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ABSTRACT 
 

In today’s information age, data collection is not the ultimate goal; it is simply the first step in 

extracting knowledge-rich information to shape future decisions. In this thesis, we present ChartVisio - a 

simple web-based visual data-mining system that lets users quickly explore databases and transform raw 

data into processed visuals. It is highly interactive, easy to use and hides the underlying complexity of 

querying from its users. Data from tables is internally mapped into charts using aggregate functions across 

tables. The tool thus integrates querying and charting into a single general-purpose application. 

 

ChartVisio has been designed as a component of the Benchmark data engine, being developed at 

the Computer Science department, University of New Orleans. The data engine is an intelligent website 

generator and users who create websites using the Data Engine are the site owners. Using ChartVisio, 

owners may generate new charts and save them as XML templates for prospective website surfers. 

Everyday Internet users may view saved charts with the touch of a button and get real-time data, since 

charts are generated dynamically. Website surfers may also generate new charts, but may not save them 

as templates. 

 

As a result, even non-technical users can design and generate charts with minimal time and effort. 
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Chapter 1. Introduction 
 

ChartVisio is a simple web-based visual data-mining system [5] that presents data to users in a 

graphical format. Users can interactively specify the “search query” and ChartVisio communicates 

information back to the user through graphs or charts. The process of querying is totally transparent to 

end-users. It is a tool to extract rich knowledge from huge data collections and present it to the end-user in 

an easy-to-assimilate form. An additional advantage of manufacturing data in the form of a visual may 

lead to detection of trends, relationships, exceptions and patterns in the data, if any. These observations 

may be key in the future decision making processes. Thus, charts are vital for effective data discovery.  

 

1.1 Background 
 

This project is a component of the Web-based Benchmark data engine being developed at the 

Computer Science Department, University of New Orleans. The highlight of the website generator is its 

ability to dynamically generate new websites, based on a number of parameters given by the creator of the 

website. In effect, even users with a non-technical background can create their own websites in minimum 

amount of time. To start with, this engine was used for the maritime industry, where several shipping 

companies can create their own websites. They can also upload their data, for example, data pertaining to 

performance of ships, life & failure of individual parts, mean time before failure of equipment.  

 

Storing this data gives us the chance of analyzing it, which may reveal any interesting patterns in the 

huge collection of data. A user may wish to compare the services provided by a company with those 

provided by another company. The search may result in numerical data. For example, the user may want 

to see the mean time between failures of equipment for a certain ship and may also like to see how the 

same equipment fared on another ship. This involves a lot of processing. The resulting information can be 

given to the user in terms of textual data - in the form of numbers, or in a tabular form. This adds an 

overhead for the user to manually analyze data and understand it. To the human observer, the exploration 

process can be both time-consuming and even cause him or her to misinterpret the information presented.  
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1.2 Objectives 
 

The objective of this project was to design and integrate ChartVisio with the Benchmarking engine 

in such a way that the creator of a website will be able to use this visual data analysis tool to create new 

chart templates. From then on, each time end-users (either the creator of the website or a regular Internet 

user) logs onto the website, they can get real-time representation of data in the form of charts from 

templates stored earlier. The application must combine features such as simplicity, user autonomy, 

reusability and reliability, thus making it a very powerful tool to visually represent data.  

 

Hence, a website will have its own charting application that users may very easily ‘self-service’ to 

see comparisons, performance and other interesting metrics in the data. 

 

1.3 Overview 
 

The remaining chapters are organized as follows: 

 

Chapter 2 discusses the important concepts of ChartVisio. We also present an interesting example to 

explain the significance of this project. Chapter 3 explains the functional architecture, system architecture 

and design decisions. Chapter 4 describes the User Interface Design and steps users need to follow to use 

ChartVisio to generate charts. Implementation details are discussed in Chapter 5. Chapter 6 discusses the 

contribution of this project and avenues for future work on this application. Chapter 7 presents a glossary 

of technical terms used in the thesis. Chapter 8 gives a list of references.  
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Chapter 2. Concepts of ChartVisio 
 

ChartVisio is an application that helps users to build dynamic charts easily. With the help of a few 

interactive steps, the users can specify the information to be represented on the chart. Based on user 

requirements, records are extracted from the database and displayed in the form of a chart. We assume 

that the database is populated.  

 

2.1. Levels of users 
 

The application is aimed at two levels of users, namely: 

• Web-site creators or owners 

• Web-site users 

L o g o n  t o
w e b s i t e

S t a r t

G e n e r a t e  n e w
c h a r t

V i e w  S a v e d
C h a r t s

W e b s i t e
o w n e r ?

S a v e  c h a r t  a s
t e m p l a t e

Y e s

S t o p

V i e w  c h a r t

N o

 
 

Figure 2.1. User roles in the application 
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Web-site owners or creators are a group of users who can create new websites using the 

benchmarking engine. They own and manage data online. Such users will be allowed to create new charts 

and save them as templates for the future. The saved templates are stored as XML [3] files. 

 

Web-site users on the other hand, belong to the larger group of everyday Internet users who can 

access saved chart templates and generate the charts at real-time. They may also generate new charts but 

will not be authorized to store them. 

 

2.2. Problem Definition 
 

Let us consider the following scenario: Users have a large database and need to represent a sub-set of 

data in a chart. The process involved in doing that is:  

• Search the database to decide what data needs to be represented on chart 

• Form an SQL query to extract required data from database 

• Use commercial software (Example: Microsoft Excel) to plot a graph for extracted data 

 

This procedure assumes that end-users are familiar with SQL and mandates them to employ other 

available software to generate charts. This is time-consuming and requires extensive technical support for 

dumb-users.  

 

Let us consider an example from a sample maritime industry database to explain the problem better. 

Figure 2.2 presents the tables that are being employed to explain the example. Users need to know how 

much each Equipment has been ‘used’. That is, the running hours clocked by each equipment. This 

mapping is not stored in a single table that it can be extracted in a 1-step process. It requires extensive 

querying using SQL and can get extremely frustrating for non-technical users. Table 2.1 shows the result 

for this problem for 14 randomly chosen equipments. 

 

Equipment ID Hull ID

Equipment

Equipment ID Running Hours

Equipment Hours

 
Figure 2.2. Tables and their relationship 
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Further more, what happens if users want to get a comparison-based answer? For example, what is 

the mean of all running hours or what is the minimum of all running hours? There is additional burden on 

users to know how to use aggregate functions in SQL. 
 

It is very hard to manually read through the numbers in Table 2.1 and come to an understanding about 

the running hours clocked by equipments. This problem grows as the number of records increase. So, 

users are forced to opt for a graphical representation to get easy-to-understand results. This adds an 

overhead on users to familiarize themselves with commercial products that draw charts. The entire 

process of querying the database and importing data to commercially available charting software to draw 

charts can lead to immense wastage of effort and time. 

 

 

Table 2.1. Result of a sample problem 

Equipment ID Running Hours 
1000162-101123-809 17081.81 

1000182-106961-903 119.76 

1000182-101126-1108 18553.22 

1000158-101490-335 0 

1000182-100668-1149 31552.44 

1000154-107493-18 1728.14 

1000154-107492-35 1382.03 

1000154-100169-51 16716 

1000158-100481-364 27163.5 

1000158-100483-366 15002 

1000158-101220-484 17319.75 

1000158-101014-488 15258.82 

1000158-100439-423 0 

1000154-106961-12 110.78 

 

2.3. ChartVisio solution to the problem 
 

As a solution to the problems posed above, we present ChartVisio – a very simple-to-use tool that 

helps users generate charts from data in databases. The application hides the complex underlying 

mechanism involved in querying a database and presents a quick and easy solution to users. Figure 2.3 

presents the chart generated by Chart Visio as a solution to the given problem. The blue horizontal line in 

Figure 2.3 represents the marker line drawn at the mean of all running hours. 
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ChartVisio navigates users in a sequence of interactive steps and accepts the coordinates for X-axis 

and Y-axis. Extensive use of graphical components in the application guide users in selecting records for 

the chart, that even non-technical users need not have any SQL background to build queries. Internally, 

the application builds appropriate queries based on users’ selection, queries the database, extracts results 

and displays them to users. Hence, using ChartVisio, mere touch of a few buttons can generate and 

display charts.  

