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Abstract 

 Modern smartphones integrate ubiquitous access to voice, data, and email 

communication and allow users to rapidly handle both personal and corporate business 

affairs. This is possible because of the smartphone’s constant connectivity with the 

Internet. Digital forensic investigators have long understood the value of smartphones 

as forensic evidence, and this thesis seeks to provide new tools to increase the amount 

of evidence that one can obtain and analyze from an Android smartphone. Specifically, 

by using proven data carving algorithms we try to uncover information about the 

phone’s connection to wireless access points in a capture of the device’s volatile 

memory.  
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Chapter 1 - Introduction 

1.1 Motivation 

 Modern smartphones such as the Apple iPhone and Google Android handsets 

are powerful handheld computers that have become an everyday part of many 

people’s lives. These devices are often by our side at all times, all the while handling 

vast amounts of data. In a criminal investigation this data becomes evidence and it is 

up to digital forensics analysts to retrieve and examine as much of it as possible.  

 In order to inspect or even obtain evidence from a smart phone, an investigator 

must have a large arsenal of tools at his or her disposal. The development of these 

tools is still largely driven by research-grade work done in academia, and this has 

created a race among forensics researchers to design tools and methodologies to 

investigate smart phones as evidence. This initiative to find, acquire, and study as much 

evidence as possible hidden in a smart phone is what motivated this work. 

1.2 Android Operating System 

In this honors thesis, we will concentrate on the examination of Android devices 

exclusively for a number of reasons. First, Android devices have a majority share of the 

mobile market [1]. Secondly the Android operating system is built on a slightly modified 

Linux kernel. This gives an added bonus that any tool designed for use on an Android 

device can, with some modification, be used on a Linux computer. This importance will 

be revisited in chapter 4. Finally, Android devices were made available by the Greater 
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New Orleans Center for Information Assurance (GNOCIA) at the University of New 

Orleans, where the research was conducted. 

1.3 Contributions 

The work in this thesis provides a step forward in increasing the amount of 

evidence that one can obtain and analyze from an Android smartphone. The goal of 

this research was, given only a context-free memory image from an Android device, to 

identify which wireless network access points the device was near when the image was 

taken. This information could also lead investigators to geolocate where the device was 

when the image was taken. 

 This thesis makes two contributions to the field of Android device forensics. 

First, it provides two new toolsets to an investigator to obtain and analyze Android or 

Linux kernel network structures in memory dumps. These tools will be discussed in 

detail in chapter 3. Secondly, the investigation that went into developing these tools 

has provided interesting insight into the utility and limitations of using the method 

described in this thesis. As with most research in the field of smartphone forensics, 

there were a number of difficulties and limitations that make these tools useful under 

most, but not all, investigative scenarios. The particulars of these limitations are also 

discussed in chapter 3.   

1.4 Organization 

 The remainder of this thesis is organized into five additional chapters. Chapter 2 

will cover other works related to network structure carving and memory forensics. 
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Chapter 3 will detail the investigation undertaken to develop our forensic tools to aid 

an investigator in discovering wireless network data in a memory capture. Chapter 4 

will discuss some limitations which were faced while developing these tools. Results 

from testing the forensic tools against actual memory images taken from both a Linux 

workstation and a Droid2 smartphone will be shown in chapter 5. Finally, chapter 6 will 

conclude and list future goals related to this research. 
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Chapter 2 – Related Works 

2.1 Network Structure Carving 

 A similar approach to a different problem set was undertaken by Beverly et. al. 

[2]. In [2] the authors attempted to gain information about the network activity of a 

target computer. To do this, the authors used data carving techniques to find, extract, 

and analyze IP packets, socket structures, and ethernet frames from non-volatile 

storage devices. In the process they found that a large amount of contextual 

information about the machine could be determined such as local ethernet settings, 

geolocation, and conversations with remote machines. 

