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Abstract. We study geodesics of the H1 Riemannian metric

〈〈u, v〉〉 =

∫ 1

0
〈u(s), v(s)〉+ α2〈u′(s), v′(s)〉 ds

on the space of inextensible curves γ : [0, 1]→ R2 with |γ′| ≡ 1. This metric is

a regularization of the usual L2 metric on curves, for which the submanifold

geometry and geodesic equations have been analyzed already. The H1 geodesic
equation represents a limiting case of the Pochhammer-Chree equation from

elasticity theory. We show the geodesic equation is C∞ in the Banach topology

C1([0, 1],R2), and thus there is a smooth Riemannian exponential map. Fur-
thermore, if we hold one of the curves fixed, we have global-in-time solutions.

We conclude with some surprising features in the periodic case, along with an

analogy to the equations of incompressible fluid mechanics.

In this paper, we are interested in local and global well-posedness for the equa-
tions of motion of inextensible strings (whips), described for η : R × [0, 1] → R2

by

ηtt − α2ηttss = ∂s(σηs), (1)

with σ : R× [0, 1]→ R determined implicitly by

− |ηst|2 = 〈ηs, ∂s(1− α2∂2s )−1∂s(σηs)〉 (2)

to ensure that η satisfies the inextensibility constraint |ηs| ≡ 1, where α > 0 is some
given parameter. We will assume the whip is fixed at s = 0 at the origin, while the
end at s = 1 is free; with these boundary conditions, the boundary conditions for the
inverse operator f 7→ (1 − α2∂2s )−1f appearing in (2) are fs(0) = 0 and f(1) = 0.
Other boundary conditions may be treated using essentially the same methods.
When α = 0 the local well-posedness was proved by the first author [15, 16]; the
equation with α > 0 represents a regularization and is simpler to study despite
looking superficially more complicated.
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2 STEPHEN C. PRESTON AND RALPH SAXTON

Equations (1)–(2) are critical points of the Lagrangian

L =
1

2

∫ b

a

∫ 1

0

(
|ηt(t, s)|2 + α2|ηts(t, s)|2

)
ds dt

under the constraint |ηs(t, s)| ≡ 1, and they trace out geodesics in the infinite-
dimensional manifold A of inextensible curves with the corresponding (weak) Rie-
mannian metric. We will show that a weak formulation of equations (1)–(2) in
fact give a C∞ ordinary differential equation on A (in the C1 Banach topology),
and thus there is a C∞ Riemannian exponential map which maps initial conditions
(γ0, v0) ∈ TA to time-one solutions (η(1), ηt(1)). (We also demonstrate that if the
data is only piecewise C1, then solutions will remain piecewise C1 with jumps at
the same locations, and that if the initial data is C2 or smoother then we obtain
classical solutions of (1)–(2).) As a consequence we obtain existence of minimizing
geodesics between sufficiently close curves, and we can use curvature computations
rigorously to understand stability of solutions. The induced Riemannian distance
is shown to be nondegenerate (which is not automatic for weak metrics in infinite
dimensions).

Solutions of (1)–(2) conserve the H1 energy:∫ 1

0

|ηt(t, s)|2 + α2|ηst(t, s)|2 ds = const, (3)

which we use to prove global existence for all solutions. This is in sharp contrast to
the equations with α = 0, where blowup seems to be fairly typical though not yet
proven rigorously (see Thess et al. [20] for heuristics and numerical results). For an
L2 whip we expect the velocity to approach infinity somewhere (which leads to the
audible crack), while (3) and the Sobolev inequality imply an absolute maximum
on the pointwise velocity of an H1 whip. In Figure (1) we display a blowup scenario
first proposed by [20]: as small loops close off and the whip is suddenly forced to
change direction, kinks are formed and the curvature blows up. In Figure (2) we
see how the H1 metric stabilizes the evolution.

We have several motivations for studying the system (1)–(2). First of all, it is a
regularization of the L2 whip equations (with α = 0) in much the same way that the
Camassa-Holm equation is a regularization of the Burgers’ equation [14, 4] and the
Lagrangian-averaged Euler-α equations are a regularization of the Euler equations
for an ideal fluid [18, 10]; as in these examples, the equations are analytically simpler
and have solutions with smoother dependence on initial conditions which are less
likely to blow up. The associated geometry is also simpler than the geometry of
the L2 equations [16], in many of the same ways that the geometry of the space of
unparametrized curves is simpler in H1 than in L2 (see Michor and Mumford [13]);
thus it gives another candidate for a distance between curves in the plane, which has
application to shape recognition problems. Next, the constraint |ηs| ≡ 1 is analogous
to the volume-preserving constraint in ideal fluid mechanics, with the tension σ
determined here in the same implicit way as the pressure is determined there; thus
it gives another “toy” model for ideal fluid mechanics, which is also described by
a C∞ Riemannian exponential map (see Ebin and Marsden [7]). Finally, if σ in
(1) is given by σ = S(|ηs|) for some function S rather than by (2), we obtain the
Pochhammer-Chree equation [17], and hence we can view the system as a geometric
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Figure 1. Evolution of the string in the L2 metric, for initial
conditions η(0, s) = 1

2π e
2πis and ηt(0) = 0.025(3e−2πis + e6πis),

plotted at equal time steps t = 0.95k for 0 ≤ k ≤ 5, as in [20].
At step k = 3 the string develops cusps and hence the PDE seems
to blow up. For numerical simulations, we use the chain model
from [15] with n = 1000 links (using the standard “ode45” routine
in MATLAB), which allows us to continue the solution past the
singularity, where weak shocks appear to form.

!"# !"$ ! !"$ !"#
!"#

!"$

!

!"$

!"#

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

Figure 2. The same plot as in Figure (1), using the H1 metric
with α = 1. Small loops do not get pinched off and weak shocks
do not develop.

limiting case of a very strong force such as σ = k(|ηs|2 − 1)2 for k >> 1, in the
same way as the Euler equations for incompressible fluids are a limiting case of
the equations of compressible fluid mechanics with a strong constraining force (see
Ebin [6]).
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1. Geometry. In this section we will derive the equations (1)–(2) as the geodesic
equation on the Banach manifold A of unit-speed curves with one end fixed at
the origin. We will use concepts from infinite-dimensional Riemannian geometry
freely, based primarily on Lang [11] and Ebin-Marsden [7]. A reader unfamiliar
with Riemannian geometry may skip this section as it is primarily for motivation.

