each portfolio is the sum of the market values at t of the stocks included in

each portfolio, normalized by last month’s market value of all stocks.  We normalize this

variable to avoid using a nonstationary variable as an instrument; this normalization

preserves the ordering of the BE/ME portfolios. 

Finally, we follow Fama & French (1997) to construct the international HML

portfolio.  We use 30% of the highest BE/ME stocks from each country for the “Hi”

portfolio and 30% of the lowest BE/ME stocks from each country for the “Lo” portfolio. 

Then we subtract the returns of Hi from Lo.  In this case, all returns are first converted to

U.S.$s and all portfolios are equally weighted. 

3.   SUMMARY STATISTICS AND REPLICATION OF EXISTING RESULTS

We present descriptive statistics and replications of several existing CAPM-based

tests, for the seven countries. 

The descriptive statistics show that average portfolio returns increase as BE/ME

increases or MVE decreases, for all the countries.  The BE/ME effect seems stronger than

the MVE effect.  Next we present Jensen’s alpha tests that use the CAPM; these confirm

formally the conclusions from the descriptive statistics:  The CAPM “beta” does not

account for cross sectional differences in average returns.  Finally we replicate the Fama &

French tests with the international HML portfolio and confirm that their results hold in our

data as well.  Adding the international HML portfolio to an international CAPM model

significantly improves the cross-sectional fit of average returns.

The results in this section are fully consistent with those in the literature, even

though we use a somewhat different dataset.  This agreement implies that the results of

our new tests are unlikely to be dataset-dependent. 

3.1  Descriptive Statistics: 

This section presents important summary statistics for BE/ME- and MVE-sorted

portfolios for the 7 countries in the sample.  Table 1, Panel A shows statistics for the
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portfolios sorted on BE/ME, while Panel B shows the same statistics for the portfolios

sorted on MVE. 

For the BE/ME-sorted portfolios there is a wide range of BE/ME ratios for each

country.  The range across the countries is similar; Canada, Germany and the U.K. have

the widest range and Japan has the narrowest.  The associated MVEs have a relatively

narrow range.  Generally, the MVE and the BE/ME of the portfolios are negatively related

for each country.

For the MVE-sorted portfolios, MVE has a very wide but dissimilar range across

countries.  The ratio of largest-to-smallest MVE varies from a high of 478 for the U.S. to a

low of 45 for Japan.18  Furthermore, the smallest MVE portfolio is in the U.S.;  Japan and

Germany have much larger MVEs both for the smallest and the largest portfolios. 

Figures 1A and 1B plot the cross-section of average returns for BE/ME- and

MVE-sorted portfolios respectively (the data are in Table 1).  All the returns are

annualized.  Table 2 Panel A reports rank correlation coefficients between the portfolios

ranked by BE/ME or MVE and their average returns.  These confirm the impressions from

the figures. 

The returns of the BE/ME-sorted portfolios generally increase with the BE/ME

ratio; the highest BE/ME ratio portfolios have the highest returns, for every country.  For

all but the U.K., the returns to the largest BE/ME portfolios are much larger than the

returns to any of the preceding ones.  Furthermore, for all but Germany, the lowest

BE/ME ratio portfolios have the lowest average returns.  Returns are again strictly

monotonic only for Japan19. 

For all the countries, the smallest MVE portfolios have the highest returns. 

However, this relation is strictly monotonic only for Japan.  Canada, France, and the U.K.

have rank correlation coefficients that exceed 0.50; the lowest correlation is 0.18 for

Australia.  Somewhat surprisingly, the correlation for the U.S. is only 0.39. 

The BE/ME ratio appears to have a stronger relation to average returns than MVE.

 Average returns are more highly correlated with the BE/ME rankings (the lowest

                                               
18   The next largest ratios are for Canada and the U.K., at approximately 130.  These values are in US$s. 
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correlation is 0.64) than the MVE ones. This conclusion is consistent with results in the

literature for the U.S. (see Fama & French, 1992). 

It is well known that for the U.S. data traditional measures of systematic risk do

not explain the relation of returns to the BE/ME- and MVE-sorted portfolios.  To examine

if this holds for all the countries in our sample, we plot the sorted portfolio returns against

two traditional measures of risk:  The betas with respect to the World Market portfolio

and the Sharpe ratios (in Figures 2A, 2B and Figures 3A, 3B, respectively, and Table 1).20

There is no clear relation between market betas and average returns across the

ranked portfolios.  The relation is either flat or has the wrong sign.  There is no country

for which the highest BE/ME (or lowest MVE) portfolio also has the highest beta! 

Furthermore, the relation between the ranked portfolios and the Sharpe ratios look

remarkably like those for average returns.  The largest BE/ME and the smallest MVE

portfolios have the highest Sharpe ratios.  These findings imply that the relation of returns

to the BE/ME and MVE rankings is not explained well by standard risk adjustments like

the market betas or the standard deviations of the returns, for any of the countries in the

sample. 

The descriptive statistics discussed above broadly confirm that the empirical

regularities observed in the U.S. also exist in the other six countries.  Furthermore,

standard risk adjustments do not seem to account for these regularities for any of the

countries.  Finally, two-way sorts suggest that the information contained in BE/ME is not

duplicated by the MVE variable.21

                                                                                                                                           
19   Chan, Hamao, and Lakonishok [1991] also find a strong relation for Japan.
20   The Sharpe ratio is a simple but general adjustment for risk:  It is the ratio of the average excess
returns and their standard deviation.  Since these portfolios are highly diversified in the context of the
respective national markets, their standard deviations are likely to be good approximations of traditional
measures of systematic risk.  Some of the Sharpe ratios are negative and their levels are lower than those
in figures 1A and B because they are calculated from excess returns. 
21   Fama & French (1992) show that the BE/ME ratio does better than MVE in explaining the cross-
section of returns, for the U.S. data.  For that reason we also examine two-way sorts.  We sort equities first
by MVE and then by BE/ME.  If MVE contained all the relevant information then the average returns
would not be related to BE/ME.  Plots of average returns reveal that the relation between BE/ME and
returns remains within each MVE portfolio.  The relation seems most evident in the smallest MVE
portfolios, and least evident in the largest MVE portfolios.  We include these two-way sorted portfolios in
all the analysis.
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The next section shows the results of CAPM-based regression tests that explore

the statistical significance of the relations discussed above.  For each country, we estimate

Jensen’s alphas (excess returns) for each portfolio by regressing adjusted portfolio returns

on world and local market indices.  Then we examine the excess return estimates for

apparent regularities.  We also replicate recent results reported by Fama & French (1997)

using an international HML portfolio. 

3.2  CAPM-Based Regression Tests: 

We estimate the following SURE regression model for the two sets of 7 portfolios

from one-way sorts (by BE/ME and MVE) and the 9 portfolios from the two-way sorts

(by MVE and then by BE/ME), for each country separately: 

(1a) ti
x

twiw
x

tmimi
x
ti RRR ,,,,,0, εββαα ++++= ;   ( ) 0,97,1 1 ≡= αi . 

The variables x
tiR , , x

tmR , , and x
twR ,  are, respectively, local currency returns for the sorted

portfolios, the MSCI national market returns, and the World market returns, all adjusted

by the local risk-free rate.22  The sum, α0 + αi, is Jensen’s alpha (or excess return or zero-

beta return) for each portfolio. 

Table 2 Panel B shows the rank correlation coefficients between the Jensen’s

alphas for each set of portfolios and their ranking by BE/ME and MVE.  High correlations

imply that the BE/ME or the MVE effect exists.  The table also reports p-values for Wald

tests that the zero-beta returns are equal across the portfolios.  Detailed results are in

Appendix A. 

Panel B clearly demonstrates that there are strong positive correlations between

zero-beta returns and BE/ME in all the countries.  All the rank correlations are high, and

the Wald tests are highly significant, except for Germany.  The results for the MVE-sorted

portfolios are considerably weaker.  The hypothesis that the zero-beta returns are the same

                                               
22   The world market portfolio is the MSCI World Index.  The returns are translated to local currency
returns by the month-end exchange rate.  To calculate excess returns we subtract from the returns the
following short term interest rates for each country:  AUS --average rate on money market; CAN --1
month T-Bill rate; FRA --call money rate; DEU --call money rate; GBR --1 month T-Bill rate; JPN --call
money rate; USA --1 month T-Bill rate.  All returns are annualized. 
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across portfolios is rejected only for Canada and the U.S.  However, the rank correlations

are not much lower for the MVE-sorted than the BE/ME-sorted portfolios. 

These tests quantify and formalize the conclusions from the descriptive statistics. 

The BE/ME “effect” is found in all the countries in our sample, in unconditional or

CAPM-based tests, while evidence on the MVE effect is weaker.  These tests do not

assume international capital market integration.

3.3  Tests with a HML Portfolio:

A somewhat different test has been reported in Fama & French (1997).  They

construct an international HML portfolio as a factor that represents the BE/ME effect. 

They assume that international capital markets are integrated, and they regress

international portfolios --sorted on BE/ME-- on the market and the HML portfolio.  They

find that the Jensen’s alphas are no longer significantly different from zero, and the alphas

do not increase as BE/ME increases. 

In Table 2C we report similar results for our data.  The table reports the Jensen’s

alphas (αi) estimated from regressions (1b) and (1c), below:

(1b) ti
x

twiwi
x
ti RR ,,,0, εβαα +++= , 

(1c) ti
x

tHMLiHML
x

twiwi
x
ti RRR ,,,,,0, εββαα ++++= ;   0,7,1 1 ≡= αi ,

where x
tHMLR ,  is the Hi minus Lo portfolio returns, and all other variables are as defined

for equation (1a).  The results clearly show again that the Jensen’s alphas estimated from

these world portfolios also increase as BE/ME increases and as MVE decreases. 

Furthermore, when the HML portfolio is added to the regressions, Jensen’s alphas are no

longer significant and they have no clear pattern. 

As we have discussed already, all the above tests use the CAPM as the benchmark

model.  It is entirely possible that a more general pricing model would account for the

apparent pricing anomalies.  Indeed, since the HML portfolio is constructed from linear

combinations of returns, it is reasonable to suspect that such a model could be found. 

Furthermore, all these tests share a common difficulty:  The LHS portfolios are a

significant portion of the market, which is on the RHS; thus the LHS and RHS portfolio
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returns are determined simultaneously.  But since classical regression assumptions require

at least that the RHS variables are predetermined, it is not clear to what extent one can

rely on the coefficient estimates and the associated test statistics. 

4.   SPANNING TESTS

In this section we discuss and implement a set of spanning tests based on the

Hansen-Jagannathan --HJ (1991)-- Stochastic Discount Factor (SDF) methodology.  The

type of test that we use was first proposed by De Santis (1993), and it relies on the idea

that one can construct a pricing function (or a stochastic discount factor, SDF) from the

returns of portfolios that are traded (or could be traded) in the asset markets.  These tests

do not depend on the validity of any particular asset-pricing model, so that all linear

combinations of the underlying asset returns are potential pricing models; all existing linear

models are special cases.  A technical description of the construction and properties of a

SDF is in Appendix B. 

If there is a small number of risk factors in the economy, then a subset of portfolios

will price themselves and the remaining assets.  If such a subset of assets (reference assets)

price or span all the assets (reference and test assets), then the reference assets contain all

the necessary pricing information.23  This is generally referred to as the unconditional

spanning hypothesis (see Huberman & Kandel, 1987); it is labeled “unconditional”

because only the portfolio returns enter the SDF. 