 

Website owners or creators also have the option of saving charts as templates for future use. For all 

users who log on to the website, they may select a chart from the given list of stored charts. Based on 

their selection, a chart is generated at real-time using its template stored earlier and displayed to users 

instantly. 

 

 
Figure 2.3. Chart generated using Chart Visio for the given problem 
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Chapter 3. Architecture and Design 
 

This chapter describes the technology, architecture and design decisions of the application.  

 

3.1. Technical Architecture 

 
System architecture is a vital component of an application design. Architecture translates the logical 

design of the application to a structure that defines the interaction of entities in the system. Client/ Server 

architecture [11] is preferred over the others because of the following reasons: 

• User queries can be processed with ease, without actual file transfer [10] 

• Graphical user interfaces are supported [10] 

• High performance and scalability [11] 

• Provide flexible and robust infrastructures [12] 

• Multiple users can access the same application data [11]  

 
The architecture is based on a three-tier model in which business rules are segregated from the client 

[11]. Each component has its own assigned specific purpose as explained below: 

• Client - Web-based clients like Web browsers 

This is a front-end client that provides through a graphical user interface for the application. 

 

• Application Server - Servlet engine Apache-Tomcat 4.1.18 [17] 

This business-services tier integrates business rules and processes.  

Tomcat was chosen as the middle tier server but it could have been any other Servlet container 

that supports Java Servlets and Java Server Pages (JSP) specification.  All Servlets and JSPs are 

deployed to the Tomcat server, which was configured to work as a standalone Web server.  

 

• Database Server - Oracle 9i database server [18] 

Clients may access the database server using the application server interface. 

 

http://java.sun.com/products/servlets
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Oracle was chosen for the database server as Oracle is a reference, but it could have been any 

other relational database server.  

 

Figure 3.1 presents the three-tier architecture [10] implemented for the charting application and the 

technology involved. Servers are denoted by rectangles. Clients are represented by rectangles with 

rounded corners and double-headed arrows denote the Client-Server relation. [9] The Middle Tier 

components are clients and servers, while the Client Tier components are pure clients and the Server Tier 

components are pure servers. Also, the set of building blocks of the architecture include Web Server, 

Database Server, and the Web browser. The triangles represent sustainment relation, which can be 

defined as the relationship between two individual building blocks. As an example from figure 3.1, the 

Web Server sustains Servlets and JSPs.  

 

 

Server Tier

Servlets,
JSPs

Middle Tier

    Web Server / Servlet Engine
    Apache-Tomcat 4.1.1890

90

Web
browser

Client Tier

presentation
logic

application
logic

     Database
     Server15

21

JDBC

HTTP

 
 

Figure 3.1. Technical architecture of the application 
 
 

3.2. Basic Technology 
 

The programming language used in the application is Java. The first and fore-most advantage of using 

Java is portability. This will ensure that the application can be migrated across different platforms easily. 

Also, resources (such as Java API [13]) and help available on the Internet make learning and 

implementing new concepts in Java simple. 
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The components and technology involved in this application include: 

• Servlets [1] have been used to enable dynamic processing and interaction with the Server. A 

Servlet is a Java program that runs on the Web Server side. It provides a component-based, server 

and platform-independent method for building Web-based applications with access to all Java 

API. With Servlets, customization of content, function and appearance of web pages is possible. 

• JSPs [2] have been used for dynamic interaction with the clients. Presentation logic resides here 

and JSPs are part of the Web front end. Like Servlets, they enable server and platform-

independent applications.  

• JFreeChart library [19] has been used to display & generate charts. JFreeChart is a freely 

available Java class library. The advantage of using this library is that it was written entirely in 

Java and can run on all Java 2 platforms from JDK 1.3 onwards [6]. This library has several 

interesting features that can be easily incorporated into both stand-alone Java applications and 

Servlets [1].  

• XML (eXtensible Markup Language) [8] has been used to achieve interoperability and to store 

data using a standardized format. The application saves user charts as XML files. The cohesive 

integration of Java and XML adds flexibility and eases communication between heterogeneous 

systems [7]. 

 

3.3. Functional Architecture 

 
Figure 3.1 shows where the components are deployed in the architecture and which tier sustains each 

component. Figure 3.2 demonstrates the relation and interaction amongst all the components involved in 

the system. 

 

Figure 3.2 presents a comprehensive view of interaction of all the components in the application. 

Users may select to view saved charts or create a new chart. All users (website creators or owners and 

everyday Internet users) may view saved charts. All users (website creators or owners and everyday 

Internet users) may generate a new chart. Only users that are website creator or owners are proceed to 

save the generated chart as a template. Components presented in Figure 3.2 explain this concept as a 

functional diagram.  
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1. View Saved Chart
2. Create New Chart

chart 1
chart 2
chart 3

BuildChartServlet.java
--Display Chart

CheckOptionServlet.
java

Charting.jsp

LoadChart.jsp

LoadChartServlet.java

BuildChart.java

ProcessYAxis.java

Select Option

Select Chart

table 1
table 2
table 3

NewChart.jsp

   Select Y-Axis Table

attribute 1
attribute 2
attribute 3

PickYAxis.jsp
Select Y-Axis Attribute

table 1
table 3

Select X-Axis Table

PickTable2.jsp

select * from table where
   =

PickRecords.jsp
        Select Query

Submit

Submit

Submit

Submit

Submit

Submit

record 1
record 2
record 3
record 4

ProcessQuery.jsp
        Select Records

Submit

Database

attribute 1
attribute 2
attribute 3

PickXAxis.jsp
Select X-Axis Attribute

Submit

StoreParamServlet.java

From
LoadChart.jsp?
OR User NOT
Site Owner ?

Option 1

query

query

1. Display Chart
2. Save Chart
3. Save & Display

OptionsPage.jsp

     Select option

Submit

NOOption 2

YES

CheckOptionServlet.
java

StoreChartServlet.java

 Options   2, 3

Option  3

Option 1

Option 2

 
Figure 3.2. Functional architecture of the application 
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3.4. Mapping data from tables to charts 

Let us consider an example from a sample maritime industry database to explain how information 

across tables is mapped into data for charts. Figure 3.3 presents a list of tables that are being employed to 

explain the example. Let the problem be that users need to know how much each vessel has been used. 

That is, the running hours clocked by each ship. As we can see from Figure 3.3, this mapping is stored 

over three tables. 

Hull ID Vessel Name

Ships

Equipment ID Hull ID

Equipment

Equipment ID Running Hours

Equipment Hours

 
Figure 3.3. Tables and their relationship 

 

Tables 3.1, 3.2 and 3.3 present sample data from tables Ships, Equipment and Equipment Hours 

respectively. (Note: Tables 3.2 and 3.3 present only a very small sub-set of data due to space constraints.) 

 

In the proposed example, we need to ‘connect’ tables Ships and Equipment Hours to draw a chart that 

represents ‘Vessel Name’ versus ‘Running Hours’. From Figure 3.3, it is evident that the two tables are 

related through another table, namely, Equipment.  

 

Hull ID Vessel Name 

1000182 Wave Iris 

1000154 Wave Athene 

1000158 Wave Demeter 

1000162 Wave Erida 

Table 3.1. Sample data for table Ships 
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 Equipment ID Running Hours 

1000154-106961-12 110.78 

1000154-100012-4 0 

1000154-107492-35 1382.03 

1000158-100012-301 0 

1000158-100481-364 27163.50 

1000158-101220-484 17319.75 

1000162-101123-809 17081.81 

1000162-100012-598 0 

1000182-101126-1108 18553.22 

1000182-101126-108 0 

 

 

 

T 

 

 

H 

 

 

 

 

 

Equipment ID Hull ID 

1000154-106961-12 1000154 

1000154-100012-4 1000154 

1000154-107492-35 1000154 

1000158-100012-301 1000158 

1000158-100481-364 1000158 

1000158-101220-484 1000158 

1000162-101123-809 1000162 

1000162-100012-598 1000162 

1000182-101126-1108 1000182 

1000182-101126-108 1000182 

           Table 3.2. Sample data for Equipment                Table 3.3. Sample data for Equipment Hours 
 

There are over a thousand unique equipments in table Equipment (from which a small sub-set of data 

has been presented here) for all the four vessels (in table Ships). Also, equipments have their individual 

‘Running Hours’ (in table Equipment Hours and the table has over 800 records).  

