
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

Senior Honors Theses Undergraduate Showcase 

5-2012 

Calculation of Time-Dependent Heat Flow in a Thermoelectric Calculation of Time-Dependent Heat Flow in a Thermoelectric 

Sample Sample 

Sunni Ann Siqueira 
University of New Orleans 

Follow this and additional works at: https://scholarworks.uno.edu/honors_theses 

Recommended Citation Recommended Citation 
Siqueira, Sunni Ann, "Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample" (2012). 
Senior Honors Theses. 24. 
https://scholarworks.uno.edu/honors_theses/24 

This Honors Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by 
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Honors Thesis-Restricted in 
any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you 
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative 
Commons license in the record and/or on the work itself. 
 
This Honors Thesis-Restricted has been accepted for inclusion in Senior Honors Theses by an authorized 
administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/honors_theses
https://scholarworks.uno.edu/undergrad
https://scholarworks.uno.edu/honors_theses?utm_source=scholarworks.uno.edu%2Fhonors_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/honors_theses/24?utm_source=scholarworks.uno.edu%2Fhonors_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

 

 

 

CALCULATION OF TIME-DEPENDENT HEAT FLOW IN A THERMOELECTRIC SAMPLE 

 

 

An Honors Thesis 

Presented to 

the Department of Physics 

of the University of New Orleans 

 

In Partial Fulfillment 

of the Requirements for the Degree of 

Bachelor of Science, with University Honors 

and Honors in Physics 

 

by 

Sunni Ann Siqueira 

May 2012 

 



 

i 
 

 

 

 

 

Acknowledgements 

I would like to thank my advisor, Dr. Kevin Stokes, for the idea for this project and for his 

continuous involvement in it. I am especially grateful to him for helping me move forward all the 

times I got stuck, and I appreciate how he always gave me ideas for improving my work. It was a 

pleasure working with him and learning from him. 

I would like to thank my reader, Dr. Juliette Ioup, for suggesting certain changes to make the 

language of this paper polished like I wanted it to be when I couldn’t see how to make those 

changes myself. I would also like to thank her for her encouragement and her confidence in my 

abilities. 

 

 

 

 

 



 

ii 
 

Abstract 

In this project, the time-dependent one-dimensional heat equation with internal heating is solved 

using eigenfunction expansion, according to the thermoelectric boundary conditions. This 

derivation of the equation describing time-dependent heat flow in a thermoelectric sample or 

device yields a framework that scientists can use (by entering their own parameters into the 

equations) to predict the behavior of a system or to verify numerical calculations. Allowing 

scientists to predict the behavior of a system can help in decision making over whether a 

particular experiment is worthy of the time to construct and execute it. For experimentalists, it is 

valuable as a tool for comparison to validate the results of an experiment. The calculations done 

in this derivation can be applied to pulsed cooling systems, the analysis of Z-meter 

measurements, and other transient techniques that have yet to be invented. The vast majority of 

the calculations in this derivation were done by hand, but the parts that required numerical 

solutions, plotting, or powerful computation, were done using Mathematica 8. The process of 

filling in all the steps needed to arrive at a solution to the time-dependent heat equation for 

thermoelectrics yields many insights to the behavior of the various components of the system and 

provides a deeper understanding of such systems in general. 
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1. Introduction

� 1.A Thermoelectric Materials

Thermoelectric  materials  are  materials  that  have  significant  thermoelectric  properties;  i.e.

materials that convert a temperature gradient into an electrical current (the Seebeck effect), an

electric current into a temperature gradient (the Peltier effect), and either absorb or emit heat as

current flows through them when there is a temperature difference between that material’s ends

(the Thomson effect). Together, these three phenomena are known as the thermoelectric effect

[6]. The most effective thermoelectric materials are semiconductors. The relative worth of a

thermoelectric material is given by its "figure of merit," Z. Z is given by the equation:

1.1 Z =
S2 Σ

K

where  Σ  is  the  electrical  conductivity,  S  is  the  Seebeck  coefficient,  and  K is  the  thermal

conductivity. A greater Z indicates greater thermoelectric efficiency.

Thermoelectrics are important because they have properties that allow them to serve as power

generators and refrigerators in applications where traditional generators and refrigerators are

prohibited due to their size or need for maintenance. They can be miniaturized and are used

extensively in temperature sensors in both scientific measuring devices and temperature control

systems [6]. One application of thermoelectrics that matters much today due to current global

concern about energy and the environment is that thermoelectric devices (TEDs) can be used

for energy harvesting, in which wasted thermal energy from processes such as power genera-

tion can be captured and turned into electrical power. One particularly fascinating example of

thermoelectric power generation is the Voyager I spacecraft which uses a Radioisotope Thermo-

electric Generator (RTG) that operates by turning the temperature gradient (generated by the

heat produced by 24 pressed plutonium oxide spheres and the coldness of space) into electric-

ity. The electricity powers the equipment on board the spacecraft which, after over 34 years,

still sends scientific data about its surroundings through the Deep Space Network [9]. Addition-

ally, thermoelectric devices can perform cyclic temperature changes and are reliable in doing

so, which allows them to be used in polymerase chain reaction (PCR) applications which are

used in DNA analysis. Another use of cyclic thermoelectric cooling is its incorporation into

mid-infrared  laser  gas  sensors,  in  which  the  accuracy  of  measurement  is  improved  by  the

thermoelectric  cooler’s  momentary  cooling  capability  [2].  Thermoelectrics  have  numerous

applications, and more are being discovered.

We study thermoelectrics to discover new and more effective ways in which to use them and

because we hope to  make better  TEDs.  Creating more effective TEDs can be achieved by

creating  thermoelectric  materials  that  have  favorable  characteristics  (e.g.  high  electrical

conductivity (Σ), low thermal conductivity (K), and a high Seebeck coefficient (S)) so they will

be more efficient [9].
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because we hope to  make better  TEDs.  Creating more effective TEDs can be achieved by

creating  thermoelectric  materials  that  have  favorable  characteristics  (e.g.  high  electrical

conductivity (Σ), low thermal conductivity (K), and a high Seebeck coefficient (S)) so they will

be more efficient [9].

