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ABSTRACT

Despite its recent advent, value at risk (VaR) became the most widely used

technique for measuring future expected risk for both financial and non-financial

institutions. VaR, the measure of the worst expected loss over a given horizon at a given

confidence level, depends crucially on the distributional aspects of trading revenues.

Existing VaR models do not capture adequately some empirical aspects of financial data

such as the tail thickness, which is vital in VaR calculations. Tail thickness in financial

variables results basically from stochastic volatility and event risk (jumps). Those two

sources are not totally separated; under event risk, volatility updates faster than under

normal market conditions. Generally, tail thickness is associated with hyper volatility

updating.

Existing VaR literature accounts partially for tail thickness either by including

stochastic volatility or by including  jump diffusion, but not both. Additionally, this

literature does not account for fast updating of volatility associated with tail thickness.

This dissertation fills the gap by developing analytical VaR models account for

the total (maximum) tail thickness and the associated fast volatility updating.   Those

aspects are achieved  by assuming that trading revenues are evolving according to a

mixed non-affine stochastic volatility-jump diffusion process.  The mixture of stochastic

volatility and jumps diffusion accounts for the maximum tail thickness, whereas the non-

affine structure of stochastic volatility captures the fast volatility updating. The non-affine

structure assumes that volatility dynamics are non-linearly related to the square root of
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current volatility rather than the traditional linear (affine) relationship. VaR estimates are

obtained by deriving the conditional characteristic function, and then inverting it

numerically via the Fourier Inversion technique to infer the cumulative distribution

function.

The application of the developed VaR models on a sample that contains six U.S

banks during the period 1995-2002 shows that VaR models based on the non-affine

stochastic volatility and jump diffusion process produce more reliable VaR estimates

compared with the banks’ own VaR models. The developed VaR models could

significantly predict the losses that those banks incurred during the Russian crisis and the

near collapse of the LTCM in 1998 when the banks’ VaR models fail.
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CHAPTER ONE: INTRODUCTION

1.1 Overview

Value at Risk or VaR is a quantile measure1 to quantify the risk for financial

institutions. It measures the market risk of a financial firm’s “book”-- the list of positions

in various instruments that expose the firm to financial risk. Roughly speaking, VaR

measures the worst expected loss over a given horizon under normal market conditions at

a given level of confidence.

In a loose form, VaR calculation models make the following statement: “We are c

percent certain that we will not lose more than V dollars in the next N days”.  The

variable V is the VaR of the portfolio. It is a function of two parameters: a time period

(horizon) N and a confidence level c.  Thus, when we calculate VaR for a portfolio of a

financial institution, we calculate the expected loss in the portfolio’s market value over a

given horizon such as one day or two weeks (N) that is exceeded with a small probability,

say, 1 percent (1-c).

Accordingly, the quality of VaR for a portfolio depends on its distributional

assumption and its valuation model. Assumptions about distribution specify what the

VaR model assumes about the distribution of trading revenues --profits and losses (P&L)-

                                                
1 Other measures to quantify risk, in addition to quantile measures, include standard deviation, interquartile
range, and lower partial moments or shortfall measures.
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of the financial firm’s portfolio. It specifies as well what the model assumes about the

distribution of the underlying market risk sources upon which the portfolio’s value

depends. The valuation model specifies how VaR relates the portfolio’s value to different

shocks in the market risk sources, or the relationship between the return on the portfolio

and returns on the instruments included in the portfolio.

The so-called normal approach to VaR assumes that all risk factors in the market

are normally distributed and the portfolio is a linear function of those normally

distributed risks, which implies that the P&L distribution for the portfolio is also

normally distributed. Under such assumptions, VaR calculations become easy to handle.

