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Single-layer-coated beam splitters for the
division-of-amplitude photopolarimeter

Rasheed M. A. Azzam and Faisal F. Sudradjat

A design procedure is presented for a near-optimal, single-layer-coated prism beam splitter that serves
as the key optical element of the division-of-amplitude photopolarimeter (DOAP). For given film and
substrate refractive indices, the angle of incidence and film thickness are selected such that the ellipso-
metric differential phase shifts in reflection and transmission �r and �t differ by ���2, and the normal-
ized determinant of the instrument matrix is maximized. The best results are obtained by using high-
index films on low-index substrates. This is illustrated by examples of ZnS and GaP films on silica prisms
in the visible and Si, Ge, and PbTe films on Irtran 1 substrates in the infrared. A 16° Si-prism DOAP beam
splitter at the 1.55-�m lightwave-communications wavelength is also presented. It uses a 163-nm SiO2

coating on the entrance face to satisfy the optimum delta condition at 73° incidence, and the determinant
of the instrument matrix is 78.23% of its theoretical maximum. The exit face of the Si prism is antire-
flection coated with a 208-nm Si3N4 film. © 2005 Optical Society of America

OCIS codes: 120.2130, 120.5410, 230.1360, 240.0310, 260.5430.

1. Introduction

The most general state of partial elliptical polariza-
tion of quasi-monochromatic light is described by the
four Stokes parameters S0, S1, S2, and S3. These pa-
rameters are often lumped in a 4 � 1 Stokes vector

S � [S0 S1 S2 S3]
t, (1)

where t indicates the matrix transpose. Numerous
optical polarimeters have been designed1–3 for mea-
suring some or all of the components of S.

In the division-of-amplitude photopolarimeter4,5

(DOAP), Fig. 1, the collimated incident light beam (i)
whose Stokes parameters are to be measured is split
into four separate beams with a beam splitter (BS) and
two Wollaston prisms WP1 and WP2 (or equivalent
polarizing BS’s). Linear detection of the light fluxes of
the four component beams by photodetectors
D0, D1, D2, and D3 yields an electrical output signal
vector

I � [i0 i1 i2 i3]
t, (2)

which is linearly related to the Stokes vector S of

incident light by

I � AS. (3)

From Eq. (3) the unknown polarization vector S is
completely recovered from the measured signal vec-
tor I by

S � A�1I, (4)

provided that the instrument matrix A (which is de-
termined by calibration6) is nonsingular, so that its
inverse A�1 exists. Several DOAP instruments have
been constructed and applied to reflection and scat-
tering Mueller-matrix ellipsometry.7–11 Because the
DOAP uses no moving parts or modulators, and gen-
erates four linearly independent projections of the
unknown Stokes vector of incident light simulta-
neously (via four independent parallel channels), it is
capable of fast and complete measurement of light
polarization or scattering matrices under dynamic
conditions.

When the Wollaston prisms are oriented at �45° to
filter the orthogonal linear polarization components
of the reflected (r) and transmitted (t) light along the
bisectors of the directions parallel (p) and perpendic-
ular (s) to the plane of incidence at the BS, the de-
terminant of the instrument matrix becomes5

det A � (RT)2 sin 2�r sin 2�t(cos 2�r � cos 2�t)
� sin(�r � �t). (5)
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In Eq. (5) R and T are the BS intensity reflectance
and transmittance for incident unpolarized light, and
��r, �r� and ��t, �t� are the reflection and transmission
ellipsometric parameters12 of the BS. A constant pre-
multiplier, proportional to the product of the photo-
electric sensitivities of the four detectors, has been
dropped from the right-hand side of Eq. (5).

