University of New Orleans ScholarWorks@UNO

Electrical Engineering Faculty Publications

Department of Electrical Engineering

1-4-2007

Parallel-slab polarizing beam splitter and photopolarimeter

R. M.A. Azzam University of New Orleans, razzam@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/ee_facpubs

Part of the Electrical and Electronics Commons

Recommended Citation

R. M. A. Azzam, "Parallel-slab polarizing beam splitter and photopolarimeter," Appl. Opt. 46, 292-294 (2007).

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Parallel-slab polarizing beam splitter and photopolarimeter

R. M. A. Azzam

A dielectric-slab polarizing beam splitter (PBS) is described that generates two parallel beams of orthogonal p and s linear polarizations in reflection and functions as a diattenuator in transmission. The plane-parallel slab, which is set at Brewster's angle, is uncoated on one side and has an s-polarization antireflection coating (s-ARC) on the other side. Analytical results are presented for a PBS that uses a high-index slab coated with a low-index single-layer s-ARC, which is particularly suited for the IR. A novel multistage photopolarimeter that uses two such PBSs in series is described as being capable of sequential and simultaneous measurement of all four Stokes parameters of light. © 2007 Optical Society of America OCIS codes: 120.2130, 120.5410, 230.1360, 230.5440, 240.0310.

1. Introduction

Conventional polarizing beam splitters (PBSs) use crystal optics¹ or multilayer interference coatings² to divide an incident light beam into two (p and s) orthogonally linearly polarized beams that travel in different directions. In contrast with these one-to-two PBSs, a one-to-three, dielectric-slab BS is presented that produces two parallel beams of orthogonal p and s linear polarizations in reflection and a third beam in transmission. A multistage complete photopolarimeter that uses two such PBSs in a series is described for the sequential and simultaneous measurements of the first, second, and third normalized Stokes parameters of light using three pairs of detection channels. Previous designs of division-of-amplitude photopolarimeters are briefly reviewed elsewhere.³

2. Parallel-Slab Polarizing Beam Splitter

Figure 1 shows the PBS as a plane-parallel dielectric slab of thickness d_2 and refractive index n_2 whose front surface is uncoated and reflects incident light in air at the Brewster angle, $\phi_B = \arctan(n_2)$. Therefore the first reflected beam (beam 1) from the front surface of the slab is purely *s* polarized. The back surface has an antireflection coating for the *s* polarization (*s*-ARC) at the Brewster angle. Consequently, the light beam reflected from the backside of the slab is

0003-6935/07/030292-03\$15.00/0

purely p polarized and is totally refracted as it exits the slab to air (beam 2) in a direction parallel to the first-reflected beam. There are no higher-order reflected beams. The only transmitted beam (beam 3) has both p- and s-polarized components that have experienced different attenuations in propagating through the slab.

From basic geometrical optics and the Brewster condition, the lateral separation D between the two parallel, orthogonally polarized, reflected beams is given by

$$D = 2d_2/n_2(n_2^2 + 1)^{1/2}.$$
 (1)

The simplest *s*-ARC at the Brewster angle is a transparent single layer of refractive index n_1 and metric thickness d_1 given by

$$n_1 = \sqrt{2}n_2 / (n_2^2 + 1)^{1/2}, \qquad (2)$$

$$d_1 = 0.3536(\lambda/n_1), \tag{3}$$

where λ is the vacuum wavelength of light. The thinfilm *s*-ARC specified by Eqs. (2) and (3) was first proposed in Ref. 4, and applied to selected areas on the *same* (front) side of a dielectric substrate to produce any desired two-dimensional spatial binary polarization patterns in reflected light. A reflected beam with periodic *temporal* binary polarization modulation (between the *p* and *s* states) is also obtained when the same coating (with thickness that alternates between 0 and d_1) is applied to the front surface of a synchronously rotating disk.⁵ It is apparent that a multilayer *s*-ARC can be applied on the backside of the slab, but this is not considered here.

The author (razzam@uno.edu) is with the Department of Electrical Engineering, University of New Orleans, New Orleans, Louisiana 70148.

Received 4 August 2006; accepted 12 September 2006; posted 21 September 2006 (Doc. ID 73787); published 4 January 2007.

^{© 2007} Optical Society of America

Fig. 1. Dielectric-slab PBS. A light beam incident on the slab at the Brewster angle ϕ_B is split into two reflected beams 1 and 2 that are purely *s* and *p* polarized, respectively, and a transmitted beam 3 that has both *p*- and *s*-polarized components. The front surface of the slab is uncoated and the back surface has an *s*-ARC. d_2 is the thickness of the slab, and *D* is the separation of the parallel reflected beams with orthogonal polarizations.