VaR becomes a multiple of the portfolio standard deviation, where the standard deviation

is a linear function of individual volatilities and covariances of underlying market risk

factors. So all we need to calculate VaR is the variance covariance matrix and

information about sizes of individual positions to determine the portfolio standard

deviation. Then, by multiplying this standard deviation by a confidence level parameter

and scale variable reflecting the size of the portfolio, we obtain a VaR number.

The normality assumption gives “normal VaR” great advantages such as

tractability and informativity. Informativity includes translatability across confidence

levels and holding periods and informativity about expected tail losses, [Dowd (1998)

and Jorion (2001)].

Unfortunately, the normal approach to VaR does not always fit actual financial

institutions’ portfolios or actual finance data. On one hand, portfolio returns may be

nonlinear in risk factors, as in the case when the portfolio contains positions in options or

fixed-income instruments. On the other hand, normality is a very strong assumption for
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finance data, since many empirical studies in time series data, Bollerslev (1987) for

example, show that the rate of return of percentage change of many financial variables

are not normally distributed. It tends to be skewed and leptokurtic.

In response to non-linearity, authors use the Taylor series expansion or linear

approximation for returns to these instruments, and then use the linear approximation to

work out VaR. The simplest approximation produces the so-called delta-normal

approach. Delta-normal, by definition, is the first order Taylor series expansion of a

portfolio’s value with respect to stock returns. Delta-normal restores the linear normality

and makes VaR estimation easy. However, such a simple approximation produces an

inaccurate VaR estimate. Wilson (1996) argues that delta-normal approach would

produce reliable estimates for VaR for a small holding period or / and when the portfolio

has few option positions (close to normality).

To get a more accurate VaR for non-linear positions (options and fixed income),

some literature including Wilson (1994, 1996), Jamshidian and Zhu, (1996), and Zangari

(1996 a, b) use the quadratic model or the second Taylor series expansion known as

delta--gamma approach. Jamshidian and Zhu, (1996), Zangari (1996 a, b), and Fallon

(1996) report that their delta-gamma approaches improve VaR estimates tremendously

compared with delta-normal.   Gamma, the first derivative of delta with respect to stock

returns, measures the curvature of the relationship between the portfolio value and the

underlying market variable. A non-zero gamma implies skewness in the distribution of

P&L of the portfolio. When gamma is positive (negative), changes in the portfolio are

positively (negatively) skewed.
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The normality assumption of risk factors or P&L of the portfolio would certainly

affect VaR estimates since it depends crucially on the distribution of the tail. Thus if we

have a thicker (thinner) tail compared with the normal distribution, then VaR estimates

based on normality would be under-- (over--) estimated. Zangari (1996 c) discusses VaR

as a technique of risk management under departure from normality. He shows that VaR

calculated under normality assumption underestimates risk since the observed

distribution of many financial return series have tails that are flatter than those implied by

conditional normal distribution.

Generally speaking, with deviation from normality assumption, there are two

main methods to construct VaR: parametric approach (analytical approach) and the non-

parametric approach (the simulation approach). In the parametric approach, an alternative

distribution is explicitly assumed instead of the normal distribution, and based on this

assumed distribution; a formula to describe the confidence interval is analytically

derived. The variance-covariance approaches that include the distribution of portfolio

return method, the delta normal valuation method and delta-gamma method fall under the

parametric approach.

In the non-parametric approach, no particular distribution assumption is needed.

VaR is calculated from the standard theory of order statistics, as in Kupic (1995), or from

Monte Carlo simulations. Under this approach, VaR is deduced from multiple runs that

might be representative of the possible market price outcomes. Chapter Two below

provides full description of VaR, VaR methods, recent developments on VaR methods,

and strengths and weaknesses of VaR analysis.
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By definition, VaR estimates depend on the distribution of the left tail. VaR

parametric approaches that deviate from normality assumption aim basically at modifying

for kurtosis. A probability distribution with fat tails has a greater probability mass out in

the tails of the distribution, where large price movement occurs compared with the

normal distribution. Accordingly, VaR estimates tend to under-- or over-- estimate risk if

normal distribution is assumed, Zangari (1996c).