 The work in [2] was later extended by Gregory Cardwell (one of the original 

authors) and applied to the Android smartphone’s storage devices [3]. Again the author 

focused on finding network metadata in the device’s non-volatile storage. Because of 

the many similarities between Android smartphones and modern computers, the same 

approach from [2] works in [3], and again allows the author to discover network 

artifacts in the non-volatile storage of Android devices. 

  The main difference between their work and this research is that [2] and [3] 

primarily rely on structures created during a conversation between the target 

computer and other machines. This introduces a high probablilty of false negatives (i.e. 

entirely missing a network device because it did not communicate recently with the 

target). In contrast, our work relies on information that is constantly maintained by the 

kernel and wireless NIC drivers in an Android operating system. Thus if the phone can 
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detect a wireless access point (i.e. which it has stored in the device’s memory) then our 

implementation will be able to find it. 

 Additionally, our work differs from theirs in the storage medium that we are 

interested in. In [2] and [3] the authors chose to apply their structure carving technique 

to only non-volatile storage such as hard disk images, hibernation files, and swap files. 

Again, we believe that this leads to a high probablilty of false negatives. This is because 

it is possible that all IP packets and ethernet frames for a given network conversation 

do not get written to a non-volatile storage device. In this scenario, the approach taken 

in [2] and [3] would be unable to detect that the conversation took place. In this 

research we focus on searching snapshots of an Android device’s volatile memory for 

the kernel structures of interest. If the structures exist then they must be in the 

device’s memory and so they are guaranteed to be found in that snapshot. 

 The final difference between the two cited works and this thesis is the scope of 

the investigation. The authors of [2] and [3] are primarily interested in finding network 

metadata associated with network conversations between two machines. The scope of 

our investigation is much smaller, but more detailed. The goal of this research is to 

identify the wireless access points that the device was in contact with when the 

memory image was taken. 

2.2 Mobile Memory Forensics 

 The research done for this thesis was made possible by the prior Android device 

forensics conducted at the University of New Orleans and the Greater New Orleans 

Center for Information Assurance. Specifically, the research done in [4] was the first 
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known successful process for extracting a copy of physical memory from an Android 

device. Without this work, there would be no reliable method for obtaining a copy of 

physical memory and so this research would only be applicable to Linux computers 

with wireless NICs. 

 All captures of physical RAM (from both Android devices and Linux computers) 

were obtained using dmd [4]. This tool inserts a simple kernel module into the running 

Android/Linux kernel and copies the contents of physical memory out to a file. This file, 

containing a copy of the physical memory, is then used for analysis.  

Also demonstrated in [4] is some basic analysis of Android memory images 

using the Volatility framework [5], but this was mainly done to demonstrate the 

functionality of dmd as a memory extractor. This research should be considered an 

extension of the analysis shown in [4] because we focus instead on providing tools to 

extract additional information from a memory image – information that has not, until 

now, been recoverable. 

 The only other known tool which is capable of analyzing Android kernel objects 

in memory captures is Volatilitux [6]. This program provides only limited analysis 

capabilities such as enumeration of running processes, memory maps, and open files. It 

does not include the functionality to display network information of any kind. One 

main contribution of this thesis is a plugin that implements the carving of wireless 

access point data and adds this to the already extensive functionality of the Volatility 

framework [5].  
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2.3 Volatile Memory Forensics 

 In the last few years, the amount of research being done in the analysis of 

volatile memory has grown exponentially. To attempt to cover even a fraction of this 

research would be beyond the scope of work related to this thesis. For this reason we 

choose to only include the work done in this field that is directly used in this thesis. 

 The Volatility framework [5] is a program (more specifically, a collection of 

programs) that allows for easy analysis of memory captures. The primary advantage of 

using the Volatility framework is its division of duties. Volatility allows plugins to 

implement certain analysis functionality independent of the memory image specific 

details. This allows a plugin, for example, to be written to analyze Linux memory 

captures without the knowledge of which specific version of Linux will be inside the 

memory image. Volatility also allows users to design “address spaces” for different 

platforms. This allows the Volatility framework to handle, parse, and run its plugins on 

memory captures from a new Linux kernel version, for example. 