 

The process involved in obtaining Running Hours for each vessel is: 

• Get all equipments for a vessel (from table Equipment) 

• Get ‘Running Hours’ for each equipment (from table Equipment Hours) 

• Calculate aggregate group function (Example: Mean, Maximum, Minimum) over all 

‘Running hours’ 

• Save ‘Running hours’, ‘Vessel Name’ mapping 

 

For the given example, this procedure involves a 2-step aggregate function over tables. This can be 

extended to any number of tables in the hierarchy. Figure 3.4 presents the chart generated using 

ChartVisio for the given problem. It may be of interest to note that ‘Vessel Name’ (from table Ships) is 

along the X-axis and ‘Running hours’ (from table Equipment Hours) is along the Y-axis. Also, the values 

along Y-axis represent the aggregate ‘Running Hours’ values for each vessel. 
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Y-Axis:
From table
Equipment Hours

 X-Axis:
From table
  Ships

 
Figure 3.4. Chart generated using ChartVisio for the given problem 
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Chapter 4. User Interface Design 
 
 This chapter describes the steps users need to take to view saved charts and to create new charts. 

Also, the user interface design is explained here. 

  

4.1. View saved charts 
 

All references to ‘Users’ in this section can imply both website owners or creators and everyday 

Internet users, unless specified otherwise. 

 

Step 1: Users choose between view a saved chart or create a new chart 
 
Component Name: Charting.jsp 

This is the first screen of the application. Users are presented with two options: 

• View saved charts 

• Create a new chart 

 

This component was developed using Java Server Page (JSP) technology.  

Continue Reset

View Saved Chart

Create New Chart

Welcome to ChartVisio

 
Figure 4.1. Snapshot of Charting.jsp component 
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Step 2: Users select the chart that they wish to see displayed 
 
Component Name: LoadChart.jsp 

This screen is loaded if users selected to view a saved chart in Charting.jsp. In this screen, users are 

presented with a list of charts that have been stored in the system. Users may select any one chart and 

proceed to the next screen where the chart is built dynamically and displayed on the browser.  

 

The screen has been built using Java Server Pages (JSP) technology. 

Continue Reset

Hull ID Vs Vessel Name

Vessel Name Vs Running Hours

List of Saved Charts

Please select a chart

Hull ID Vs Year Built

 
Figure 4.2. Snapshot of LoadChart.jsp component 

 

A sequence diagram corresponding to the steps involved in viewing a saved chart is presented below. 
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Charting.jsp
-- Users select either to View
Saved Chart or Create a New

Chart

Start

View Saved Chart ?

LoadChart.jsp
-- Display list of saved

charts

User Selects a chart

BuildChartServlet.java
-- Display chart

End

Yes

 
 

Figure 4.3. Sequence involved in viewing a saved chart 
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4.2. Design new charts  
 

All references to ‘Users’ in this section can imply both website owners or creators and everyday 

Internet users, unless specified otherwise. 

 

Step 1: Users choose between view a saved chart or create a new chart 
 
Component Name: Charting.jsp 

This is the first screen of the application. Users are presented with two options: 

• View saved charts 

• Create a new chart 

 

This component was developed using Java Server Page (JSP) technology.  

Continue Reset

View Saved Chart

Create New Chart

Welcome to ChartVisio

 
Figure 4.4. Snapshot of Charting.jsp component 

 

Step 2: Users select Chart type & table for Y-Axis attribute: 
 
Component Name: NewChart.jsp 

In the previous step, users selected the option to create a new chart. In this step, users can specify the 

attributes of their chart.  

 

This screen provides a drop-down list for the users to select the chart type for designing their charts. 

Users may choose to either a Vertical Bar Chart or a XY Chart to suit their needs. By default, Vertical Bar 

chart option is selected in the drop-down list. 
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In a Vertical bar chart, X-Axis is the domain axis, containing non-numeric data and Y-Axis is the 

range axis, containing the values corresponding to the x-axis. The XY chart on the other hand, has 

numeric values on both the axes.  

 

Users are presented with a list of tables in the database. They are allowed to choose a table, which 

would contain the attribute for Y-axis (of the chart). This component was developed using Java Server 

Page (JSP) technology. Front-end validation is being performed using Java Script.  

Continue Reset

SHIPS

SHIPS_SYSTEM

Step 2: Select Chart Type & table for Y-Axis
attribute

EQUIPMENT_HOURS

EQUIPMENT

FAILURE_REPORT

Select Chart Type

XY Chart

Vertical Chart

Selections made so far:

1. Create a new chart

 
Figure 4.5. Snapshot of NewChart.jsp component 

 

 
Step 3: Users select the Y-Axis attribute & aggregate function to be used: 

 
Component Name: PickYAxis.jsp 

In previous step, users chose a table, containing the attribute for Y-axis. In this screen, we present 

users with a list of numeric attributes (attribute of the type “NUMBER”), from the above-mentioned 

table. We only present numeric attributes because, Y-axis represents a “value” for each X-axis element.  

For each X-axis element, there may be multiple values for the Y-axis attribute. To group the multiple 

values into a single value, an aggregate function needs to be used. Users may select the function to be 
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used from a drop-down list. The choices would be Mean, Maximum and Minimum. By default, the 

“Mean” option is selected in the drop-down list. 

 

This component was developed using Java Server Page (JSP) technology. Front-end validation is 

being performed using Java Script.  

 

Continue Reset

SYSTEM_HSC NUMBER

Step 3: Select Y-axis attribute & aggregate
function to be used

Attribute

Aggregate Function

Minimum

Mean

Maximum

Data Type Select

HULL_ID NUMBER

Selections m ade so far:
1. Create a new chart
2. Y-axis table: SHIPS_SYSTEM

 
Figure 4.6. Snapshot of PickYAxis.jsp component 

 

 
Step 4: Select table for X-Axis attribute  

 
Component Name: PickTable2.jsp 

In the previous step, users chose the attribute for the Y-axis of the chart. In this step, we present the 

user with options to select a table for X-axis attribute (of the chart).  

 

In this screen, the system presents the user with a list of tables, where, each table is a higher-level 

master table of the Equipment table (Y-Axis table). Note: Y-axis table is also always presented as a 

choice for X-axis table. If the X-axis table is different from the Y-axis table, we get the elements that 

“link” the two tables, viz., the foreign key attributes and store it in a Session. 
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This component was developed using Java Server Page (JSP) technology. Front-end validation is 

being performed using Java Script.  

Continue Reset

Step 4: Select table for x-axis attribute

SHIPS

SHIPS_SYSTEM

Selections made so far:
1. Create a new chart
2. y-axis table: SHIPS_SYSTEM
3. y-axis: HULL_ID

 
Figure 4.7. Snapshot of PickTable2.jsp component 

 

 
Step 5: Build query to view records of x-axis table 

  
Component Name: PickRecords.jsp 

In the previous step, users chose the table for X-axis attribute of the chart. In this step, we present 

users with text boxes to generate a “select” query. The query is of the form:  

“Select * from table where criterion”. To fill the criterion, users are presented with:  

• Drop-down list containing the attributes of the table  

• Drop-down list containing the operators 

• Text box to enter criterion string 

 

Users may complete the query and proceed to the next stage. This component was built using Java 

Server Pages (JSP) technology.  
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Continue

Step 5: Form query to view records of SHIPS

*Select SHIPS where

VESSEL_NAME

1

HULL_ID

YEAR_BUILT

<=

=

>=

1

Reset

HULL_ID NUMBER

Attribute Data Type

YEAR_BUILT NUMBER

VESSEL_NAME VARCHAR2

from

Selections made so far:
1. Create a new chart
2. y-axis table: SHIPS_SYSTEM
3. y-axis: HULL_ID
4. x-axis table: SHIPS

 
Figure 4.8. Snapshot of PickRecords.jsp component 

 

 
Step 6A: Re-enter query if it was wrong in the previous step 

 
Component Name: BadQuery.jsp 

In the previous step, users generated a “select” query to view records in the x-axis table. If the query 

was invalid, users are presented with this screen where they are informed about the erroneous query. 