Fat tails in finance data come from stochastic volatility of the underlying market

risk factor (like stock returns). The size of kurtosis depends on the correlation between

volatility of returns and returns themselves (Duffie and Pan 1997), Das and Sundaram

(1999) and Lewis (2000).  However, Bollerlev (1987) reports that actual market data are

typically found to have more leptokurtic compared with what would come from

stochastic volatility alone.

Another wave of literature including Bates (1996), Duffie and Pan (1997), Das

and Sundaram (1999), Lewis (2001), and Airoldi (2001) see that the other source of fat

tails in the distribution of financial data comes from jumps in the underlying risk factors.

New evidence from Chenov, Gallant, Ghysels and Tauchen (1999), Chourdakis (2000),

Lewis (2002), and Chacko and Viceira (2003) find that stochastic volatility and jumps are

both significant in explaining the dynamics of stock returns for different frequencies.

Chenov, Gallant, Ghysels and Tauchen (1999) find that non-affine jumps and stochastic

volatility are significant in finance time series data.

To account for kurtosis in the distribution of underlying risk factors in VaR

estimates, authors use different methods. One method used is to assume an alternative

distribution that accounts for tail thickness. Fong and Vasicek (1997) assume that
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changes in the portfolio value follow gamma distribution. Rachev and Mittnik (2000),

Khindanova, Rachev, and Schwartz (2001), Rachev, Schwartz and Khindanova, (2002)

use stable Paretian models for modeling the distribution of the P&L in the portfolio.

Another method used to achieve kurtosis is to use a mixture of two normal distributions

as in Zangari (1996 d, e),Venkataraman (1997), and Hull and White (1998a).

Duffie and Pan (1997 and 2001) and Gibson (2001), on the other hand, adopt

event risk (jumps) as a source of tail thickness. Duffie and Pan (1997) and El-Jahel,

Perraudin, and Sellin (1999) use stochastic volatility to achieve kurtosis in the underlying

risk factors for a portfolio with derivatives’ positions and they include the first four

moments in their estimation. Levin and Tchernitser (2001) account for tail fatness by

assuming time varying volatility and Levy Processes (stochastic volatility). Li (1999) also

includes skewness and kurtosis explicitly in VaR estimates. Many other VaR methods

utilize the extreme value theory  (EVT) to account for tail dynamics and thickness2.

Chapter Two summarizes the literature of VaR techniques under non-normality

assumption.

One crucial issue in estimating VaR is estimating the current volatility of

underlying risk factors3 or the change in the portfolio returns. VaR normal models

assume volatility to be constant, since it is estimated under the assumption of normal

distribution. Hull and White (1998b) report that incorporating volatility updating into

VaR models improves substantially VaR estimates. Generally, VaR models use the

common estimation techniques for estimating volatility including historical volatility,

                                                
2 For a survey of such literature see Embrechts, Kluppelberg and Mikosch (1997) and Embrechts (2002).
3 When the portfolio depends on several positions, VaR estimates need estimation for the variance-
covariance matrix and the correlation matrix. And with increase of the number of positions this process
becomes more cumbersome.
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ARCH/GARCH volatilities, implied volatility from option pricing, moving average

volatilities and extreme value theory (EVT).

Berkowitz and O’Brien (2002) find that VaR models depend on GARCH

estimation for volatility bound actual daily losses in banks’ portfolio closer than internal

VaR models used by banks. However, they find that even VaR models that depend on

GARCH models could not describe actual portfolio dynamics during the Russian crisis

and the near collapse of the LTCM in August and September 1998.

Eberlein, Kallsen and Kristen (2001) test for the impact of using different

methods of estimating current volatility in VaR models and find that the estimation

technique substantially affects VaR estimates. Chapter Two gives detailed explanations

for volatility estimation methods used in VaR context.