The test answers the question:  Does the constrained unconditional SDF (from

only reference assets) adequately price (i.e., adequately reproduce the average returns) all

the portfolios in the market.  If it does, then no other information or variable is required to

fit average returns.  If it does not, then one may augment the SDF with additional

“conditioning” variables to see if spanning can be achieved.  The statistic generally used

for this test is the Hansen J-statistic, a goodness of fit measure. 

Technically, the test evaluates the distance between two bounds in returns-variance

space (HJ bounds); one bound is constructed from SDFs that include both the reference

                                               
23   For example, in the CAPM framework, any two risky frontier portfolios span all the other risky assets.
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and the test assets and the other from SDFs that include only the reference assets.24  If the

two bounds are sufficiently close to each other we conclude that the reference assets span

or price the test assets. 

We perform the tests on 7 portfolios sorted by MVE, 7 portfolios sorted by

BE/ME, and 9 portfolios obtained from two-way sorts (by MVE and then by BE/ME), for

each country.  We designate 5 out of 7 (or 7 out of 9) portfolios as reference assets and

the remaining 2 as test assets.  We show in section 4.1, below, that these unconditional

SDFs generally do not span the assets.  In particular, when portfolios with extreme values

of BE/ME or MVE are excluded from the SDFs, spanning is overwhelmingly rejected.  But

even with the extreme portfolios in the SDFs, spanning is rejected much more frequently

than would be expected at random.  In the first part of section 4.2 we test the statistical

significance BE/ME and MVE, one at a time, by including them in the SDFs.  They are

uniformly significant across all countries.  From these two findings we conclude that the

BE/ME and MVE “effects” exists in all the countries in our sample, even in the context of

our very general pricing model. 

In section 4.2 we also test if “conditional” SDFs, augmented with the lagged

values of BE/ME or MVE span better than the unconditional SFDs.25  We find that there is

no improvement in spanning performance.

We continue the investigation in section 4.3 by testing if BE/ME simply proxies for

other macro or financial variables, and if substituting or adding such variables can improve

spanning performance.  We study the marginal value of adding each of 15 macro and

financial variables to the SDF, one at a time, along with BE/ME.  The tests of these

additional conditioning variables proceed in the same manner as before.  None of these

                                               
24   The bounds are described by an SDF as the risk-free rate varies.  Because the bounds are quadratic,
only 2 points on each frontier need to be evaluated to assess if the bounds coincide or not.  The so-called
“intersection” hypothesis relies on only one point on the frontier, and examines possible intersections of
the bounds. 
25   Such SDFs are formally equivalent to SDFs constructed only from portfolio returns but with nonlinear
coefficients, where the nonlinearity is modeled with the conditioning variables.  Empirical evidence shows
that time-varying betas and risk premia fit U.S. equity market returns significantly better (Campbell,
1987; Harvey, 1989, 1991; Shanken, 1990).  Ferson & Harvey (1993) find the lagged MSCI world index
to be the most important predictor of international equity market returns.  Jagannathan & Wang (1994)
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additional variables substitutes for BE/ME but many of them are significant along with

BE/ME.  However, once again conditional SDFs augmented by BE/ME and these new

variables, one at a time, produce only minor improvement in spanning performance.

We use the Generalized Method of Moments (GMM, Hansen, 1982) because it is

particularly well suited for such spanning tests.26  It does not require strong distributional

assumptions and it makes it easy to impose orthogonality conditions and overidentifying

restrictions.27  Furthermore it accommodates the endogeneity of the reference assets

because it is not necessary to assume orthogonality between the asset returns on the LHS

and the test assets on the RHS.  The properties of GMM as it applies to our tests are

outlined in Appendix C. 

4.1  Unconditional Spanning:

Consider constructing an SDF, SDF(ref), only from the reference assets.  The

unconditional spanning test consists of testing if the reference portfolios span all the

portfolios.  The null hypothesis is that the reference portfolios should price or span all the

portfolios adequately.  If the null is not rejected, then the portfolios are priced adequately

within statistical tolerance, and we can conclude that no BE/ME, or MVE exists within the

limit of the test’s power.  If SDF(ref) fails to price (reproduce the average returns) the

assets adequately then we say that unconditional spanning is rejected.  This implies that

the information carried by the reference assets is not sufficient to price all the assets, and

that additional information may be needed. 

4.1.a  Test Specification:

We estimate SDFs that maximize the fit across all 7 (9) portfolios while restricting

the weights of the test portfolios in the SDF to be zero.  For the BE/ME- and MVE-sorted

                                                                                                                                           
find that the importance of MVE is greatly reduced when they allow for time variation in market betas
over the business cycle, in addition to their human capital variable.
26   GMM is a convenient method that is generally used to impose the condition that the pricing errors of
the SDFs should be orthogonal to Zs,t-1.
27   This generality is very useful because the HJ bounds assume little more than finite first and second
moments for asset returns.
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portfolios, we designate 5 of the 7 portfolios as reference assets and the remaining 2 as

test assets.  For the two-way sorted portfolios we designate 7 as reference and 2 as test

assets.  We report results for different combinations of test assets.

Let the first p assets be the reference assets; the q=n-p remaining assets are the

test assets.  The system that defines the SDF -- tc j
m ,   for the n assets is,
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where rt=Rt - E(Rt), and tc j
m ,  is the SDF as a function of a pre-specified risk-free rate, cj. 

The null hypothesis of unconditional spanning (p reference assets are sufficient to span all

p+q=n assets) is imposed through the parameter restrictions, βq,1  = βq,2 = 0, because the q

test assets are excluded from the SDF.  Unconditional spanning implies that the average

pricing error is zero for all asset returns, within the limits of statistical tolerance.  The

Hansen J-Statistic (Hansen, 1982; Hansen & Singleton, 1982) is used to evaluate the

overidentifying conditions implied by spanning.  It is distributed χ2 with degrees of

freedom equal to the number of overidentifying conditions.28 

4.1.b.  Results: 

Table 3 displays the results of this test for three pairs of test assets for BE/ME,

MVE, and the 2-way sorted portfolios, by country.  We report results for the extreme pairs

of test assets (1&7 for the BE/ME and MVE sorting, and 3&7 for the 2-way sorting), for

the middle pairs of test assets (3&5 for the BE/ME and MVE sorting, and 2&6 for the 2-

way sorting), and for one set of in-between pairs (2&6 for the BE/ME and MVE sorting,

                                               
28   There are 2n orthogonality conditions, 2p parameters to estimate, and 2q overidentifying conditions. 
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and 1&9 for the 2-way sorting).29  The extreme pair of portfolios have the largest and

smallest values of the instrument they are sorted on (BE/ME, or MVE).  The middle pair

of portfolios have the middle and adjacent values of the instrument they are sorted on,

while the in-between portfolios are neither the extreme nor the most similar; of course

there are many possible “in-between” portfolio pairs.  Entries are shaded if they

statistically reject spanning at the 5% level; we report p-values for the tests. 

Overall, the spanning hypothesis is rejected in 27 out of 63 cases.  However, there

are significant differences in rejection rates across the test assets.  When the extreme pairs

are the test assets (1&7/3&7), and thus excluded from the SDF, spanning fails in 14 out of

21 cases (67%).  But when the middle pairs are excluded spanning fails in only 5 out of 21

cases (24%).30 

This result shows that SDFs that include the extreme portfolios span much more

successfully than those that exclude them!  This is clear evidence that the “BE/ME” and

the “MVE” effect exist even under this very general asset pricing model.  It also supports

the practice of using an HML portfolio as a pricing “factor” in the context of the CAPM. 

At the same time, our results also show that the spanning of even when the extreme

portfolios are included is far from satisfactory.  In 4 of the 7 countries spanning fails in this

case (CAN, DEU, GBR, JPN) in at least one of the rankings. 

An unconditional SDF --mt-- can account for differences in average returns

because each portfolio generally has a different covariance with the SDF.  As shown in

Appendix B, ( ) ( )
( )t

ti
i mE

mR
RE

,cov1−
= , where ( ) ( )∑=

p
tptipti rRmR ,, ,cov,cov β .31  Our

                                               
29   Our numbering convention for the portfolios is shown below.

Two-Way Sort

BE/ME or MVE Stocks BE/ME
Smallest Largest Smallest Largest

1 2 3 4 5 6 7 Smallest 1 2 3

MVE 4 5 6
Largest 7 8 9

30   The probability of obtaining this result by chance is 0.00% at the 5% level.  The probability of
obtaining 5 or more rejections in 21 tries by chance is 0.33% if the tests are uncorrelated.
31   We drop the subscript cj, that refers to the risk free rate for convenience.
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results show that when the extreme portfolios are part of mt, the resulting covariances do a

better job of replicating average returns than when the extreme portfolios are excluded. 

The standard approach for improving the ability of the SDF to span the assets is to

augment it with objects of the form ptp rZ 1−θ , where Zt-1 is a lagged conditioning variable

or “instrument”  (for example BE/ME), and θp is an additional coefficient.  These objects

are referred to as “managed portfolios” in some applications.  The risk premium of each

asset now becomes time varying, ( ) ( ) ( )∑ −+=
p

tptitppti rRZmR ,,1 ,cov,cov θβ .  In our

application, the conditioning variables Zt (BE/ME or MVE) is specific to the portfolios, as

we discuss below.  Therefore, this formulation of the SDF allows both for the conditional

risk premium to depend on the instantaneous value of the instrument and for the average

risk premium to depend its average level. 

In the next two subsections we investigate if augmenting the SDF by adding

BE/ME, MVE, and other macro and financial variables in conjunction with BE/ME

improves its pricing and spanning performance. 

4.2  Conditional Spanning with BE/ME and MVE: 

In this section we perform two sets of tests: 

1. The first test examines the statistical contribution of BE/ME and MVE to the “fit” of

the SDFs when they are conditioned by BE/ME and MVE as instruments.  This is

essentially a time series test; all the assets are included in the SDF. 

2. The second test investigates how well these conditional SDFs span or price.  This is

our conditional spanning test. 

4.2.a  Test Specifications:

Let Zs refer to the type of conditioning variable (s = BE/ME or MVE); the second

subscript in Zs,i indicates that the ith Zs is specific to the ith portfolio.  The conditioning

information introduces new variables of the form Zt-1Rit to the SDF.  We require the

pricing errors of each portfolio to be orthogonal only to the own lagged BE/ME or MVE. 

Thus these new variables are the products of the portfolio specific Zs,i,t-1 (alternately BE/ME
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and MVE) with the corresponding portfolio returns.32  The set of the new variables can be

represented by the Hadamard product, Rt⊕Zs,t-1, rather than the Kroenecker product,

Rt⊗Zs,t-1; the latter would imply that the pricing errors for each portfolio are required to be

orthogonal to the BE/ME or MVE of all the portfolios. 

Let Rt and Zs,t-1 be n-dimensional vectors, respectively, of date t returns on n assets

and n portfolio-specific conditioning variables.  The system that defines the volatility

bound for the n assets is,
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where s = BE/ME, MVE, rt=Rt - E(Rt), tc j
m ,  is the SDF, and cj is the pre-specified risk

free rate.  Note that adding conditioning variables to the SDF is equivalent to modeling

time variation in the coefficients of the SDF with the conditioning variables. 