Users are provided with PickRecords.jsp screen, where they may enter a new query. 
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Continue

Step 5: Form query to view records of SHIPS

*Select SHIPS where

VESSEL_NAME

1

HULL_ID

YEAR_BUILT

<=

=

>=

1

Reset

HULL_ID NUMBER

Attribute Data Type

YEAR_BUILT NUMBER

VESSEL_NAME VARCHAR2

from

Selections made so far:
1. Create a new chart
2. y-axis table: SHIPS_SYSTEM
3. y-axis: HULL_ID
4. x-axis table: SHIPS
5. Invalid Query

select * from  SHIPS where
HULL_ID = '100' is an INVALID query.
Please enter a new query

 
Figure 4.9. Snapshot of BadQuery.jsp component 

 

This component was developed using Java Server Page (JSP) technology. Front-end validation is 

being performed using Java Script.  

 

 

Step 6B: Users select records in the x-axis table 
 
Component Name: ProcessQuery.jsp 

In the previous step (PickRecords.jsp), users formed a “select” query to view records in the x-axis 

table. In this screen, we present users with all the records retrieved from the query. Users can now choose 
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the data to be shown along the X-axis. (Note: If the query was invalid, users are taken back to 

BadQuery.jsp. This component was described under the previous sub-heading.)  

To help users in selecting records, ChartVisio displays the X-axis table with records filtered by the 

criteria specified by the users. A pseudo column “Row ID” is shown next to each record. When a user 

selects records, the system keeps track of the row ids of the selected records.  

 

Continue

Step 6: Select Records for X-axis from table:
SHIPS

Reset

100 1990

HULL_ID YEAR_BUILT

200

1994300

1992

Enter Row ID Range: TO

Select Row ID

Reset Choice

Row ID

3

1

2

0

400 1996

VESSEL_NAME

Victoria

Black Swan

Sea Wolf

Glorious

Select

Options:
1. Enter range of Row IDs
2. Enter indiv idual Row IDs - separate two Row IDs by a space
3. Select check boxes to mark selection

 
Figure 4.10. Snapshot of ProcessQuery.jsp component 

 

 

Users may select the data to be presented on the X-axis using any of the following methods: 

1) Enter the range of Row Ids – Users can scroll down the table of records and choose to select a 

range of records in sequence. Here, the users may specify the initial Row ID and the final Row ID of their 

choice. All the records in the specified range would be selected and shown on the X-axis.  

 

 



 24

2) Specify individual Row Ids – If users do not want a sequential range of records, they may 

choose Row Ids randomly and enter them in the text area provided. Now, each of the Row Ids specified 

will be a part of the chart.  

3) Select Check Box next to each record – If users do not wish to use methods 1 or 2, then they 

may specify their choice of X-axis data by clicking on the check box provided next to each record. Every 

checked record will be considered as an element in the X-axis.  

 

This component was developed using Java Server Page (JSP) technology. Front-end validation is 

being performed using Java Script.  

 

 
Step 7: Users select the X-Axis Label and Marker Line 

 
Component Name: PickXAxis.jsp 

In the previous step, the user has chosen the data to be displayed along the X-axis of the chart. In this 

step, the users are presented with a list of attributes from the X-axis table (selected by the user in 

PickTable2.jsp), and the users may choose any one.  The attributes presented to the user depends on the 

chart type selected by the user in step 1: 

If the user chose XY-Chart, only numeric attributes are displayed.  

If the user chose Vertical chart, only non-numeric attributes are displayed.  

 

ChartVisio also offers users the option of specifying a “Marker” line to their chart. The marker could 

be either a “standard” or a level to be attained. For example, it could be an average /maximum /minimum 

value of a set of values.  

 

Users may choose to draw a marker line on their charts by selecting any of the options (like MEAN, 

MAX, MIN) from the “Marker Line” drop down list. If the users choose “NONE” from list, the chart 

would not have a marker line. 

 

Also, the users can specify what the marker is for. That is: the marker could be for the list of records 

selected (by the user in step 4) or for the entire set of records in the database table. By default, the choice 

is on All Records.  
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Continue Reset

VESSEL_NAME VARCHAR2

Step 7: Select X-axis label & marker line

Attribute

Draw Marker Line

Data Type Select

DESC VARCHAR2

None

Minimum

Mean

Maximum

All Records

Selected Records

Selections made so far:

1. Create a new chart
2. Y-axis table: SHIPS_SYSTEM
3. Y-axis: HULL_ID
4. X-axis table: SHIPS
5. Query: select * from SHIPS where 1=1
6. Select records

 
Figure 4.11 Snapshot of PickXAxis.jsp component 

 

The screen has been built using Java Server Pages (JSP) technology and validation has been done 

using Java Script.  

 

 

Step 8: Users specify if they wish to save the new chart 
 

Component Name: OptionsPage.jsp 

Only website creators or owners have the option of saving a chart. Other users (namely, the everyday 

Internet users may only generate a chart, but may not save the chart as template.) 
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In the previous step, users selected the attribute for X-Axis. With that, users completed specifying 

attributes for the new chart. Here, users select what they wish to do with the new chart. The options are:  

 

• Display Chart 

• Save Chart 

• Save & Display chart 

 

Continue Reset

Display chart

Save chart

Step 8: Do you wish to save the chart?

Display & Sav e chart

 
Figure 4.12 Snapshot of OptionsPage.jsp component 

 

The screen has been built using Java Server Pages (JSP) technology. 

 

A sequence diagram corresponding to the steps involved in creating a new chart is presented in 

Figure 4.13. 
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user = website
owner?

Build Chart
Servlet

--Display Chart

Start

New Chart ?

NewChart.jsp

1. Users select Chart Type
2. Users select Y-Axis Table

 PickYAxis.jsp

1. Users select Y Axis Attribute
2. Users select Aggregate Function

 PickTable2.jsp
-- Users select Table for X-Axis

PickRecords.jsp

-- Users build query to view selected
records of x-axis table

PickXAxis.jsp
1. Users select label for X-Axis
2. Users select Marker

1. Display Chart?
2. Save Chart?

3. Save and Display
Chart?

Display Chart

Store Chart
Servlet

-- save chart
template as

XML file

Option 2, Option 3

Save & Display

 Charting.jsp
1. View Saved Chart
2. Create new Chart

Yes

 ProcessQuery.jsp
--Users select records for the x-axis

End

Save Chart

NO

ChooseOptions.jsp
--display options to save

chart

YES

 
Figure 4.13 Sequence Diagram in creation of new charts 
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Chapter 5. Implementation 
 

The components used in the application can be classified into: 

• JSPs 

• Servlets 

 

JSPs [2] have been used wherever there was a need for dynamic interaction with clients. JSPs formed 

the web-front end. JSPs were used to present information and options to users and also to accept user 

choices. 

 

Servlets [1] have been used to enable dynamic interaction with the Server. They were employed to do 

the core processing to generate and display charts.  

 

5.1. JSP Components 
 
Component: Charting.jsp 

Processing Detail: Users are allowed to view a saved chart or create a new chart. Users are presented 

with radio buttons to help them make their selection. The ‘View Saved Chart’ option is selected by 

default. 

This is the first screen of the application. When users click on ‘Continue’ after making their 

selection, the JSP form is submitted to CheckOptionServlet. 

 

Component: NewChart.jsp 

Processing Detail: Users are navigated to this screen if they selected ‘Create a new chart’ option in 

Charting.jsp. Here, Users are allowed to choose the chart type and the table for the Y-axis attribute in this 

screen. ChartVisio calculates the master-detail relationship of every table with every other table in the 

database and stores it in two hash tables: 

Master-Child Hash table: Key = String table name, Value = Vector child tables 

Child-Master Hash table: Key = String table name, Value = Vector master tables  
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         These tables will be of use in the later stages and their use will be described when appropriate. 

Master-Child and Child-Master hash table values are stored in session. When users click on ‘Continue’ 

after entering chart type and table for Y-axis, the JSP form is submitted and users are taken to 

PickYAxis.jsp. 

Validation Description: When users click on ‘Continue’, a Java Script function is called. This function 

checks if users have selected a table from the list as the Y-axis table before allowing them to the next 

stage (PickYAxis.jsp). An alert is raised if the form is not filled completely. Hidden fields on the form are 

set with values for ‘yAxisTable’ and ‘chartType’. 

 

Component: PickYAxis.jsp 

Processing Detail: This JSP is loaded when users submit NewChart.jsp. Table for Y-Axis is extracted 

from Http Request and saved the table name is in session. Users are allowed to choose the attribute for Y-

axis and select the aggregate function to be used.  