� 1.B Applications of Dynamic (Time-Dependent) Heat Flow in a Thermoelectric 

Device or Material

� 1.B.i Pulsed Cooling

In a pulsed cooling system, a thermoelectric device is operated with the optimal amount of

(constant) current required to achieve its maximum level of steady-state Peltier cooling. Then

an additional pulse of current is applied to increase, for a brief moment, the amount of cooling

that  the  device  can  accomplish.  The  additional  current  does  cause  increased Joule  heating

throughout  the  device  so  the  whole  device  will  increase in  temperature,  but  the  additional

cooling  caused  by  the  Peltier  effect  occurs  instantaneously  at  the  cold  side,  momentarily

boosting the cooling capacity of the device before the heat caused by the Joule heating can

affect the cold side [1]. Joule heating is the generation of heat caused by the moving particles

that form the current interacting with other particles in the conductor, and heat generated this

way takes time to diffuse throughout the material. Devices that accomplish refrigeration by the

pulsed cooling method are usually in contact with whatever they are cooling only during the

coldest  part  of  their  operation.  Even  during  the  steady-state  operation  of  a  thermoelectric

cooler, both Joule heating and the Peltier effect are in play: The maximum steady-state cooling

is the coldest temperature that device can achieve while overcoming the heat generated by the

current running through the device.

� 1.B.ii Z-Meter

In  order  to  directly  measure  the  thermoelectric  figure  of  merit,  Z,  the  two components  of

voltage, the resistive component and the Seebeck component, must be distinguished from one

another. This is because the measurement of the Seebeck voltage, which is caused by thermo-

electric effects, can be used to characterize the material’s thermoelectric properties. In a Z-

meter setup, the thermoelectric sample has a direct  current (DC) flowing through it,  which

causes  a  temperature gradient  across  the  sample due to  the  Peltier  effect.  The temperature

difference between the ends in turn generates a Seebeck voltage. When the current is turned

off,  the electrical  (resistive) voltage disappears instantly,  but the Seebeck voltage drops off

slowly because of the heat dissipation and heat capacity of the materials and can be measured

at the instant the current is removed [4].

� 1.C Heat Transfer

Conduction is the primary form of heat transfer in the processes detailed in this project. In a

semiconductor, heat is transferred primarily by two processes: energy flow due to vibrations of

the crystal lattice and energy carried by the charge carriers (electrons and/or holes). The term

hole describes the lack of an electron at a position where one could exist. In addition to the

transfer of heat, the electrical current (movement of free electrons or, in some cases, holes) is

responsible for  the generation of  the temperature gradient  resulting from the Peltier  effect.

Whether it is electrons or holes that move throughout the material depends on what type of

material it is. All semiconductors have both electrons and holes moving about, but one is in the

majority so typically only one is considered. In an open circuit system (one in which no current

is flowing), the diffusion of the electrons (or holes) from the hot side to the cold side of the

thermoelectric material causes a thermoelectric voltage because the migrating charge carriers

leave behind their oppositely charged atomic core. This creates an electric potential called the

Seebeck potential. The magnitude of this effect is characterized by the Seebeck coefficient (S),

which is typically measured in µV/K:
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semiconductor, heat is transferred primarily by two processes: energy flow due to vibrations of

the crystal lattice and energy carried by the charge carriers (electrons and/or holes). The term

hole describes the lack of an electron at a position where one could exist. In addition to the

transfer of heat, the electrical current (movement of free electrons or, in some cases, holes) is

responsible for  the generation of  the temperature gradient  resulting from the Peltier  effect.

Whether it is electrons or holes that move throughout the material depends on what type of

material it is. All semiconductors have both electrons and holes moving about, but one is in the

majority so typically only one is considered. In an open circuit system (one in which no current

is flowing), the diffusion of the electrons (or holes) from the hot side to the cold side of the

thermoelectric material causes a thermoelectric voltage because the migrating charge carriers

leave behind their oppositely charged atomic core. This creates an electric potential called the

Seebeck potential. The magnitude of this effect is characterized by the Seebeck coefficient (S),

which is typically measured in µV/K:

1.2 S =
V

DT

where V is the voltage in Volts and DT is the temperature in Kelvins between the two ends of

the material. The potential difference (V) is given by:

1.3 V = SDT

The Peltier effect, characterized by the Peltier coefficient (P), is related to the Seebeck effect

by :

1.4 P = ST

2. Derivation

� 2.A  Problem

Figure 1. Description of the system. A thermoelectric element is attached to a heat sink held at constant temperature. A current

source drives an electrical current through the element causing the opposite side to cool.

The problem is to solve for the time-dependent heat transport of the thermoelectric material

shown in Figure 1.
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� 2.B Definition of symbols:

Tx, t - temperature

J t - current density

x - position variable

t - time variable

L - total length of thermoelement

Th - hotside temperature

S - Seebeck coefficient

K - Thermal conductivity

h -
S J

K

� 2.C Partial Differential Equation with Boundary Conditions

T(x,t) means the temperature measured at position x and at time t.  As an example, T(10,4)

would mean the temperature 10 units of length, e.g. 10 Μm from the end of the sample, after

four units of time, e.g. four seconds, have elapsed.

Boundary conditions (BCs) are the conditions at the ends of the sample (when x=0 and x=L). L

is a symbol for maximum length and is a number with units of length such as micrometers

(Μm). Alternatively,  L=1 (L equals one) can express maximum length, using the convention of

giving  x  as  a  fraction  of  the  sample’s  total  length.  In  this  case,  T(0.5,4)  would  mean the

temperature halfway down the sample after four seconds have elapsed.

The initial condition (IC) is the description of the state of the system at the start of the experi-

ment or process (when t=0). In this case, the IC is the temperature at the start of the experiment.

The partial differential equation which describes the one dimensional flow of heat through the

sample, as well as the generation of heat within the sample is given by [1], [5]

2.1 a
¶2 T x, t

¶ x2
+

J2 t a

K Σ
=

¶T x, t

¶ t

Solution of this equation gives the temperature T as a function of position (x) and time (t). In

Eq. (2.1), a is the thermal diffusivity, K is the thermal conductivity, Σ is the electrical conductiv-

ity, and J is the electrical current density. The additional term, J2 t a

K Σ
,  describes the internal

heating of the sample due to the current flowing through it.