We test the importance of BE/ME or MVE for pricing by testing the null

hypothesis that the coefficients θi of the SDFs are not statistically significant (θi = 0).  The

test statistic is the Wald test applied to the augmented SDF; the statistic is χ2-distributed

where the degrees of freedom are the number of overidentifying restrictions.33 

The conditional spanning test is performed on the above system and is exactly

analogous to the unconditional spanning test (equations 2a-b), except that the SDF has

nonlinear coefficients; equation (2b) is amended as follows: 

                                               
32   In the standard specification every asset return is required to be orthogonal to all the conditioning
variables. In our application this approach would result in 7 or 9 orthogonality conditions for each
portfolio, which would produce highly unreliable results.  The specification we use requires only one
orthogonality condition for each portfolio. 
33   Conditioning on w Zt-1 variables adds 2nw orthogonality conditions for a total of 2n(w+1) conditions. 
2n parameters are estimated, which leaves 2nw overidentifying conditions.  Since w=1, for SDFs
conditioned on either BE/ME or MVE there are 2n overidentifying conditions. 
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The conditional spanning hypothesis (p reference assets are sufficient to span all

p+q=n assets) is tested by imposing the parameter restrictions, βq,1  = βq,2 = θq,1  =

θq,2 = 0, because the q test assets are excluded from the SDF.  The null hypothesis of

conditional spanning implies that the average pricing error with the restricted SDF is zero

for all the assets.  The test statistic is the Hansen J-statistic, which is χ2-distributed.34 

4.2.b.  Results: 

In Table 4, panel A we report p-values from Wald tests of the null hypothesis, that

the SDF coefficients for BE/ME and MVE (θi,,j = 0 ∀ i, j) are insignificant.  Entries

significant at the 5% level are shaded.  BE/ME is not significant in only 1 case out of 21

(Germany --DEU-- MVE-sort) and MVE is not significant in 3 cases out of 21.  Clearly,

both of these variables significantly improve the overall “fit” of the SDFs, separately.  This

finding implies that the pricing errors of the unconditional SDF are not orthogonal to

BE/ME and MVE.  Alternatively, the hypothesis that the SDF coefficients are not

time-varying is rejected.  We conclude that modeling nonlinearities in the SDF coefficients

with our two instruments significantly improves the SDF’s time series fit.  This finding is

in accord with the literature that documents the importance of BE/ME and MVE in time

series regressions. 

However, the improved time series fit does not guarantee that the SDFs

augmented by BE/ME or MVE will span better.  Table 4, panel B reports the spanning

performance of these nonlinear (or conditional) SDFs.  It is evident that their spanning

performance is not materially different from the linear (or unconditional) ones.  Overall,

when BE/ME is the instrument, spanning is rejected for 32 out of 63 cases, and once again

there are major differences across test assets.  When the extreme pairs are excluded from

the SDF, spanning fails in 17 out of 21 cases (81%), at the 5% level.  But when the middle
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pairs are excluded, spanning fails in only 6 out 21 cases (28%).  The results when MVE is

the instrument are very similar.  The nonlinearity of the SDFs does not improve their

spanning ability, even though it improves the time series fit.  Just as in the unconditional

case, when the extreme BE/ME and MVE portfolios are excluded from the SDF spanning

is overwhelmingly rejected. 

Our results to this point establish the following: 

(i) The BE/ME and MVE effects exist in all the countries we study, even when we use

a very general pricing model.   The evidence for this is that spanning

overwhelmingly fails, when the extreme BE/ME and MVE portfolios are excluded

from the SDFs and that SDFs conditioned by BE/ME and MVE “fit” the data

significantly better. 

(ii) The conditional SDFs do not span better than the unconditional ones. 

These findings leave open the possibility that our instruments (BE/ME and MVE)

proxy for other economic variables or that additional variables might help span the assets.

4.3  Alternative Macro and Financial Variables for Conditional Spanning

In this section we broaden our investigation of the importance of BE/ME by

testing 15 alternative variables in the SDF, along with BE/ME, to determine,

(i) if BE/ME simply proxies for some other variable, and,

(ii) if adding any of these variables can improve spanning performance. 

We choose to focus only on BE/ME both because BE/ME performs somewhat better than

MVE, and because the range of MVE for some of the countries is quite narrow. 

We test the following 15 macro and financial variables as additional instruments in

the SDF.35 

                                                                                                                                           
34   Since spanning implies that average pricing errors are zero, only the average pricing error of the test
assets are tested against zero.  Therefore, the degrees of freedom are the same as in the unconditional
spanning case; they are equal to 2q, which is always four. 
35   This list contains most of the important variables that have been used by various studies to build
empirical asset pricing models.  In almost all cases there are counterparts to the U.S. and or the global
variables.  For example, the counterpart of TB3M would be LSTB, etc.  However, there are no available
counterparts to the AAA and BAA rate in foreign countries.  Therefore, only the US junk bond premium is
used. 
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rg(t-1) MSCI Global market return (in local currency units),
Gpgold(t-1) Gold price growth rate, in local currency units,
ieuro(t-1) The Eurodollar rate converted to the local currency,
TB1M(t-1) The 1-month U.S. T-Bill rate, in local currency,
TPRE(t-1) The U.S. “term” premium, TB30Y –TB3M, in local currency,
JPRE(t-1) The U.S. “junk bond” premium, BAA – AAA rates, in local currency,
WDIVPRE(t-1) The global dividend-to-price ratio,
WGINDP(t-1) Growth rate of the global industrial production index,
WINFL(t-1) The global inflation index,
LSTB(t-1) The local short term interest rate,
LTPRE(t-1) The local “term” premium, long-term rate – LSTB,
LDIVPRE(t-1) The local dividend-to-price ratio,
LGINDP(t-1) Growth rate of the local industrial production,
GLM2(t-1) Growth rate of the local money supply, M2,
LINFL(t-1) The local inflation index, CPI.

4.3.a  Test Specification:

As before, Rt and Zt-1 are n-dimensional vectors, respectively, of date t returns on n

assets and n portfolio specific BE/MEs.  Let Vk,t-1 be the kth instrument (of 15 listed above)

to be considered.  We require the pricing errors of each portfolio to be orthogonal to its

own BE/ME and to Vk.  The system that defines the volatility bound for the n assets is,
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where,  rt=Rt - E(Rt), j = 1,2. 

We perform three tests:  

(i) A test of the null hypothesis that none of these new variables is significant in

pricing, i.e, λi,j = 0, ∀ i, j, and,

(ii) A test of the null hypothesis that BE/ME proxies for one of the new variables, i.e.,

θi,j = 0, ∀ i, j.  This is a test of the robustness of BE/ME. 
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(iii) A conditional spanning test of the reference-asset SDFs conditioned by BE/ME

and the new variables, one of at a time. 

If for the kth Vk the null hypothesis (λi,j = 0 ∀ i, j) is rejected in the presence of the

BE/MEs we may conclude that the kth Vk enhances the time-series “fit” of the SDF.  If the

null hypothesis (θi,j = 0 ∀ i, j) is rejected in the presence of the kth Vk, we may conclude

that the kth Vk does not replace or supercede BE/ME as an instrument, and that BE/ME is

robust with respect to the kth Vk in the SDF.  The test statistic is the Wald test of the

constrained SDF, where each set of coefficients (λi,j and θi,j) are tested jointly against the

null hypothesis that they are zero.  The statistic is χ2-distributed where the degrees of

freedom are the number of overidentifying restrictions.36 

The third test is a spanning test of the same form as in section 3.3.2 above, except

that the time-variation of the SDF coefficients is modeled with two variables. 
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The conditional spanning hypothesis (p reference assets are sufficient to span all

p+q=n assets) implies the parameter restrictions, βq,1  = βq,2 = θq,1  = θq,2 = 0, because the

q test assets are excluded from the SDF.  Conditional spanning implies that average

returns for all the assets are correctly priced with this restricted SDF.  As before, the test

statistic is the J-Statistic, which is χ2-distributed.37 

4.3.b.  Results: 

First we explore whether any of the 15 instruments add significantly to the pricing

accuracy of the SDFs when tested one at a time in the presence of BE/ME.  For each

country, at least 10 of the instruments are significant for each portfolio ranking.  On

                                               
36   The Zi, t-1 and Vk,t-1 variables each adds 2n orthogonality conditions.  Thus there are a total of 4n
overidentifying conditions. 
37   See footnote No. 36. 
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average, 12 of the variables are significant for some portfolio rankings, and in some cases

all 15 are significant.  If we consider one portfolio ranking and one instrument as one try,

there are 45 tries for each country.  The minimum proportion of “significant tries” (the

instrument is significant at the 5% level) is 73% for Canada, France and Great Britain, and

the maximum is 91% for the US.  We do not tabulate the results here because of space

considerations; detailed results are available from the authors. 

None of the instruments is significant for all the countries and all the portfolio

rankings, at the 5% level.  The local short term interest rate, the growth rate of local

Industrial Production, and local Inflation (LSTB, GLINDP, LINFL), are significant in at

least 90% of the 21 “tries” (7 countries, 3 portfolio rankings each).  The least successful

instrument is the global Industrial Production index, WGINDP, significant in only 57% of

the “tries”. 

These results show clearly that these instruments, as a group, significantly improve

the time series “fit” of the SDFs, for all the countries.  Thus, they are legitimate candidates

to consider as alternatives to BE/ME. 

Next we investigate the robustness of BE/ME in the presence of these alternative

instruments, i.e., whether some of these instruments displace it in the SDF.  When the 15

instruments are added to the SDFs one at a time, BE/ME is not significant only 11% of

time, at the 5% significance level.  Almost half of the insignificant BE/ME coefficients

come from the DEU (Germany) MVE-sorted portfolios.38  But this is the only instance in

which BE/ME is not significant, even by itself.  The tests show clearly that BE/ME is not

replaced in the SDFs by these alternative instruments.  Their contributions to pricing are

independent and complementary to that of BE/ME. 

Finally, we investigate the conditional spanning hypothesis; whether augmenting

the SDFs by BE/ME and by these 15 instruments one at a time, improves spanning

performance.  It is not possible in this space to present all 945 test results; thus table 5,

Panel A summarizes the results, and Panel B displays results for the “best” scenarios. 

                                               
38   In this sort, BE/ME has a particularly narrow range; see Table 1, Panel B. 
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Table 5, Panel A shows that the spanning performance of the SDFs is very much in

line with those in the earlier sections:  The SDFs again rarely span when the extreme

portfolios are the test assets.  Spanning is much more common when the extreme pair of

portfolios are included in the reference assets, and once again they are most frequent when

the middle pair of portfolios are the test assets.39 

There are 135 SDFs formed for each country; that is 3 portfolio rankings, 3

configurations of test assets and 15 instruments applied to each.  Except for Canada, there

is at least one SDF (a configuration of reference assets and an additional instrument) that

spans all 3 rankings. 

The rightmost column of Panel A lists the instruments that are most successful in

spanning, for each country.  For France and the U.S. almost all the instruments work

equally well but for other countries there are two or three instruments that do better than

the rest.  The world Dividend-Price ratio, WDIVPRE, and local Industrial Production,

GLINDP, seem to do quite well across countries. 

To get a better understanding of the spanning behavior of the SDFs in the presence

of these instruments, we report two best-scenario cases in Panel B of Table 5.  The left-

hand columns report the spanning performance of WDIVPRE, which is the best-

performing instrument across all the countries.  The right-hand columns report the

spanning performance of the “best” instrument for each country; best means that it spans

most frequently across the various “tries” in that country.40  To provide a clear picture of

the additional contribution of these instruments we use the following notation in the table.