 

Why would users need to choose an aggregate Function? 
 

For each X-axis element, there may be multiple values for the Y-axis attribute. To be able to plot 

these values as one point on the graph, we need to group these values into a single value using an 

aggregate function. To facilitate aggregate function selection, the users are presented with a drop down 

list, consisting of Mean (default option), Maximum, and Minimum as options.  

 

Let us consider the following example. In the “Failure_Report” table, there are multiple failure 

instances for a Ship X. If the user would like to see a chart for Ship X Vs Failure_Hours for Ship X, all 

the Failure_Hours for Ship X need to be grouped as one value and then plotted on the chart as a single 

value.  

 

When users click on ‘Continue’ after selecting attribute for Y-axis and aggregate function, the JSP 

form is submitted and users are taken to PickTable2.jsp.  

 

Validation Description: When users click on ‘Continue’, a Java Script function is called. The function 

checks if users have selected an attribute from the list as the Y-axis attribute before letting them proceed 

to the next stage. An alert is raised if the form is not filled completely. Hidden fields on the form are set 

with values for ‘axisY’ and ‘ySelectType’ – which denotes the aggregate function to be used.  
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Component: PickTable2.jsp 

Processing Detail: This JSP is loaded when users submit PickXAxis.jsp. Y-Axis attribute and aggregate 

function are extracted from Http Request and are saved in the session. 

Here, users are allowed to choose the table for the X-axis attribute. Using the hash tables populated 

in NewChart.jsp, ChartVisio displays only the master tables of the table selected as the Y-Axis table.  

 

Why does the X-Axis table need to be a master table of the Y-Axis table? 
 

ChartVisio allows its users to select the Y-Axis attribute, X-Axis attribute and the records for X-

Axis. Data for Y-Axis is extracted from the database using data from X-Axis. For this, there needs to be 

at least a single common attribute between the X-Axis table and Y-Axis table. It is more interesting to 

select only the parent tables of the y-axis tables. Here, we do not restrict ourselves to the first level of 

master tables; we consider all possible parent tables of the y-axis table. 

 

When users click on ‘Continue’, after selecting table for X-axis attribute, the JSP form is submitted 

and users are taken to PickRecords.jsp.  

 

Validation Description: When users click on ‘Continue’, a Java Script function is called. This function 

checks if users have selected a table from the list as the X-axis table before allowing them to the next 

stage. An alert is raised if the form is not filled completely. A hidden field on the form is set with values 

for ‘xAxisTable’. 

 

Component: PickRecords.jsp 

Processing Detail: This JSP is loaded when users submit PickTable2.jsp. Table for X-axis attribute is 

extracted from Http Request and is saved in the session.  

 

Here, the users are presented with a skeleton to build a query. This is vital because we would not 

want to show all records of the table on the screen. Instead, we provide the users with a query box from 

where they can restrict the number of records. 

 

For this, users are presented with a query box in the following format:  

“Select * from xAxisTable where <attribute> <operator> <criterion>”.  

 

All attributes of the table are loaded into “Attribute” drop-down list. Operators such as “>”, “<”, 

“<=”, “>=”, “=” are loaded into “Operator” drop-down list. Users will need to enter the criterion in the 
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text area provided. If the attribute selected in the <attribute> list happens to be of a data type other than 

‘NUMBER’, users will need to enter their criteria in single-quotes. After entering the attribute, criterion 

and operator, users may press on “Set Query” button to submit the query to ChartVisio.  

 

When users click on ‘Set Query’ button after selecting attribute, operator and criterion, a Java script 

function is called. This function sets hidden fields for each of the user selections and the JSP form is 

submitted and users are navigated to ProcessQuery.jsp. 

 

Component: ProcessQuery.jsp 

Processing Detail: This JSP is loaded when users click the ‘Set Query’ button in PickRecords.jsp. Incase 

of an invalid query, the bad query is set in session and using Http Response.redirect, users are taken to 

BadQuery.jsp. If the query is valid, users are presented with the records and means to select records.  

 

Here, we process the query entered by users in PickRecords.jsp and check if the query is valid. If the 

query is valid, then ChartVisio presents users with the records returned by the query in a tabular format. 

 

A pseudo column “Row ID” is shown next to each record. When a user selects records, the system 

keeps track of the row ids of the selected records.  

 

Users may select the data to be presented on the X-axis using any of the following methods: 

1) Enter the range of Row Ids – Users are presented with two text boxes where they need to enter 

the initial Row Id and the final Row Id of records to be selected to be a part of the X-Axis. Users need to 

select the appropriate radio button in order to enter row ids using this method.  

 

2) Specify individual Row Ids – Users are presented with a text area, where they may enter 

individual Row Ids in any order. Individual Row Ids may be separated by a space. Users need to select the 

appropriate radio button in order to enter row ids using this method.  

 

3) Select Check Box next to each record – Users also have the choice of clicking on the check-

box next to each record to select a record for the X-Axis of the chart. 

 

Users are provided with a “Reset Choice” button to reset the radio buttons for Select methods 1 and 

2. Users are also provided with “Check-All” and “Uncheck-All” buttons for Select method 3.  

 



 32

How does ChartVisio remember each record? 
 

We know each record based on the row ids selected by the users. But row id is a pseudo column and 

we need to know the primary key attribute values for SQL to query the records from the database.  

 

In order to accomplish the above goal, this component retrieves X-Axis table name from the session 

and finds out the table’s primary key and its data types. The data type is required because, incase the 

primary key attribute is not of the type number, then, the value for that attribute needs to be in single 

quotes in the SQL query that we are going to build.  

 

For every record, the primary key values are added to a Vector. When users click on a particular 

record, the record’s primary key value is extracted from the vector and stored in a hidden field on the 

form. This hidden field is edited and updated each time a record is selected. When users submit the form, 

these values are sent to the next page in Http Request. 

 

For example: Attributes ‘HULL_ID [NUMBER]’ and ‘SYSTEM_HSC [VARCHAR2]’ together 

form the key of the table, SHIPS_SYSTEM. The key of the table is added to a Vector and stored in 

session. If users select a record that is described as: HULL_ID = 1000082 and SYSTEM_HSC = ‘404’, 

then, ChartVisio remembers this record as 100082&’404’. If users select another record that is described 

as: HULL_ID = 100054 and SYSTEM_HSC = ‘504’, then ChartVisio updates the value as: 

100082&’404’ 100054&’504’. Thus, a space character is used as delimiter to separate two individual 

records and ampersand [‘&’] symbol separates individual key values.  

 

This raw structure will be processed in the next screen and stored in more meaningful data structure. 

 

When users click on ‘Continue’, the JSP form is submitted and users are taken to PickXAxis.jsp. In 

case of an invalid query from PickRecords.jsp, the illegal query is stored in Http Request and users are 

redirected back to PickRecords.jsp.  

 

Validation Description: When users click on ‘Continue’, a Java Script function is called. This function 

checks for any illegal row ids selected by the users. In case of existence of any, users are alerted about 

them and are forced to remove the illegal entries.  
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Component: PickXAxis.jsp 

Processing Detail: This JSP is loaded when users submit ProcessQuery.jsp. X-axis records described by 

their keys are extracted from Http Request and are processed here. Key elements are now stored in a 

vector containing vector of records.  

 

Here, the users are presented with a list of attributes of the X-Axis table. The attributes depend on 

the chart type selected by the user in step 1 in NewChart.jsp: 

If the chart type was XY-Chart, only numeric attributes are displayed.  

If the chart type was Vertical chart, only non-numeric attributes are displayed.  

Users are provided with a radio button next to each attribute from which users may select any one.  

 

ChartVisio also provides an option of including a “Marker Line” in the chart. A “Marker line” is a 

horizontal line drawn parallel to the X-axis at a certain Y-Axis value decided by the user. The marker 

value could be the Average, Maximum or Minimum of all the records in the database or just the selected 

records in ProcessQuery.jsp  

 

A text box is presented to the users where they can enter the chart’s title. If the text box is left blank, 

the component sets the title as: axisX Vs axisY, where axisX and axisY refer to the x-axis and y-axis 

attributes respectively. 