1.2  Motivation

This research is motivated by the suggestion by Bates (1996), Duffie and Pan

(1997), Das and Sundaram (1999), Lewis (2001), and Airoldi (2001) that full kurtosis can

not be captured by stochastic volatility alone or jumps alone. It is also motivated by new

evidence from Chenov, Gallant, Ghysels and Tauchen (1999), Chourdakis (2000), Lewis

(2002), and Chacko and Viceira (2003) who find that stochastic volatility and jumps are

both significant in explaining the dynamics of stock returns. Gibson (2001) and Lewis

(2002) suggest that modeling of financial data should combine both, time varying

volatility and event risk. Both Gibson (2001) and Lewis (2002) consider this task very

important and very challenging, especially in modeling risk factor’s dynamics.

The other motivation comes from the suggestion of Airoldi (2001) that fat tails

are associated with faster updating of volatility; the thicker the tail, the faster the
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volatility dynamics. According to Airoldi (2001), jumps and extreme events cause hyper-

growth in volatility. Thus, the assumed linear relation between volatility dynamics

(updating in volatility) and volatility levels would no longer hold during jumps and

extreme events (fat tails), hence a non-linear representation of volatility dynamics

becomes necessary. Additionally, if we accept the non-linear dynamics of volatility

updating, Hsieh’s (1993) suggestion becomes essential.  Hsieh (1993) suggests that when

non-linear dynamics emerge in finance data, conditional densities provide better

description of short-term movements compared with unconditional densities, which has

very important implication in risk management.

1.3 The Purpose of the Work

The purpose of this dissertation is to provide an approximate analytical estimate

of VaR for a class of non-normally distributed portfolio’s P&L that allows for the

maximum tail thickness and fast volatility updating.

To obtain such non-normal distribution and nonlinear relationship, the dissertation

assumes that trading revenues on financial institution’s portfolio is evolving according to

a mix of a non-affine stochastic volatility-jump diffusion model (NASVJ) in a form

mentioned by Chacko and Viceira (2003). Such a model allows for both sources of tail

thickness in financial data.  It allows as well, through the non-affine stochastic volatility

specification, for fast updating in volatility that usually combines thick tails and extreme

events, as Airoldi (2001) suggests. In this non-affine stochastic volatility model, volatility

grows according to a non-linear square relation with its current level.

A VaR estimate based on such distribution should be able to predict the losses

that banks experienced during the stock market crash in October 1987. It should be able
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to explain also the large bank losses occur in September 1998 during the Russian crisis

and the near collapse of the LTCM, what internal banks’ VaR models failed to capture, as

reported by Berkowitz and O’Brien (2002).

With certain restrictions on the set of parameters of the NASVJ, as shown later,

five well-known processes emerge: the diffusion process with no jumps, jump diffusion

process, stochastic volatility process, non-affine stochastic volatility, and stochastic

volatility with jumps. Those processes are well-known in finance literature. However, it

received limited use in VaR literature.  A limited number of works including El-Jahel,

Perraudin, and Sellin (1999) and Duffie and Pan (2001) use those processes. To my

knowledge, this is the first work that combines stochastic volatility, jumps, and non-

affine structure of volatility in deriving an analytical solution for VaR.

1.4 Methodology

 To derive an analytical estimate for VaR under thick tails and fast volatility

updating, the dissertation assumes that trading revenues of the bank follow a non-affine

mixed stochastic volatility with jump process. An explicit form of VaR is derived by

obtaining the conditional distribution function of trading revenues. The necessity of using

the conditional distribution rather than the unconditional one comes from Hsieh’s (1993)

concern that conditional densities provide a better description of asset price movements

in the presence of non-linear dynamics.