Equation (2.1) is subject to the boundary condition, 

2.2 K
â T

â x x=L

= -S TL, t J

This means that the heat flux at the x=L boundary is equal to the Peltier coefficient, P=ST,

multiplied by the current density, J. The boundary condition at the x=0 boundary is a restriction

on the temperature at that boundary,
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This means that the heat flux at the x=L boundary is equal to the Peltier coefficient, P=ST,

multiplied by the current density, J. The boundary condition at the x=0 boundary is a restriction

on the temperature at that boundary,

2.3 T0, t = Th

We choose the initial temperature to be the same throughout the whole sample, and we will

name it for the side which is heat sunk (x=0), which will be the hot side when the system is on,

hence the name Th. The initial condition is:

2.4 Tx, 0 = f x = Th

The solution to Eq. (2.1) subject to the boundary conditions Eqs. (2.2) and (2.3) and initial

condition Eq. (2.4), follows that of Zhou, 2007. Following Zhou, we construct a function r(x).

2.5 rx = Th 1 -
x

L

2

This function, r(x), is the description of the behavior the system during steady-state operation.

We define a new function v(x,t)

2.6 v x, t = T x, t - r x

The function, v(x,t), is the description of the transient behavior of the system, e.g. when an

additional pulse of current is applied.

Because we are  interested in the transient behaviour of the system, we will rearrange Eq. (2.6)

such that

Tx, t = vx, t + rx

and substitute it into (2.1), which will ultimately allow us to isolate the transient part of the

solution:

2.7 a
¶2 v x, t + r x

¶ x2
+

J2 a

K Σ
=

¶ v x, t + r x

¶ t

Expanding,

2.8 a
¶2 v x, t

¶ x2
+ a

¶2 r x

¶ x2
+

J2 a

K Σ
=

¶v x, t

¶ t
+

¶r x

¶ t

The last term equals zero because r(x) is not a function of time yielding

2.9 a
¶2 v x, t

¶ x2
+ a

¶2 r x

¶ x2
+

J2 a

K Σ
=

¶v x, t

¶ t

Now take the derivative of r(x) twice with respect to x.To simplify the process of differentiat-

ing r(x),  expand the Eq. (2.5),

2.10 rx = Th -
2 Th x

L
+

Th x2

L2

Taking the first derivative yields,

2.11
â r x

â x
=

â

â x
Th -

2 Th x

L
+

Th x2

L2
= 0 -

2 Th

L
+

2 Th x

L2

Taking another derivative yields,
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2.12
â

â x
-

2 Th

L
+

2 Th x

L2
= 0 +

2 Th

L2

Therefore,

2.13
â2 r x

â x2
=

2 Th

L2

Substituting this into Eq. (2.9) yields the partial differential equation (PDE) for v(x,t)

2.14 a
¶2 v x, t

¶ x2
+ Q =

¶v x, t

¶ t

where

2.15 Q =
2 a Th

L2
+

J2 a

K Σ

After having substituted the expression of T(x,t) that is composed of a transient component and

a steady-state  component  into the one-dimentional  heat  equation,  the BCs for  the transient

component, v(x,t), are

2.16 v0, t = 0

2.17
¶v

¶ x x=L

= -
S J v L, t

K

and the initial condition is,

2.18 vx, 0 = f x - rx = gx,

Notice here that f x = Th.

Substituting the expanded form of r(x) into g(x), we get a more simplified form:

2.19 gx = f x - rx = Th - Th -
2 Th x

L
+

Th x2

L2
=

2 Th x

L
-

Th x2

L2

Which after factoring out Th, g(x) is expressed as the even simpler expression:

2.20 gx = Th

2 x

L
-

x2

L2

This result will be used later in an integral in Eq. (2.73).

Now that the BCs and the IC of Eq. (2.14) have been addressed, we solve Eq. (2.14) by the

eigenfunction expansion method [1]. (The choice of this method is vindicated by an exercise in

Appendix C.)  The eigenfunction expansion method is  a  typical  method used to solve such

PDEs, and the eigenfunctions are obtained from the corresponding homogeneous PDE, which

is obtained from Eq. (2.14) by setting Q=0,

2.21 a
¶2 v x, t

¶ x2
=

¶v x, t

¶ t

To determine a solution, we assume that v(x,t) can be written with its variables separated such

that: 

2.22 vx, t = Gt jx

Substituting (22) into (21):
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2.23 a
¶2

¶ x2
Gt jx =

¶

¶ t
Gt jx

Switching from Leibniz’s notation to Lagrange’s notation for ease of reading:

2.24 a Gt j '' x = G ' t jx

Rearranging to get all functions of t on the left and all functions of x on the right:

2.25
G ' t

a G t
=

j '' x

j x

Since x and t are variables that are independent of one another, the two ratios in the above

equation must be constant. Thus,

G ' t

a G t
= c and

j '' x

j x
= c.

We can write the the constant, originally expressed as c, as -Λ in order to denote that the values

of c are eigenvalues of the equation. An eigenvalue is a member of a set of values of a parame-

ter for which a differential equation has a nonzero solution under given conditions.

2.26
G ' t

a G t
=

j '' x

j x
= -Λ

Going back to Leibniz’s notation, we arrive at

2.27
1

a G t

â G t

â t
=

1

j x

â2 j x

â x2
= -Λ

The spatial equation (the x-dependent part) is:

2.28 a
1

j x

â2 j x

â x2
= -Λ

or

2.28 b
â2 j x

â x2
= -Λ jx

2.28 c
â2 j x

â x2
+ Λ jx = 0

And the boundary conditions are:

2.29 a j0 = 0

2.29 b
â j L

â x
= -

S J j L

K

noting that  x=0 is the side of the sample that is at ambient temperature, Th. j(0)=0 is simply

the  expression of  the  fact  that  the  transient  temperature v(x,t)=0 at  that  boundary,  x=0,  as

shown in Eq. (2.16). The calculation then is seen as a calucation of the change in temperature

(DT). Since we are dealing only with the spatial equation there is no IC.

To solve Eq. (2.29), assume a solution will be proportional to eΓx for some constant Γ.

Substitute j(x)=eΓx into (2.28c):

2.30
â2 eΓx

â x2
+ Λ eΓx = 0
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Now make the substitution of 2

x2 ex=Γ2 ex into (2.30):

2.31 Γ2 eΓx + Λ eΓx = 0

Factor out ex:

2.32 Λ + Γ2 eΓx = 0

Since ex¹0 for any finite Γ, the zeros must come from the polynomial:

2.33 Λ + Γ2 = 0

Solve for Γ:

Γ = i Λ , Γ = -i Λ

The root   i   gives

2.34 j1x = c1 ei  x

as a solution, where c1 is an arbitrary constant.

The root   i   gives

2.35 j2x = c2 ei  x

as a solution, where c2 is an arbitrary constant.