 

When users click on ‘Continue’ after selecting label for x-axis of the chart, title and marker line, the 

JSP form is submitted and users are taken to BuildChart.java 

 

Validation Description: When users click on ‘Continue’ after selecting X-axis table name and marker 

values, a Java Script function is called. The function checks if users have selected an attribute from the 

list as the X-axis label before letting users proceed to the next stage. An alert is raised if the form is not 

filled completely. Hidden fields on the form are set with values for ‘marker for’, marker type and x-axis 

label. 

 

Component: BadQuery.jsp 

Processing Detail: This JSP is loaded when users enter an invalid query and click the ‘Set Query’ button 

in PickRecords.jsp. Here, users are presented with the bad query that resulted in an SQL Exception as the 

error message. Using <jsp: forward> tag, PickRecords.jsp screen is presented to the users. Now, users 

would need to select records for X-axis and submit the form. 
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Validation Description: This is similar to the validation description of PickRecords.jsp. 

 

Component: ErrorPage.jsp 

Processing Detail: Users are navigated to this screen when they randomly access any screen of the 

application, without following the sequence. Here, users are presented with a link that will take them to 

the first page of the application. Users will need to click on the link to Charting.jsp to start afresh. 

 

Component: LoadChart.jsp 

Processing Detail:  This JSP is loaded when users select ‘View Saved Charts’ option on Charting.jsp. 

This component is involved in retrieving all the .xml files saved in the directory specified for saved 

charts. (Note: This information is stored in xml_config.properties file and this component is explained in 

Chapter 6) Users are presented with a list of charts that are available and users may select any one of them 

and click on ‘Continue’. 

 

After users select one of the charts and click on ‘Continue’, the form is submitted to 

LoadChartServlet.java. 

 

5.2. Java Servlet Components 
 
Component: StoreParamServlet.java 

Processing Detail:  

This servlet is called from PickXAxis.jsp when users click on ‘Continue’ button. X-axis attribute, 

chartTitle, markerFor and yMarker are extracted from HttpRequest and stored in the session. This is an 

internal servlet and hence, does not form a user screen. 

 

This servlet simply does get ( ) and set ( )  methods for attributes in Http request. Using the Request 

Dispatcher class, control is now transferred to BuildChart.java  

 

Component: StoreChartServlet.java 

Processing Detail: This servlet is called from CheckOptionServlet.java. (Note: If users select ‘save chart’ 

or ‘save & display chart’ in CheckOptions.jsp, then, StoreChartServlet.java is called.) 

This is an internal servlet and hence, does not form a user screen. 

This servlet extracts the following information from session: 

• X-axis table, Y-axis table 
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• X-axis attribute, Y-axis attribute 

• Key Vector, Key value Vector 

• Chart title, chart type (vertical chart / XY-chart) 

• Ymarker (marker line options: none / mean / min / max) 

• markerFor (marker over all records / selected records) 

•  ySelectType (for the aggregate function)  

• Except for Key Vector and Key value vector, all the other bits of information are of the data 

type ‘String’ and are single-valued.  [Jdom.jar] [20] offers java-centric solution for creating 

and manipulating XML files. Using the jdom API, an XML file is created with each of the 

string data as an individual ‘Element’. Extra processing is done to traverse through each of 

the vectors (namely, the key vector and the key value vector) and represent the vector 

elements in XML format.     

 

The XML file is saved as: ‘%chart_title%.xml’ in the directory specified in the 

XML_Config.properties file. (Note: Chapter 5 talks about the configuration files)  

This component imports [org.jdom.*] and [org.jdom.output.*] [20]. 
 

X-axis attribute, chartTitle, markerFor and yMarker are extracted from HttpRequest and stored in the 

session. An example of an XML file created using the StoreChartServlet in Figure 5.1. 

 

If users selected the ‘save chart’ option in CheckOptions.jsp, using the Request Dispatcher class, 

control is transferred to Charting.jsp 

 

If users selected the ‘save & display chart’ option in CheckOptions.jsp, using the Request Dispatcher 

class, control is transferred to BuildChartServlet.java 
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<?xml version="1.0" encoding="UTF-8"?> 

 

<CHART_DATA> 

 

 <X_AXIS_TABLE>SHIPS</X_AXIS_TABLE> 

 <Y_AXIS_TABLE>SHIPS_SYSTEM</Y_AXIS_TABLE> 

 <X_AXIS>VESSEL_NAME</X_AXIS> 

 <Y_AXIS>HULL_ID</Y_AXIS> 

 <CHART_TYPE>1</CHART_TYPE> 

 <CHART_TITLE>VESSEL_NAME Vs HULL_ID</CHART_TITLE> 

 <Y_MARKER>1</Y_MARKER> 

 <MARKER_FOR>0</MARKER_FOR> 

 <Y_SELECT_TYPE>1</Y_SELECT_TYPE> 

 

 <KEY_LIST> 

  <KEY_LIST_ITEM> 

   HULL_ID 

  </KEY_LIST_ITEM> 

 </KEY_LIST> 

 

 <QUERY_LIST> 

  <QUERY_LIST_ITEM> 

   <ATTR_LIST> 

    <ATTR_LIST_ITEM>1000182</ATTR_LIST_ITEM> 

   </ATTR_LIST> 

  </QUERY_LIST_ITEM> 

  <QUERY_LIST_ITEM> 

   <ATTR_LIST> 

    <ATTR_LIST_ITEM>1000154</ATTR_LIST_ITEM> 

   </ATTR_LIST> 

  </QUERY_LIST_ITEM> 

  <QUERY_LIST_ITEM> 

   <ATTR_LIST> 

    <ATTR_LIST_ITEM>1000158</ATTR_LIST_ITEM> 

   </ATTR_LIST> 

  </QUERY_LIST_ITEM> 

  <QUERY_LIST_ITEM> 

   <ATTR_LIST> 

    <ATTR_LIST_ITEM>1000162</ATTR_LIST_ITEM> 

   </ATTR_LIST> 

  </QUERY_LIST_ITEM> 

 </QUERY_LIST> 

 

</CHART_DATA> 

 
Figure 5.1. Example of an XML created using StoreChartServlet 
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Component: LoadChartServlet.java 

Processing Detail: This servlet is called from LoadChart.jsp when users select which chart they wish to 

see and click on ‘Continue’ button. This is an internal servlet and hence, does not form a user screen. 

 

        This component reads from the selected XML file and extracts the following information: 

• X-axis table, Y-axis table 

• X-axis attribute, Y-axis attribute 

• Key Vector, Key value Vector 

• Chart title, chart type (vertical chart / XY-chart) 

• Ymarker (marker line options: none / mean / min / max) 

• markerFor (marker over all records / selected records 

• ySelectType (for the aggregate function) 

 

This detail is now fed into session using the SessionController class. (Note: This is a utility class and 

will be explained in the next chapter).  

 

Using the Request Dispatcher class, control is now transferred to BuildChartServlet.java where the 

chart will be displayed. 

 

Component: BuildChart.java  

Processing Detail: This servlet can be called from: 

• StoreParamServlet (Note: StoreParamServlet is called when users click on the ‘Continue’ 

button in PickXAxis.jsp during new chart creation)   

• LoadChartServlet (Note: LoadChartServlet is called via LoadChart.jsp when users select 

‘View Saved Chart’ in Charting.jsp)  

This is an internal servlet and hence, does not form a user screen. Here, we check if the table for x-

axis attribute and the table for y-axis attribute are the same; and process the attributes accordingly.  

 

Attribute for X-axis, chart title, marker type and ‘marker for’ are retrieved from Http request and are 

saved in session. Keys and Record Value vectors (saved in session in ProcessQuery.jsp) are retrieved 

from session. 

 

For each record, a criterion is formed using the keys and their corresponding values in the record 

value vector. For each criterion that has been formed, a query is formed with table = xAxisTable, attribute 
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= axisX. Using this as the query, the record corresponding to this criterion is retrieved from the database. 

This record would be an element for the x-axis of the chart. Each x-record is loaded into the Vector 

xRecords. If there are multiple occurrences of the same x-record element in the vector, duplicate elements 

are combined using the aggregate function (selected by user in PickYAxis.jsp) and the vectors are 

updated with accordingly.  

