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Abstract

In this work we present some analytic and semi-analytic traveling wave so-
lutions of a generalized Burger’ equation for isothermal unidirectional flow of
viscous non-Newtonian fluids obeying the Gee-Lyon nonlinear rheological equa-
tion. The solutions include the corresponding well-known traveling wave solution
of the Burgers’ equation for Newtonian flow as a special case. We also derive
estimates of shock thickness for the non-Newtonian flows.

1 Introduction

In this work we derive a traveling wave solution to the following generalized Burgers’

equation
ou ou\ 0 4 ou
p <8t + ’an> = aﬁb (MOGQ:) (1)

where ¢(t) = (1+ ct?)t, 0 < ¢ < co. The solution can be written as the following:

£ 2 )ln(“r“>_p(4 xt(ﬁ“*““‘)) 2)

o plug —ug U — Uy Uy — U7) Ug — Uy
where
arctan(m)
extra(b,v) = Re _ (3)
—1 — 4 sinh(2b)
in which the constant b is defined by sinh(2b) = ——-5——. It is well-known that for

 Vep(ug—ur)
¢ = 0, equation (1) is the classical Burgers’ equation for Newtonian fluid flows and the
traveling wave solution is

I3 2 U — U
= = In(
Ho p(ug — Ul) uU—up

)
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130 Traveling Solutions of Burgers’ Equation

satisfying the upstream and downstream boundary conditions

du
lim u(§) =wuq, lim u(§) = uog, lim —
Jim u(8) =u Jimu(8) = u L

=0
with & =z — A, /\:%.

It is interesting to note the if the second term in our solution (2) is dropped, the
first term coincides with the classical solution. So the solution to the Non-Newtonian
flow equals the solution to the Newtonian flow plus an extra term “extra(b,v)”. We
also show that using the first order approximation, the thickness d of the transition

: _ 8o
layer between upstream and downstream can be given by § = POT Y sy )

8 .
— 2o for Newtonian
pluz—u1)

which for ¢ = 0 gives the corresponding classical estimate § =

fluid flows. Similar results for power-law flows have been established in [13]. Although
the profiles of the transition layer for both power-law flows and Gee-Lyon flows look
similar, the mathematical solutions describing these profiles are quite different.

2 The Generalized Burgers’ Equation

The general Navier-Stokes equation for incompressible viscous flows is given by

Du

Du oy 4
P Dy div(e) = vp+g (4)

where u = (ug,ug,ug) is the fluid velocity,

Ti1 Ti12 Ti13 din di2 dis
o= |71 T22 Ta23|, and Du = [ da1 dao dos
T31 T32 T33 d31 dsz2  dss

are the stress tensor and the strain tensor, p is the density, g the external force, p the

scalar pressure, and d;; = %(g;’; + BZ_-? ), 1 <4,j < 3. For unidirectional flows,we assume
J i

that v = (u1,0,0), 75 =0for i # 1 or j # 1, g = (¢1,0,0), and p = ((%’1,0,0). The
Navier-Stokes equation (4), in this case, takes the following simple scalar form

Dul - dTll 6p

Dt~ dey oz, T (5)

where %“tl =S+ ul%' Rheological relationships between ¢ and Du are frequently
used to determine the type of fluids. Polyethylene and polystyrene melts can be de-
scribed approximately by a rheological equation proposed by Rabinowitch and later
generalized by Gee and Lyon [12], taking into account that the viscosity of these fluids
depends highly on the temperature and the high stress levels. The rheological equation

proposed by Gee and Lyon is given by

podi; = (8i + ¢ |Tramie F)tig, 1< 4,5 < 3 (6)
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1, ifi=y
0, ifi#£y
temperature dependence of the viscosity is expressed by p, = Ae7r . In this work, we
refer to fluid flow satisfying the rheological equation (6) as Gee-Lyon flows.

where 1, n, and c are constants, §;; = { , see [2], [10] or [12]. The

If ¢ = 0, then the fluid is said to be a Newtonian fluid; it is non-Newtonian if ¢ # 0.
For many important industrial polymer fluids, the values of A, F, R, ¢ and n have
been experimentally determined. For unidirectional flows, the rheological equation (6)
reduces to podi; = (1 + c|r11|" 711 Let uy, o1, g1 be denoted by u, x, g respectively.
Then from (5), let f% + g = 0, we have the generalized Burgers’ equation

ou ou J 4 ou
p (87& + u@x) = %Qs <Moax> (7)
where ¢(t) = (1 + c|t|")t, 0 < ¢ < oo. Equation (7) is referred to as the generalized
Burgers’ equation for Gee-Lyon flows. For ¢ = 0, v = %, (7) reduces to Burgers’

equation for Newtonian flows

@4_ %—V@ (8)
ot u@x_ ox?’

It is well known that if we impose ) lim w(§) = vy, ) lim w(§) = ug, ‘g‘lim %(5) =
——+o00 ——00 ——+o00
£ 2 Us—U

wo — pluz—u1) T u—wup?

0, and u; < ug, (8) has the celebrated traveling wave solution
which is equivalent to

Uy + U exp[f%(uQ —uy)]

1+ exp[—z—i(uQ —uy)]

u(é) = (9)

where £ = x — M, u; and us are the downstream and upstream fluid velocities.