At the Brewster angle, the intensity reflectances of the front and back surfaces of the slab for s- and p-polarized light, respectively, are given by⁴

$$R_{\rm fs} = \cos^2(2\phi_B) = \left[(n_2^2 - 1) / (n_2^2 + 1) \right]^2, \qquad (4)$$

$$R_{\rm bp} = [R_{\rm fs}/(2 - R_{\rm fs})]^2. \tag{5}$$

The corresponding intensity transmittances of the transparent slab for the p and s polarizations are given by

$$T_{\rm p} = 1 - R_{\rm bp}, \qquad T_{\rm s} = 1 - R_{\rm fs}.$$
 (6)

The average reflectance of the slab for incident light with equal p and s components (i.e., light whose first Stokes parameter $s_1 = 0$) is given by

$$R_{\rm av} = (R_{\rm fs} + R_{\rm bp})/2.$$
 (7)

From Eqs. (5) and (7), we obtain

$$R_{\rm av} = (R_{\rm fs}/2) (R_{\rm fs}^2 - R_{\rm fs} + 4) / (R_{\rm fs}^2 - 4R_{\rm fs} + 4). \quad (8)$$

For incident linearly polarized light of azimuth angle α from the plane of incidence (i.e., from the *p* direction), the two reflected beams have equal power when

$$\tan \alpha = (R_{\rm bp}/R_{\rm fs})^{1/2} = (n_2^4 - 1)/(n_2^4 + 6n_2^2 + 1). \quad (9)$$

The overall reflectance of the slab under the condition given by Eq. (9) is

$$R = 2R_{\rm fs}R_{\rm bp}/(R_{\rm fs} + R_{\rm bp}),$$

$$R^{-1} = (1/2)(R_{\rm fs}^{-1} + R_{\rm bp}^{-1}).$$
(10)

As a specific example, for a Ge slab with refractive index $n_2 = 4$ in the IR, we obtain

$$\begin{split} \phi_B &= 75.964^\circ, \qquad D = 0.1213d_2, \\ n_1 &= 1.372, \qquad d_1 = 0.2577\lambda, \\ R_{\rm fs} &= 77.855\%, \qquad R_{\rm bp} = 40.627\%, \\ R_{\rm av} &= 59.241\%, \qquad R = 53.392\%, \\ T_{\rm s} &= 22.145\%, \qquad T_{\rm p} = 59.373\%, \\ \alpha &= 35.844^\circ. \end{split} \tag{11}$$

The film refractive index $n_1 = 1.372$ is close to that of ThF₄ (or BaF₂) at the IR wavelength $\lambda = 10.6 \ \mu \text{m.}^6$

3. On Achieving a Given Average Reflectance Level

Suppose that we wish to have a PBS with a 50% average reflectance. Substitution of $R_{\rm av} = \frac{1}{2}$ in Eq. (8) gives the following cubic equation:

$$R_{\rm fs}^{\ 3} - 4R_{\rm fs}^{\ 2} + 8R_{\rm fs} - 4 = 0. \tag{12}$$

Equation (12) has one acceptable solution⁷:

$$R_{\rm fs} = 0.704402. \tag{13}$$

From Eq. (4), the required substrate refractive index is obtained:

$$n_2 = 3.383.$$
 (14)

This index is very close to that of Si over a broad $(\lambda = 6-12 \ \mu m)$ IR spectral range.⁸ $n_2 = 3.383$ is also the refractive index of GaP at $\lambda = 0.580 \ \mu m$ in the visible.⁹

For an average reflectance $R_{av} = \frac{1}{3}$, a different cubic equation,

$$3R_{\rm fs}^{\ 3} - 11R_{\rm fs}^{\ 2} + 20R_{\rm fs} - 8 = 0, \tag{15}$$

is obtained that yields $R_{\rm fs} = 0.533990$ and $n_2 = 2.53534$. The latter refractive index is that of ZnS at the short wavelength end of the visible spectrum.¹⁰

4. Maximum Difference between R_{fs} and R_{bp}

It is interesting to consider the difference between $R_{\rm fs}$ and $R_{\rm bp}$. For simplicity, $R_{\rm fs}$ is denoted by x. It follows from Eq. (5) that

$$\Delta R = R_{\rm fs} - R_{\rm bp} = (x^3 - 5x^2 + 4x)/(2 - x)^2. \quad (16)$$

Equation (16) shows that $\Delta R = 0$ in the limiting cases of x = 0 and x = 1, hence ΔR must reach a maximum at some value of x between 0 and 1. By setting the derivative of Eq. (16) equal to 0, we obtain yet another cubic equation,

$$x^3 - 6x^2 + 16x - 8 = 0. \tag{17}$$

Equation (17) has one acceptable solution,

$$x = R_{\rm fs} = 0.635344. \tag{18}$$

The corresponding slab refractive index, calculated from Eq. (4), is

$$n_2 = 3.9844.$$
 (19)

This index is essentially the same as that of Ge in the IR. The maximum reflectance difference is given by

$$\Delta R_{\rm max} = 0.373354.$$
 (20)

5. Photopolarimeter Using Two Parallel-Slab Polarizing Beam Splitters

Whereas a conventional PBS splits an incoming light beam into two beams of orthogonal linear polarizations, the parallel-slab PBS shown in Fig. 1 does the same in reflection, *and* provides a third beam in transmission. This makes this PBS particularly suited for Stokes-parameter photopolarimetry.