 One contribution of this thesis is a Volatility framework that finds, carves, and 

analyzes wireless access point data from an Android/Linux memory image. Because 

Android is built on a regular Linux kernel, the plugin for Volatility will work without 

modification on both platforms. A user would only need to implement a new “address 

space” for a given phone or Linux distribution.  
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Chapter 3 – Implementation 

3.1 Methodology 

 The primary goal of this research was, given only a context-free memory image 

from an Android device, to identify which wireless network access points the device 

was near when the image was taken. To do this we first needed to find how that 

information gets into the device’s RAM.  

 We began by reviewing the Linux kernel source that handles requests by 

processes for wireless access point data. It turns out that this is an I.O. control (ioctl) 

function call against an internet socket handle. This ioctl function call switches into 

kernel context, traces through the higher level socket I.O. control code, and finally calls 

down into the Wireless Extensions [7] [8] I.O. control handling code. The exact kernel 

code flow is shown in Figure 8 in Appendix A. 

 The ioctl function of interest is called on an internet socket handle with a 

command argument of SIOCGIWSCAN (corresponding to hexadecimal value of 

0x8B19) and a pointer to a caller supplied buffer to fill with the wireless access point 

data. The full list of possible ioctl function commands that Wireless Extensions can 

handle is listed in wireless.h [9] from the Linux kernel source, but SIOCGIWSCAN in 

particular is the command for “get scanning results” as documented in [9]. 

 When the ioctl function finally calls down to the 

ioctl_standard_iw_point function in wext_core.c [10]from the Linux kernel 

source, the request is handed off to driver specific code. The driver specific code is then 

http://lxr.linux.no/linux+v2.6.38.8/+code=ioctl_standard_iw_point
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tasked with filling a kernel supplied buffer with the wireless access point data that has 

been detected by the device’s most recent scan. Since potentially every different 

Android device could have a different wireless NIC driver we do not assume access to 

or knowledge of how the request is handled beyond the 

ioctl_standard_iw_point function. However, we do not need to be concerned 

with the driver specific implementation that handles this request. This is because the 

kernel expects the answer from the driver to be in a predefined, specific format. 

Additionally, once the kernel receives its answer from the driver, the same format is 

expected by the process that originally invoked the ioctl function call. 

 This specific format that the driver uses to return its answer is a combination of 

kernel objects. The outermost object is the buffer that the kernel passes into the driver 

specific request handling function. This is referred to as char* stream in the code 

and so we will refer to it as “the stream” in this thesis. The stream is then loaded by 

calls to the iwe_stream_add_event or iwe_stream_add_point functions1 in 

iw_handler.h [11] from the Linux kernel source. 

Starting at the beginning, the stream is filled with iw_event objects. An 

iw_event (defined in wireless.h [9]) is a structure that contains three fields, in this 

order: a length, a command, and the data. The length field contains the entire length in 

bytes of the iw_event. The command field contains a command from the list given in 

wireless.h [9]. Some possible values of this field are SIOCGIWFREQ which 

                                                           
1
 We ignore the iwe_stream_add_value function because not only does its use make that iw_event 

impossible to parse, but also we never found it called in any drivers used in this experiment. Perhaps this 

is because the function is commented by “Be careful, this one is tricky to use properly” [10]. 

http://lxr.linux.no/linux+v2.6.38.8/+code=ioctl_standard_iw_point
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corresponds to “get channel/frequency (Hz)” or SIOCGIWAP which corresponds to “get 

access point MAC addresses.” The final field is the data field, more specifically this field 

is an iwreq_data object (defined in wireless.h [9]). This field can contain a large 

number of concrete values, but luckily for us the type of this field’s data is governed by 

the preceding command field. For the previous examples: If the command field 

contained SIOCGIWFREQ then the iwreq_data object would be of type iw_freq (a 

simple object defined in wireless.h [9] that describes a wireless broadcast/scanning 

frequency. If the command field contained SIOCGIWAP then the iwreq_data object 

would simply be a string of characters containing the access point’s MAC address. 