We begin by discussing the geometry of the flat ambient space. Let I = [0, 1],
and let

X = {γ ∈ C1(I,R2) | γ(0) = 0}. (4)

This is a Banach space with norm given by ‖γ‖ = sups|γ(s)| + sups|γ′(s)|, or
equivalently by ‖γ‖ = sups|γ′(s)| since γ(0) = 0 obviously implies sups|γ(s)| ≤
sups|γ′(s)|. Since X is linear, we can view it as a smooth manifold with the tangent
spaces all isomorphic to X , i.e., we have TγX = {v ∈ C1(I,R2) | v(0) = 0}.

We define a weak Riemannian metric on X by the formula

〈〈v, v〉〉γ =

∫ 1

0

〈v(s), v(s)〉+ α2〈v′(s), v′(s)〉 ds. (5)

(The metric is called weak because the H1 topology it generates is weaker than the
C1 topology we will use.) Weak metrics do not always have Levi-Civita connec-
tions [12], but if one exists then it must be unique. In this case it is easy to see
that there is a Levi-Civita connection, and it is completely determined by how it
covariantly differentiates a vector field along a curve. Specifically, let γ be a curve
in X and w be a vector field along γ; then the Levi-Civita covariant derivative of w
along γ is Dw

dt (t, s) = ∂w
∂t (t, s). As a consequence the geodesic equation is D

dt
dη
dt = 0

which reduces to ηtt = 0, so that every geodesic is η(t, s) = γ(s)+ tv(s) for some C1

initial position γ and velocity v. In other words, geodesics in X are simply families
of straight lines in R2. It is easy to compute (e.g., using the Jacobi equation) that
the Riemann curvature tensor vanishes, and thus the space X is flat.

Now the space we are actually interested in is the space A of unit-speed arcs,
which we will define in terms of the angle function: if γ is a C1 arc with |γ′(s)| = 1
for all s and γ(0) = 0, then

γ(s) =

(∫ s

0

cos θ(x) dx,

∫ s

0

sin θ(x) dx

)
(6)

for some uniquely determined continuous function θ : I → S1. (We could put
θ : I → R but then θ is determined only up to multiples of 2π.) The space
A = C(I, S1) of all continuous angle functions is a Banach manifold modeled on
C(I,R) with the standard supremum norm; coordinate charts are essentially just
choices of representation of the angle in the reals.1

Theorem 1.1. The map F : A → X given by (6) defines a smooth embedding of A
as a submanifold of X .

Proof. We first show that F is C∞, i.e., it has infinitely many Fréchet derivatives.
The first derivative in the direction of a tangent vector ω ∈ TγA is

TFθ(ω)(s) =

(
−
∫ s

0

ω(x) sin θ(x) dx,

∫ s

0

ω(x) cos θ(x) dx

)
, (7)

1Specifically, for any fixed θ0 ∈ S1, the set of all maps θ ∈ A with θ(0) 6= θ0 is open in the C0

topology, and by choosing a specific real value for θ(0) in an open interval of length 2π we obtain
a representation of the entire function θ(s) into the reals.
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which for any fixed θ is a continuous linear map from TθA = C(I,R) to TF (θ)X =

C1(I,R2) (with norm 1). Furthermore as a function on the tangent bundle2 TA '
C(I, S1)×C(I,R), the map (θ, ω) 7→ TFθ(ω) is clearly continuous in the supremum
topology, which establishes that F is C1. Showing that F is Ck for every k > 1 is
similar.

We now show that F embeds A as a Banach submanifold of X ; an easy way to
see this is to let X0 denote the open subset of X consisting of curves whose tangent
vectors γ′(s) are nowhere zero; any such curve γ can be written uniquely as

γ(s) =

(∫ s

0

eφ(x) cos θ(x) dx,

∫ s

0

eφ(x) sin θ(x) dx

)
for continuous functions φ : I → R and θ : I → S1, and the subset A is just the set
of all such γ for which φ ≡ 0. Hence we have local coordinate charts in which the
image of F is a closed subspace which splits, which is precisely what we need to
have a Banach submanifold; see Lang [11], Proposition II.2.2.

Since A is a smooth submanifold of the flat space X , we have an induced Rie-
mannian metric on A given by the usual formula 〈〈ω, ω〉〉θ = 〈〈TFθ(ω), TFθ(ω)〉〉θ,
where TF is given by (7). It is easy to compute, by rearranging the order of inte-
gration, that this metric is given explicitly by

〈〈ω, ω〉〉θ = α2

∫ 1

0

ω(s)2 ds

+

∫ 1

0

∫ 1

0

(1−max{s, x}) cos
(
θ(x)− θ(s)

)
ω(s)ω(x) dx ds. (8)

We could derive all the geometry from this Riemannian metric directly, but it
is easier to use submanifold geometry since we have a flat ambient space. This
is particularly true when studying the Levi-Civita connection on A, which is the
tangential projection of the Levi-Civita connection on X ; hence our next objective
is to compute this projection.

For this purpose, let us define linear operators Mθ and Nθ from C(I,R) to itself,
for any θ ∈ C(I, S1):

(Mθh)(s) =

∫ 1

0

G(s, x)h(x) cos
(
θ(x)− θ(s)

)
dx, (9)

(Nθh)(s) =

∫ 1

0

G(s, x)h(x) sin
(
θ(x)− θ(s)

)
dx, (10)

where G is the Green function for (1−α2∂2s )−1 with boundary conditions Gs(0, x) =
G(1, x) = 0, given explicitly by

G(s, x) =
1

α cosh (1/α)

{
cosh s

α sinh 1−x
α s ≤ x,

sinh 1−s
α cosh x

α s ≥ x.
(11)

Clearly the operator norm of Mθ is

‖Mθ‖C(I,R) = sup
s∈I

∫ 1

0

G(s, x) dx = 1− 1

cosh 1
α

2 Note that the tangent bundle TC(I, S1) is isomorphic to C(I, TS1), and thus to C(I, S1×R) =
C(I, S1)× C(I,R) since TS1 is trivial.
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which is strictly less than 1; as a result we know 1−Mθ is invertible from C(I,R)
to itself, and that

‖(1−Mθ)
−1‖C(I,R) ≤

1

1− ‖Mθ‖C(I,R)
= cosh

1

α
. (12)

Theorem 1.2. Let A and F be as in Theorem (1.1). For each θ ∈ A, the tangent
space to X at γ = F (θ) splits into two subspaces which are closed in the C1 topology
and orthogonal in the metric (5), given by

TF (θ)X = TFθ
[
TθA

]
⊕
{
D(1− α2D2)−1(hγ′), h ∈ C(I,R)

}
. (13)

The orthogonal projection π : TX
∣∣
F [A]

→ TF [TA] is given for any γ = F (θ) and

any w ∈ TγX by

πγ(w) = TFθ(j), where j = 〈w′, Rγ′〉+Nθ(1−Mθ)
−1〈w′, γ′〉, (14)

with R denoting the two-dimensional rotation operator R( xy ) = (−yx ).
The tangential projection πγ(w) is smooth as a map from the subbundle TX

∣∣
F [A]

to the image TF [TA] ⊂ TX .