The general solution is the sum of the above solutions:

2.36 jx = j1x + j2x = c1 ei  x + c2 ei  x

Apply Euler’s identity

2.37 eΑ+iΒ = eΑ CosΒ + i eΑ SinΒ :

2.38 jx = c1Cos Λ x - i Sin Λ x + c2Cos Λ x + i Sin Λ x

Regroup terms:

2.39 jx = c1 + c2 Cos Λ x + i-c1 + c2 Sin Λ x

Redefine c1+c2 as c1 and i(-c1 + c2 as c2 since these are arbitrary constants, and we get:

2.40 jx = c1 Cos Λ x + c2 Sin Λ x

which is Eq. (A16) of Zhou, 2007. Considering the boundary condition at x=0, we get

2.41 a j0 = c1 Cos Λ 0 + c2 Sin Λ 0 = 0

2.41 b c1 = 0

In order for j(0) to equal zero, both c1Cos Λ 0 and c2Sin Λ 0 must equal zero. The

sine of zero equals zero, but the cosine of zero equals one; therefore, the only way for the

cosine term to equal zero is for the coefficient c1 to be zero. 

Since we know that c1=0, the solution Eq. (2.40) can be rewritten

2.42 jx = c2 sin Λ x

At x=L, the boundary condition Eq. (22.9b) requires

2.43
â

â x
c2 Sin Λ L = -

S J

K
c2 Sin Λ L

The chain rule states that 
ây

âx
= 

ây

âu

âu

âx
. To evaluate the LHS, use the chain rule and let u= Λ L

so that u

x
 
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The chain rule states that 
ây

âx
= 

ây

âu

âu

âx
. To evaluate the LHS, use the chain rule and let u= Λ L

so that u

x
 

2.44
â

â u
c2 Sinu

â u

â x
= c2 Cosu  Λ  = c2 Λ Cos Λ L

Now substitute Eq. (2.44) into the LHS of (2.43) 

2.45 c2 Λ Cos Λ L = -
S J

K
c2 Sin Λ L

For simplicity in the calculation, define

2.46 h =
S J

K

Dividing both sides of the Eq. (2.45) by -h c2 and by Cos Λ L 

c2 Λ

-h c2

Cos Λ L

Cos Λ L
=

-h c2

-h c2

Sin Λ L

Cos Λ L

results in 

2.47
Λ

-h
=

Sin Λ L

Cos Λ L

which is equal to:

2.48 Tan Λ L = -
Λ

h

The solution is now written as a sum of the eigenfunctions,  

2.49 vx, t = 
n=1

¥

cnt jnx

where 

2.50 jnx = sin Λn x

and the eigenvalues are given by solutions to Eq. (2.48).

The goal is now to calculate the coefficients cnt. Recall from Eq. (2.14),

2.14 a
¶2 v x, t

¶ x2
+ Q =

¶v x, t

¶ t

Substitute (2.49) into (2.14) to obtain (2.51):

2.51 
n=1

¥ â cn t

â t
jnx = a 

n=1

¥

cnt
â2 jn x

â x2
+ Q

Because the eigenfunctions are orthogonal, we can apply Fourier’s Trick [7] to find a solution

(The use of this method is justified in Appendix C.):

First, multiply by m x:

2.52 jmx 
n=1

¥ â cn t

â t
jnx = a jmx 

n=1

¥

cnt
â2 jn x

â x2
+ Q jmx
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Next, integrate from 0
L

â x:

2.53 
0

L

jmx 
n=1

¥ â cn t

â t
jnx â x = a 

0

L

jmx 
n=1

¥

cnt
â2 jn x

â x2
â x + Q 

0

L

jmx â x

Because the eigenfunctions, n x=Sin Λn x, are orthogonal,  

2.54 
0

L

jmx jnx â x =
0

L
jm

2 x â x if n = m

0 if n ¹ m

Let N=0
L
m

2 x x be the normalization constant so that

2.55
0

L
jm x jn x â x

0
L

jm
2 x â x

= ¶ 1 if n = m
0 if n ¹ m

Dividing by N will yield orthonormal eigenfunctions and not merely orthogonal ones.

First, we will evaluate the term on the LHS:

2.56 
0

L

jmx 
n=1

¥ â cn t

â t
jnx â x

The only nonzero result for this term is when n=m, and that solution is: 

2.57
â cm t

â t
N

Next, we will evaluate the first term on the RHS:

2.58 a 
0

L

jmx 
n=1

¥

cnt
â2 jn x

â x2
â x

starting with the evaluation of the second derivative of n x:

2.59
â2 jn x

â x2
=

â2

â x2
Sin Λn x =

â

â x

â

â x
Sin Λn x

Let u = Λn x.Using the chain rule,
â

â x
Sin Λn x can be evaluated as :

2.60
â

â u
Sinu

â u

â x
= Cosu Λn = Λn Cos Λn x

Replace 

x
Sin n xwith the result we just found:

2.61
â

â x

â

â x
Sin Λn x =

â

â x
 Λn Cos Λn x

Again,  let  u  n x.  Factor  out  the  constant.  Using  the  chain  rule,

n


x
Cos  n xcan be evaluated as:

2.62 Λn

â

â u
Cosu

â u

â x
= Λn -Sinu Λn  = -Λn Sin Λn x

Now incorporate this result into the first term on the RHS:

2.63 a a 
0

L

jmx 
n=1

¥

cnt n) Sin Λn x â x

Additionally, we will replace Sin  n xwith n xbecause they are equivalent, and it

makes it easier to see how the expression can be simplified .
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Additionally, we will replace Sin  n xwith n xbecause they are equivalent, and it

makes it easier to see how the expression can be simplified .