Figure 1 contains a depiction of how a stream would look once it has been filled by the 

driver. 

These iw_event objects are placed one after another (with no space in 

between) inside the stream until either the stream is full or the driver has described all 

the features of every access point it has detected. In the former case (the stream gets 

filled) the driver will return the E2BIG error code. If all the iw_event objects fit inside 

the stream then the driver returns the stream to the kernel full of data. The kernel then 

copies the stream from its buffer into the buffer supplied by the process to the original 

ioctl function call. This discovery is of significant value because we now have two 

potential copies of the data that we want to carve in memory. 
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Figure 1. iw_event stream in memory. 

 

3.2 Design 

 Once we figured out the structure of the stream, we could then design an 

algorithm to find and carve the structure out of memory images. The algorithm needs 

to find the streams in memory by finding and validating consecutive iw_event 

objects. If enough iw_event objects are found one after another in a consecutive 

block of memory then it would be considered a stream and the collection of iw_event 

objects is carved out of the memory image. This should be generic enough to handle 

streams of iw_event objects without prior knowledge of which types of iw_event 

objects the driver had added to the stream. 

 The process begins with scanning the memory image in 16 bit increments. 

These segments must be within the range of possible iw_event commands. If the 

segment is not, then the next 16 bits are checked. Once a segment of the memory 

image is found within that range, then the preceding 16 bits are tested to be between 

the minimum and a maximum possible length for an iw_event object. If these two 

checks pass then the section of memory is considered a possible iw_event object. For 

example: If the scanner finds a section of memory at address Y that contains the value 

0x8B1B (corresponding to SIOCGIWESSID, commented as “get ESSID”) then the 
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scanner checks that the value of the section at Y - 2 bytes is between 5 and 60 (5 is the 

smallest an iw_event object can be and 60 is a configurable upper bound). If the value 

at address Y - 2 is within range then everything between addresses Y - 2 and Y - 2 + 

value(Y - 2) is carved out and considered a possible iw_event object. 

 Once a possible iw_event object is found, the algorithm uses the command 

field to look up the appropriate validation code. These functions all check that the 

iwreq_data object in the possible iw_event object is valid. For the example above: 

The command is SIOCGIWESSID, so the iwreq_data object should be a string 

containing the ESSID associated with the wireless access point. This string is extracted 

easily since it must be in the memory between addresses Y + 2 bytes (just past the 

command field) and Y - 2 + value(Y - 2) (the end of the iw_event object). Then, each 

character in the string is checked to be in the range of printable characters2. If those 

tests pass then the given iw_event object is considered valid. 

 If a possible iw_event object is found to be valid then we have a possible 

beginning of a stream. If the validated iw_event object begins at memory address X 

then the algorithm increments to address X + value(X) and checks for another 

iw_event object3 4. This process repeats until the current iw_event object of interest 

is considered invalid. If enough iw_event objects in a row are found to be valid then 

                                                           
2
 We also allow for nulls and a few other values to accommodate string termination, etc. 

3
 Note that if the iw_event object begins at address X then the first 16 bits at address X contain the 

length field for that iw_event object. 

4
 In reality the algorithm jumps to address X + value(X) + 2 in the memory image and recursively calls the 

checking function. The “+2” is because that function will be first looking for valid iw_event commands. 



13 

 

the entire group is considered a valid stream. This stream is carved from the memory 

image and displayed to the user. Figure 2 contains pseudocode for the algorithm 

described in this section. 

 

Figure 2. Pseudocode Algorithm. 

3.3 wext_stream_scan plugin 

 The first implementation of our algorithm was a plugin for the Volatility 

framework [5] named wext_stream_scan. Implementing the algorithm as a plugin 

first was extremely helpful because it provided an easy to write proof of concept5 to 

verify that the algorithm worked and also allowed for any minor implementation 

                                                           
5
 Volatility plugins are written in Python 2.x 
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changes to be tested. Additionally, because the Android operating system is built on 

the Linux kernel, we were able to test our plugin against a variety of memory captures 

from Linux computers that we had previously analyzed with Volatility. 