 We place “***” where spanning failed both with BE/ME and with BE/ME plus the

instrument; we place “a.s.” where spanning was achieved already with BE/ME (from Table

4, Panel B).  Finally, the numbers in the table are p-values for the spanning hypothesis, and

they appear only where spanning failed with BE/ME alone but was achieved when the

instrument was added to the SDF. 

                                               
39   The MVE-sort in Germany is the exception.  In that case, all the instruments help span the extreme
portfolios and perversely, SDFs that include the extreme portfolios fail to span. 
40   We do not use WDIVPRE the “best” instrument whenever there is another with equal performance, in
order to reduce duplication with the right-hand columns. 
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The most striking result is that these instruments make only a minor contribution

to spanning.  The best instruments do not help span the extreme portfolios that are rarely

spanned with BE/ME alone.  In 14 of 63 instances spanning fails for the middle and the in-

between portfolios with BE/ME alone as an instrument; spanning is achieved in only 4 of

these cases with WDIVPRE. 

Neither these nor any of the other instruments consistently help span (i.e., their

associated SDFs do not span all three rankings of the underlying assets).  For Australia,

France, Japan, and the U.S., the SDFs span the middle pair (and in some cases the in-

between pair) when WDIVPRE is in the SDF, for all three rankings.  When the “best”

instrument for each country is used, spanning performance is slightly better, particularly

for the in-between pairs of portfolios. 

We conclude that:

(i) The book-to-market effect continues to persist for all the countries in the presence

of several plausible economic variables. 

(ii) One or more macroeconomic variables, together with BE/ME, frequently span test

assets, as long as the SDFs contain the extreme portfolios as reference assets. 

(iii) Average returns are not completely explained by a model that includes the extreme

portfolios (i.e., a BE/ME arbitrage portfolio).  Spanning still fails in several

instances even when extreme portfolios are included in the discount factor.

5.   CONCLUSION

The tests we report provide very strong evidence that in all seven countries we

examine over the 1982-94, average returns are high when Book Equity to Market Equity

ratio (BE/ME) is high; also they are high when Market Value (MVE) is low.  The evidence

in favor of MVE is somewhat weaker. 

Regression analysis based on Jensen’s alpha, and the Fama & French HML

portfolio tests are consistent with those reported in the literature.  However, these tests

have serious weaknesses, both because they are based on a specific asset-pricing model

and because there are potentially serious simultaneity biases in the estimates of these

models, when OLS methods are employed. 
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We discuss and implement a set of spanning tests based on the Hansen-

Jagannathan Stochastic Discount Factor (SDF) approach, which only requires that the

Law of One Price is satisfied.  These tests suffer neither from the need to specify an asset

pricing model nor from potential simultaneity biases.  Some of the tests are for

unconditional pricing while others use a variety of common macroeconomic and financial

variables. 

Consistent with recent literature, we conclude that the BE/ME and MVE “effects”

are international in character.  They remain strong under this general model and against a

variety of alternatives macroeconomic and financial “conditioning” variables.  These

variables do not substitute for BE/ME but instead they improve the time-series fit of the

pricing model significantly. 

However, contrary to the findings in the literature, we cannot account completely

for the cross-sectional average return differences of the BE/ME- and MVE-sorted

portfolios with any of the SDFs we construct, i.e., the assets are not universally spanned

by our SDFs.  The SDFs that include portfolios with extreme values of BE/ME or MVE

span much more frequently than those SDFs that exclude those portfolios.  This is similar

to the practice of including the HML portfolio in CAPM-based models.  For some of the

countries we find at least one instrument, that together with BE/ME results in SDFs that

span the assets. 

The evidence presented here suggest that the BE/ME and MVE effects are not

artifacts of the inadequacies of the augmented CAPM as an asset pricing model or of

omitting potentially important macro and financial variables from the models.  Finally, our

finding, that SDFs that omit the extreme-valued portfolios do not span, suggests that the

underlying “factors” that summarize the return-generating process are not present in all

the sorted portfolios we have constructed, even though these portfolios are well

diversified in other dimensions. 
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TABLE 1:  Descriptive Statistics for the Portfolios

PANEL A1

Sorted by Book-to-Market Ratio

Book-to Market Ratios (upper)  and
Number of Firms (lower)

Market Value2 (upper)  and
Earnings to Price Ratio (lower)

Country Low-1 2 3 4 5 6 High-7 Country Low-1 2 3 4 5 6 High-7
AUS 0.317 0.508 0.626 0.751 0.915 1.166 2.077 AUS 1,077 957 768 711 629 386 257

20 20 19 19 19 19 19 0.028 0.053 0.041 0.059 -0.046 -0.112 -0.213
CAN 0.259 0.486 0.643 0.801 0.983 1.209 2.739 CAN 343 392 450 520 492 321 230

44 44 44 44 43 43 43 -0.057 0.005 0.023 0.017 0.039 0.011 1.586
FRA 0.218 0.349 0.453 0.567 0.658 0.799 1.482 FRA 225 443 228 579 826 773 683

13 13 13 12 12 12 12 -0.002 0.024 0.016 0.035 0.039 0.045 0.030
DEU 0.190 0.336 0.428 0.521 0.650 0.857 1.923 DEU 5,126 4,822 3,587 2,585 3,172 3,086 2,821

20 20 20 20 20 20 19 0.027 0.046 0.059 0.065 0.048 0.018 0.142
GBR 0.187 0.343 0.459 0.585 0.782 1.083 1.908 GBR 1,305 1,020 1,084 1,266 862 614 567

92 92 91 91 91 91 91 0.041 0.063 0.069 0.072 0.046 0.059 -0.004
JPN 0.141 0.238 0.305 0.368 0.436 0.522 0.717 JPN 2,140 2,095 2,025 1,953 1,581 1,401 2,101

151 151 151 151 151 151 150 0.005 0.013 0.015 0.020 0.020 0.023 0.021
USA 0.199 0.385 0.527 0.674 0.841 1.068 1.558 USA 1,403 1,326 1,018 960 861 905 639

314 313 313 313 313 313 313 -0.022 0.027 0.033 0.035 0.038 0.038 0.012

Average Returns (upper)  and
Standard Deviation of Returns (lower)

Market Portfolio Betas (upper)  and
Sharpe Ratios (lower)

Country Low-1 2 3 4 5 6 High-7 Country Low-1 2 3 4 5 6 High-7
AUS 9.6% 13.2% 19.6% 18.8% 14.6% 19.3% 32.1% AUS 0.87 0.96 0.82 0.76 0.67 0.85 0.86

0.70 0.62 0.59 0.51 0.56 0.64 0.70 -0.045 -0.024 0.048 0.074 0.007 0.046 0.189
CAN 12.0% 11.6% 16.4% 16.1% 18.4% 16.2% 30.2% CAN 1.02 0.90 0.91 0.85 0.79 0.81 0.95

0.65 0.49 0.47 0.44 0.42 0.45 0.75 0.016 0.016 0.102 0.104 0.151 0.114 0.244
FRA 13.3% 9.7% 13.0% 15.5% 12.1% 17.4% 24.0% FRA 0.67 0.79 0.75 0.83 0.79 0.78 0.79

0.53 0.65 0.65 0.64 0.61 0.60 0.74 0.052 -0.006 0.032 0.061 0.018 0.088 0.177
DEU 8.5% 13.3% 13.6% 20.3% 21.2% 16.5% 25.7% DEU 0.90 0.94 0.95 0.91 0.92 0.94 0.92

0.68 0.70 0.70 0.71 0.73 0.74 0.77 -0.047 0.018 0.018 0.108 0.111 0.044 0.155
GBR 10.1% 16.3% 19.4% 21.2% 20.0% 21.1% 23.2% GBR 0.95 0.98 0.98 1.00 1.02 0.96 0.92

0.63 0.64 0.65 0.68 0.72 0.64 0.62 -0.067 0.023 0.059 0.088 0.067 0.094 0.123
JPN 6.0% 10.4% 11.2% 13.0% 14.2% 15.1% 19.8% JPN 1.06 1.02 1.00 0.98 0.93 0.92 0.89

1.02 0.97 0.95 0.94 0.90 0.90 0.91 0.005 0.049 0.059 0.077 0.099 0.108 0.161
USA 14.7% 16.2% 16.6% 18.0% 18.6% 18.3% 24.8% USA 1.19 1.15 1.15 1.03 0.99 0.87 0.84

0.66 0.59 0.58 0.54 0.51 0.46 0.48 0.067 0.100 0.108 0.141 0.165 0.185 0.291
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PANEL B1

Sorted by Market Value

Market Value2 (upper)  and
Number of Firms (lower)

Book-to Market Ratios (upper)  and
Earnings to Price Ratio (lower)

Country Low-1 2 3 4 5 6 High-7 Country Low-1 2 3 4 5 6 High-7
AUS 53 107 169 256 446 857 2,958 AUS 1.218 1.034 0.900 0.803 0.813 0.644 0.658

20 20 20 19 19 19 19 -0.671 -0.043 0.042 0.073 0.073 0.074 0.070
CAN 14 40 73 127 223 447 1,828 CAN 0.502 0.972 0.906 0.887 0.828 0.825 0.777

47 47 47 46 46 46 46 0.708 -0.016 -0.007 0.047 0.021 0.032 0.057
FRA 33 73 126 202 335 602 2,381 FRA 0.553 0.654 0.594 0.588 0.641 0.553 0.833

13 13 13 13 12 12 12 -0.028 0.006 0.018 0.027 0.043 0.029 0.062
DEU 273 674 1,119 1,706 2,532 4,190 14,783 DEU 0.495 0.719 0.571 0.533 0.831 0.522 0.548

21 21 21 20 20 20 20 -0.009 0.020 0.061 0.049 0.094 0.077 0.076
GBR 38 79 133 218 383 844 4,953 GBR 0.809 0.744 0.710 0.699 0.680 0.645 0.586

93 93 93 93 93 93 92 -0.158 0.028 0.056 0.064 0.060 0.068 0.075
JPN 187 321 476 718 1,147 2,088 8,395 JPN 0.386 0.416 0.403 0.399 0.384 0.382 0.348

151 151 151 151 151 151 151 0.008 0.014 0.015 0.018 0.018 0.020 0.021
USA 12 37 78 151 317 813 5,532 USA 0.523 0.733 0.762 0.659 0.662 0.683 0.707

333 333 332 332 332 332 332 -0.453 -0.050 -0.003 0.036 0.056 0.061 0.077

Average Returns (upper)  and
Standard Deviation of Returns (lower)

Market Portfolio Betas (upper)  and
Sharpe Ratios (lower)

Country Low-1 2 3 4 5 6 High-7 Country Low-1 2 3 4 5 6 High-7
AUS 30.4% 17.8% 11.1% 15.6% 16.6% 18.9% 18.6% AUS 0.84 0.73 0.76 0.69 0.79 0.91 1.08

1.01 0.57 0.57 0.53 0.53 0.63 0.62 0.141 0.045 -0.042 0.014 0.039 0.042 0.032
CAN 44.3% 20.3% 12.5% 11.9% 9.3% 11.1% 8.6% CAN 1.00 0.87 0.87 0.82 0.91 0.95 0.95

