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Abstract

In this work we present some analytic and semi-analytic traveling wave so-
lutions of a generalized Burger� equation for isothermal unidirectional �ow of
viscous non-Newtonian �uids obeying the Gee-Lyon nonlinear rheological equa-
tion. The solutions include the corresponding well-known traveling wave solution
of the Burgers� equation for Newtonian �ow as a special case. We also derive
estimates of shock thickness for the non-Newtonian �ows.

1 Introduction

In this work we derive a traveling wave solution to the following generalized Burgers�
equation
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where �(t) = (1 + ct2)t, 0 < c <1. The solution can be written as the following:
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in which the constant b is de�ned by sinh(2b) = 8p
c�(u2�u1) . It is well-known that for

c = 0, equation (1) is the classical Burgers�equation for Newtonian �uid �ows and the
traveling wave solution is
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130 Traveling Solutions of Burgers�Equation

satisfying the upstream and downstream boundary conditions

lim
�!+1

u(�) = u1 ; lim
�!�1

u(�) = u2; lim
j�j!+1

du

d�
(�) = 0

with � = x� �t; � = u1+u2
2 .

It is interesting to note the if the second term in our solution (2) is dropped, the
�rst term coincides with the classical solution. So the solution to the Non-Newtonian
�ow equals the solution to the Newtonian �ow plus an extra term �extra(b; �)�. We
also show that using the �rst order approximation, the thickness � of the transition
layer between upstream and downstream can be given by � = 8�0

�(u2�u1)f1+c[ �8 (u2�u1)]2g
which for c = 0 gives the corresponding classical estimate � = 8�0

�(u2�u1) for Newtonian
�uid �ows. Similar results for power-law �ows have been established in [13]. Although
the pro�les of the transition layer for both power-law �ows and Gee-Lyon �ows look
similar, the mathematical solutions describing these pro�les are quite di¤erent.

2 The Generalized Burgers�Equation

The general Navier-Stokes equation for incompressible viscous �ows is given by

�
Du

Dt
= div(�)�5p+ g (4)

where u = (u1; u2; u3) is the �uid velocity,

� =

0@�11 �12 �13
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�31 �32 �33

1A ; and Du =

0@d11 d12 d13
d21 d22 d23
d31 d32 d33

1A
are the stress tensor and the strain tensor, � is the density, g the external force, p the
scalar pressure, and dij = 1

2 (
@ui
@xj
+
@uj
@xi
), 1 � i; j � 3. For unidirectional �ows,we assume

that u = (u1; 0; 0), � ij = 0 for i 6= 1 or j 6= 1, g = (g1; 0; 0), and 5p = ( @p@x1 ; 0; 0). The
Navier-Stokes equation (4), in this case, takes the following simple scalar form

Du1
Dt

=
d�11
dx1

� @p

@x1
+ g1 (5)

where Du1
Dt =

@u1
@t + u1

@u1
@x1
. Rheological relationships between � and Du are frequently

used to determine the type of �uids. Polyethylene and polystyrene melts can be de-
scribed approximately by a rheological equation proposed by Rabinowitch and later
generalized by Gee and Lyon [12], taking into account that the viscosity of these �uids
depends highly on the temperature and the high stress levels. The rheological equation
proposed by Gee and Lyon is given by

�0dij = (�ij + c j�kl� lkj
n
2 )tij , 1 � i; j � 3 (6)



D. Wei and K. Holladay 131

where �0, n, and c are constants, �ij =

�
1, if i = j
0, if i 6= j , see [2], [10] or [12]. The

temperature dependence of the viscosity is expressed by �0 = Ae
E
RT . In this work, we

refer to �uid �ow satisfying the rheological equation (6) as Gee-Lyon �ows.

If c = 0, then the �uid is said to be a Newtonian �uid; it is non-Newtonian if c 6= 0.
For many important industrial polymer �uids, the values of A, E, R, c and n have
been experimentally determined. For unidirectional �ows, the rheological equation (6)
reduces to �0d11 = (1 + c j�11j

n
�11. Let u1, x1, g1 be denoted by u, x, g respectively.