 The format of Volatility plugins made it easy to adapt our algorithm to fit the 

framework’s required plugin interface. By default a plugin must export a calculate 

and a render_text6 function. The render_text function is (as the name suggests) 

simply a means of displaying in a human-readable form any output that the program 

determines is valid. An investigator would then need to analyze this output for false-

positives or potentially important evidence. 

In the calculate procedure, we used the built in Volatility Scanner object to 

quickly walk through the memory image looking for possible iw_event commands at 

each legitimate memory address. We did this by overloading the Scanner’s check 

function (which takes an offset in the memory image as a parameter) to perform our 

algorithm. Specifically, we performed the validation on the command and length fields 

to find a possible iw_event object at the given offset. If those checks passed, we then 

used the command field to index into a dictionary of functions to find the appropriate 

validation procedure for the data field of the iw_event object. In the event that an 

iw_event object is validated at a given offset we then continue to check the offsets 

immediately after the end of the previously verified iw_event object. If the 

                                                           
6
 Volatility can accept rendering functions for other data types besides “text”, but we only needed to 

display textual answers. 
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implementation finds and verifies a steam of iw_event objects then it returns a 

boolean True to the Scanner and that offset is marked for rendering. 

To simplify the manual inspection of wext_stream_scan’s output that a 

forensic investigator would have to perform, we designed a second plugin. The second 

plugin, named wifi_mac_list, will perform the same validation to find iw_event 

streams, but will only render the wireless access point’s MAC - hence the name. By 

contrast the output of wext_stream_scan will list all information that can be gleaned 

from the carved iw_event streams. 

3.4 iwe_pull and iwe_carve 

 After verifying that our algorithm worked as expected7, we then developed two 

more tools - iwe_pull and iwe_carve.  

 iwe_pull, a small (~140 lines) C program, was designed to aid an investigator 

with devices (either Linux machines with wireless NICs or Android devices) that would 

later be analyzed for wireless access point data. Because of the limitation discussed in 

chapter 4 section 1, an investigator may want to improve the quality of a memory 

capture before analysis. The tool guarantees that, with as much certainty as possible, 

at least one copy of the most current Wi-Fi access point information is contained in 

memory. Assumably this tool would be run immediately before taking a snapshot of 

the device’s physical memory contents. Two scenarios were considered when designing 

this tool and they are described below. 

                                                           
7
 … and running into the limitation described in chapter 4 section 1 
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 First, an investigator is faced with a time sensitive investigation of a device. In 

this type of environment, he or she would want to save as much information as 

possible to analyze later before losing physical access to the device in question. It is 

common practice for an investigator to have on hand at all times a number of 

investigative tools and we envision that iwe_pull will be one of them. Rather than 

spending valuable time to mark which wireless access points the device was in contact 

with, an investigator could simply run iwe_pull (and possibly other similar tools) to 

very rapidly fill the device’s memory with as much valuable evidence as possible. This 

would be followed immediately by capturing a copy of the device’s physical memory. 

Note that these tools (including iwe_pull) are not producing any evidence that was 

not already contained in the operating system; they are simply making investigation of 

the device faster by allowing an investigator to save the information in a memory 

image and recover it  at a later, less stressful, time. 

 Second, an investigator may be unsure whether any complete and up-to-date 

iw_event streams are contained in memory. Indeed it may be the case that the device 

has not generated an iw_event stream (as a result of the function calls described in 

section 1 of this chapter) in a considerable amount of time. Additionally, rather than 

having to locate and document a device’s wireless access point information for the 

specific device being investigated (which could range from a Linux laptop to an Android 

smartphone to an Amazon Kindle Fire) an investigator could simply run iwe_pull to 

place a copy of the most current Wi-Fi access point information in the device’s 
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memory. Again the investigator could then use one of our tools to extract the wireless 

access point data from the memory image at a later time. 