0.97 0.52 0.49 0.45 0.46 0.46 0.45 0.312 0.151 0.036 0.030 -0.017 0.009 -0.028
FRA 17.5% 13.2% 15.0% 13.9% 17.9% 11.2% 13.8% FRA 0.62 0.78 0.82 0.76 0.67 0.78 0.96

0.66 0.73 0.70 0.63 0.52 0.59 0.70 0.104 0.030 0.057 0.053 0.110 0.006 0.039
DEU 26.6% 19.7% 15.5% 12.4% 14.5% 14.8% 12.6% DEU 1.01 0.91 0.80 0.92 0.94 1.01 0.90

0.94 0.73 0.63 0.72 0.71 0.75 0.65 0.131 0.101 0.050 0.002 0.032 0.028 0.008
GBR 22.2% 18.8% 18.8% 16.9% 17.5% 17.4% 18.4% GBR 0.91 0.87 0.94 0.99 1.03 1.08 1.02

0.78 0.67 0.69 0.67 0.67 0.67 0.61 0.096 0.053 0.057 0.031 0.034 0.034 0.054
JPN 21.5% 16.3% 13.6% 12.9% 10.6% 8.9% 5.7% JPN 1.00 0.95 0.97 0.99 1.00 0.98 0.93

1.12 1.00 1.00 0.98 0.94 0.88 0.78 0.153 0.108 0.082 0.073 0.050 0.038 0.002
USA 47.3% 18.0% 16.0% 15.7% 15.7% 16.2% 16.7% USA 1.02 0.98 1.04 1.11 1.12 1.08 1.02

1.38 0.60 0.56 0.58 0.58 0.52 0.48 0.265 0.128 0.102 0.095 0.098 0.124 0.149

1  The table below reports time series averages of important portfolio characteristics by country and by the type of portfolio ranking.  Unless otherwise noted, all the statistics are reported
in local currency.  All balance sheet data come from balance sheets reported no later than April of year t.  These statistics are first calculated for the individual firm at year t, and are
equally weighted into the portfolio in which it belongs at that date.  Time series averages are for each portfolio as a whole.  The sample period for USA and CAN is November 1983 to
October 1994 and for AUS, FRA, DEU, GBR, and JPN is November 1986 to October 1994. 
2  The Market Values are reported in millions of US$s, translated at the average exchange rate for the period. 
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TABLE 2:   The Relation Between Jensen’s Alphas and Market Value and Book-to-Market

Panels A and B show the rank correlations of returns of portfolios with the ranking
variables, for each country.  A value of 1.00 means that the portfolio returns increase
monotonically with their ranking. 

Panel C shows estimates of Jensen’s alphas when the pricing model includes only the
market portfolio and when it also includes the BE/ME HML portfolio.  The 7 portfolios are
constructed by converting the corresponding country portfolios into U.S.$ returns and weighting
them equally.  P-values for the hypothesis that the coefficient is not different from zero are in
parentheses.

PANEL A
Average Returns

Rank Correlations
BE/ME MVE

Australia 0.71 0.18
Canada 0.89 0.96
Germany 0.64 0.46
France 0.89 0.79
U.K. 0.96 0.64
Japan 1.00 1.00
USA 0.96 0.39

PANEL B
Zero-beta Returns

Rank Correlations
P-Values of
Wald Tests

BE/ME MVE BE/ME MVE
Australia 0.68 0.50 0.009 0.575
Canada 0.96 0.96 0.003 0.000
Germany 0.64 0.50 0.103 0.274
France 0.89 0.75 0.002 0.281
U.K. 0.96 0.75 0.000 0.491
Japan 1.00 1.00 0.017 0.162
USA 1.00 0.68 0.000 0.029
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PANEL C
Jensen’s Alphas with and without the HML Portfolio

Low Hi
BE/ME-Sorted
Portfolios 1 2 3 4 5 6 7

Without HML -0.009 0.010 0.036 0.062 0.053 0.061 0.146
(0.751) (0.713) (0.160) (0.028) (0.061) (0.031) (0.000)

With HML -0.012 -0.001 0.004 0.015 -0.014 -0.025 0.013
(0.734) (0.987) (0.888) (0.659) (0.655) (0.422) (0.724)

Small Large
MVE-Sorted
Portfolios 1 2 3 4 5 6 7

Without HML 0.198 0.063 0.032 0.023 0.031 0.018 0.016
(0.000) (0.063) (0.278) (0.397) (0.245) (0.502) (0.487)

With HML 0.048 -0.016 -0.020 -0.022 -0.002 -0.015 0.008
(0.358) (0.676) (0.567) (0.505) (0.938) (0.644) (0.768)
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NOTES FOR TABLE 3:  Volatility Bounds – Unconditional Spanning Tests

Rt is a n dimensional vector of date t returns on n assets; rt=Rt-E(Rt) is the vector of demeaned returns. 
The first p of the n assets are the reference assets and the remaining q=n-p are the test assets.  The returns are
Rt = (R’

p,t , R
’
q,t )′.  The SDF is mc and cj is the predetermined risk-free rate.  We use two risk-free rates for the

tests.  If the n assets are spanned by the reference assets, then the volatility bound constructed from the reference
assets remains unchanged when the test assets are added.  The time-invariant volatility bound is formed by
constructing two discount factors that have expected values c1 and c2.  The system that defines the volatility bound
for n assets is:

( ) tjctt j
mRER ,υ=− E(εt )=0, and εt′ = (υ′1,t  υ′1,t ),

where,     ( ) ( )[ ] jtctnct cmRCov1 mRE
jj ,,−= ,  and j

q
tqjq

p
tpjptc crrm

j
++= ∑∑

==

)9(7

)8(6
,,

)7(5

1
,,, ββ ,  for j=1,2. 

The hypothesis that p reference assets are sufficient to span n assets implies that βq,1  = βq,2 = 0; the q test
assets are not needed for pricing.  Unconditional spanning implies the null hypothesis that E(εt)=0, i.e., returns are
on average correctly priced.  Iterated GMM is used to estimate the discount factor parameters βp,1, and βp,2, and the
Hansen J-statistic is used to evaluate the overidentifying conditions implied by spanning.  This test statistic is
distributed χ2 with degrees of freedom equal to the number of overidentifying conditions.  There are 2n conditions
and 2p parameters, which leaves 2q overidentifying conditions. 

Seven BE/ME- and MVE-sorted portfolios from each country, and 9 portfolios from 2-way rankings (by
MVE and then by BE/ME) are used for the spanning tests.  The construction of BE/ME, MVE, and the portfolios is
described in the Data section.  Three tests are reported for each set of sorted portfolios for each country, each for a
different pair of test assets. 

The table shows the right hand tail probabilities for the unconditional spanning tests.  Tests are based on
GMM criteria at convergence or the tenth iteration, whichever was first.  The GMM estimates are robust to first-
order autocorrelation and heteroskedasticity.  The sample period is 11/83 – 10/94 (T=132) in the USA and CAN,
and 11/86 – 10/94 (T=96) in AUS, DEU, FRA, GBR, and JPN.  Shaded entries are significant at the 5% level. 
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TABLE 3:  Volatility Bounds – Unconditional Spanning Tests

J-Statistic P-Values

Portfolios Test Portfolios
Country Sorted By 1&7 2&6 3&5

AUS 0.083 0.519 0.055
CAN 0.000 0.014 0.030
DEU 0.005 0.254 0.090
FRA BE/ME 0.015 0.739 0.937
GBR 0.000 0.131 0.000
JPN 0.017 0.333 0.045
USA 0.000 0.000 0.684

AUS 0.202 0.671 0.070
CAN 0.058 0.136 0.683
DEU 0.308 0.004 0.008
FRA MVE 0.208 0.390 0.054
GBR 0.001 0.001 0.993
JPN 0.003 0.093 0.514
USA 0.000 0.632 0.147

Test Portfolios
3&7 1&9 2&6

AUS 0.011 0.155 0.058
CAN 2 way 0.379 0.011 0.049
DEU MVE & 0.180 0.001 0.176
FRA BE/ME 0.046 0.816 0.934
GBR 0.001 0.047 0.120
JPN 0.001 0.247 0.070
USA 0.000 0.001 0.276
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NOTES FOR TABLE 4:  
Conditional Spanning Tests with Time-varying SDFs using BE/ME and MVE

as instruments.

Panel A reports right hand tail probabilities of the null hypothesis that θi,j = 0 ∀ I, j, jointly, i.e., the
coefficients associated with BE/ME or MVE, θis, are statistically significant.  Let Rt and Zs,t-1 be n-dimensional
vectors, respectively, of date t returns on n assets and n portfolio specific conditioning variables, s = BE/ME or
MVE, one at a time.  The system that defines the volatility bound for the n assets is,
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where ⊕ represents the Hadamard product.  The SDF is,
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where s = BE/ME, MVE, and  rt=Rt – E(Rt).  To test the null hypothesis that (θI = 0) in the augmented SDF we use
the Wald test; the statistic is χ2-distributed where the degrees of freedom are the number of overidentifying
restrictions (2n). 

Panel B reports right hand tail probabilities from Hansen J-tests of conditional spanning, using BE/ME
and MVE as conditioning information.  Different pairs of assets which are designated test assets q and the
remainder are designated reference assets p; n=q+p.  SDFs formed based only the reference assets (and the
conditioning information) is asked to span (price) the test assets, within statistical tolerance.  Analogous to the
unconditional spanning case, the SDF is decomposed into the test assets and reference assets.  The SDF is given
by,
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The conditional spanning hypothesis (p reference assets are sufficient to span all p+q=n assets) implies
the parameter restrictions, βq,1  = βq,2 = θq,1  = θq,2 = 0, since the q test assets are excluded from the SDF. 
Conditional spanning implies that the average returns of all the assets are correctly priced.  Thus we test the null
hypothesis that the average pricing error is zero for all the assets.  We use the Hansen J-statistic which is
χ2-distributed where the degrees of freedom are identical to those in the unconditional spanning case, and they are
equal to 2q.  Seven BE/ME- and MVE-sorted portfolios from each country, and 9 portfolios from 2-way sorts (by
MVE and then by BE/ME) are used for the spanning tests.  The construction of BE/ME, MVE, and the portfolios is
described in the Data section.  Three tests are reported for each set of sorts for each country, each for a different
pair of test assets.

The GMM estimates are robust to first-order autocorrelation and heteroskedasticity.  The sample period is
11/83 – 10/94 (T=132) in the USA and CAN, and 11/86 – 10/94 (T=96) in AUS, DEU, FRA, GBR, and JPN. 
Shaded entries are significant at the 5% level. 
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TABLE 4:  Time-Varying SDFs.