Then from (5), let � @p
@x + g = 0, we have the generalized Burgers�equation
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where �(t) = (1 + c jtjn)t, 0 < c < 1. Equation (7) is referred to as the generalized
Burgers� equation for Gee-Lyon �ows. For c = 0, � = �0

� , (7) reduces to Burgers�
equation for Newtonian �ows

@u

@t
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. (8)

It is well known that if we impose lim
�!+1

u(�) = u1, lim
�!�1

u(�) = u2, lim
j�j!+1

du
d� (�) =

0, and u1 < u2, (8) has the celebrated traveling wave solution
�
�0
= 2

�(u2�u1) ln
u2�u
u�u1 ,

which is equivalent to

u(�) =
u1 + u2 exp[� �

2� (u2 � u1)]
1 + exp[� �

2� (u2 � u1)]
(9)

where � = x� �t, u1 and u2 are the downstream and upstream �uid velocities.

It can be shown that there exists a thin transition layer of thickness � of order
8�

u2�u1 for (9). This thickness � can be referred to as the shock thickness, which tends
to zero as � ! 0, and for �xed �, � ! 1, as (u2 � u1) ! 0. See, for example, [7] or
[10] for a derivation of (9) and analysis of (8). In this work, we �nd analytic and semi-
analytic solutions to (7) for c 6= 0, and n = 2, and we derive the corresponding order
of thickness for the transition layers in non-isothermal �ow of viscous non-Newtonian
�uids. Applications of these types of �ows are abundant in studying �ows in drilling
�uids, food, oil, polymers, etc; see e.g. [1], [2], and [11]. There are numerous papers
devoted to the study of equation (5) in the literature on shock formation and traveling
waves in Newtonian �ows dating back to the original papers of Burgers, Cole, and
Hopf, see [3], [5] and [8]. A generalized Burgers� equation for non-Newtonian �ows
based on the Maxwell model has recently been studied in [4]. We have not found any
paper which deals with Burgers�equation (7) for c 6= 0, and n = 2.
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3 The Integral Equation for the TravelingWaves and
the Solution

Let u(x; t) = u(�), with � = x � �t. Then @u
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where A is an arbitrary integration constant. Applying the downstream and upstream
boundary conditions: lim

�!+1
u(�) = u1, lim
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u(�) = u2, and lim
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equation (11), we get
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Without loss of generality, in the following, we assume that u1 < u < u2. For c = 0,
(13) gives
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� , which gives the classical traveling wave solution
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to Burgers�equation for Newtonian �ows.
In the following, we are interested in �nding solutions to (13) for c 6= 0 and n = 2.
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and (13) becomes
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Let the constant b be de�ned by sinh 2b = 8p
c�(u2�u1)2 , and de�ne 	(t; b) = (1 +
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)t. We have the decomposition
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and the traveling wave

solution of (1) is implicitly de�ned by
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We have omitted the integration constants in the above solutions. For simplicity, we
plot the pro�le of the transition layer of u = u(�) and provide the following graphic
representation of the pro�les of the transition layers. The blue curves correspond to
b = 0:5, 0:35, and 0:25 respectively and the red curve represents the classical solution
corresponding to b = 0:0.
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4 The Order of Thickness of the Transition Layers

The transition layer thickness or the shock thickness can be estimated by using the �rst

order derivative du
d�

���
�=0
. From du
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using the Taylor expansion, we have
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Therefore we have
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�2o ,
Which is the �rst order approximation of the thickness of the transition layer for power-
law �ows. This estimate, for c = 0, gives the well-known estimate � = 8�0

�(u2�u1) for the
thickness of the transition layer of Newtonian �ows.

5 Conclusion

In this work, we consider a generalized Burgers�equation for Gee-Lyon �uid �ows, and
derive a new general traveling wave solution of this equation. As special cases of this
solution, we show several analytic solutions and pro�les of the thickness of the transition
layer of the solution. We de�ned a �rst order approximation of the thickness of the
transition layer or the thickness of the shock which generalized the known estimate for
the shock thickness of the corresponding Burgers�solution for Newtonian �ows.
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