 Note that using iwe_pull to improve the quality of a memory capture is in no 

way creating new evidence. It is simply making the information that is already 

contained in the kernel easier to find during later analysis. In fact, it is nearly impossible 

to find this information if it is not organized into iw_event streams because this data 

is normally held in driver specific data structures. Should the investigator be in a 

situation where running iwe_pull is not possible (e.g. a previously acquired memory 

capture) then our analysis tools will still be able to find the evidence contained in the 

memory image. Additionally running iwe_pull will only make the most current 

wireless access point information easier to find in memory. Our forensic tools will 

always be able to find any legacy information (i.e. left over from past calls to the 

functions described in section 1 of this chapter) regardless of if iwe_pull was run on 

the device. 

 iwe_carve is an implementation of our algorithm as a standalone C program. 

This program is designed to give the same functionality as the Volatility plugin, but 

without needing the memory image to work with the other features of Volatility 

(which, as described in chapter 2 section 3, would require the implementation of an 

“address space” if one is not already available for the kernel version within the memory 

image). iwe_carve also gives an investigator the benefit of being able to work on any 

file, not just memory images. Conceivably an investigator may find iw_event streams 
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in a swap or hibernation file8. 

 iwe_carve‘s implementation is similar to our wext_stream_scan plugin, 

but differs in two main ways: it, obviously, cannot use any of the built-in functionality 

of the Volatility framework and it has the advantage of being able to include the C 

header files that define many of the constants being used in the kernel’s code. Again 

we use the fact that the Android operating system is built on a nearly identical copy of 

the regular Linux kernel. 

iwe_carve begins by rapidly reading through the input file scanning for 

possible iw_event commands. Then when a possible iw_event object is found, 

switch cases are used to appropriately examine the data field of the possible 

iw_event object. Like in our wext_stream_scan plugin, if the first possible 

iw_event object is found to be valid then the program continues checking at the 

address immediately after the end of the newly validated iw_event object in an 

attempt to find a stream. If a stream is found then the program will output its contents 

for an investigator to review. 

                                                           
8
 Though we did not test this for this thesis. 
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Chapter 4 - Limitations 

4.1 iw_event streams in memory 

One main limitation of our approach is the availability of iw_event streams in 

memory on an arbitrary device. As noted in chapter 3 section 1, iw_event streams 

are produced by an ioctl function call with a command argument of 

SIOCGIWSCAN. This command argument corresponds to the “get scanning results” 

handler code. Unfortunately for our research, this is not the only way for a process to 

query wireless network information.  

As we mentioned in chapter 3 section 1, wireless.h [9] from the Linux kernel 

source defines the full list of possible ioctl function commands that Wireless 

Extensions can handle. The benefit of the SIOCGIWSCAN command is that all the 

known wireless network information is returned, but most of these can be used as a 

command argument to the ioctl function to query just one piece of the wireless 

network device’s information. The problem that these other commands pose to our 

research is that their returns are not in a predefined, specific format.  

These other commands only query the NIC driver for one specific piece of 

information, and so the information returned from that query is simply the raw data 

that the process asked for. For example, a process can call the ioctl function against 

an internet socket and with a command of SIOCGIWAP which corresponds to “get 

access point MAC addresses.” The buffer supplied to the ioctl function would then 

be filled with just the hexadecimal values of the access point’s MAC address. Obviously, 
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this type of data (without any significant formatting or characteristics) cannot be found 

in or carved from a memory image without prior knowledge of its value. 

The bigger problem that these alternate ioctl commands pose is that we have 

found that they are more commonly used than SIOCGIWAP. We performed a manual 

code review of two common programs where one would expect wireless network 

information to be queried: the Linux NetworkManager [12] component and the 

Android operating system’s WPA_supplicant [13]. We found that both of these 

programs used individual ioctl function calls to retrieve each piece of the wireless 

network information that they display. 

This limitation was overcome by implementing iwe_pull to allow an 

investigator to place a copy of the most current iw_event stream in memory. 