Deriving the conditional density crucially depends on the transformation approach

developed by Shephard (1991) and utilized by Duffie, Pan, and Singleton (2000), and

Chacko and Das (2002) for affine processes. According to this transformation method,

the conditional probability function (cpf) is derived from the conditional characteristic
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function (ccf). When the conditional probability function (cpf) becomes known, it

becomes straightforward to calculate an estimate for VaR based on the statistical

definition of VaR as:

Where F[∆P(.)] is the cumulative distribution function, (cdf) of trading revenues, ∆P, and

f(∆P(.)) is the probability density function of  (pdf) of ∆P.

 Thus the first task would be to derive the conditional characteristic function, and

then by the standard Fourier-inversion, we obtain the cumulative density function from

which we can directly calculate VaR. The dissertation derives an analytical VaR for the

mixed non-affine stochastic volatility --jumps and for the five special cases of the process

mentioned above based on the same procedure.

This methodology of deriving the conditional probability distribution is applicable

directly for affine processes. As a matter of fact, it is applicable only for affine processes

as shown in Shephard (1991), Duffie, Pan, and Singleton (2000), and Chacko and Das

(2002. For non-affine processes, we need first to transform the non-affine processes to

affine processes, mostly by using some of the perturbation methods of Kevorkian and

Cole (1981), and then perform the Fourier-inversion.

The procedure of deriving VaR estimate from the characteristic function has been

used before. El-Jahel, Perraudin, and Sellin (1999) and  Duffie and Pan (2001) show how

to replace the simulation step in VaR with a stochastic volatility process for derivative

portfolio through Delta-Gamma approach. Duffie and Pan (2001) apply similar principle

on a jump diffusion process. Cardenas, Fruchard, Koehler, and Michel (1997) also

( )[ ] ( )[ ] ( )( ) 1)-(1                                        1Pr -cdxxPf = VaRPF < -VaRNP 
VaR

=∆−∆=∆ ∫
−

∞−
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replace a Delta-Gamma approach for option’s portfolio with analytical solution for VaR

for a pure diffusion model with no jumps or stochastic volatility.  Chapter Four describes

this method in details, and derives VaR estimates and characteristic functions for the

NASVJ process and other processes.

As mentioned earlier, a crucial issue in estimating VaR is the estimation of

current volatility. Current volatility will be estimated from historical data by estimating

the assumed processes for stock returns using spectral GMM estimator of Chacko and

Viceira (2003). Spectral GMM estimator depends on the empirical characteristic

function, where the unobserved variable (volatility, for example) can be integrated out.

Singleton (2001) and Jiang and Knight (2000) estimate continuous time processes

through the characteristic function. Note that volatility in the jump diffusion process

would be constant.

Empirically, the dissertation applies the analytical VaR model developed in this

context on a sample of six largest banks’ trading portfolios in the United States. In the

empirical part, the dissertation proceeds through comparing among different VaR

estimates based on different processes with a performance criterion of actual trading

profits and losses for those banks during the period 1995: Q1-2002: Q3. The compared

models include internal VaR estimate, the Geometric Brownian Motion VaR model

(GBM VaR), the stochastic volatility model VaR (SV-VaR), the jump diffusion VaR, (JD

VaR), the stochastic Volatility with jump diffusion VaR (SVJ VaR), the non-affine

stochastic volatility VaR (NASV VaR), and non-affine stochastic volatility with jump

diffusion VaR (NASVJ VaR).
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1.5 Data

This part of the dissertation uses quarterly data published by the largest US banks,

for a sample starting from 1995:Q1-2002: Q3. Banks start to publish their internal VaR

calculations almost with the beginning of 1995, Jorion (2002). The probability

distribution for profit and losses is not published on daily or weekly bases. It is only

published on quarterly and yearly bases.

  For their “1-day” VaRs, banks measure only price fluctuation risk, and they

ignore expected returns.  Berkowitz and O’Brien (2002) use the banks’ 1-day trading

revenues (unpublished P&L), which include fee income from trading and possibly trading

position net interest income for some banks, as well as gains and losses on positions.