 

If the y-axis table were to be the same as the x-axis table, then the criterion would be the same to 

retrieve a y-axis record. If a query results in more than 1 record being selected, the aggregate function 

(selected by the user in PickYAxis.jsp) is used to group multiple values into a single y-record. Each y-

record is loaded into the Vector yRecords. 

 

At the end of processing, a Request Dispatcher object is created for the current servlet context and 

Http request and Http response are packed in it. If the table selected for Y-axis is the same as the table for 

X-axis, request dispatcher is sent to BuildChartServlet.java. If the table selected for Y-axis is different 

from that of the X-axis table, request dispatcher is sent to ProcessYAxis.java  

 

Component: ProcessYAxis.java 

  This servlet is called from BuildChart.java only if users select a table for Y-axis that is different 

from the X-axis table. 

 

This servlet is deployed only if the Y-axis table is different from that of X-axis table. Here, the aim is 

to retrieve Y-axis records and load them into a Vector yRecords and move on to building the chart as the 

next step. The process is very similar to that employed in BuildChart.java to process X-axis records. 

 

Keys and Record Value vectors (saved in session in ProcessQuery.jsp) are retrieved from session. 

The foreign key attributes are extracted from the session Note: They are the attributes that “link” the X-

axis table and Y-axis table. They were calculated and put into session in PickRecords.jsp. So, link 

attributes would be present in both X-axis and Y-axis tables. 

 

For each record, a criterion is formed using the link attribute and their corresponding values in the 

primary key values array. For every criterion, a query is formed with table = yAxisTable, attribute = 

axisY. Using this as the query, the record corresponding to this criterion is retrieved from the database. 

This record would be an element for the y-axis of the chart. Each y-record is loaded into the Vector 
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yRecords. If the query returns more than 1 element, the records are combined using the aggregate 

function (selected by user in PickYAxis.jsp) and the vectors are updated accordingly.  

 

Also, if the user has selected the option of including a marker line (Users are presented with this 

option in PickXAxis.jsp), this component calculates where the marker line needs to be drawn. Finally, 

yRecords Vector and marker line value are stored in session. 

 

At the end of processing, a Request Dispatcher object is created for the current servlet context; Http 

request and Http response are packed in it and is sent to BuildChartServlet.java. 

 

Component: BuildChartServlet.java 

Processing Detail: This is an internal servlet and hence, does not form a user screen. This servlet can be 

called from one of the following components: 

 

• BuildChart.java – if users are creating a new chart and x-axis and y-axis tables correspond to the 

same table 

• ProcessYAxis.java – if users are creating a new chart and y-axis table is different from that of the 

x-axis table 

• LoadChartServlet.java – if users are viewing a saved chart 

 

This component extracts the following information from session: 

• axisX – name of the x-axis attribute  

• axisY – name of the y-axis attribute  

• chartTitle – title of the chart  

• markerValue – value at which the marker line needs to be drawn (This will contain “NONE” 

if there was marker line was not included by the user in PickXAxis.jsp) 

• xRecords – vector that contains all x-axis records (Calculated in BuildChart.java based on 

users’ selection of records in ProcessQuery.jsp) 

• yRecords – vector that contains all y-axis records (Calculated in BuildChart.java if 

xAxisTable and yAxisTable were the same; Calculated in ProcessYAxis.java if xAxisTable 

and yAxisTable were not the same) 
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This component imports the java chart library files, namely, com.jrefinery,chart.* [20] and 

com.jrefinery.input.* [20]. ChartVisio employs utilities described in the library to ‘draw’ its charts. How 

the utilities work to draw charts is beyond the scope of this discussion.  

 

Using the values for x-axis and y-axis records, this component builds a ‘chart’ object (native to the 

Chart library) and the chart is created as a .jpeg file and is displayed on the browser.  

 

This is the last screen of the application. Users would need to click on the ‘back’ button of the 

browser to return to Charting.jsp and start afresh. 
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OptionsPage.jsp
1. Display Chart
2. Save Chart
3. Save & Display Chart

ProcessYAxis.java
1. Find how y-axis table is related to x-axis table
2. Form query to retrieve y-records using the link attributes
from Step 1
3. Load records into Vector and store in session

BuildChart.java
1. Build criterion & query to get x-axis records
2. Load records into Vector and store in session
3. If x-axis table == y-axis table, load y-records and store in session

Is x-axis table = y-
axis table?

No

Loading chart from XML
file or user NOT website

owner?

No

Yes

BuildChartServlet.java
- display chartYes

Charting.jsp

- first page where user
selects to create a new
chart or view a saved chart

Start
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or New chart creation

End

CheckOptionServlet.java

-- checks option and redirects
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Save Chart

Save & Display

Option 1

Options 2, 3

 
 

Figure 5.2. Sequence diagram describing the interaction amongst internal components  
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Chapter 6. Configuration files & utility classes 
 

6.1. Configuration files 
 

Configuration files lend portability to the application. ChartVisio makes use of the following 

configuration files: 

• DB_config: parameters related to database connection, user name and password 

• Logger_config: parameters related to where the logger files need to be generated 

• XML_config: parameters related to where the charts need to be stored 

 

An example of the configuration file containing database and connection related information is 

presented in Figure 6.1. 

 

#Sample db_config.properties file 

 

dbHost=carrolton.cs.uno.edu 

dbPort=1521 

dbName=dbrs 

login=test_user 

pwd=test_password 

owner=chart_user 

Figure 6.1: Example of a DB_config.properties file 
 

An example of the configuration file containing information related to where XML files need to be 

stored is presented in Figure 6.2. 

 
## file_path for Store Chart  

file_path=C:\\Saved_Charts\\ 

 

## phile_path for Load Chart 

phile_path=file://c:/Saved_Charts/  

Figure 6.2. Example of an XML_config.properties file 
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An example of the configuration file for Logger information is shown in Figure 6.3. 

 

#Logger_Config.properties file for LOGGER class 

 

# Enter the number of log generation files you want here 

Log.Generation.Count=1 

 

# Enter the max size of the log file here.   

# eg: Value in 1K bytes (i.e 10 = 10K) 

Log.Max.Size=32 

 

# Specify what kind of messages you want to log:  

# INFO / TRACE / ERROR / ALL / INFO, TRACE 

Log.Filter=ALL 

 

# Specify the Directory to place the log file 

Log.Path=C:\\Tomcat4.1\\Charting\\logs 

Figure 6.3. Example of a Logger_config.properties file 
 

6.2. Utility classes 
 
Component: SessionController.java 

A detailed description of SessionController.java component contained in the architecture is presented 

here.  

 

Processing Detail: All components described in Chapter 4 and 5 make use of the SessionController class. 

Whenever any object needs to be stored in session for use by other classes, a get ( ) and set ( ) method is 

described for that object in SessionController.java. An instance of SessionController class is created only 

in the first JSP file that stores something in session, namely, PickYAxis.jsp.  

 

Figure 6.4 describes how an instance of the SessionController object is created and put in Http 

Session in every component. 
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// Code from PickYAxis.jsp 

 

HttpSession session2 = request.getSession ( true ) ; 

 

SessionController sc = new SessionController ( ) ; 

 

// End of code 

 

Figure 6.4. Sample code to create SessionController instance 
 

PickYAxis.jsp stores the value for yAxisTable, which is the name of the table from which the y-axis 

attribute is selected.  

 

Figure 6.5 describes the get ( ) and set ( ) methods in SessionController.java. 
 

// Code from SessionController.java 

 

private String yAxisTable ; 

 

 /* Get & Set methods for elements of X-Axis */ 

 

 public void setYAxisTable ( String value )  

 { 

  yAxisTable = value ; 

 } 

 

 public String getYAxisTable ( )  

 { 

  return yAxisTable ; 

 } 

 

   // End of code 

 
Figure 6.5. Sample code with get ( ) and set ( ) methods in SessionController 

 
 

Now, in PickYAxis.jsp, the set ( ) method for yAxisTable is called and the SessionController 

instance is stored in Http Session. 
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// Code from PickYAxis.jsp 

 

//set value of yAxisTable in SessionController instance 

sc.setYAxisTable ( yAxisTable ) ;  

 

//store ‘sc’ instance in session 

sc.setAttribute ( “sc”, sc ) ;  

 

// End of code 

 

Figure 6.6. Sample code to set an attribute value 
 
 If another JSP - PickRecords.jsp needs to retrieve the value of yAxisTable, it would simply extract 

the SessionController instance from session and extract yAxisTable value from that instance. 