Proof. First we show that every u = ∂s(1 − α2∂2s )−1(hγ′) for h ∈ C(I,R) is or-
thogonal to every v = TFθ(j) for j ∈ C(I,R). Fix such an h and j, and let
ξ = (1− α2∂2s )−1(hγ′), so that ξ solves

ξ(s)− α2ξ′′(s) = h(s)γ′(s), ξ′(0) = 0, ξ(1) = 0;

then we easily see that ξ = (Mθh)γ′+ (Nθh)Rγ′, where M and N are defined as in
(9)–(10), and we have u = ξ′ with u(0) = 0. Therefore

〈〈u, v〉〉 =

∫ 1

0

〈ξ′(s), v(s)〉 ds+ α2

∫ 1

0

〈ξ′′(s), v′(s)〉 ds

=〈ξ(1), v(1)〉 − 〈ξ(0), v(0)〉 −
∫ 1

0

〈ξ(s)− α2ξ′′(s), v′(s)〉 ds

=−
∫ 1

0

h(s)j(s)〈γ′(s), Rγ′(s)〉 ds = 0.

Hence the two spaces in the direct sum in (13) are orthogonal in theH1 metric (5).
To prove their union is the entire tangent space TγX , we compute the orthogonal
projection. Assuming that w = v+ξ′ where v = TFθ(j) and ξ = (1−α2∂2s )−1(hγ′),
for some continuous functions h and j, we must have 〈v′, γ′〉 = 0, so that 〈w′, γ′〉 =
〈ξ′′, γ′〉. We have α2ξ′′ = ξ − hγ′, so that h must satisfy

α2〈w′, γ′〉 = −h+ 〈ξ, γ′〉 = −h+Mθh.

Certainly this equation can always be solved for h since (1 − Mθ) is invertible
by (12). Conversely, if we define h = −α2(1 − Mθ)

−1(〈w′, γ′〉), construct ξ =
(1 − α2∂2s )−1(hγ′), and set v = w − ξ′, we can easily see that 〈v′, γ′〉 = 0, and in
fact v = TFθ(j) where j is given as in (14). Clearly both h and j will be continuous
as long as θ and w′ are continuous, so we have a well-defined orthogonal projection
for each fixed θ.

Finally to establish smoothness, we just observe that, for any fixed f ∈ C(I,R),
the functions Mθf and Nθf are clearly C∞ as functions of θ ∈ C(I,R), since they
depend on θ only through composition with smooth functions. Hence (1 −Mθ)

−1

is also smooth as a function of θ, and the composition Nθ(1−Mθ)
−1 is smooth as

a function of θ. Smoothness in w is obvious by linearity.
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As a consequence we obtain the Levi-Civita connection in A, for which smooth-
ness is an automatic consequence of smoothness of the orthogonal projection.

Corollary 1.3. The manifold A with the weak Riemannian metric (8) has a smooth
Levi-Civita connection, which can be described in terms of the covariant derivative
as follows: let θ be a curve in A with ω a vector field along θ; then the covariant
derivative of ω in the direction of θt is

Dω

dt
=
∂ω

∂t
−Nθ(1−Mθ)

−1(ωθt). (15)

As a consequence the geodesic equation on A is

θtt = Nθ(1−Mθ)
−1(θ2t ), (16)

and this is a smooth second-order ordinary differential equation on A.

Proof. The only thing to do is to observe that the corresponding vector field along
γ = F (θ) is z = TFθ(ω), so that zs = ωRγs where R is the planar rotation
operator. The covariant derivative of z in the flat space X is just zt, and we have
zts = ωtRγs + ωRγts. Since γs = (cos θ, sin θ), we have γts = θt(− sin θ, cos θ) =
θtRγs, and thus

zts = ωtRγs − ωθtγs, (17)

using the fact that R2 = −1. Now the covariant derivative in A is the tangential
projection of the covariant derivative in X , which we computed in Theorem (1.2).
We apply (14) with w = zt and use (17) to get

πF (θ)(zt) = TFθ
(
ωt −Nθ(1−Mθ)

−1(ωθt)
)
,

and under the identification of TA with TF [TA] we obtain the covariant derivative
in TA directly as (15).

The geodesic equation (16) is an easy consequence of the general geodesic equa-
tion D

dt
dθ
dt = 0, plugging in ω = θt.

2. Local and global existence. In this section we analyze equation (16) as a
second-order ordinary differential equation for θ ∈ C(I, S1). On the tangent bundle
TC(I, S1) ∼= C(I, S1)× C(I,R), we can write it as the first-order system

d

dt

(
θ
ω

)
=

(
ω

Nθ(1−Mθ)
−1ω2

)
, (18)

where Mθ and Nθ are given as in (9)–(10). We have already seen that the right
side of this equation is C∞ as a function of (θ, ω), which means that local existence
follows from the Picard iteration argument. Global existence is only slightly more
involved; the main thing is to establish conservation of energy. We will work here
with the equations directly, rather than relying on the geometrical results from
the previous section, in order to make this Section more accessible to a differential
equations audience.

First we show that the system (18) is equivalent to the system (1)–(2), if η is at
least C2 in s. Differentiating equation (1) and setting L = I − α2∂2s gives

Lηstt = (σηs)ss = α−2(I − (I − α2∂2s ))(σηs) = α−2(I − L)(σηs), (19)

and therefore
ηstt = α−2(L−1 − I)(σηs). (20)

Identifying ηs(t, s) with exp(iθ(t, s)) then gives

α2(iθtt − θ2t ) = exp(−iθ)L−1(σ exp iθ)− σ, (21)



8 STEPHEN C. PRESTON AND RALPH SAXTON

and so

α2(iωt − ω2) = Mθσ + iNθσ − σ (22)

which is equivalent to (18). Note however that (18) makes sense even if θ is only in
C(I, S1).