This is, of course, inconsistent with the risk being measured in their VaR models.

Accordingly, trading revenues are modified using the moving average method of Jorion

(2002) to extract unexpected trading revenues from the published trading revenues. As

mentioned before, the expected trading revenues component includes fees income and

interest rate income. Banks’ internal VaR models ignore those expected components from

trading revenues when calculating VaR.

 On a quarterly basis, there is an item of "trading revenue" reported in the bank’s

call reports, which includes position’s gains and losses and fees and expenses incidental

to trading. The call reports also report separately interest income and expense on trading

positions. These trading revenue components are available in the banks’ quarterly (10Q)

and annual (10K) reports filed with the SEC.   The sample period is chosen to include the

third quarter of 1998 where banks experienced large losses because of the Russian crisis
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and the near collapse of the LTCM. Chapter Three provides a fully detailed explanation

for the data and its statistical proprieties.

The dissertation proceeds as follows: Chapter Two provides a detailed

explanation of various risk facing financial institutions, detailed definition of VaR,

methods of VaR, developments of VaR, comparisons among VaR methodologies, and

VaR weaknesses.

The third chapter introduces the data and manipulations for the data. The chapter

explains the data sample, sources of the data, data statistics. It also tests for the degree of

accuracy of banks’ VaR models in capturing actual losses for banks during the period

1995-2002. The test for accuracy of VaR models follows Berkowitz and O’Brien (2002)

and Jorion (2002).  The results of those tests show that banks’ VaR are very conservative

compared with actual losses occurred during the third quarter of 1998. Those results

indicate the need for new VaR models that account for tail thickness and fast volatility

updating.

Chapter Four explains in detail the methodology deriving VaR estimates. It

reviews the general methodology and reviews the literature concerning the characteristic

function and the use of the Fourier inversion theorem and its uses in economics and

finance.  In Chapter Four also, the dissertation introduces the derivation of the models,

the characteristic functions, and the Fourier inversion for the processes.

The fifth chapter applies VaR solutions developed in Chapter Four on the trading

revenues of the banks in the sample. Additionally, the different estimate of VaRs based

on the proposed models will be compared with each other to a reference point of the

distribution of the actual losses that banks incurred in the last eight years. This includes
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the period where banks incurred massive losses during the Russian crisis and the near

collapse of the LTCM, where most of VaR models fail.



15

CHAPTER TWO: REVIEW LITERATURE

Two methodologies of VaR measures have evolved during the last decade. One

obtained by deriving an analytical valuation of VaR, which depends on certain parameter

estimates, called the parametric approach. The other derives VaR by repeatedly

performing several simulation steps, including historical and Monte Carlo simulations.

This chapter reviews the concepts of VaR, VaR measurement techniques, developments

of VaR techniques, and the strengths and weaknesses of such techniques.

2.1 The Need for Unified and Quantified Risk Measure

Modern finance theory emphasizes risk as a major determinant of return. Merton

(1980) argues that expected return has a linear relationship with risk. According to his

view, it is easier to measure risk – defined as volatility of return – than to measure

expected return itself. Merton’s idea sounds intuitively clear when applied to an equity

portfolio replicating an index. However, it is questionable when applied to a globally

diversified portfolio with positions traded in completely segmented markets, as in the

case of trading portfolios of financial institutions.

Taking a look at a trading portfolio of a financial institution like JP Morgan Chase

& Co. or CitiCorp as it is published in their reports suggests the following two

observations: The great diversity of trading positions, and the difficulty of and the need

for combining all risk classes underlying those positions in one single measure.  The

trading portfolio of JP Morgan Chase & Co. contains, among others, positions in U.S and

foreign governments
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securities, corporate securities, and derivative securities of interest rates, foreign

exchange rates, bonds, equities, and commodity contracts. Each of those positions is

associated with a different source of risk and a different risk calculation method, as

follows.

The major risk underlying U.S Government securities is the interest rate risk.