PANEL A
Joint Significance of the BE/ME and MVE Coefficients in the SDF

Wald Test P-Values

Country Portfolios
Sorted by

Conditional
on BE/ME

Conditional
on MVE

AUS 0.000 0.000
CAN 0.000 0.013
DEU 0.006 0.001
FRA BE/ME 0.000 0.000
GBR 0.000 0.002
JPN 0.001 0.000
USA 0.000 0.501

AUS 0.000 0.000
CAN 0.000 0.000
DEU 0.242 0.002
FRA MVE 0.000 0.270
GBR 0.000 0.002
JPN 0.031 0.000
USA 0.000 0.001

AUS 0.000 0.000
CAN 2 way 0.006 0.068
DEU MVE & 0.005 0.000

FRA BE/ME 0.000 0.000
GBR 0.000 0.000
JPN 0.005 0.000
USA 0.000 0.002
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PANEL B
Spanning Performance of Time-Varying SDFs

Instruments = BE/ME, MVE

J-Statistic Test P-Values

Instruments
BE/ME MVE

Portfolios Test Portfolios Test Portfolios
Country Sorted By 1&7 2&6 3&5 1&7 2&6 3&5

AUS 0.036 0.542 0.043 0.023 0.370 0.072
CAN 0.000 0.005 0.010 0.000 0.002 0.012
DEU 0.010 0.230 0.119 0.025 0.266 0.234
FRA BE/ME 0.028 0.803 0.567 0.026 0.597 0.614
GBR 0.000 0.057 0.001 0.000 0.175 0.001
JPN 0.007 0.384 0.076 0.010 0.557 0.136
USA 0.001 0.000 0.659 0.000 0.000 0.857

AUS 0.071 0.440 0.054 0.009 0.296 0.074
CAN 0.006 0.033 0.673 0.007 0.082 0.462
DEU 0.443 0.007 0.002 0.840 0.011 0.015
FRA MVE 0.289 0.618 0.199 0.201 0.312 0.084
GBR 0.001 0.008 0.978 0.006 0.018 0.878
JPN 0.000 0.241 0.509 0.009 0.092 0.598
USA 0.000 0.755 0.149 0.000 0.790 0.213

Test Portfolios Test Portfolios
3&7 1&9 2&6 3&7 1&9 2&6

AUS 0.007 0.123 0.223 0.004 0.297 0.177
CAN 2 way 0.266 0.007 0.080 0.174 0.005 0.048
DEU MVE & 0.207 0.066 0.425 0.242 0.064 0.466
FRA BE/ME 0.028 0.898 0.821 0.032 0.729 0.983
GBR 0.001 0.073 0.012 0.039 0.074 0.109
JPN 0.003 0.018 0.054 0.044 0.100 0.230
USA 0.000 0.001 0.120 0.000 0.003 0.184
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NOTES FOR TABLE 5:  

Conditional Spanning Tests with Time-Varying SDFs Using BE/ME and
Several Other Instruments One-at-a-Time.

Panel A reports the number of instruments which, when included in the SDF along with the portfolio-
specific BE/MEs result in spanning, at the 5% significance level.  These data are reported for each country, for
each of the 3 portfolio rankings we employ, and for three sets of test assets.  The test assets are listed on the header
of each column.  15 instruments are tested one at a time, so the score in these columns cannot exceed 15. 

The right-hand column reports the “best performing” instrument for each country.  We choose the best
performing instrument by counting the number of instances in which each instrument enables the associated SDF
to span the test assets, only when the test assets are the in-between pair of portfolios (2&6/1&9) or the middle pair
of portfolios (3&5/2&6).  We do not count the spanning performance for the extreme pair (1&7/3&7) because
spanning is rare in those cases. 

The spanning test is very similar to that in Table 4, and it is specified as follows: 
Let Rt and Zt-1 are n-dimensional vectors, respectively, of date t returns on n assets and n portfolio specific BE/MEs.
 Let Vk,t-1 be the kth of the 17 instruments to be considered.  We require the pricing errors of each portfolio to be
orthogonal to their own BE/ME and to Vk.  The system that defines the volatility bound for the n assets is,
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where ⊕ and ⊗ represent the Hadamard and Kroenecker products respectively.  Different pairs of assets are
designated as test assets q and the remainder are designated reference assets p; n=q+p.  We evaluate the ability of
the SDFs, formed only from the reference assets and the instruments, to span the test assets.  The SDF is given by,
(4c)
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where, Zi = BE/MEi of the various portfolios, and rt=Rt - E(Rt).  The conditional spanning hypothesis (p reference
assets are sufficient to span all p+q=n assets) implies the parameter restrictions, βq,1  = βq,2 = θq,1  = θq,2 = 0, since
the q test assets are excluded from the SDF.  To test the null hypothesis, that average pricing error for all the
portfolios is zero, we use the Hansen J-statistic on the constrained SDF; the statistic is χ2-distributed where the
degrees of freedom is 2q, the number of test assets. 

Seven BE/ME- and MVE-sorted portfolios from each country, and 9 portfolios from 2-way sortings (by
MVE and then by BE/ME) are used for the spanning tests.  The construction of BE/ME, MVE, and the portfolios is
described in the Data section.  Three tests are reported for each ranking for each country, each for a different set of
test assets.

The GMM estimates are robust to first-order autocorrelation and heteroskedasticity.  The sample period is
11/83 – 10/94 (T=132) in the USA and CAN, and 11/86 – 10/94 (T=96) in AUS, DEU, FRA, GBR, and JPN.

Panel B reports right hand tail probabilities from the above spanning test.  The columns on the left report
the spanning performance of WDIVPRE in addition to BE/ME.  WDIVPRE is the overall best-performing
instrument.  The columns on the right report spanning performance of the “best” instrument for each country,
when added to BE/ME.  In selecting the “best” instrument we avoided choosing WDIVPRE whenever there was
another equally well-performing instrument, in order to avoid duplication of results.  

To enhance exposition, we report p-values only for the cells where spanning failed with BE/ME, but was
achieved when the instrument was added to the SDF.  Where spanning fails both with BE/ME and BE/ME and the
instrument, we place “***”.  Where spanning was achieved already with BE/ME we place “a.s.”.
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TABLE 5:   Spanning Performance of the Instruments
(The SDF includes BE/ME and the 15 instruments, one at a time)

PANEL A

Number of Instruments That Allow Spanning at the 5% level.

Portfolios Test Portfolios Best Performing
Country Sorted By 1&7 2&6 3&5 Instruments 1

AUS   5 15 10 WDIVPRE, GLINDP
CAN   0   0   0 LINFL
DEU   0 13 12 WDIVPRE, GLINDP
FRA BE/ME   0 15 15 All
GBR   0   8   0 GLM2
JPN   0 15 14 WDIVPRE, TPRE, LSTB
USA   0   0 15 All but LINFL

AUS 10 15   7
CAN   0 11 15
DEU 15   0   0
FRA MVE 14 15 15 same
GBR   0   4 15
JPN   0 14 15
USA   0 15 15

Test Portfolios
3&7 1&9 2&6

AUS   1 12 14
CAN 2 way 14   1 11
DEU MVE & 12   4 15
FRA BE/ME   2 15 15 same
GBR   1 11   2
JPN   2   6 12
USA   0   0 14

Average 3.6/15 9.0/15 11.0/15

1  These are the instruments which most often result in the SDF spanning the test assets, when the tests portfolios are
2&6/1&9 (in-between pair) and 3&5/2&6 (middle pair).  We do not take into account the spanning performance for
test portfolios 1&7/3&7 (extreme pair) because this pair is rarely spanned.
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PANEL B
Spanning Performance of WDIVPRE and the Best Performing Instrument for Each Country2

(BE/ME is included in all the SDFs)

J-Statistic Test P-Values

Instruments:  BE/ME + one variable   
Portfolios Test Portfolios Test Portfolios

Country Sorted By Variable 1&7 2&6 3&5 Variable 1&7 2&6 3&5

AUS WDIVPRE *** a.s. 0.075 GLINDP *** a.s. a.s.
CAN WDIVPRE *** *** *** LINFL *** *** ***
DEU WDIVPRE *** a.s. a.s. GLIINDP *** a.s. a.s.
FRA BE/ME WDIVPRE *** a.s. a.s. GLINDP *** a.s. a.s.
GBR WDIVPRE *** a.s. *** GLM2 *** a.s. ***
JPN WDIVPRE *** a.s. 0.141 LSTB *** a.s. a.s.
USA WDIVPRE *** *** a.s. GLINDP *** *** a.s.

AUS a.s. a.s. a.s. 0.211 a.s. a.s.
CAN *** 0.082 a.s. *** a.s. a.s.
DEU a.s. *** *** a.s. *** ***
FRA MVE Same a.s. a.s. a.s. same a.s. a.s. a.s.
GBR *** *** a.s. *** 0.126 a.s.
JPN *** a.s. a.s. *** a.s. a.s.
USA *** a.s. a.s. *** a.s. a.s.

Test Portfolios Test Portfolios
3&7 1&9 2&6 3&7 1&9 2&6

AUS *** a.s. a.s. *** a.s. a.s.
CAN 2 way a.s. *** a.s. a.s. 0.373 0.113
DEU MVE & a.s. a.s. a.s. a.s. a.s. a.s.
FRA BE/ME Same *** a.s. a.s. same *** a.s. a.s.
GBR *** a.s. *** *** a.s. a.s.
JPN *** 0.086 a.s. *** a.s. a.s.
USA *** *** a.s. *** *** a.s.

2  The best performing instrument is selected from the list in PANEL A.  We chose instruments other than WDIVPRE whenever possible to avoid duplication
with the first three columns.  The designation “***”indicates that the combination was not spanned in Table 4 Panel B and it is still not, while “a.s.” indicates
that it is already spanned, in Table 4 Panel B.  P-values are entered only when a cell was not spanned previously but is spanned now. 
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Figure 1A:  Bars represent average monthly returns, E(R), from seven equally weighted portfolios for each 
country ranked by Book-to-Market (BE/ME ).  The returns of each country are annualized and expressed in 
their own currencies.  The Book Value (BE ) is from the balance sheet reported no later than the end of April.  
It includes shareholders' equity plus balance sheet deferred taxes (for JPN deferred taxes are zero).  Book 
Value is net of goodwill (for CAN, JPN, and USA goodwill is zero).  Market Value (ME ) is the end of April 
price times the last reported number of shares outstanding by that date.  Portfolios for each country are formed 
at the end of each October by ranking firms according to their BE/ME  within that country.  Firms reporting 
negative Book Value at the end of April are excluded from the following October portfolio formation.  Sample 
Period:  11/83 - 10/94 for USA and CAN, and 11/86 - 10/94 for AUS, DEU, FRA, GBR, and JPN.

FIGURE 1A:  AVERAGE RETURN OF BE/ME -RANKED PORTFOLIOS
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Figure 1B:  Bars represent average monthly returns, E(R), from seven equally weighted portfolios for 
each country ranked by Market Value of Equity (MVE ).  The returns of each country are annualized and 
expressed in their own currencies.  Market Value is the end of October price times the last reported 
number of shares outstanding by that date.  Portfolios for each country are formed at the end of each 
October on the basis of the ranked MVE  of firms within their country.  Sample Period:  11/83 - 10/94 for 
USA and CAN, and 11/86 - 10/94 for AUS, DEU, FRA, GBR, and JPN.

FIGURE 1B:  AVERAGE RETURN OF SIZE-RANKED PORTFOLIOS
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Figure 2A:  Bars represent the World Market Betas (ββw ) of seven equally weighted portfolios for each country ranked by Book-to-Market 
(BE/ME ).  Betas are measured by the slope coefficients from a time series regression of monthly excess world returns on portfolio excess returns.  
The world market return to each country is the MSCI world index return converted into local currency using the month-end closing rate.  Portfolios 
for each country are formed at the end of each October on the basis of the ranked BE/ME  of firms within their country.  The Book Value (BE ) is 
from the balance sheet reported no later than the end of April.  It includes shareholders' equity plus balance sheet deferred taxes (for JPN deferred 
taxes are zero).  Book Value is net of goodwill (for CAN, JPN, and USA goodwill is zero).  Firms reporting negative Book Value at the end of April are 
excluded from the following October portfolio formation.  Market Value (ME ) is the end of April price times the last reported number of shares 
outstanding by that date.   Excess returns are computed by subtracting from returns the applicable local one month risk-free rate or equivalent:  AUS - 
average rate on money market; CAN - one month Treasury Bill rate; FRA - call money rate; DEU - call money rate; GBR - one month Treasury Bill 
rate; JPN - call money rate; USA - one month Treasury Bill rate.  Sample Period:  11/83 - 10/94 for USA and CAN, and 11/86 - 10/94 for AUS, DEU, 

FRA, GBR, and JPN.  