It can be shown that there exists a thin transition layer of thickness § of order
uf_”ul for (9). This thickness ¢ can be referred to as the shock thickness, which tends
to zero as v — 0, and for fixed v, § — 00, as (ug — u1) — 0. See, for example, [7] or
[10] for a derivation of (9) and analysis of (8). In this work, we find analytic and semi-
analytic solutions to (7) for ¢ # 0, and n = 2, and we derive the corresponding order
of thickness for the transition layers in non-isothermal flow of viscous non-Newtonian
fluids. Applications of these types of flows are abundant in studying flows in drilling
fluids, food, oil, polymers, etc; see e.g. [1], [2], and [11]. There are numerous papers
devoted to the study of equation (5) in the literature on shock formation and traveling
waves in Newtonian flows dating back to the original papers of Burgers, Cole, and
Hopf, see [3], [5] and [8]. A generalized Burgers’ equation for non-Newtonian flows
based on the Maxwell model has recently been studied in [4]. We have not found any
paper which deals with Burgers’ equation (7) for ¢ # 0, and n = 2.
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3 The Integral Equation for the Traveling Waves and
the Solution

Let u(z,t) = u(€), with € = 2 — At. Then 2% = dudt *)‘% and g—g = dude _ du

‘ ot dEdt ¢ dux d¢
Substituting % = —)\‘é—z and g—g = ‘;—z into equation (7), we get
du du 1d du
—)\-l—u{:{qbl (u )} 10

Therefore

d 1 2 1 1 du -
PR <“°df>}‘0’

1, 1,4 du\

which gives

where A is an arbitrary integration constant. Applying the downstream and upstream

boundary conditions: lim w(§) = wy, lim u(§) = ug, and lim ‘;—?(5) =0 to
S g——o0 €] —+oo

equation (11), we get

d
ot (,uodz> = g(u2—2)\u—2A):g(u—ul)(u—ul) (12)
where \ = % u; + ug) and A = 7%'&1“2’ u1 and ug are the given constants. We have

NO% = ¢(5(u — u1)(u —uy)), which gives

§ du
po / OB (u—ur)(u—up)) (13)

Without loss of generality, in the following, we assume that u; < u < us. For ¢ = 0,
(13) gives
1 d 1
. / 4 - In
v (u—wup)(u—wuy) up —ug

where v = ”—po, which gives the classical traveling wave solution

U — Uy

U — U

Uy + U exp}%(uz —uy)]

u(§) =

1+ exp[—Q%(ug —uy)]

to Burgers’ equation for Newtonian flows.
In the following, we are interested in finding solutions to (13) for ¢ # 0 and n = 2.
Let u = =25* v + % Then

¢ (Slu—w)(u—u)) = ol S u)’ {1 + ‘3”2(“226’ W 1 4 1y - 1)]2} (V1) (v-1)
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and (13) becomes
£ 8 dv

o pluz —ur)? / {1+ [+ ) - DP v+ D - 1)

Let the constant b be defined by sinh2b = 5, and define U(t,b) = (1 +

8
Vep(uz—ur)

ﬁ)t. We have the decomposition
1 B 1
WA D-1.0  rhe-1)
1
(v — cosh(b) — isinh(b)) (v — cosh(b) + i sinh(b))
v?—1

0 + cosh(b) — isinh(b)) (v + cosh(b) + isinh(b))

By using Mathematica, we find that

dv v—1
/\I/((u+1)(u—1)7b) - hl(u-i—l)+

arctan {”} arctan [f’_
4/ —1—isinh(2b) n \/m
—1 — isinh(2b) \/—1 4+ isinh(2b)

N | =

Let
arctan(

v/ —1—1 sinh(2b) )
—1 — i sinh(2b)

extra(b,v) = Re

Then we have

£ 8 1. v—1
= = -1 — tra(b .
Lo p(u2 —U1)2 2 n(V—|—1) Ho€x T'Cl( 7V)
Therefore u% = p(mful)z [% In(20%) — extra(b, %)} and the traveling wave
solution of (1) is implicitly defined by
4 — 2u —
£ _ (27 - _catra(b, Zu=(up )y
po  pluz—w)® “u—ur”  plup —u1) U — Uy

We have omitted the integration constants in the above solutions. For simplicity, we
plot the profile of the transition layer of u = w(£) and provide the following graphic
representation of the profiles of the transition layers. The blue curves correspond to
b = 0.5, 0.35, and 0.25 respectively and the red curve represents the classical solution
corresponding to b = 0.0.
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4 The Order of Thickness of the Transition Layers

The transition layer thickness or the shock thickness can be estimated by using the first

order derivative %‘5:0' From 3—? = Miogb (5(u—u1)(u—wup)) and uw(0) = “F%2 we
get (ciT? o = —P%O (%(ug — u1)2). Let 0 denote the thickness of the transition layer,

using the Taylor expansion, we have

Up — Uy = u(—g) - u(g) =—0 du +0(8%).

Therefore we have

g2 fo(u2 — u1) _ 8o ,
%(0) o5 (uz —w)?) p(uz — u1) {1 +c[§luz - u1)]2}

Which is the first order approximation of the thickness of the transition layer for power-
law flows. This estimate, for ¢ = 0, gives the well-known estimate § = % for the
thickness of the transition layer of Newtonian flows.

5 Conclusion

In this work, we consider a generalized Burgers’ equation for Gee-Lyon fluid flows, and
derive a new general traveling wave solution of this equation. As special cases of this
solution, we show several analytic solutions and profiles of the thickness of the transition
layer of the solution. We defined a first order approximation of the thickness of the
transition layer or the thickness of the shock which generalized the known estimate for
the shock thickness of the corresponding Burgers’ solution for Newtonian flows.
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