2.63 b a 
0

L

jmx 
n=1

¥

cnt n) jnx â x

Again, the only nonzero result for this term is when n=m, and that solution is:

2.64 - a Λm cmt N

The second term on the RHS is:

2.65 Q 
0

L

jmx â x

Putting together the results of evaluating all three terms yields:

2.66 a
â cm t

â t
N = -a Λm cmt N + Q 

0

L

jmx â x

Rearranging this result yields:

2.66 b
â cm t

â t
N + a Λm cmt N = Q 

0

L

jmx â x

Divide both sides by N, the normalization term:

2.66 c
â cm t

â t
+ a Λm cmt =

Q 0
L

jm x â x

N

Substitute the value N=0
L
m

2 x x:

2.67
â cm t

â t
+ a Λm cmt =

Q 0
L

jm x â x

0
L

j2
m x â x

= dm

Evaluating the integral from the numerator of (2.67), I get:

2.68 a 
0

L

jmx â x = 
0

L

Sin Λm x â x =
1

Λm

1 - Cos Λm L

Exploiting a rule for powers of trigonometric functions, Sin2 A =
1

2
-

1

2
Cos 2A, which can be

found in [8] Eq. (12.53), we will evaluate the integral from the denominator of Eq. (2.67):

2.68 b 
0

L

j2
mx â x = 

0

L

Sin2 Λm x â x = 
0

L 1 - Cos 2 Λm x

2
â x =


0

L 1

2
â x -

1

2


0

L

Cos 2 Λm x â x =
1

2
L -

Sin 2 Λm L

2 Λm

To get from the LHS to the RHS of the last line of Eq. (2.68b), we use formula (17.18.1) from

[8]:

 cos ax â x =
sin ax

a

where a=2 m .

Finally,  to  complete  the  problem,  we  incorporate  the  initial  condition.  At  t=0,  Eq.  (2.49)

becomes:

Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample | 11



2.69 vx, 0 = 
n=1

¥

cn0 jnx

Because

2.18 vx, 0 = gx

we can equate the RHS of Eq. (2.69) with the RHS of Eq. (2.18):

2.70 
n=1

¥

cn0 jnx = gx

Again,  Fourier’s  Trick  [7]  can  be  used.  Multiply  both  sides  by  m xthen  integrate

from 0
L

â x:

2.71 
0

L

jmx 
n=1

¥

cn0 jnx â x = 
0

L

jmx gx â x

The only nonzero case is when n=m:

2.72 cm0 
0

L

jm
2x â x = 

0

L

jmx gx â x

Dividing both sides by 0
L
m

2 x x yields:

2.73 cm0 =
0

L
jm x g x â x

0
L

jm
2 x â x

We are now interested in solving for the term cmt, and we will begin by using the following

terms from Eq. (2.67):

2.74
â cm t

â t
+ a Λm cmt = dm

because dm=
Q 0

L
m x x

0
L
2

m x x
has already been evaluated.

(2.74) is of the form:

2.75 y ' + Pt y = Qt

Note: This Q(t) is unrelated to the term Q in previous equations. 

The technique used to solve Eq. (2.74) is to find an integrating factor.

In our differential equation, Eq. (2.74), 

2.76 y = cmt, Pt = a Λm, Qt = dm

The integrating factor (IF) is:

2.77 IF = exp
0

t

Qt â t = exp
0

t

a Λm â t = expa Λm t

Now that we’ve found the IF, we’ll multiply both sides of Eq. (2.74) by it:

2.78
â cm t

â t
ea Λm t + a Λm cmt ea Λm t = dm ea Λm t

The derivative of an exponential function has the form:
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2.79
â eu

â t
= eu

â u

â t

Rearranging the  second term of  the  LHS of  Eq.  (2.78)  reveals  that  is  the  derivative of  an

exponential function multiplied by cmt:

2.80 ea Λm t a Λm cmt = eu
â u

â t
cmt

where:

2.81 u = a Λm t, eu = ea Λm t,
â u

â t
= a Λm

Thus,

2.82 eu
â u

â t
= ea Λm t

â a Λm t

â t
= ea Λm t a Λm

The product rule for taking derivatives states:

2.83 â u v = u â v + v â u

Further examination of the LHS of Eq. (2.78), reveals that it is the derivative of the product of

cmt and ea Λm twhere,

2.84 u = ea Λm t, v = cmt :

2.85
â

â t
ea Λm t cmt = ea Λm t

â cm t

â t
+ cmt

â ea Λm t

â t

= ea Λm t
â cm t

â t
+ cmt a Λm ea Λm t

The last line should be recognizable as a rearrangement of the LHS of Eq. (2.78).

This serves to show that

2.86
â

â t
ea Λm t cmt = dm ea Λm t

Now that we’ve simplified things a bit, we’ll integrate from 0 to t with respect to time:

2.87 
0

t â

â t
ea Λm t cmt â t = 

0

t

dm ea Λm t â t

Evaluate the LHS first:

2.88 
0

t â

â t
ea Λm t cmt â t = cm t ea Λm t

0
t

= cmt ea Λm t - cm0

Next, the RHS:

The formula  for  integrating an  eponential  of  the  form eax,  which can be  found in  [8]  Eq.

(17.25.1) is:

 eax â x =
eax

a

This is suitable for evaluating our integral:

2.89 a 
0

t

dm ea Λm t â t

Factor out the constant:
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2.89 b dm 
0

t

ea Λm t â t

and substitue t=x and aΛm = a into Eq. (17.25.1). 

The result is:

2.90 dm
ea Λm t

a Λm


0

t
= dm

ea Λm t

a Λm

-
1

a Λm

 =
dm ea Λm t

a Λm

-
dm

a Λm

Now equate the results of evaluating the LHS and the RHS:

2.91 a cmt ea Λm t - cm0 =
dm ea Λm t

a Λm

-
dm

a Λm

Rearrange this equation as follows:

2.91 b cmt ea Λm t = cm0 -
dm

a Λm

+
dm ea Λm t

a Λm

Now divide both sides by ea Λm t:

2.91 c cmt = cm0 -
dm

a Λm

e-a Λm t +
dm

a Λm

We will replace cm0 with the value that we found earlier:

2.73 cm0 =
0

L
jm x g x â x

0
L

jm
2 x â x

Returning to the generic subscript n, we arrive at a solution for cnt:

2.92 cnt =
0

L
jn x g x â x

0
L

jn
2 x â x

-
dn

a Λn

e-a Λn t +
dn

a Λn

This solution, Eq. (2.92), along with the solution to Eq. (2.50), is incorporated into Eq. (2.49)

to complete the transient solution. Then the completed transient solution, v(x,t), along with the

steady-state solution, r(x), can be substituted into the rearranged form of Eq. (2.6) to yield the

complete solution to Eq. (2.1). 