Additionally, we found that there is a high level of determinability when scanning for 

iw_event streams (because of the multiple dependencies between the fields in the 

structures). Thus even if an investigator does not get a chance to run  iwe_pull on a 

target machine, he or she can be assured that if a stream is in memory then our 

algorithm will be able to find it. 

4.2 Volatility framework 

 One limitation that we faced when testing our design was that the Volatility 

framework’s support for memory dumps taken from ARM processors is still 

experimental. This made it very difficult to develop “addresses spaces” for the Android 

smartphones that we were testing with. As a result we were only able to test our 

Volatility plugin on memory images taken from a laptop computer running Ubuntu 
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Linux and a Linux desktop with a WI-FI USB adapter. 

 Analysis of memory captures taken from our Android smartphones was done 

using iwe_carve. We also performed analysis of the Linux computer’s memory 

images with iwe_carve to ensure that both implementations of our algorithm 

produced identical results. 

4.3 Methodology and Testing 

 Another challenge we faced both while developing our algorithm and testing it 

was the limited options we had for kernel analysis. As is obvious from chapter 3 section 

1, the information that we are interested in (specifically iw_event streams) is created 

and handled in the operating system kernel. Therefore, when beginning our analysis we 

had to inspect how the Android operating system kernel handles requests by processes 

for wireless access point data. This would generally be very easy thanks to virtualized 

kernel debugging (the process of debugging a running kernel inside a virtual machine 

from a gdb instance on the host machine). However, we ran into multiple problems 

with this approach. 

 The Android emulator [14], which is basically a virtual machine running a 

specially modified Android kernel, does not support Wi-Fi access. In fact, the emulator 

does not even emulate a NIC card for the virtual device, and instead it treats the host’s 

Internet connection (regardless of if that connection is wired or wireless on the host) as 

its own internet connection. Thus, any analysis or testing that we performed on the 

Android emulator was useless as the kernel did not support wireless networking. 

 The kernel debugging savvy reader may think (as we did) that the obvious next 
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step is to debug a physical, live phone via a USB cable. This would have been a perfect 

solution, but would have required recompiling the phone’s kernel and using the new 

kernel on the debugged phone. This would turn out to be impossible since the Droid2 

smart phones that we were using have signed boot loaders and boot partitions. This 

meant that any changes to boot loader (such as a using a different kernel) would cause 

the signature to change and so the phone would refuse to boot. 

 In the end, we again relied on the fact that the Android operating system is built 

on a regular Linux kernel. We used virtual debugging on a virtual machine running 

Ubuntu Linux then verified via manual code inspection that our findings would be the 

same for the Android operating system. 
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Chapter 5 – Results 

5.1 Acquiring Viable Memory Captures 

The first step in evaluating the functionality of our algorithm was to collect 

viable memory captures. These memory captures would serve as test evidence as if it 

had been collected in a digital forensics investigation. This was done, as mentioned in 

chapter 2 section 2, using dmd [4].  

To use dmd, one must first compile it (it being a kernel module) using the target 

kernel source. For our analysis of an Android smartphone, we used the Droid2 given to 

us by GNOCIA which was running Android 2.2 with the 2.6.32.9 kernel. Luckily, previous 

researchers from the University of New Orleans were able to give us a copy of the 

kernel source (because Motorola has removed it from its open source repositories). We 

used a virtual machine running Ubuntu 11.04 Linux with a 2.6.38-8 kernel as our Linux 

evidence device and acquired that kernel’s source easily. 

Once dmd was compiled and working on our test devices, we could begin taking 

memory captures. In order to ensure that evidence (specifically iw_event streams) 

would be present in memory when we took our memory images, we also needed to 

compile iw_pull for both the Linux computer and Droid2 smartphone. This was 

considerably simpler that compiling dmd because Google provides the toolchains 

necessary to compile usermode programs for use with the Android operating system 

on ARM processors. Figure 3 shows the output from executing iw_pull on the Droid2 

evidence smartphone. Now able to capture memory images that were guaranteed to 

contain iw_event streams, we then tested our analysis tools. 
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Figure 3. iwe_pull on Droid2. 