Now we prove local existence. As mentioned, this follows from smoothness, but
here we provide an explicit Lipschitz constant.

Theorem 2.1. For any initial conditions θ0 ∈ C(I, S1) and ω0 ∈ C(I,R), there is
an ε > 0 such that there is a unique solution of the system (18) in C1

(
(−ε, ε), C(I, S1)×

C(I,R)
)
.

Proof. To use a Picard iteration, we prove the right side of (18) is Lipschitz. This
follows from the fact that Mθ and Nθ are locally Lipschitz: for any fixed function
h ∈ C(I,R) and θ1, θ2 ∈ C(I, S1), we have∣∣(Mθ1h−Mθ2h)(s)

∣∣ ≤ ∫ 1

0

G(s, x)
∣∣∣ cos

(
θ1(x)− θ1(s)

)
− cos

(
θ2(x)− θ2(s)

)∣∣∣|h(x)| dx

≤
∫ 1

0

G(s, x)|θ1(x)− θ2(x)||h(x)| dx

+ |θ1(s)− θ2(s)|
∫ 1

0

G(s, x)|h(x)| dx,

whereG is given by (11). Taking the supremum over s and using sups
∫ 1

0
G(s, x) dx =

1− 1/ cosh (1/α), we obtain

‖Mθ1h−Mθ2h‖ ≤ 2

(
1− 1

cosh (1/α)

)
‖h‖‖θ1 − θ2‖.

We easily get the exact same estimate for Nθ as well.
The formula (1−Mθ1)−1 − (1−Mθ2)−1 = (1−Mθ1)−1(Mθ1 −Mθ2)(1−Mθ2)−1

implies a Lipschitz estimate for (1 −Mθ)
−1, using the fact that ‖(1 −Mθ)

−1‖ ≤
cosh (1/α) for any θ. Using the triangle inequality we then obtain

‖Nθ1(1−Mθ1)−1ω2
1 −Nθ2(1−Mθ2)−1ω2

2‖ ≤ 2(Cα + C2
α)‖ω1‖2‖θ1 − θ2‖

+ Cα(‖ω1‖+ ‖ω2‖)‖ω1 − ω2‖,

where Cα = cosh (1/α) − 1 and all norms are the supremum norms of continuous
functions. Hence the right side of (18) is Lipschitz, and the fundamental theorem
of ordinary differential equations in Banach spaces implies local existence on some
time interval (−ε, ε).

We automatically get continuous dependence on the initial conditions using the
standard technique, and smooth dependence follows from computing Fréchet deriva-
tives as in the last Section. Hence we have a C∞ Riemannian exponential map
exp: Ω ⊂ TA → TA defined in a neighborhood of the zero section on TA by the
formula exp(θ0, ω0) = (θ(1), ω(1)), in coordinates, in terms of the solution given
above (and a priori defined for ω0 sufficiently small, although we will show later
that it is actually defined globally). For any fixed curve θ0, this restricts to an
exponential map expθ0 : Tθ0A → A given by expθ0(ω0) = exp(θ0, ω0).
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Remark 2.2. Although many partial differential equations can be formally writ-
ten as geodesic equations on infinite-dimensional spaces, they may not be genuine
ordinary differential equations in any Banach topology. This happens for example
in the Riemannian L2 metric, as described in [16], where the exponential map is
not even C1. Smoothness of the ODE in the Banach topology allows us to carry
over many of the results of finite-dimensional Riemannian geometry. However, it
is not necessarily enough to get a nondegenerate Riemannian distance; see for ex-
ample the H1/2 metric on D(S1) studied in [2] and [8]. (We thank the referee for
bringing these articles to our attention.) In the present circumstance, the fact that
the Riemannian distance on A is nondegenerate follows from the fact that A is a
submanifold of the flat space X , and hence every curve in A is at least as long as
the segment distance.

The same techniques as in Theorem (2.1) can be used to prove local existence
for θ0 ∈ C1(I, S1) and ω0 ∈ C1(I,R). This then gives a map η : (−T, T ) × I → C
determined by ηs(t, s) = exp iθ(t, s) and η(t, 0) = 0, which is C2 in both time
and space, and by the discussion preceding Theorem (2.1) is a classical solution of
equations (1)–(2). This proves the following Corollary.

Corollary 2.3. Suppose γ ∈ C2(I,R2) satisfies |γ′| ≡ 1 and γ(0) = 0 and v ∈
C2(I,R2) satisfies 〈γ′, v′〉 ≡ 0 and v(0) = 0. Then there is a unique solution η ∈
C2((−T, T ), C2(I,R2) of the system (1)–(2) with η(0, s) = γ(s) and ηt(0, s) = v(s).

Remark 2.4. In the other direction, it is easy to see that all the supremum esti-
mates of Theorem (2.1) can be replaced with the essential supremum, which shows
local existence for initial data θ0 and ω0 in L∞. We will show in Theorem (3.1)
that piecewise continuous initial data will remain piecewise continuous, with jumps
at the same locations.

Now we prove global existence. The essential tool is an L2 bound on ω which
comes from conservation of kinetic energy, a fact which is true for any geodesic
equation. Again we will give a direct proof. To do so we define linear operators Jθ
and Kθ from C(I,R) to itself as follows: let H(s, x) = 1 − max{s, x}, the Green
function satisfying Hss(s, x) = −δ(s − x) with boundary conditions Hs(0, x) = 0
and H(1, x) = 0. Then for any continuous h we set

(Jθh)(s) =

∫ 1

0

H(s, x) sin
(
θ(x)− θ(s)

)
h(x) dx, (23)

(Kθh)(s) =

∫ 1

0

H(s, x) cos
(
θ(x)− θ(s)

)
h(x) dx. (24)

Note the similarity to (9)–(10); the Green functions have the same boundary con-
ditions, and only the differential operator has changed from (1 − α2∂2s ) to (−∂2s ).
Observe that the Riemannian metric (8) is

〈〈ω, ω〉〉θ =

∫ 1

0

ω(Kθ + α2)ω ds,

so we expect this to be constant in time for a solution of (18).