2.6 Tx, t = rx + vx, t

2.93 Tx, t = rx + 
n=1

¥

cnt jnx

Finally, the solution for T(x,t) is 

2.94 Tx, t = Th 1 -
x

L

2

+ 
n=1

¥

cnt Sin Λn x

Compare this to Eq. A26 in1, where the boundaries are flipped the heat sink is at x = L,

A26 Tx, t =
Th x2

L2
+ 

n=1

¥

cnt Sin Λn L - x
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3. Numerical Calculation
� 3.A Procedure

To perform calculations using the results of this derivation, the first step is to determine the

parameters  of  the  system from experiment  or  literature  references  and  establish  numerical

values for Q  and h. Here, we will use values from [1]. The eigenvalues depend on the Seebeck

coefficient  (S),  the  current  density  (J),  the  thermal  conductivity  (K),  and the  length of  the

sample (L). Once these are determined, the cn0 can be determined from the initial conditions -

the temperature profile, T(x,0), or the auxiliary temperature profile gx. 

Calculation of  the  temperature as  a  function of  time and distance along the thermoelectric

element  proceeds as  follows.  The temperature is  given by the eigenfunction expansion Eq.

(2.94) 

2.94 Tx, t = Th 1 -
x

L

2

+ 
n=1

¥

cnt jnx

with eigenfunctions 

2.50 jnx = sin Λn x.

The set of eigenvalues are given by the solutions to Eq. (2.48)

2.48 tan Λn L = -
Λn

h

The coefficients cn are given by Eq. (2.91c) returned to the generic subscript n:

2.91 c cnt = cn0 -
dn

a Λn

e-a Λn t +
dn

a Λn

with initial condition Eq. (2.73) again with the generic subscript n:

2.73 cn0 =
0

L
jn x g x â x

0
L

jn
2 x â x

where

2.20 gx = Th

2 x

L
-

x2

L2

The constant dn is given by Eq. 2.67 again with the generic subscript n:

2.67 dn =

Q 0
L

jn x â x

0
L

j2
n x â x

and the parameter Q is 

2.15 Q =
2 a Th

L2
+

J2 a

K Σ
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� 3.B Typical Values

For the calculations, typical values of the material parameters are taken from Zhou, 2007 [1]

S=220 ΜV/K

K=1.83 W/m-K

Σ = 1.17´105 W-1 m-1

The geometrical parameters for the thermoelectric element are

L=10 mm

w=2 mm

d=2 mm

The calculations will be given for an applied current of 3 A.

� 3.C Results

The simulation is run over the course of three minutes. Each plot shows the temperature profile

at a given point along the length of the sample. The Mathematica code used to arrive at these

results is located in Appendix B. 

50 100 150

100

200

300

400

500

600

Temperature

      (K)
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Figure 2. Temperature as a function of time at u=0. 

At the hot side of the sample, which is in contact with the heat sink (where u=0), the tempera-
ture starts out at 300 K and stays stable at 300 K for the duration of the system’s operation
because it is in contact with the heat sink.
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Figure 3. Temperature as a function of time at u=0.25. 

One quarter of the way down the sample from the heat sink, where u=0.25, the initial tempera-

ture is 299.995 K. After turning the system on, it heats up reaching 312.618 K after 17 seconds

of operation. After that it begins to cool reaching 306.536 K after 180 seconds of operation.
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Figure 4. Temperature as a function of time at u=0.50 

In the middle of the sample, where u=0.50,  the initial temperature is 300.000 K. When the

system is turned on, the temperature rises at first reaching  309.536 K after 11 seconds, then it

begins cooling. The temperaure after 180 seconds of operation is 296.399 K.
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Figure 5. Temperature as a function of time at u=0.75. 

Three quarters of the way down the sample from the heat sink, where u=0.75, the temperature

stars out at 299.989 K. It heats up a tiny bit to 301.453 K after one second of operation, but the

temperature starts dropping after that and reaches 269.925 K after 180 seconds of operation.
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Figure 6. Temperature as a function of time at u=1.00. 

At the cold end of the sample, where u=1.00, the initial temperature is 299.452 K. When the

system is turned on, the temperature drops continuously and reaches a final temperature of

226.989 K after 180 seconds.
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Figure 7. Temperature as a function of time at u=0, u=0.25, u=0.50, u=0.75, and u=1.00. 

The temperature profiles for each position where temperature was measured appear together on

this graph so the reader can compare what occurred at each measured point along the length of

the sample during the experiment.
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5. Appendix

� Appendix A

Numerical Solution to the Eigenvalue Equation Using Mathematica 
The eigenvalues, Λn, are given by the solution to:
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2.95 tanzn = -
zn

h L

Eq. (2.95) is simply Eq. (2.48) where 

2.96 Λn L = zn

and

2.46 h =
S J

K

What we are solving for are the eigenvalues of the homogeneous PDE Eq. (2.21). The other

equations  in  this  paper  can  be  done  analytically;  however,  to  determine  the  roots  of  this

equation, the only option is to solve numerically.

In order to do this, we will use the Mathematica function FindRoot[], which has the form:

FindRootlhs  rhs, x, x0

Using this command means that we will be given the value when the LHS of the equation is

equal to the RHS in the range from x to x0. The values where they agree (LHS=RHS) are

solutions to the equation. 

To  visualize  this,  we  can  plot  f1z =Tan(z)  and  f2z= z

h L
.  Solutions  are  where  the  two

functions intersect.  Since the tangent function is periodic, we will  see one solution in each

period. 

In order to do this for our equation, we will assign h and L a value. 

J  I  w2  3.0  2  1032
 750  103 A  m2

h0  220  106 750  103   1.83

90.1639

eqEV  Tanz 
z

L h
.  L  103, h  h0

Tanz  1.10909 z

f1z_  Tanz
f2z_  1.10909 z

Tanz

1.10909 z
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Plotf1z, f2z, z, 0, 3 , Exclusions  Cosz  0,

Ticks  0,   2, , 3   2, 2 , 5   2, 3 , Automatic

Π

2
Π

3 Π

2
2 Π

5 Π

2
3 Π

-15

-10

-5

5

10

Notice that Tan(z) is less than zero when Π

2
<x<Π, 3 Π

2
<x<2Π, 5 Π

2
<x<3Π, ...

These  are  the  only  regions  where  f1z  and  f2z  could  possibly  intersect  because  f2z  is

always less than zero. Again, notice that there is exactly one solution in each of these regions;

therefore, we will command the program to start looking for solutions at points a little larger

than Π

2
, 3 Π

2
, 5 Π

2
, ... and hope that they converge to the solution. 

Since we will compute many values for Λ, and we will want to operate on them all, we will put

them into an array, Λ={}.