Duration is a simple measure for estimating volatility in the prices of those securities and

their relationship with interest rates. By estimating convexity and sensitivity parameters

in the case of non-parallel shift in the term structure of interest rates, duration can be

modified to account for nonlinearity in the relationship between interest rates and

government security prices. A more complicated analysis may involve a parametric

quantifying of the corresponding risk factors affecting the term structure of interest rates

(see for example Golub and Tilman [2000] and Fabozzi, [2000]). For foreign

government securities, the foreign exchange rate is considered a distinctive risk factor in

determining returns. Foreign exchange rates have their own risk indices, spreads, and

volatilities. Recently, target zones have been added to several currencies, (Winer

[1997]).

Risk factors underlying corporate securities are dependent on the type of

securities held in the portfolio. For corporate bonds, in addition to the risk associated

with the interest rate, default is a major source of risk that correlates with other indices in

the economy. One way to quantify this risk is to use credit rating (Golub and Tilman

[2000]).

For equities, volatility of returns is a straightforward measure of risk. Many

models used in finance like the CAPM and the APT utilizes the correlation between the
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asset and the risk factor as a risk measure. For example, in the CAPM, where the only

risk factor is the market, the measure of risk (Beta) is the covariance between the market

and stock returns.

Risk factors underlying derivative securities are essentially the same as those

associated with the underlying assets of those derivatives. However, measuring the risk

associated with each derivative position depends on the shape of the relationship

between the derivative price and the underlying asset price. Forwards and futures prices

have a linear relationship with the prices of the underlying assets. Accordingly, the risk

associated with those contracts can be expressed as a linear transformation of the risk

associated with the underlying asset.

For options, where the relationship between the price of the option and the price

of the underlying asset is non-linear, risk can be measured by the Greeks, delta, gamma,

theta, vega and rho. Each of these letters reflects the rate of change in the price of the

option when only one of the parameters change, like the price of the underlying asset,

time to maturity, volatility and interest rate, (see for example Hull [2002]). To measure

the risk associated with interest rate and currency swaps we need a model of default and

recovery, which is necessary for measuring credit risk derivatives, (Saunders [1999]).

Risk is not limited to the above sources. The risk sources mentioned above are

coming basically from the market; the risk of unexpected changes in prices or rates.

Credit risk is another type of market risk (Duffie and Pan [1997]). Financial institutions

are subject to other types of risk like operation risk legal risk and liquidity risk.

However, for trading activities, market risk, the risk of unexpected changes in prices or

rates, might be the most important source of risk affecting the value of the trading
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portfolio. Jorion (2001) and Crouhy, Galai, and Mark (2001) introduce a comprehensive

explanation of risk sources affecting financial institutions’ portfolios and propose risk

management tools for each risk factor.

Even if we focus our attention on the market risk, we still see that each position

in the financial institution’s portfolio, in the case of JP Morgan Chase & Co., is related

to a different market risk, requiring a different measurement technique. The

measurement technique is unique to that risk factor and not applicable to other factors.

Clearly, those measures are not additive, or even comparable. Thus all of those risk

measures cannot give a simple answer to the basic question regarding the level of risk

that a portfolio faces over a specific trading horizon.

Linsmeier and Pearson (1999) note that those complications were raised after

1973, the year that witnessed the collapse of the Bretton Woods system of fixed

exchange rates and the publication of the Black-Scholes option pricing formula. Those

events resulted in considerably high volatility in exchange rates, interest rates, and

commodity prices, and a proliferation of derivative instruments as useful tools for

hedging risks that emerge from market rates and prices dynamics. With those changes,

financial institutions increased their positions in financial derivatives for both hedging

and speculative purposes, a move that made the extent of market risk less obvious.