FIGURE 2A:  WORLD BETA OF BE/ME -RANKED PORTFOLIOS
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Figure 2B:  Bars represent the World Market Betas (ββw ) of seven equally weighted portfolios for each 
country ranked by Market Value (MVE ).  Betas are measured by the slope coefficients from a time series 
regression of monthly excess world returns on portfolio excess returns.  The world return to each country is 
the MSCI world market index return converted into local currency using the month-end closing rate.  
Portfolios from each country are formed at the end of each October on the basis of the ranked MVE  of firms 
within their country.  Market Value is the end of October price times the last reported number of shares 
outstanding by that date.  Excess returns are computed by subtracting from returns the applicable local one 
month risk-free rate or equivalent:  AUS - average rate on money market; CAN - one month Treasury Bill 
rate; FRA - call money rate; DEU - call money rate; GBR - one month Treasury Bill rate; JPN - call money 
rate; USA - one month Treasury Bill rate.  Sample Period:  11/83 - 10/94 for USA and CAN, and 11/86 - 10/94 
for AUS, DEU, FRA, GBR, and JPN.

FIGURE 2B:  WORLD BETA OF SIZE-RANKED PORTFOLIOS
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Figure 3A:  Bars represent the Sharpe Ratios (SR ) of seven equally weighted portfolios for each country ranked by Book-to-
Market (BE/ME ).  This reward-to-risk measure is the ratio of a portfolio's average monthly excess return to the standard deviation 
of its own monthly return.  Portfolios for each country are formed at the end of each October on the basis of the ranked BE/ME  of 
firms within their country. The Book Value (BE ) is from the balance sheet reported no later than the end of April.  It includes 
shareholders' equity plus balance sheet deferred taxes (for JPN deferred taxes are zero).   Book Value is net of goodwill (for CAN, 
JPN, and USA goodwill is zero).  Firms reporting negative Book Value at the end of April are excluded from the following October 
portfolio formation.  Market Value (ME ) is the end of April price times the last reported number of shares outstanding by that 
date.  Excess returns are computed by subtracting from returns the applicable local one month risk-free rate or equivalent:  AUS - 
average rate on money market; CAN - one month Treasury Bill rate; FRA - call money rate; DEU - call money rate; GBR - one 
month Treasury Bill rate; JPN - call money rate; USA - one month Treasury Bill rate.  Sample Period:  11/83 - 10/94 for USA and 
CAN, and 11/86 - 10/94 for AUS, DEU, FRA, GBR, and JPN.

FIGURE 3A:  SHARPE RATIO OF BE/ME -RANKED PORTFOLIOS
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Figure 3B:  Bars represent the Sharpe Ratios (SR ) of seven equally weighted portfolios for each country ranked by Market 
Value (MVE ).  This reward-to-risk measure is the ratio of a portfolio's average monthly excess return to the standard 
deviation of its own monthly return.  Portfolios from each country are formed at the end of each October on the basis of the 
ranked MVE of firms within their country.  Market Value is the end of October price times the last reported number of shares 
outstanding by that date.  Excess returns are computed by subtracting from returns the applicable local one month risk-free 
rate or equivalent:  AUS - average rate on money market; CAN - one month Treasury Bill rate; FRA - call money rate; DEU - 
call money rate; GBR - one month Treasury Bill rate; JPN - call money rate; USA - one month Treasury Bill rate.  Sample 
Period:  11/83 - 10/94 for USA and CAN, and 11/86 - 10/94 for AUS, DEU, FRA, GBR, and JPN.

FIGURE 3B:  SHARPE RATIO OF SIZE-RANKED PORTFOLIOS
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APPENDIX A

Table A-1.  Jensen-Like Alpha Portfolio Performance.
The panels below contain “Jensen-like” alpha estimates and Wald tests of joint significance for within-country groups

of equally weighted portfolios comprised of firms sorted by Book-to-Market Equity (BE/ME) in Panel 1, firms sorted by Market
Equity (MVE) in Panel 2, and firms sorted first by Market Value (MVE) and then by Book-to-Market Value (BE/ME) in Panels
3A-3C.  There are (7) categories for one-way sortings and (3x3) categories for two-way sortings.  Portfolios are re-formed at the
end of each October.  Market Value (MVE) is the end of October price times the last reported number of shares outstanding by
that date.  For BE/ME, Market Value (MVE) is measured at the end of April.  The Book Value (BE) is from the balance sheet
reported no later than the end of April.  It includes shareholders' equity plus balance sheet deferred taxes (for JPN deferred
taxes are zero).  Book Value is net of goodwill (for CAN, JPN, and USA goodwill is zero).  Firms reporting negative Book
Value at the end of April are excluded from the following October portfolio formation. 

The Jensen-like alphas are from the following modified zero-beta CAPM SURE system estimated separately for each

one- and two-way portfolio sorting in each country: ti
x

twiw
x

tmtmi
x
ti RRR ,,,,,0, εββαα ++++= , where x

tm
x
ti RR ,, , , and x

twR ,  are

respectively excess monthly returns for the ith portfolio, the MSCI local market, and the MSCI world portfolio; this last is
translated into local currency using the month-end exchange rate.  All returns are annualized and expressed in excess of the
local risk-free rate or equivalent:  AUS - average rate on money market; CAN - one month Treasury Bill rate; FRA - call money
rate; DEU - call money rate; GBR - one month Treasury Bill rate; JPN - call money rate; USA - one month Treasury Bill rate. 
The α0 intercept term is the return on the zero-beta portfolio in excess of the risk-free rate.  The αi coefficient is the Jensen-like
alpha, which is the risk adjusted return to the ith portfolio in excess of the zero-beta return.  To identify the system, it is
necessary to choose a portfolio as a reference asset (i.e., α1=0).  The reference assets we chose are: Panel 1, the lowest BE/ME-
sorted portfolio; Panel 2, the largest MVE-sorted portfolio; and Panel 3, the portfolio with the lowest BE/ME and largest MVE
rank.

The Wald tests shown in Panels 1-3 test the hypothesis that the market model correctly prices all BE/ME-, MVE-, and
two way-sorted portfolios (i.e., all Jensen-like alphas by country are zero).  Panel 3 also depicts the joint significance by
country of the Jensen-like alphas for the BE/ME ranks given each MVE rank.  The test statistic is distributed chi-square with
degrees of freedom equal to the number of restrictions.

Sample Period:  11/83 - 10/94 for USA and CAN (T=132), and 11/86 - 10/94 for AUS, DEU, FRA, GBR, and JPN
(T=96).  White-corrected standard errors are used to compute the p-values that are in parentheses.

Panel 1.  Portfolios Sorted by BE/ME (αJ,i)
Country αα0 1-Low

BE/ME
2 3 4 5 6 7-High

BE/ME
All ααJ,i = 0
Wald χχ2(6)

AUS

CAN

DEU

FRA

GBR

JPN

USA

-0.083
(.097)
0.004
(.935)
0.031
(.344)
-0.041
(.162)
-0.077
(.025)
0.006
(.918)
-0.039
(.279)

Ref=0

0

0

0

0

0

0

0.031
(.524)
0.003
(.951)
-0.044
(.164)
0.047
(.195)
0.057
(.001)
0.045
(.015)
0.019
(.249)

0.109
(.068)
0.041
(.331)
-0.007
(.825)
0.050
(.109)
0.089
(.000)
0.052
(.014)
0.024
(.182)

0.106
(.056)
0.052
(.223)
0.015
(.615)
0.118
(.001)
0.103
(.000)
0.069
(.002)
0.054
(.010)

0.069
(.226)
0.073
(.075)
-0.018
(.606)
0.128
(.001)
0.089
(.000)
0.083
(.001)
0.065
(.006)

0.105
(.089)
0.052
(.237)
0.035
(.249)
0.078
(.059)
0.108
(.000)
0.091
(.001)
0.071
(.003)

0.236
(.001)
0.186
(.002)
0.096
(.042)
0.172
(.000)
0.137
(.000)
0.136
(.000)
0.144
(.000)

17.033
(.009)
20.133
(.003)
10.547
(.103)
20.415
(.002)
37.828
(.000)
15.518
(.017)
45.428
(.000)
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Panel 2.  Portfolios Sorted by MVE (αJ,i)
Country αα0 1-Small

MVE
2 3 4 5 6 7-Large

MVE
All ααJ,i = 0
Wald χχ2(6)

AUS

CAN

DEU

FRA

GBR

JPN

USA

-0.005
(.764)
-0.027
(.042)
0.021
(.334)
-0.001
(.965)
-0.005
(.688)
0.002
(.924)
-0.008
(.290)

0.128
(.161)
0.362
(.000)
0.048
(.409)
0.140
(.048)
0.054
(.336)
0.159
(.025)
0.325
(.001)

0.022
(.628)
0.115
(.000)
0.002
(.977)
0.072
(.106)
0.024
(.605)
0.105
(.068)
0.031
(.444)

-0.045
(.350)
0.046
(.089)
0.014
(.767)
0.034
(.359)
0.015
(.717)
0.079
(.136)
0.003
(.911)

0.005
(.905)
0.034
(.136)
0.011
(.797)
-0.001
(.974)
-0.008
(.822)
0.071
(.135)
-0.010
(.727)

0.006
(.879)
0.008
(.713)
0.060
(.126)
0.018
(.602)
-0.004
(.877)
0.052
(.168)
-0.014
(.556)

0.013
(.721)
0.027
(.119)
-0.017
(.638)
0.019
(.548)
-0.014
(.461)
0.033
(.205)
-0.009
(.522)

Ref=0

0

0

0

0

0

0

4.762
(.575)
31.421
(.000)
7.539
(.274)
7.455
(.281)
5.419
(.491)
9.218
(.162)
14.063
(.029)

Panel 3A.  Portfolios Sorted by MVE then by BE/ME:
Small-Cap MVE (αJ,i).

Country αα0 All ααJ,i = 0
 Wald χχ2(8)

1-Low
BE/ME

2 3-High
BE/ME

ααJ,2 - ααJ,1= 0
ααJ,3 - ααJ,1= 0
Wald χχ2(2)

AUS

CAN

DEU

FRA

GBR

JPN

USA

-0.017
(.601)
-0.026
(.272)
0.005
(.899)
0.014
(.603)
-0.042
(.047)
-0.025
(.515)
-0.040
(.061)

19.389
(.013)
61.976
(.000)
9.538
(.299)
19.924
(.011)
39.653
(.000)
23.732
(.003)
48.728
(.000)

0.007
(.920)
0.176
(.002)
0.018
(.671)
0.038
(.455)
0.030
(.517)
0.136
(.014)
0.074
(.110)

-0.013
(.846)
0.189
(.000)
0.019
(.651)
0.057
(.285)
0.067
(.170)
0.157
(.003)
0.104
(.027)

0.203
(.009)
0.289
(.000)
0.117
(.071)
0.187
(.001)
0.135
(.003)
0.178
(.001)
0.154
(.000)

13.925
(.001)
2.431
(.297)
2.976
(.226)
8.809
(.012)
14.834
(.001)
2.116
(.347)
12.735
(.002)
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Panel 3B.  Portfolios Sorted by MVE then by BE/ME:
Mid-Cap MVE (αJ,i).