Notice  that  in  the  Mathematica  code  below,  that  although  we  have  been  operating  with

z= Λ L, to fill the array, we append to the array an expression in terms of znew that is equal to

Λ:

 (znew is just z that has been replaced by sol1, which is the value of z within a particular

range.) 

znew2

L2


  L
2

L2

  

2
L2

L2
   

2
 

  ;

Fori  1, i  100, i,

sol1  FindRooteqEV, z, i  1  2   0.1;

znew  z . sol1;

zapprox  i  1.  2. ;

AppendTo, znew2  L2;

The results  of  this  calculation are  available  in  the  Appendix D.  Since  we see  that  it  does

converge, once the first 100 or so solutions are calculated, we can switch to the approximate

solution:

zapprox   i 
1.

2.
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� Appendix B

Calculation of T(x,t) and Plots Using Mathematica

� Input Parameters

This sets all the input parameters. 

L  10.  103  Length of the sample 

current  3.0  Input current

  1.83  Thermal conductivity capital KAPPA 

S  220  106  Seebeck coefficient 

  1.17  105  Electrical conductivity 

a  0.7  106  Thermal diffusivity 

w  2  103  Width of the sample, area is w2 

Th  300  Heat sink temperature 

0.01

3.

1.83

11

50 000

117 000.

7.  107

1

500

300

� Derived Parameters

J  current  w2  Current density 

h  S J  

Q 
2 a Th

L2


J2 a

 
 Eq. 15 

750 000.

90.1639

6.03901

� Lists

Functions have [], but lists (arrays) have double brackets [[n]].

These are all the lists for the entire numerical calculation:

z - eigenvalues (actually, Λ L)

d - Eq. (67)

c0 - Eq. (73)

c - Eq. (91 c)

Α - used to calculated c ( Α = a Λ )

T1 - Eq. (94) with u = 0.0

T2 - Eq. (94) with u = 0.25

T3 - Eq. (94) with u = 0.5

T4 - Eq. (94) with u = 0.75

T5 - Eq. (94) with u = 1.0

All lists are initiallized with {} as in z={}

Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample | 23



These are all the lists for the entire numerical calculation:

z - eigenvalues (actually, Λ L)

d - Eq. (67)

c0 - Eq. (73)

c - Eq. (91 c)

Α - used to calculated c ( Α = a Λ )

T1 - Eq. (94) with u = 0.0

T2 - Eq. (94) with u = 0.25

T3 - Eq. (94) with u = 0.5

T4 - Eq. (94) with u = 0.75

T5 - Eq. (94) with u = 1.0

All lists are initiallized with {} as in z={}

eqEV  Tanzn 
zn

h L

Tanzn  1.10909 zn

Use the numerical root finder to calculate the first 100 eigenvalues.

z  ;

Forn  1, n  100, n,

solEV  FindRooteqEV, zn, n  1  2   0.1;

AppendToz, zn . solEV;



Use the approximation to find the next 900 values. 

Forn  101, n  1000, n,

zapprox   n 
1.

2.
;

zn  zapprox;

AppendToz, zn ;



Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample | 24



� dn, Cn0
d  ;

c0  ;

  ;

Forn  1, n  100, n,

 Int  0

1
Sinzn uu 

 Once evaluated, the integral equals: 

Int 
1  Coszn

zn
;

 IntSQ  0

1
Sinzn u2u 

 Once evaluated, the integral equals: 

IntSQ 
1

2


Sin2 zn

4 zn
;

dn  Q
Int

IntSQ
;

AppendTod, dn;

 Intg  Th0

12uu2Sinzn uu 

 Once evaluated, the integral equals: 

Intg 
Th 2  2  zn2 Coszn

zn3
;

cn0 
Intg

IntSQ
;

AppendToc0, cn0;

n  a zn2  L2;

AppendTo, n;



� Cnt
Cleart

c  ;

Forn  1, n  100, n,

cn  c0n 
dn

n
n t 

dn

n
;

AppendToc, cn;


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� Final Solution

T1  ;

u  0.0;

Fort  0, t  180, t  t  1,

Forvsum  0; n  1, n  100, n,

vsum  vsum  cn Sinzn u

;

T0  Th 1  u2  vsum;

AppendToT1, t, T0;



T2  ;

u  0.25;

Fort  0, t  180, t  t  1,

Forvsum  0; n  1, n  100, n,

vsum  vsum  cn Sinzn u

;

T0  Th 1  u2  vsum;

AppendToT2, t, T0;



T3  ;

u  0.5;

Fort  0, t  180, t  t  1,

Forvsum  0; n  1, n  100, n,

vsum  vsum  cn Sinzn u

;

T0  Th 1  u2  vsum;

AppendToT3, t, T0;


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T4  ;

u  0.75;

Fort  0, t  180, t  t  1,

Forvsum  0; n  1, n  100, n,

vsum  vsum  cn Sinzn u

;

T0  Th 1  u2  vsum;

AppendToT4, t, T0;



T5  ;

u  1.0;

Fort  0, t  180, t  t  1,

Forvsum  0; n  1, n  100, n,

vsum  vsum  cn Sinzn u

;

T0  Th 1  u2  vsum;

AppendToT5, t, T0;



� Plots

ListPlotT1

ListPlotT2

ListPlotT3

ListPlotT4

ListPlotT5

ListPlotT1, T2, T3, T4, T5

� Appendix C

Proof of the Orthogonality of the Eigenfunctions
Two functions m and n are orthogonal if their inner product m,n is  equal to zero for m¹

n. In our case, the inner product is defined as:

C .1 m, n   m
 x n x x

The asterisk denotes the complex conjugate of the function m, and since m has no imaginary

parts, the complex conjugate is just the function itself.