Theorem 2.5. Let (θ, ω) be a solution of (18) on some time interval, and define

E(t) =

∫ 1

0

ω(t, s)(Kθω)(t, s) + α2ω(t, s)2 ds. (25)

Then E(t) is constant in time.
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Proof. The first step is to establish the formula

(Kθ + α2)Nθ = Jθ(1−Mθ). (26)

This comes from the following computation: for any angle function θ ∈ A, let
γ = F (θ) be the image as a unit-speed curve, so that γ′ = eiθ. Take an arbitrary
continuous function e and set ξ = (1−∂2s )−1(eγ′) with boundary conditions ξ′(0) = 0
and ξ(1) = 0. By definition of M and N , we have ξ = (Mθe+ iNθe)γ

′.
Define f and g by −ξ′′ = (f + ig)γ′; then we have

ξ = (Kθ + iJθ)(f + ig)γ′

by definition of J and K, and matching components we obtain the equations

Mθe = Kθf − Jθg and Nθe = Kθg + Jθf. (27)

But we also have

ξ − α2ξ′′ = eγ′ + ξ + α2fγ′ + α2gγ′,

from which we conclude that

e = Mθe+ α2f and 0 = Nθe+ α2g. (28)

Combining (27) and (28) we obtain (26).
Differentiating (25) and using symmetry of Kθ, we obtain

E′(t) =

∫ 1

0

2ω(Kθ + α2)ωt + ω
∂Kθ

∂t
(ω) ds

=2

∫ 1

0

ωJθ(ω
2) ds+ ω

∂Kθ

∂t
ω ds,

using (18) and (26). It is easy to compute that for any continuous f we have
∂Kθ

∂t f = −Jθ(θtf) + θtJθf , and plugging this in gives

E′(t) =

∫ 1

0

ωJθ(ω
2) + ω2Jθ(ω) ds = 0

since Jθ is antisymmetric.

The operator Kθ is clearly positive-definite in L2(I,R) since we can write

〈〈f,Kθf〉〉L2 =

∫ 1

0

f(s)(Kθf)(s) ds

=

∫ 1

0

∫ 1

0

f(s)f(x)(1−max{s, x})〈γ′(s), γ′(x)〉 dx ds

=

∫ 1

0

〈∫ y

0

f(x)γ′(x) dx,

∫ y

0

f(s)γ′(s) ds

〉
dy.

(This formula is our motivation for defining Kθ.) Thus conservation of energy (25)
implies that ∫ 1

0

ω(t, s)2 ds ≤ E0

α2
(29)

for any solution of (18).

Theorem 2.6. For any initial conditions θ0 ∈ C(I, S1) and ω0 ∈ C(I,R), the
solution of the system (18) is defined for all time.
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Proof. This relies on the general characterization of blowup for ODEs in Banach
space: the solution can be extended to a maximal interval (a, b), and if b <∞, then
‖F (θ(t), ω(t))‖ is unbounded; see [9]. For our equation, we have

d

dt
‖ω‖L∞ ≤ ‖Nθ(1−Mθ)

−1ω2‖L∞ . (30)

By (29), the L1 norm of ω2 is always bounded by E0/α
2 where E0 is the initial

energy. We will now view Mθ as an operator from L1(I) to L1(I), and Nθ as an
operator from L1(I) to L∞. It is easy to see that the operator norm of Mθ in L1 is
exactly the same as it is in L∞, and thus bounded by 1− 1/ cosh (1/α) as in (12),
so that (1−Mθ)

−1 has operator norm at most cosh (1/α) on L1.
For Nθ, we have for any f ∈ L1 and any continous θ that

‖Nθf‖L∞ ≤ sup
s∈I

∫ 1

0

G(s, x)|f(x)| dx ≤ sup
s∈I,x∈I

G(s, x)‖f‖L1 ,

and the supremum of the Green function can be easily computed from the explicit
formula (11) to be

‖Nθ‖(L1,L∞) ≤ sup
s∈I,x∈I

G(s, x) =
1

α
tanh

1

α
.

Putting these norm estimates together in (30), we get

‖ω(t)‖L∞ ≤ ‖ω0‖+
E0t

α3
sinh

1

α
.

Integrating this gives a similar estimate for ‖θ(t)‖L∞ . Hence (θ, ω) must be bounded
on any finite time interval, and thus so is F (θ, ω).

The mechanism for blowup in the L2 case (when α = 0) seems to be small loops
pinching into cusps (see Thess et al. [20] and Figure (1)). When α > 0 such loops
cannot close off, since at a cusp θ would become discontinuous. Instead loops that
form essentially have nowhere to go, and thus certain initial conditions can produce
lots of small loops; see Figure (2). One could analyze this phenomenon by looking
at the corresponding ODE for θs and investigating the growth of the total curvature∫ 1

0
|θs| ds in time. However we will leave this issue aside.

3. Other aspects. In this final section we discuss some extensions and applications
of the results in the last two sections. In particular we show that although much
of the analysis extends when other boundary conditions are used, global existence
fails, essentially because the operator Mθ does not have norm bounded away from
1; it is always less than 1 for continuous θ, but can come arbitrarily close to 1, and
when it does we cannot solve for σ. We also discuss the curvature and stability of
solutions.

3.1. The periodic case. The periodic case is somewhat more involved since the
space of unit-speed curves is not equivalent to the space of angle functions. To
handle this, we assume our curves are normalized to have center of mass at the
origin; this is no loss of generality since the center of mass would just move in a
straight line anyway. This assumption replaces the fixed point assumption in the
previous sections. We will suppose the curves are defined on the circle S1 of length
2π. Define the ambient space of mean-zero curves by

X =
{
γ ∈ C1(S1,R2)

∣∣∣ ∫
S1

γ(s) ds = 0
}
.
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We want to describe the subset of unit-speed curves in terms of their angle functions,
so that γ′(s) =

(
cos θ(s), sin θ(s)

)
, but notice that not every angle function can

represent a closed curve: since γ(2π)− γ(0) = 0, we must have∫ 2π

0

γ′(s) ds = 0 =⇒
∫ 2π

0

exp (iθ(s)) ds = 0. (31)

As long as θ is continuous, periodic, and satisfies (31), we can reconstruct a unique
mean-zero γ by the formula

γ(s) =
1

2π

∫ 2π

0

x exp (iθ(x)) dx+

∫ s

0

exp (iθ(x)) dx. (32)

The tangent spaces to A consist of angular velocity functions ω which must preserve
(31) to first order, i.e., ω ∈ C(S1,R) is in TγA if and only if∫ 2π

0

ω(s) exp (iθ(s)) ds = 0. (33)

The orthogonal projection can be constructed as in Theorem (1.2); for a mean-
zero vector field w in TγX with γ = F (θ) as in (32), the orthogonal decomposition
looks exactly the same as in (14), with the only difference being that the Green
function G defining the operators Mθ and Nθ is given by

G(s, x) =
1

2α sinh π
α

{
cosh

(
π+s−x
α

)
0 ≤ s ≤ x,

cosh
(
π+x−s
α

)
x ≤ s ≤ 2π.