 

5.2 Analysis of Memory Captures 

 First the wext_stream_scan plugin was used to find and analyze any 

iw_event streams in the Linux evidence computer’s memory image. This produced a 

very large output with, as expected, multiple copies of the iw_event stream in 

memory (recall that the kernel will copy its buffer into the user-space buffer). Part of 

this output is shown in Figure 4. This output was verified by checking the information 

found in the memory dump against wireless network information found by other 

(control) devices9 in the same area. All the information matched between the devices 

and the carved iw_event streams. 

Because the output of wext_stream_scan was very detailed and an 

investigator may not care to know a lot of the information contained in the iw_event 

stream (for example the channel frequency is unlikely to be of much evidentiary value) 

we designed and then tested the wifi_mac_list plugin. The wifi_mac_list 

                                                           
9
 The control devices consisted of a Laptop and a Motorola Atrix smartphone. 
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plugin drastically simplified the output to make investigation much simpler for an 

investigator. This output is shown in Figure 5. 

 Next we analyzed the memory captures from the Linux computer using 

iwe_carve. This output, as expected, reported the same information as the previous 

analysis using the wext_stream_scan plugin. This proved that our algorithm worked 

correctly on both implementations. A portion of this output is shown in Figure 6. 

 Finally, the memory images from the Android smartphone were analyzed with 

iwe_carve. Again this output was verified by checking the information found in the 

memory dump against wireless network information found by the same control 

devices. Again all the information was successfully matched. Some output from this 

execution of iwe_carve is shown in Figure 7. 
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Figure 4. wext_stream_scan against Linux computer memory capture. 

 

 

Figure 5. wifi_mac_list against Linux computer memory capture. 
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Figure 6. iwe_pull against Linux memory capture. 
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Figure 7. iwe_pull against Droid2 memory capture. 
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Chapter 6 – Conclusion 

6.1 Wrap-Up 

 The central question that we set out to answer was: Given only a context-free 

memory image from an Android device, can an investigator be able to identify which 

wireless network access points the device was near when the image was taken?   

This thesis thoroughly answered that question. In chapter 3, we presented our 

findings regarding how wireless network information gets put into a device’s memory 

in the first place. We then presented three distinct tools that investigators can now 

have at their disposal for finding and analyzing that information. In chapter 4, we 

discussed the limitations of this approach which were discovered during our research. 

Finally, chapter 5 proved that, despite any limitations, the solution presented in this 

thesis is as effective as could be performed. We anticipate that this work, in a small 

way, has made a difference in the amount of information one can expect to glean 

during a digital forensics investigation of an Android mobile device. 

6.2 Future Work 

One main objective that is left as future work of this research is the analysis of 

non-volatile memory. We hope to thoroughly test our iwe_carve implementation for 

use with hibernation and swap files (as mentioned briefly in chapter 3 section 4). Since 

both of these operating system files contain copies of volatile memory, it is probable 

that any iw_event streams that are in memory at the time may be saved in those 

files. Additionally, (as mentioned in chapter 3 section 4) since iwe_carve does not 

require its input file to have any particular formatting, there is a high likelihood that it 
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would be able to find and carve iw_event streams in those non-volatile files. The 

author feels that there is no reason to suspect the presence of iw_event streams in 

any other portion of a device’s non-volatile storage. 

The second objective being left for future work is to have the 

wext_stream_scan plugin and wifi_mac_list plugin added to the Volatility 

framework. This objective is currently underway and we hope that future releases of 

Linux compatible Volatility will include our plugins in the default plugin library. 
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Appendix A 

Below is a depiction of the Wireless Extensions I.O. control handling code. 

Starting at (1) in the image, the figure walks through the important steps taken in the 

kernel to handle and return an answer from an ioctl function called on an internet 

socket handle with a command argument of SIOCGIWSCAN (corresponding to 

hexadecimal value of 0x8B19) and a pointer to a caller supplied buffer to fill with the 

wireless access point data. 
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Figure 8. Wireless Extensions I.O. Control Handler. 
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