Two techniques that we used, namely the eigenfunction expansion method and Fourier’s Trick,

rely on the orthogonality of the eigenfunctions in order to produce valid results. The following

is verification that the eigenfunctions are, in fact, orthogonal:
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Two techniques that we used, namely the eigenfunction expansion method and Fourier’s Trick,

rely on the orthogonality of the eigenfunctions in order to produce valid results. The following

is verification that the eigenfunctions are, in fact, orthogonal:

C .2 
0

L

m x n x x  
0

L

Sin  m x Sin  n x x

Using a relationship for the product of trigonometric functions:

C .3 Sin A Sin B 
1

2
Cos A  B  Cos A  B

C .4 
0

L

Sin  m x Sin  n x x 

1

2


0

L

Cos m  n  x  Cos m  n  x x

The formula for this integral, Eq. 17.18.1 in Schaum’s [8] is:

17.18 .1  Cos x x 
Sin x



where

   m  n 

So the above integral is equal to:

C .5
1

2

Sin m  n  x

 m  n 


Sin m  n  x

 m  n 
0

L



Sin m  n  L

2  m  n 


Sin m  n  L

2  m  n 

Using an addition formula for trigonometric functions, which is Eq. 12.34 in [8]:

12.34 Sin A  B  Sin A Cos B  Cos A Sin B

where

A  m L, B  n L

C .6
Sin m  n  L

2  m  n 


Sin m  n  L

2  m  n 


Sin  m L Cos  n L  Cos  m L Sin  n L  2  m  n  

Sin  m L Cos  n L  Cos  m L Sin  n L  2  m  n 

To get  these  to  have  the  same denominator,  multiply  the  first  term by  
 Λm + Λn 

 Λm + Λn 
and the

second term by 
 Λm - Λn 

 Λm - Λn 
.

The result is:
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C .7 Sin  m L Cos  n L  Cos  m L Sin  n L  2 m  n

 m  n   Sin  m L Cos  n L  Cos  m L Sin  n L 

2 m  n  m  n 

I  will  factor  out  the  1

2 Λm-Λn
and  distribute  the   m  n in  the  first  term  and  the

 m  n in the second term:

C .8
1

2 Λm - Λn
 Λm Sin Λm L Cos Λn L - Λm Cos Λm L Sin Λn L +

Λn Sin Λm L Cos Λn L - Λn Cos Λm L Sin Λn L -

Λm Sin Λm L Cos Λn L - Λm Cos Λm L Sin Λn L +

Λn Sin Λm L Cos Λn L + Λn Cos Λm L Sin Λn L

Some of the terms cancel and some combine leaving us with:

C .9
1

2 Λm - Λn
 2 Λn Sin Λm L Cos Λn L - 2 Λm Cos Λm L Sin Λn L =

1

Λm - Λn
 Λn Sin Λm L Cos Λn L - Λm Cos Λm L Sin Λn L

Therefore,


0

L

Sin  m x Sin  n x x 
1

m  n

 n Sin  m L Cos  n L  m Cos  m L Sin  n L

C .10

From Eq. (2.47),

2.47


h


Sin  L

Cos  L

so rearranging this shows that

C .11 a Cos m L 
h

m

Sin m L

and

C .11 b Cos n L 
h

n

Sin n L

Make these substitutions for Cos m L and Cos n L:

C .12
1

m  n
 n Sin  m L

h

n

Sin  n L 

m

h

m

Sin  m L Sin  n L 

h

m  n
Sin  m L Sin  n L  Sin  m L Sin  n L  0

for n¹m, the answer is, in fact, zero. For n=m this form is indeterminate, but we can simply

return to the integral 
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for n¹m, the answer is, in fact, zero. For n=m this form is indeterminate, but we can simply

return to the integral 


0

L

m x n x x  
0

L

m x m x x  
0

L

Sin2  m x x C .13

This justifies our use of the eigenfunction expansion method and Fourier’s Trick and supports

their validity.

� Appendix D

List of the First 100 Calculated Eigenvalues and Their Approximated 

Values 

The results of calculating Λn, the eigenvalues  of Eq. (21)

  ;

Fori  1, i  100, i,

sol1  FindRooteqEV, zn, i  1  2   0.1;

znew  zn . sol1;

zapprox  i  1.  2. ;

AppendTo, znew2  L2;

Printi, ": ", znew, "  ", zapprox

1: 1.99523  1.5708

2: 4.89456  4.71239

3: 7.96668  7.85398

4: 11.0768  10.9956

5: 14.2006  14.1372

6: 17.3307  17.2788

7: 20.4644  20.4204

8: 23.6001  23.5619

9: 26.7372  26.7035

10: 29.8753  29.8451

11: 33.014  32.9867

12: 36.1532  36.1283

13: 39.2929  39.2699

14: 42.4327  42.4115

15: 45.5729  45.5531

16: 48.7132  48.6947

17: 51.8537  51.8363

18: 54.9943  54.9779

19: 58.135  58.1195
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20: 61.2758  61.2611

21: 64.4166  64.4026

22: 67.5576  67.5442

23: 70.6986  70.6858

24: 73.8396  73.8274

25: 76.9807  76.969

26: 80.1219  80.1106

27: 83.263  83.2522

28: 86.4042  86.3938

29: 89.5455  89.5354

30: 92.6867  92.677

31: 95.828  95.8186

32: 98.9693  98.9602

33: 102.111  102.102

34: 105.252  105.243

35: 108.393  108.385

36: 111.535  111.527

37: 114.676  114.668

38: 117.817  117.81

39: 120.959  120.951

40: 124.1  124.093

41: 127.242  127.235

42: 130.383  130.376

43: 133.524  133.518

44: 136.666  136.659

45: 139.807  139.801

46: 142.949  142.942

47: 146.09  146.084

48: 149.232  149.226

49: 152.373  152.367

50: 155.515  155.509

51: 158.656  158.65

52: 161.798  161.792

53: 164.939  164.934

54: 168.081  168.075

55: 171.222  171.217
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56: 174.364  174.358

57: 177.505  177.5

58: 180.647  180.642

59: 183.788  183.783

60: 186.93  186.925

61: 190.071  190.066

62: 193.213  193.208

63: 196.354  196.35

64: 199.496  199.491

65: 202.637  202.633

66: 205.779  205.774

67: 208.92  208.916

68: 212.062  212.058

69: 215.203  215.199

70: 218.345  218.341

71: 221.486  221.482

72: 224.628  224.624

73: 227.769  227.765

74: 230.911  230.907

75: 234.053  234.049

76: 237.194  237.19

77: 240.336  240.332

78: 243.477  243.473

79: 246.619  246.615

80: 249.76  249.757

81: 252.902  252.898

82: 256.043  256.04

83: 259.185  259.181

84: 262.326  262.323

85: 265.468  265.465

86: 268.61  268.606

87: 271.751  271.748

88: 274.893  274.889

89: 278.034  278.031

90: 281.176  281.173

91: 284.317  284.314
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92: 287.459  287.456

93: 290.6  290.597

94: 290.6  293.739

95: 293.742  296.881

96: 296.884  300.022

97: 300.025  303.164

98: 306.308  306.305

99: 309.45  309.447

100: 312.591  312.588
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