(34)

Thus the geodesic equation given by (16) takes the same form.
Now local existence depends only on smoothness of the operators Mθ and Nθ

(which is still valid by the same arguments) and on the invertibility of 1−Mθ, and

this is what fails. A direct computation shows that
∫ 2π

0
G(s, x) dx = 1 for every s,

which means that the norm of Mθ is not necessarily bounded away from 1 uniformly
in θ. Rather we must actually incorporate properties of θ. The L∞ norm of Mθ is

‖Mθ‖L∞ = sup
s

∫ 2π

0

G(s, x)
∣∣ cos

(
θ(x)− θ(s)

)
| dx;

if θ is continuous then the supremum is attained at some s0, and the only way we
could have ‖Mθ‖ = 1 is if θ(x) is equal to either θ(s0) or θ(s0) + π for all x, which
is impossible without θ being constant (which contradicts (31)). However, if θ were
only in L∞ and not necessarily continuous, then the norm of Mθ could easily be 1:
for example if

θ(x) =

{
0 0 ≤ x < π,

π π ≤ x < 2π,
(35)

then θ satisfies (31) and Mθ cos θ = cos θ, which means 1 −Mθ has a nontrivial
kernel in L∞ and cannot be invertible. This corresponds to a loop which goes out
a distance π along the x-axis at unit speed and then comes back the same way.
Although the corresponding γ is not C1, we can easily approximate it in the H1

Riemannian distance generated by (5) (see Remark (2.2)).
This phenomenon is a very explicit illustration of the general difficulty in working

with weak Riemannian metrics on infinite-dimensional manifolds. If X has the C1

topology and A has the C0 topology, then (32) embeds A as a smooth Banach
submanifold, just as in the one-fixed-endpoint case. If we instead used the W 1,∞

topology on X and the L∞ topology on A, we would not get a submanifold. Any
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curve for which |cos θ| and |sin θ| are constant will be a singular point of the image of
A in X , and the failure of the orthogonal projection at such curves is a consequence
of this lack of smoothness.

This is somewhat difficult to visualize, so we will present a very simple example
below to explain what is happening.

First we motivate the example by considering the evolution of discontinuities
arising from piecewise continuous initial data. (Recall that the equation (18) has
solutions as long as the initial data is in L∞.) We find that for α > 0 such discon-
tinuities cannot propagate along the string and so the domains of continuity stay
fixed. The resulting piecewise differentiable position field η(s, t) can therefore be
expected to evolve in a similar way to such piecewise linear solutions derived from
an analogous finite-dimensional model, at least in having ‘corners’ located at fixed
values of s.

In the following, we let χn ⊂ [0, 2π) be an arbitrary set of n points at which
either θ0(s) or ω0(s) has a finite jump discontinuity.

Theorem 3.1. Given initial data θ0 ∈ C([0, 2π) r χn,R) subject to (32), with
ω0 ∈ C([0, 2π)rχn,R) satisfying (33) for θ = θ0, the only points at which solutions
to system (18) may exhibit discontinuities are in the set χn.

Proof. We have, from equation (21),

α2(i θtt − θ2t ) = −σ + exp(−iθ(s, t))
∫ 2π

0

G(s, x)σ(x, t) exp
(
iθ(x, t)

)
dx. (36)

Suppose that at some time t, ηs(s, t) admits a jump discontinuity at a (fixed)
reference point s = S , with lims→S+ θ(s, t) = θ+(t) and lims→S− θ(s, t) = θ−(t).
Denote by [θ]S the jump, θ(S+, t)− θ(S−, t). Owing to the continuity of G(s, x),
equation (36) then gives

α2(i [θtt]S − [θ2t ]S ) = −[σ]S + [exp(−iθ)]S
∫ 2π

0

G(S , x)σ(x, t) exp
(
iθ(x, t)

)
dx.

(37)

Since [exp(−iθ)]S = −i
√

2 sgn(θ+ − θ−)(1 − cos(ϑ+ − θ−))1/2 exp(−i θ̄), with θ̄ =
1
2 (θ− + θ+), equation (37) becomes

α2(i [θtt]S − [θ2t ]S ) = −2i sin
[θ]S

2
(U + iV )− [σ]S

where

U = cos θ̄(S , t)

∫ 2π

0

G(S , x)σ(x, t) cos(θ(x, t)) dx

+ sin θ̄(S , t)

∫ 2π

0

G(S , x)σ(x, t) sin(θ(x, t)) dx,

and

V =− sin θ̄(S , t)

∫ 2π

0

G(S , x)σ(x, t) cos(θ(x, t)) dx

+ cos θ̄(S , t)

∫ 2π

0

G(S , x)σ(x, t) sin(θ(x, t)) dx.

Since S is fixed, we thereby have the jump relations

α2 d
2[θ]S
dt2

+ 2 sin
[θ]S

2
U = 0 (38)
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and

[σ]S = α2[θ2t ]S + 2 sin
[θ]S

2
V . (39)

Integrating (38) gives

[θ]S (t) = [θ0]S + t[ω0]S − 2α−2
∫ t

0

(t− η) sin
[θ]S (η)

2
U (η) dη (40)

where θ(s, 0) = θ0(s), θt(s, 0) = ω0(s). As a consequence of the existence re-
sult (bounding U ), Gronwall’s inequality together with the Lipschitz continuity of

sin [θ]S (η)
2 implies

|[θ]S (t)| ≤ (|[θ0]S |+ t|[ω0]S |) exp(ct2), t > 0, (41)

for some generic constant c.
Clearly, if θ0(s), ω0(s) ∈ C([0, 2π] r χn), then no points at which discontinuities

in θ(s, t) may occur for t > 0 lie outside χn.