Optimum optical parameters for the BS are those
that make the instrument matrix as far from singular
as possible by maximizing the absolute value of the
determinant of Eq. (5). For all-dielectric (nonabsorb-
ing) BSs, the optimum parameters of the BS are
given by13

�r � �t � � � � 2, (6)

R � T � 0.5, (7)

(�r, �t) � �1

2
arccos(�1 � �3), 90° � �r�

� (27.368°, 62.632°) or (62.632°, 27.368°).
(8)

When the optimum parameters of Eqs. (6)–(8) are
substituted into Eq. (5), the maximum absolute value
of the determinant is obtained:

|det A|max � �3 � 36 � 0.0481. (9)

The extent to which a given BS meets conditions
(6)–(8) is determined by the normalized determinant

|det A|norm � |det A| � |det A	max, (10)

which should be as close to 1 as possible.
The simplest possible DOAP BS consists of a di-

electric substrate of refractive index n2 that is coated
by a transparent thin film of refractive index n1 and
thickness d. To avoid multiple internal reflections
inside a parallel slab, we propose the prism design
shown in Fig. 2. Collimated light of wavelength 

(whose polarization is to be measured) is incident on
the coated, beam-splitting entrance face of the prism
at an angle �. The prism angle � is equal to the angle
of refraction in the prism, so that the transmitted
beam is normal to the (antireflection-coated) exit face
of the prism. The angular separation between the
reflected (r) and transmitted (t) beams is � � ��
 ��. Because we assume collimated incident light,
the coated prism BS is intended mainly for nonimag-
ing polarimeters.

Previously proposed film �n1��substrate �n2� BSs for
the DOAP5,7 include MgF2 (1.38)/ZnS (2.30) and TiO2
(2.08)/SiO2 (1.52) at 
 � 633 nm and � � 70°. From
the published data5,7 on these two BSs, the normal-
ized determinant |det A|norm is calculated to be
0.3546 and 0.4271, respectively, which is less than
optimal. A better infrared design5 uses a ThF2
(1.35)�Ge (4.00) system at 
 � 10.6 �m and �
� 70°, for which |det A|norm � 0.6742.

In this paper, we present a systematic approach for
the design of an all-transparent film-substrate BS for
the DOAP with near optimal performance (i.e.,
|det A|norm is essentially 1). The design procedure is
described in Section 2. Results for several BSs that
use high-index films on low-index substrates in the
visible and infrared are given, and the angular and
spectral response of one selected design are presented
in Section 3. BSs that use low-index films on high-
index substrates are discussed in Section 4. Finally,
Section 5 gives a brief summary of the paper.

Fig. 1. Division-of-amplitude photopolarimeter (DOAP). BS,
beam splitter to be designed; WP1, WP2, Wollaston prisms;
D0, D1, D2 D3, linear photodetectors that generate output electrical
signals i0, i1, i2, and i3, respectively; p and s linear polarization
directions parallel and perpendicular to the plane of incidence at
BS, respectively.

Fig. 2. Prism BS for DOAP. The incident collimated light beam i,
whose polarization is to be measured, strikes the coated, beam-
splitting entrance face of the prism at an angle �. The prism angle
� equals the angle of refraction in the prism, so that the transmit-
ted beam is normal to the (antireflection-coated) exit face of the
prism. The angular separation between the reflected (r) and the
transmitted (t) beams is � � ��  ��.
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2. Design of Single-Layer-Coated Beam Splitter for the
DOAP

The complex-amplitude reflection and transmission
coefficients of the coated surface are given by12

R� � (r01�  r12� X) � (1  r01�r12� X),

T� � (t01�t12� X1�2) � (1  r01�r12� X). (11)

In Eqs. (11) rij�, tij� are the Fresnel reflection and
transmission coefficients of the ij interface for the �
polarization �� � p, s�, and

X � exp(�j�), (12)

� � 2�d � D,

D � (
 � 2)(n1
2 � sin2�)�1�2. (13)

We assume that the medium of incidence is air with
refractive index n0 � 1. The ellipsometric parameters
of the coated BS surface in reflection and transmis-
sion are determined by12

� r � Rp � Rs � tan �r exp(j�r),

�t � Tp � Ts � tan �t exp(j�t). (14)

A critical parameter in the operation of the DOAP is
the ratio

� � �r � �t � |�|exp(j�),

� � �r � �t. (15)

From Eqs. (11), (14), and (15) we obtain

� � b(1  Bp X) � (1  Bs X), (16)

where

b � (r01p � r01s)(t01s � t01p)(t12s � t12p),

Bp � (r12p � r01p),

Bs � (r12s � r01s). (17)