Country 1-Low
BE/ME

2 3-High
BE/ME

ααJ,2 - ααJ,1= 0
ααJ,3 - ααJ,1= 0
Wald χχ2(2)

AUS

CAN

DEU

FRA

GBR

JPN

USA

-0.093
(.144)
-0.045
(.126)
-0.001
(.971)
-0.059
(.161)
-0.003
(.919)
0.043
(.182)
-0.020
(.383)

0.039
(.377)
0.064
(.013)
0.029
(.511)
0.022
(.577)
0.058
(.087)
0.089
(.015)
0.039
(.124)

0.037
(.510)
0.089
(.003)
0.070
(.111)
0.028
(.561)
0.042
(.121)
0.138
(.001)
0.064
(.012)

5.122
(.077)
25.708
(.000)
2.932
(.231)
6.411
(.041)
9.857
(.007)
11.578
(.003)
16.167
(.000)

Panel 3C.  Portfolios Sorted by MVE then by BE/ME:
Large-Cap MVE (αJ,i).

Country 1-Low
BE/ME

2 3-High
BE/ME

ααJ,2 = 0
ααJ,3 = 0

Wald χχ2(2)
AUS

CAN

DEU

FRA

GBR

JPN

USA

Ref=0

0

0

0

0

0

0

0.022
(.531)
0.018
(.465)
0.017
(.704)
0.003
(.924)
0.045
(.006)
0.058
(.003)
0.032
(.078)

0.053
(.327)
0.029
(.268)
0.062
(.203)
-0.013
(.724)
0.065
(.005)
0.091
(.006)
0.052
(.042)

1.003
(.606)
1.243
(.537)
2.702
(.259)
0.207
(.902)
10.901
(.004)
9.486
(.009)
4.370
(.112)
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APPENDIX B

STOCHASTIC DISCOUNT FACTORS

Hansen & Jagannathan (HJ, 1991) derive restrictions from the Law of One Price (LOP)
that must apply to any stochastic discount factor (SDF) that can price a set of assets.  The LOP
articulates a minimal requirement for market efficiency, that assets with the same payoff structure
sell for the same price.  HJ show how to derive a lower bound on the volatility of SDFs that will
price any specified set of assets.  These SDFs capture all the information available from linear
combinations of asset returns to price average returns exactly.41  There is a single minimum-
variance SDF that will price any set of assets for each possible riskless rate, rf .  Unconditional and
conditional versions of these SDFs can be used to construct “spanning” tests that do not depend
on any specific asset pricing model or distributional assumptions.  Below we discuss the
construction and some important properties of SDFs. 

The basic requirement of an asset pricing model is that prices correctly reflect expected
discounted payoffs.  Stated formally,

(B1a) [ ] ttt PmE =++ 11X , or (B1b) [ ] ntt mE 111 =++R . 

Here Xt+1 and Rt+1 are n×ω matrices of payoffs and returns of the n assets in each of ω possible
states at date t+1, Pt is the n×1 vector of the corresponding prices at date t, mt+1 is the ω×1 vector
of the SDF, and 1n is the n×1 unity vector.  The Law of One Price (LOP), gives the weakest
conditions on m;42 it merely requires that m exist.43  This requirement is met if the second moment
matrix of payoffs E[RR'] is of full rank. 

Under the assumption that the asset returns distributions are ergodic, one can treat every
observation as a realization of a state ω.  This makes it possible to use time series data of returns
to evaluate the expectations in (1b) and to calculate the SDF (Hansen & Richard, 1987).  To
compute the SDF, mc, expand equation (1b) to get,

(B2) [ ] [ ] [ ] [ ] nccc mCovmEEmE 1=+= RRR , or [ ] [ ]
[ ]c

cn

mE

mCov
E

R
R

−
=

1
. 

                                               
41   The SDF is closely related to state prices; its existence does not depend on market completeness.
42   Various asset pricing models can be derived by placing alternative restrictions on the discount factor m.  For
example, the no-arbitrage restriction implies a positive discount factor, m>0 (no negative prices on assets with
non-negative payoffs).  Expected utility models interpret m as the intertemporal marginal rate of substitution
(IMRS), which requires m to be positive, and to be related to consumption through some utility function.  HJ
(1991) provide a method to guarantee m>0.  Stutzer (1993) also provides a functional form that guarantees m>0
consistent with CRRA utility.
43   This requirement rules out profits from re-packaging assets, and it results in prices that are linear in their
payoffs, because payoffs are independent of the initial investment.  See Ingersoll (1987) and Ross (1976). 



56

where m is now a Tx1 random variable mc, and R is a n×T matrix of T observations on n assets. 

The expected SDF,  [ ]E m c rc
f

= = 1 , is the price of a riskless asset.44  Expanding the

covariance and substituting in (2) gives,

(B3) ( )( )( )[ ] ( )E E m c E cc nR R R− − = −1 , 

where the SDF is a linear function of returns, and,

(B4) ( )[ ]m E cc c= − +R R
'
β ,

where βc is an n×1 vector of weights for each asset.  The solution of equation (3) is given by, 

( )[ ]β c n1 E c= −−Σ 1 R , where Σ is the covariance matrix of gross returns.  The SDF, mc,

replicates exactly the sample averages of the included asset returns for any specific risk free rate,
rf.  The SDFs over all possible risk-free rates, rf, form the lower bound on the volatility of all
possible discount factors.45 

                                               
44   The definition of a risk free asset is that it has a unit payoff regardless of the state of the world.  Substituting a
unit payoff vector for the payoff matrix (X) into equation (1a) and taking expectations
E[1mc] = pc = E[mc] = pc =c, and 1/E[m] = 1/pc = rf.
45   The variance of mc is given by, [ ] .)( ''2

cccc mCovm βββσ R=Σ=   The minimum variance property of this SDF, and its

construction from the first two moments of returns data, gives a duality between the Hansen and Jagannathan
bound and the Markowitz mean variance frontier.  The duality between the volatility bound and the mean variance
frontier can be easily illustrated by noticing that the portfolio that composes mc will have the maximal Sharpe Ratio
(i.e., be tangent to the mean variance frontier with intercept equal to the risk free rate) of any candidate SDF (HJ,
1991; De Santis, 1993; Stutzer, 1993). 
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APPENDIX C

ILLUSTRATION OF THE GMM ESTIMATION METHODOLOGY

The parameters of the HJ model are estimated with Hansen’s (1982) Generalized Method
of Moments (GMM).  The GMM objective is to find a set of parameters that obey a set of sample
orthogonality conditions as closely as possible.  The model we label unconditional spanning in
equations (3a,b) with conditioning information is used here for illustration.  First, form the vector
of sample moments from the orthogonality conditions in equation (10a):46

E(εt)=E(εt⊕Zi,t-1)=0 give,

(C1) ( ) ∑
= −







⊕
⊗

=
T

t tst

t
ppppT ZT

ggbbh
1 1,

2,1,2,1,

11
,,,

ε
ε

,

where hT is a 2(n+w) vector of sample moments (i.e., of time-series averages) that dependent on
the estimates bp,1, bp,2, gp,1 and gp,2of the SDF population parameters βp,1 ,βp,2, θp,1, and θp,2.  The
objective is to find a set of parameters that minimize a generic least square quadratic form of
sample moments,

(C2) ( ) ( )2,1,2,1,
'

2,1,2,1,
,,,

,,,,,,min
2,1,2,1,

ppppTTppppT
ggbb

ggbbhggbbh
pppp

w= ,

where wT is a {2(n+w)× 2(n+w)} symmetric weighting matrix that is the inverse of a consistent
estimate of the covariance matrix of orthogonality conditions.  Hansen describes the form of wT

that guarantees estimates to be consistent and asymptotically normal.  Various choices of this
weighting matrix make GMM estimates robust to autocorrelation and heteroskedasticity.47  A
consistent estimate of wT  in the presence of heteroskedasticity is:

(C3)

1

1 1,1

1
−

= −− 
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The minimized value of the objective function Γ* provides a test of the 2(q+w) 48overidentifying

restrictions imposed by spanning in equations (6).  Hansen’s J Statistic, ( )
2
2

* ~ wqTJ += χ , is

distributed chi-square with degrees of freedom equal to the number of overidentifying conditions.
 The J-statistic tests how well the orthogonality conditions are met in the sample. 

                                               
46   The Kronecker product ⊗  (i.e., every element in matrix A times each element in matrix B) is usually used in
the literature.  We use the Hadamard product ⊕  (i.e., every element of a row k in matrix A with every element of
column k of matrix B) because each of our instruments is portfolio specific.
47   The form of wT  without corrections is equivalent to 3SLS if there are overidentifying conditions, and GLS if
there are no overidentifying conditions.  Refer to Newey and West (1987) for optimal choices of wT  in the presence
of autocorrelation and heteroskedasticity that also ensure this matrix is positive definite.  GMM estimates of this
paper are made robust to heteroskedasticity and first order autocorrelation using a Bartlett spectral density kernel
to maintain positive definiteness (reviewed by Andrews [1991]).
48 The number of restrictions tested is always 2 times the number of test assets (2q=4).  The portfolio-specific
instrument w on the test assets is not tested for orthogonality with pricing errors because we seek only to test the
average pricing error not the conditional average pricing error.
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Numerically, GMM estimation proceeds in stages because the objective is a complicated
function of the parameters.  In the first step, a set of parameters are estimated (bp,1, bp,2, gp,1, gp,2

given an identity matrix for wT.  In each of the successive iterations, a new estimate of wT is
computed from the parameters of the last iteration, and new parameters are estimated in turn. 
This process need only continue for two iterations (two-stage GMM), to obtain a consistent
estimate for wT.  However, additional iterations or iterating until a convergence criterion is met,
(iterative GMM), may improve the accuracy of small sample estimates.49 

Ferson and Foerster (1994) provide Monte Carlo evidence that iterative GMM is more
reliable in small samples, especially when estimating larger systems.50  They find two-stage GMM
tends to reject overidentifying conditions (i.e., the model) too often, with this bias becoming more
pronounced in larger systems.  Iterated GMM, while more reliable, has a slight tendency to reject
less frequently than it should.  Surprisingly, the small sample J-statistic from a simple model with
few instruments conforms well to its asymptotic distribution with as few as 60 time series
observations (using either two-stage or iterative GMM).51 

                                               
49   Successive approximation methods, like the one employed here, do not guarantee convergence to a fixed point.
 The results reported here are obtained using iterative GMM. 
50   The authors use a single-latent-variables model to conduct their simulations.  They caution that the results of
Monte Carlo studies are usually sensitive to the model and the artificial data used.  Iterative GMM is also
preferable in the presence of heteroskedasticity (Arellano and Bond, 1991).
51  The smallest model had three instruments (including a constant) and two test assets (df=4).  Parameter
estimates and standard errors also seem unbiased.  As model complexity increases, parameter estimates become
unreliable and standard errors are biased downward in small samples.  However, the J-statistic from iterative
GMM is generally well-behaved. 