As in [15], we can geometrically approximate the unit-speed curves by a finite set
of points joined by rigid rods of unit length; there it was shown that the geodesic
equation for the finite-dimensional configuration space gives a good approximation
of the infinite-dimensional geodesic equation (with α = 0). We take a very small
example: consider four points in the plane η1, η2, η3, η4, and assume that the center
of mass is zero, i.e.,

∑
k ηk = 0. This is a six-dimensional configuration space which

is the analogue of X . Now impose the conditions

|η1 − η4| = |η2 − η1| = |η3 − η2| = |η4 − η3| = 2,

the rescaling by 2 is geometrically irrelevant but simplifies one formula. Roughly
speaking, imposing these four conditions reduces our analogue of the space A to
a two-dimensional set. By possibly applying a rotation and/or a reflection of R2,
it is clear that we can arrange the points so that η2 = η1 + (2, 0) (which roughly
reduces our model to a one-dimensional set), and then it is easy to see that the
length constraints imply that

η1 = (a, b), η2 = (a+ 2, b), η3 = (a+ 2 + 2 cos θ, b+ 2 sin θ),

η4 = (a− 2 cosφ, b− 2 sinφ),

where a and b are determined by the mean-zero condition and θ and φ must satisfy
the equation

1 + cos θ + cosφ+ cos (θ − φ) = 0. (42)

The solution set of this equation is shown in Figure (3). It is clearly not a one-
dimensional manifold, having three singular points as a subset of the torus S1×S1.
The horizontal and vertical lines correspond to hinges (where η1 = η3 or η2 = η4),
while the diagonal lines correspond to rhombuses; the intersection points correspond
to straight segments (i.e., straight hinges or degenerate rhombuses). The arc space
A is the two-dimensional product of this one-dimensional set with the group of
Euclidean motions (i.e., two disjoint circles corresponding to rotation and reflection
or simple rotation). It thus cannot be a smooth manifold.
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2 φ

θ

Figure 3. The graph of 1 + cos θ + cosφ+ cos (θ − φ) = 0.

To see what happens geometrically, we now use the analogue of the Riemannian
metric (5) on R8, which we will define by the formula

〈〈η̇, η̇〉〉 =

4∑
k=1

|η̇k|2 + α2
4∑
k=1

|η̇k − η̇k+1|2,

identifying η5 = η1 cyclically. Geodesics in this metric are straight lines, and if
the center of mass is not initially moving then it never moves. We now embed A
in R8 and see what kind of metric we get (at least on the nonsingular points, the
rhombuses and hinges); as coordinates we use the rhombus angle φ or the hinge
angle (which is either θ or φ; we may as well assume θ is being used for both), and
the rotation angle β. The Riemannian metric reduces in these coordinates to

〈〈(θ̇, β̇), (θ̇, β̇)〉〉 = (4 + 8α2)(θ̇2 + 2β̇θ̇ + 2β̇2),

which is flat ; the geodesic equations are θ̈ = β̈ = 0. Hence angular momentum is
conserved, and we may as well assume there is no rotation at all (which reduces A to
the one-dimensional singular set depicted in Figure (3)). Every geodesic corresponds
to a constant-speed motion of a particle along this set, and this makes it obvious
that we cannot have well-posedness, since any geodesic will eventually hit one of
the three singular points. Physically such a geodesic corresponds to a rhombus or
hinge for which the angle changes with constant speed until it degenerates to a
straight segment, and the problem is that there is nothing to stop the geodesic from
changing direction at one of the singular points (e.g., a rhombus could collapse to a
segment and then start bending as a hinge, or expand again into a rhombus). See
Figure (4).

We would expect exactly the same thing to happen on the actual arc space A in
L∞. We can imagine a C1 approximation of a hinge or rhombus which collapses to a
segment in finite time. This happens since although the C1 arc space A is a smooth
manifold, its geometric completion in the H1 Riemannian distance includes straight
segments, which are singular points; hence the H1 arc space cannot be a smooth
manifold. Thus we should be able to get blowup by finding a length-minimizing
curve in the H1 arc space joining a C1 unit-speed curve to one of these singular



16 STEPHEN C. PRESTON AND RALPH SAXTON

2 3
4

1

1

1
1

2

3

4

2

3

4

2

34

θ

Figure 4. Four points rigidly connected by rods of equal length
have a configuration space which is not a manifold. A rhombus
can collapse to a segment, and can either continue as a rhombus or
rotate into a hinge.

curves (using a direct calculus of variations argument); this path will be a C1 curve
for all time until the blowup time, when the C1 norm goes to infinity.

What is interesting about this phenomenon is that it gives a toy model for how
the equations of ideal fluid mechanics might blow up in three dimensions. Ebin
and Marsden [7] proved that in a sufficiently smooth Sobolev topology, the space
of volume-preserving diffeomorphisms is a C∞ manifold, but Shnirelman [19] has
shown that in the L2 Riemannian distance, the Cauchy completion is the set of
all measure-preserving measurable maps, and we can imagine solutions of the ideal
fluid equations blowing up in the same way by trying to approach one of these
singular maps along a length-minimizing curve.

3.2. Curvature and stability. Finally we discuss stability from the Arnold per-
spective [1], using the Riemannian curvature to measure the size of linearized per-
turbations (Jacobi fields). Arnold originally formulated the equations of ideal fluid
mechanics as a geodesic on an infinite-dimensional Riemannian manifold in order to
use the sign of the curvature as a stability test: loosely speaking, negative curvature
implies Lagrangian instability, while positive curvature should imply stability.

For L2 whips the curvature is known to be strictly positive in all sections [16];
however this information is not useful for stability analysis, since the fact that the
exponential map is not smooth means that we cannot use the Rauch comparison the-
orem even for short time to get bounds on Jacobi fields. In the present case we have
a smooth exponential map, but we will show that the curvature can occasionally
be negative, which means that Jacobi fields could conceivably grow exponentially
in time. We will here work with the one-fixed-point boundary condition, though
things are similar with periodic or other boundary conditions. For the necessary
Riemannian geometry we refer to Lang [11] and do Carmo [5]; the latter works only
in finite dimensions, but the formulas we will need all generalize to weak metrics
on infinite-dimensional manifolds (see e.g., Biliotti [3]).