Because all media are transparent, and total internal
reflection does not occur, all of the quantities that
appear in Eqs. (17) are real. Consequently, the angle
� � �r � �t of � is obtained from Eqs. (12), (15), and
(16) as

tan � � (Bp � Bs)sin � � [(1  BpBs)  (Bp  Bs)cos �].
(18)

To satisfy the optimum polarimetric requirement
concerning the phase shifts introduced by the DOAP
BS in reflection and transmission, Eq. (6), the denom-

inator of the right-hand side of Eq. (18) must be zero.
This gives

cos � � � (1  BpBs) � (Bp  Bs). (19)

From Eqs. (17) and (19) we obtain

cos � � f(�, n1, n2)
� � (r01pr01s  r12pr12s) � (r01pr12s  r01sr12p).

(20)

Equation (20) has a valid solution for � if �1 � f
� 1.

Based on the above analysis, the design procedure
consists of the following steps:

(1) For a given film–substrate system at a given
wavelength 
 (i.e., for given n1, n2), all possible solu-
tions of Eq. (20) are determined as � is changed as a
parameter in steps of � 1°. Each solution represents a
design that satisfies the optimum phase condition of
Eq. (6).

(2) The normalized determinant, Eq. (10), is calcu-
lated and plotted as a function of � within the solu-
tion range. The optimum operating angle is that at
which |det A|norm is maximum.

(3) When the maximum value of |det A|norm is suf-
ficiently near 1, the remaining optimum conditions of
Eqs. (7) and (8) are approximately satisfied (to within
a small error), and a near-optimal design is achieved.

3. DOAP Beam Splitters with High-Index Film on
Low-Index Substrate

For a high-index film on a low-index substrate
�n1 � n2�, the lowest angle of incidence �1 at which
Eq. (20) has a solution is the Brewster angle of the
ambient–substrate (02) interface,

�1 � �B02 � arctan n2. (21)

At this angle, we have r01p  r12p � 0, hence

r01p � � r12p. (22)

Substitution of Eq. (22) into Eq. (20) gives

cos � �  1; (23)

hence � � 0, � � 2�, X � 1, which correspond to d
� 0 or d � D, i.e., no coating or an absentee layer.

The upper limit �2 of the range of � for which Eq.
(20) has a solution corresponds to

r01p � r12p. (24)

Substitution of Eq. (24) into Eq. (20) shows that

cos � � � 1; (25)

hence � � �, X � �1, d � D�2, i.e., the layer is of
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quarter-wave optical thickness at oblique incidence.
From Eq. (24) and the Fresnel formulas,12 we obtain
the following equation for �2:

n1
4 cos �2(n2

2 � sin2 �2)
1�2 � n2

2(n1
2 � sin2 �2). (26)

Squaring both sides of Eq. (26) leads to a quadratic
equation in sin2 �2. At the limiting angles �1 and �2
the p polarization is suppressed on reflection, and

R p � 0, �r � 0, �r � 0, det A � 0. (27)

As a specific example, consider a Ge film �n1
� 4.00� on an Irtran 1 substrate �n2 � 1.30� at wave-
length 
 � 6.75 �m.14 From Eqs. (21) and (26), we
obtain �1 � 52.431° and �2 � 83.216°. Figure 3 shows
|det A|norm and R plotted as functions of � in the
range �1 � � � �2. A near-optimum design is ob-
tained at � � 78°, where

� � 48.80°, � � 54.3027°,

�r � �t � � 90°,

R � 0.4916, T � 0.5084,

�r � 23.537°, �t � 65.599°,

	det A	norm � 0.9583. (28)

The above results show that Eq. (6) is satisfied ex-
actly, and Eq. (7) is satisfied to within �1%. However,
according to Eq. (8), �r and �t are off from their opti-
mum values by 14% and 5%, respectively. The thick-

ness of the Ge film as a fraction of the thickness
period is

d � D � � � 2� � 0.1508. (29)

This differs from the eighth-wave thickness �d�D
� 0.25� that was intuitively suggested previously.5

From Eqs. (13), we also obtain the metric thickness of
the Ge film,

d � 131.26 nm. (30)

The 131.3-nm Ge thin-film coating on the Irtran 1
substrate functions well as a DOAP BS over a range
of incidence angles and wavelengths. This is illus-
trated in Figs. 4 and 5, which show the |det A|norm as
a function of � and 
, respectively.