Figure 2 shows a photopolarimeter that employs two parallel-slab PBSs (PBS1 and PBS2) with a 45° optical rotator (OR) in the middle. (Because of the diattenuation introduced by the slab in transmission, a rotation other than 45° may be optimum.) PBS1 generates reflected beams 1 and 2, and PBS2 produces reflected beams 3 and 4. The 45° optical rotator OR can be a quartz plate, whose optic axis is perpendicular to its faces and parallel to the beam, a twisted-nematic liquid-crystal cell, or a magneto-optic Faraday rotator. Alternatively, one can do without this OR by rotating the plane of incidence for light reflection at PBS2 by 45° with respect to the plane of incidence for light reflection at PBS1. By use of the Mueller calculus,¹¹ it can readily be shown that detection of light beams 1 and 2 can be dedicated (and calibrated) to determining the first normalized Stokes parameter s_1 . Likewise, detection of light beams 3 and 4 can be dedicated to determining the second normalized Stokes parameter s_2 .

Fig. 2. Photopolarimeter that employs a cascade of two parallelslab PBSs (PBS1 and PBS2) with a 45° optical rotator OR in the middle. PBS1 generates reflected beams 1 and 2, and PBS2 produces reflected beams 3 and 4. Detection of light in dual channels 1 and 2 and in dual channels 3 and 4 determines the first and second normalized Stokes parameters, respectively. The last stage, that consists of a quarter-wave retarder (QWR) followed by a conventional PBS (PBS3), produces beams 5 and 6, whose detection enables the determination of the third normalized Stokes parameter.

If the incoming light is totally polarized (which is often the case in ellipsometry¹¹), the remaining third normalized Stokes parameter s_3 is obtained by

$$s_3 = \pm (1 - s_1^2 - s_2^2)^{1/2}.$$
 (21)

Therefore operation of this photopolarimeter is similar to that of the widely used rotating-analyzer ellipsometer but with no moving parts.

To measure the third normalized Stokes parameter s_3 independently (which is essential if the input light is generally partially polarized), a third stage is added to the photopolarimeter as shown in Fig. 2. It consists of a quarter-wave retarder (QWR) followed by a conventional PBS PBS3. Detection of light beams 5 and 6 enables the measurement of s_3 , given that s_1 and s_2 are already determined by the first two stages of the polarimeter. To the best of my knowledge, this is the only division-of-amplitude photopolarimeter in which the first, second, and third Stokes parameters are determined separately and simultaneously.

6. Summary

A novel parallel-slab polarizing beam splitter is described that splits an incoming light beam into two reflected beams of orthogonal p and s linear polarizations and a third transmitted beam that retains both the p and s components. A detailed analysis of the essential features of this design is presented. A novel photopolarimeter that consists of two such beam splitters in succession, plus a circular-polarization detector, is realized in which the first, second, and third normalized Stokes parameters of input light are measured separately and simultaneously by three dual channels of orthogonal polarizations.

References

- H. E. Bennett and J. M. Bennett, "Polarization," in *Handbook* of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, 1978), Chap. 10.
- 2. J. A. Dobrowolski, "Optical properties of films and coatings," in *Handbook of Optics*, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Chap. 42.
- R. M. A. Azzam, "Recent developments of division-ofamplitude photopolarimeters," in *Polarization Analysis and Applications to Device Technology*, T. Yoshizawa and H. Yokota, eds., Proc. SPIE **2873**, pp. 1–4 (1996).
- R. M. A. Azzam, "Division-of-wavefront polarizing beam splitter and half-shade device using dielectric thin film on dielectric substrate," Appl. Opt. 23, 1296–1298 (1984).
- 5. R. M. A. Azzam, "Binary polarization modulator: a simple device for switching light polarization between orthogonal states," Opt. Lett. **13**, 701–703 (1988).
- M. E. Pedinoff, M. Braunstein, and O. M. Stafsudd, "Refractive indices of IR materials: 10.6 μm ellipsometer measurements," Appl. Opt. 16, 2849–2857 (1977).
- J. J. Tuma, Engineering Mathematics Handbook, 3rd ed. (McGraw-Hill, 1987).
- E. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 566–567.
- E. Palik, Handbook of Optical Constants of Solids (Academic, 1985), p. 459.
- 10. II-VI Inc., Saxonburg, PA 16056.
- 11. R. M. A. Azzam and N. M. Bashara, *Ellipsometry and Polarized Light* (North-Holland, 1987), Chap. 2.