Theorem 3.2. The Riemannian curvature of the arc space A at a point θ in the
plane spanned by ω1, ω2 ∈ TθA is given by

〈〈R(ω1, ω2)ω2, ω1〉〉θ = α2

∫ 1

0

ω2
1(1−Mθ)

−1ω2
2 − ω1ω2(1−Mθ)

−1ω1ω2. (43)

Proof. The easiest way to compute the sectional curvature is to use the Gauss-
Codazzi formula for Riemannian submanifolds, since A is a submanifold of the flat
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space X . To do this we need to compute the second fundamental form, but we have
essentially already done this by computing the orthogonal projection (14). The
Gauss-Codazzi formula says [5] that the (unnormalized) sectional curvature of the
submanifold A in the plane spanned by vectors ω1, ω2 ∈ TθA is

〈〈R(ω1, ω2)ω2, ω1〉〉 = 〈〈B(ω1, ω1), B(ω2, ω2)〉〉 − ‖B(ω1, ω2)‖2, (44)

where B is the second fundamental form (a bilinear operator from TγA to (TγA)⊥).
We already know the second fundamental form, since the geodesic equation on any
submanifold of a flat space is always given by

d2

dt2
F (θ) = B

(
dθ

dt
,
dθ

dt

)
,

where F is the immersion. Since we know the geodesic equation (16), we conclude
by polarization that

∂sB(ω1, ω2) =
(
iNθ(1−M−1θ )− 1

)
γ′

=(1− ∂2s )−1(h12γ
′)− h12γ′,

where h12 = (1−Mθ)
−1(ω1ω2), with B itself determined by the fixed point condition

(that it is zero when s = 0).
We therefore have

〈〈B(ω1, ω1), B(ω2, ω2)〉〉 =

∫ 1

0

〈∂sB(ω1, ω1), (∂−2s + α2)∂sB(ω2, ω2)〉 ds.

Complexifying and writing ∂sB(ω1, ω1) = (f1+if2)γ′ and ∂sB(ω2, ω2) = (g1+ig2)γ′

we can simplify this to

〈〈B(ω1, ω1), B(ω2, ω2)〉〉 = <
∫ 1

0

(f1 + if2)(Kθ + iJθ + α2)(g1 + ig2) ds.

To simplify this further, recall that we showed in formula (26) that (α2 +Kθ)Nθ =
Jθ(1−Mθ), and by the same technique we can show that (α2+Kθ)Mθ = Kθ+JθNθ.
Using the fact that f2 = −Nθ(1 −Mθ)

−1f1 and g2 = −Nθ(1 −Mθ)
−1g1, this all

simplifies to

〈〈B(ω1, ω1), B(ω2, ω2)〉〉 =α2

∫ 1

0

g1(1−Mθ)
−1f1 ds

=α2

∫ 1

0

ω2
2(1−Mθ)

−1ω2
1 ds,

and similarly we get

〈〈B(ω1, ω2), B(ω1, ω2)〉〉 = α2

∫ 1

0

ω1ω2(1−Mθ)
−1ω1ω2 ds.

Substituting this into (44) gives (43).

The formula (43) is relatively simple, but it is still somewhat difficult to determine
the sign in general. To make this a little easier, we will consider the simplest case
of the periodic whip where the initial curve is a circle.3 The curvature formula is
the same as (43), with the caveat that ω1 and ω2 are assumed to satisfy (33). We
will show that for the special case θ(s) = s, the curvature takes both signs.

3The case of a straight segment is the simplest solution when one endpoint is fixed, but at this
curve it is fairly easy to see that the curvature is strictly positive, and we want to demonstrate

that it can take both signs.
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Proposition 3.3. For the arc space A of periodic unit-speed mean-zero curves on
S1, the curvature at the circle θ(s) = s takes on both signs if α is sufficiently large.

Proof. We first compute Mθ. Let h(s) =
∑
n∈Z hne

ins; then Mθh = 〈γ′, (1 −
α2∂2s )−1(hγ′) where γ′ = (cos s, sin s), and it is easy to compute that

Mθh(s) =
∑
n∈Z

an
2

(
1

1 + α2(n+ 1)2
+

1

1 + α2(n− 1)2

)
eins.

Thus we have

(1−Mθ)
−1h(s) =

∑
n∈Z

[
1 + α2(n+ 1)2

][
1 + α2(n− 1)2]

α2
(
n2 + 1 + α2n4 − 2α2n2 + α2

) aneins.
This can be rewritten as (1−Mθ)

−1h(s) = h(s) + Pθh(s), where P is the compact
operator given by (Ph)(s) =

∫ s
0
H(s− x)h(x) dx for the function

H(s) =
1

2πα2

∑
n∈Z

1 + α2(n2 + 1)

n2 + 1 + α2n4 − 2α2n2 + α2
eins.

Since (1−Mθ)
−1 = 1 + Pθ, the curvature formula (43) obviously reduces to

〈〈R(ω1, ω2)ω2, ω1〉〉θ =

∫
S1

ω2
1Pθ(ω

2
2)− ω1ω2Pθ(ω1ω2) ds.

Now Pθ is a positive-definite operator on L2, so the second term is always negative;
thus to get negative curvature we just need to show that Pθ(ω

2
2) can be negative

somewhere. By the operator formula it is sufficient to show that H(s) is negative
somewhere. The easiest thing to do is compute H(π), which is an alternating series
for which the first partial sum is negative if α > 1√

3
. Hence the full sum H(π) must

also be negative, and thus we can set up functions ω2 and ω1 with small supports
on opposite sides of the circle which will make both terms in the curvature formula
negative.

It seems likely that for smaller values of α, there will be negative curvature along
other curves as well, but the difficulty in getting precise values makes such a project
beyond our scope. It suffices to note that the curvature is always strictly positive
(in all sections, at all curves) for α = 0 (see [16]), while for α > 0 it is possible
to get both signs. On the other hand, smoothness of the exponential map means
that the curvature is bounded above and below in the manifold topology, unlike the
α = 0 case where the curvature is positive but unbounded above. A lower bound on
curvature tells us (by the Rauch comparison theorem) that Jacobi fields could grow
exponentially but at a rate we can estimate; unbounded curvature tells us nothing
at all about growth of Jacobi fields.
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