Figure 4 shows that |det A|norm � 0.92 for 76
� � � 80°. When the metric film thickness is kept
constant �d � 131.26 nm� and the angle of incidence
is changed, the optimum delta condition of Eq. (6) is
no longer satisfied, and all of the BS parameters are
shifted from the values listed in Eqs. (28). In Fig. 4
|det A|norm reaches a new maximum at � � 78.8°,
which is slightly higher than that obtained under
the conditions of constrained optimization shown in
Fig. 3.

Figure 5 shows that |det A|norm increases as the
wavelength is increased over the range 5.75 � 

� 7.75 �m. (The dispersion of Ge and Irtran 1 is
accounted for14,15 in Fig. 5.) For accurate spectro-
scopic polarimetry, the DOAP should be calibrated to
determine the instrument matrix A��, 
� as a func-
tion of the operating incidence angle and wavelength.

In Fig. 6 we present results for |det A|norm as a
function of � for five different film–substrate sys-
tems: (a) ZnS (2.352)�SiO2 (1.457) at 
 � 633 nm, (b)
GaP (3.308)�SiO2 (1.457) at 
 � 633 nm, (c) Si
(3.432)�SiO2 (1.419) at 
 � 3 �m, (d) Ge (4.00)�Irtran 1

Fig. 3. Normalized determinant, |det A|norm, and unpolarized-
light reflectance R plotted as functions of the angle of incidence �

for BSs that consist of a Ge film �n1 � 4.00� on an Irtran 1 substrate
�n2 � 1.30� at wavelength 
 � 6.75 �m such that the phase con-
dition of Eq. (6) is exactly satisfied at each angle. The best design
is obtained at � � 78°, where �	det A	norm�max � 0.9583, and the
remaining optimum conditions of Eqs. (7) and (8) are nearly sat-
isfied.

Fig. 4. Normalized determinant, |det A|norm as a function of an-
gle of incidence � for a DOAP BS that consists of a 131.3-nm Ge
thin film on an Irtran 1 substrate at wavelength 
 � 6.75 �m. Note
that |det A|norm remains near its maximum for 76 � � � 80°.
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(1.30) at 
 � 6.75 �m, and (e) PbTe (5.655)/Irtran 1
(1.227) at 
 � 9 �m. The refractive indices of all
materials are obtained from Refs. 14 and 15. As the
film refractive index n1 increases, the peak of
|det A|norm increases and its location is shifted to-
ward higher angles. For the PbTe/Irtran 1 system the
highest normalized determinant �	det A	norm�max
� 0.99 occurs at � � 79° and d�D � 0.0883. Because
of the low refractive index of Irtran 1 at 
 � 9 �m, the
reflection loss at the exit face of the prism ��
� 53.132°� without an antireflection coating is only
1%.

4. DOAP Beam Splitters with Low-Index Film on
High-Index Substrate

We also consider the case of a low-index film on a
high-index substrate �n1 � n2�. The lowest angle of
incidence �1 at which the delta criterion [Eqs. (6) and
(20)] is satisfied is determined by

r01s � r12s. (31)

Substitution of Eq. (31) into Eq. (20) gives

cos � � � 1; (32)

hence � � �, X � �1, and d � D�2, i.e., the coating is
of quarter-wave optical thickness at oblique inci-
dence. This coating suppresses the s polarization on
reflection, so that

Rs � 0, �r � �, �r � 90°, det A � 0.
(33)

From Eq. (31) and the Fresnel formulas,12 the angle
�1 is given by

tan2 �1 � (n2
2 � n1

4) � (n1
2 � 1)2. (34)

The upper limit �2 of the range of � for which Eq. (20)
has a solution corresponds to the Brewster angle of
the ambient–substrate (02) interface:

�2 � �B02 � arctan n2. (35)