 
 

// Code from PickRecords.jsp 

 

HttpSession session = request.getSession ( true ) ; 

 

SessionController sc =  null ; 

 

String yAxisTable = “” ; 

 

sc = ( SessionController ) session.getParameter ( “sc” ) ; 

 

yAxisTable = sc.getYAxisTable ( ) ; 

 

// End of code 

 

 

Figure 6.7. Sample code to get an attribute value 
 
 

Component: Logger.java  

Processing Detail: All components described in Chapters 4 and 5 make use of the Logger class. 

Logger.java acts as a tool to log information. This is transparent to the end-users. Only the owners of the 

web site will have access to this and they are allowed to log information, error and trace. The names of 

the log files are of the format “current-date-time.log”. 

 

This component makes use of a configuration file (which is a simple .properties text file) where users 

can specify a number of parameters: 
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• Generation.Count – Number of log files to be generated 

• Max.Size – Maximum size of each file 

• Filter – What to log? Information, Error, Trace or All 

• Log.Path – Where to place the log files  

The owners of the web site may edit this configuration file to set the parameters. 

 

Component: TableManager.java 

Processing Detail: All components described in Chapters 3 and 4 make use of TableManager.java when 

they need to do database calls. Various functions have been defined here. The external components that 

need to perform database operations need to simply call these functions. Database connection is 

established here.  

 

The database operations supported by TableManager are: 

 

• Select (table, criterion, attribute)  

This function returns the result of select operation.  

The function formats a query in the form:  

“Select <attribute> from <table> where <criterion>” and executes the query. 

      Result of the query is returned in a Vector data structure.  

• Row_Count  (table)  

This function formats a query as:  

“Select count (*) from <table>” and executes the query. The total number of records in the 

result set is returned as an int. 

  

Component: LoadRelation.java 

Processing Detail: ProcessYAxis.java (described in Section 5.2) makes use of this class when the 

relationship between the X-axis and Y-axis tables need to be set. The function of this class is to find out 

how two tables are related. This uses the Master Child and the Child Master hash tables generated in 

NewChart.jsp (described in Section 5.1) and computes the relationship and returns the result back to 

ProcessYAxis.java 
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7. Conclusion  

ChartVisio plays a vital role in visual data mining [5]. It is simple to use, highly interactive and acts 

as a reliable tool to quickly explore data by representing the database as a visual. It is purely a web-based 

application and can be efficiently accessed from anywhere, anytime.  

 

ChartVisio hides the underlying complex mechanisms from its users, except where it is absolutely 

appropriate and necessary to expose them. Hence, it enables even non-technical users to query into a 

database and generate charts with minimal effort and time.  

 

The application is built on three-tier client-server architecture [10]. This ensures scalability, high 

performance and supports multiple-user environments. It is also very system-independent. This gives it 

advantages such as portability and wide application.  

 

Users (website creators or owners and everyday Internet users) can draw simple charts to represent 

numerical data and get comparison-oriented results. Website owners have the option of saving charts as 

templates for future use. This is of tremendous significance when website owners or creators wish to 

show statistics like performance and make it available ready-made of the web. This allows prospective 

website surfers to view stored charts with the touch of a button and also get real-time data, since charts 

are generated dynamically.   

 

Attribute for the Y-axis of the chart can be from a table selected from a set of all possible children 

tables of the X-axis table. There can be any number of steps dividing X-axis and Y-axis tables. Data from 

tables is mapped into data for charts using aggregate group functions, which are computed across the n-

step division between the two tables. This provides users with a larger space to select axes of the chart. 

 

ChartVisio is a general-purpose charting application. It can be extended to any database with minimal 

configuration effort since there is no hard coding of information in the application. Logging facility has 

been integrated with the application. This ensures that key events and errors can be logged for future 

reference.  
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Glossary 
 
Apache Jakarta 
Apache Jakarta is a significant open-source Servlet/JSP development project.  Apache is heavily 
committed to supporting Java: there are a lot of sub-projects and at the heart of them is the Tomcat 
Servlet container module for the Apache Web server.  Tomcat is the reference implementation for both 
Servlets and Java Server Pages. 
 
Document Object Model (DOM) 
DOM is a way of making XML data accessible to Java.  DOM uses a tree-based parser that goes through 
the XML original and makes the contents available via Java methods. 
 
Document Type Definition (DTD) 
The purpose of a DTD is to define the legal building blocks of an XML document.  It defines the 
document structure with a list of legal elements.  The DTD can be used to verify the validity of an XML 
document. 
 
Hyper Text Markup Language (HTML)  
HTML is a format for encoding hypertext documents that may contain text, graphics, and references to 
programs and other hypertext documents.  HTML consists of normal text and special codes (tags), which 
tell a Web browser how to display text. 
 
Hyper Text Transfer Protocol (HTTP)  
HTTP is the underlying protocol used by the Web to format and transmit messages.  It determines the 
actions Web servers and browsers should take in response to various commands.  HTTP is the protocol 
used between Tomcat server and clients. 
 
Java 
Java was designed to be completely object-oriented programming language developed by Sun. It is highly 
portable and includes features such as inheritance and polymorphism; and supports concurrent 
programming.  
 
Java 2 Platform Enterprise Edition (J2EE) 
J2EE defines the standard for developing multi-tier enterprise applications.  J2EE supports the feature 
"Write Once, Run Anywhere" portability.  J2EE adds full support for Enterprise Java Beans components, 
JDBC API for database access, Java Servlets API, Java Server Pages and XML technology.  J2EE 
simplifies enterprise applications by basing them on standardized, modular components.  It includes 
specifications to ensure portability of applications across systems capable of supporting J2EE. 
 
JDBC 
JDBC technology is an API for that lets Java programs connect to virtually any tabular data source. It 
provides vendor-independent access to databases. JDBC API makes it very easy to execute SQL 
statements. 
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JCommon 
JCommon is a free class library containing utility classes written in Java and has been used in the 
JFreeChart project.  
 
JFreeChart 
JFreeChart is a free Java class library for generating charts. It is based on Java 2D API and required JDK 
1.3 or later. It can be used in Java Servlets, JSPs, applets or client applications.  
 
Java Development Kit (JDK) 
JDK is the Java Virtual Machine together with the set of Java classes and tools Sun Microsystems 
furnishes to support Java application development.  The JDK includes a Java compiler. 
 
Javascript 
Javascript is a scripting language that extends HTML. It was invented by Netscape to allow developers to 
write programs to generate pages dynamically. Javascript programs are placed in between <SCRIPT> ... 
</SCRIPT> tags in the HTML or JSP page and they are executed as the page is loaded by the user's 
Browser.  
 
Java Virtual Machine (JVM) 
JVM is the virtual machine (A hypothetical machine that can be emulated on many different actual 
machines) that provides operational semantics of Java and also defines the hardware and software 
environment needed to run Java byte code. Java byte code is a way of describing classes as a stream of 
byte oriented machine code for the Java Virtual Machine. 
 
Java Server Page (JSP) 
Java Server Pages technology allows rapid development of dynamic web pages. It enables rapid 
development of platform independent web-based applications.  JSP technology separates the user 
interface from content generation, enabling designers to change the overall page layout without altering 
the underlying dynamic content. 
 
JDOM 
JDOM is a Java-based solution for accessing, manipulating, and outputting XML data from Java code.  
 
Simple API for XML (SAX) 
SAX is a way of making XML data accessible to Java.  SAX uses event-based parser that goes through 
the XML original and makes the contents available via Java methods. 
 
Servlet 
Servlet is a Java program that runs on the Web server side.  It provides a component-based, server and 
platform-independent method for building Web-based applications with access to all Java API. With 
Servlets, developers can customize content, function, and appearance of web pages.  
 
Tomcat 
Tomcat is the Servlet container that is used in the official Reference Implementation for the Java Servlet 
and Java Server Pages technologies.  Tomcat is developed in an open and participatory environment and 
released under the Apache Software License. 
 
eXtensible Markup Language (XML) 
XML is a simple, very flexible text format derived from of Standard Generalized Markup Language 
(SGML). XML is a standard way to identify and describe data on the Web.  XML documents define their 
own element tags via a DTD.   

 

http://java.sun.com/products/servlets
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