As a specific example, we take a Si prism that is
oxidized on its beam-splitting face. For this SiO2
(1.444)�Si (3.478) system15 at the lightwave-
communications wavelength 
 � 1.55 �m, Eqs. (34)
and (35) give �1 � 68.703° and �2 � 73.959°. When
|det A|norm is calculated as a function of � in the
range �1 � � � �2, we obtain |det A|norm � 0.7823,
which is near maximum, at � � 73°. This indicates
good performance at a lower angle of incidence. Other
parameters for this SiO2/Si prism DOAP BS are given
by

� � 15.96°,

� � 81.817°, d � D � 0.2273,

�r � �t � 90°,

R � 0.363, T � 0.637,

�r � 26.955°, �t � 54.809°. (36)

The refractive index of a quarter-wave, single-layer,
antireflection coating at the exit face of this prism is
n1 � �n2 � 1.865, which falls within the range of
values of the refractive index of nonstoichiometric
silicon nitride.16 The thickness of this antireflection

Fig. 5. Normalized determinant |det A|norm as a function of
wavelength 
 for a DOAP BS that consists of a 131.3-nm Ge thin
film on an Irtran 1 substrate at an angle of incidence � � 78°. Note
that |det A|norm increases as 
 increases in the spectral range
5.75 � 
 � 7.75 �m.

Fig. 6. Normalized determinant |det A|norm as a function of � for
five different film–substrate systems: (a) ZnS (2.352)/SiO2 (1.457)
at 
 � 633 nm, (b) GaP (3.308)�SiO2 (1.457) at 
 � 633 nm, (c) Si
(3.432)�SiO2 (1.419) at 
 � 3 �m, (d) Ge (4.00)�Irtran 1 (1.30) at

 � 6.75 �m, and (e) PbTe (5.655)�Irtran 1 (1.227) at 
 � 9 �m.
The refractive indices of all materials are obtained from Refs. 14
and 15. As the film refractive index n1 increases, the peak of
|det A|norm increases, and its location is shifted toward higher
angles.
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coating is 207.8 nm. Use of Si-related thin films on
the entrance and exit faces of the Si prism makes this
BS design particularly attractive.

For completeness, Figs. 7 and 8 show the normal-
ized determinant |det A|norm as a function of � (at
the design wavelength 
 � 1.55 �m) and as a func-
tion of 
 (at the design angle � � 73°), respectively,
for the SiO2�Si prism DOAP BS, when the metric
thickness of the SiO2 film is kept constant �d
� 162.8 nm�.

Other pairs of film and substrate refractive indices
n1 � n2 were tried. In general, the angular range over
which Eq. (6) is satisfied is much more restricted, and
the results are inferior to those presented in Section
3 for systems for which n1 � n2.

5. Summary

We have described the systematic design of a single-
layer-coated BS for DOAP (Section 2). The BS con-
sists of a high-index film on a low-index prismatic
substrate (Fig. 2). The design procedure is based on
satisfying the optimum phase (delta) condition of Eq.
(6) exactly while maximizing the normalized deter-
minant of the instrument matrix, Eq. (10). Specific
results are obtained for BSs by using several material
systems, including ZnS and GaP thin films on silica
in the visible and Si, Ge, and PbTe thin films on an
Irtran 1 substrate in the infrared (Section 3). The
angular and spectral response of the Ge�Irtran 1 in-
frared design is also given (Section 3). Use of a low-
index substrate �n2 � 1.5� makes the prism angle �
(Fig. 2) fall within the reasonable range of 40° to 55°.

Low-index films on high-index substrates can
also be used as DOAP BSs but the determinant of
the instrument of the matrix is, in general, lower
(Section 4), and the required prism angle is small. A
specific design uses a 16° Si prism (or wedge), which
is coated with a SiO2 film on the beam-splitting face
and a Si3N4 antireflection layer on the exit face, at
a 73° angle of incidence and wavelength 

� 1.55 �m.

Because multilayer coatings provide more degrees
of freedom, it should be apparent that all of the op-
timum conditions of Eqs. (6)–(8) can be satisfied si-
multaneously with such coatings. DOAP BSs that
function at lower angles of incidence (e.g., 45° or 60°)
are also possible. Such extensions of the present work
fall outside the scope of this paper.
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