Ultimately, this led to an increased demand for quantitative measures of market risks for

trading portfolios. A different rationale is provided by Jorion (2001) and Crouhy, Galai

and Mark (2001) who argue that the recent financial distresses worldwide were the

primary motive behind the search for a simple risk measurement tool.
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One way to avoid these above complexities is to look at the probability of a given

loss to occur during a specified time horizon N, a straightforward statistical measure.

List all possible outcomes in each of the N periods and for each outcome, assign a

probability for the set of lower values to occur. If we know the probability distribution of

the profit and loss of a certain portfolio, then we can identify the probability of incur

losses exceeds each event (the left tail of the distribution). When we face the question, “

what is the maximum loss we may suffer over some time horizon, say N days?” we

answer, “ we are c% confident that we are not losing more than $V of our wealth over

this time horizon.”  Notice here that $V is the event (loss) that would be exceeded by (1-

c)%. Equivalently, we can say that there is a (1-c)% probability of losing more than $V

of our wealth over the next N trading horizon. Our answer still implies that there is a

possibility of losing all of our wealth but with a minimal probability. However, the

probability of losing everything depends on our portfolio risk as defined by the standard

deviation of the profits and losses assuming normal distribution.

For example, given a time horizon of 100 trading days, and a confidence level of

95%, our losses will exceed $V1 only in 5 trading days. Here N = 1 day and c = 95%.

For 99% confidence level, we will incur losses exceeding $V2 only in one day out of 100

trading days or 2-3 days during a trading year, where |V1| < |V2|. This means additionally

that, for the next trading day, we are 95% sure that our losses will not exceed $V1, that is

we are 99% sure that our losses for the next trading day will not exceed $V2.
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2.2 The Concept of VaR

Before going to the formal definition of VaR, let us apply the above loose

definition to the distribution of the profit and losse (P&L) of the trading accounts for

Bank of America. Figure (2.1) below represents the histogram for the daily trading

revenues for Bank of America during the period Oct.1st 2001 to Sep. 30th 2002, which

represents 251 trading days. If we assume that the histogram represents the daily P&L of

the trading portfolio under the normal market conditions, then we can make our previous

statements as follows.

Figure 2.1
Histogram of Daily Market Risk –Related Results

For Bank of America, 12 Months Ended September 30, 2002.

Source: Bank of America Quarterly Report (Q10), September 2002.

We are 97.2% confident that losses of Bank of America will not exceed $20

millions over the next trading day. That means there is only 2.8% probability that Bank

of America will incur losses exceeds $20 millions during the next trading day. The 2.8%
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is the percentage of the number of days that the Bank incur losses more than $20 millions

to the total number of trading days. Additionally, we can say that at a 95% confidence

level, the losses of Bank of America will not exceed $14.5 millions over the next trading

day. Notice that 5% of the trading days is 12.5 days. We see from the histogram that there

are 17 days (6.8% of total trading days) the bank suffered from losses exceeding $10

millions and 7 days (2.8% of the total trading days) the bank suffered from losses

exceeding $20 millions. Interpolating, we find that the amount of losses that will be

exceeded by 5% of the trading days is $14.5 millions. The number $14.5 millions is VaR

at 95% confidence level over one trading-day time horizon.

Accordingly, we can define Value at Risk or VaR as a quantile measure4 to

quantify the risk for financial institutions. It measures the market risk of a financial firm’s

“book”, the list of positions in various instruments that expose the firm to financial risk.

Roughly speaking, VaR measures the worst expected loss over a given horizon under

normal market conditions at a given level of confidence, Duffie and Pan (1997).

As indicated in the loose form definition, VaR calculation models make the

following statement: “We are c percent certain that we will not lose more than V dollars

in the next N days”.  The variable V is the VaR of the portfolio. It is a function of two

parameters: a time period (horizon), N, and a confidence level c.  Thus, when we

calculate VaR for a portfolio of a financial institution we calculate the expected loss in

the portfolio’s market value over a given horizon such as one day or two weeks, N, that is

exceeded with a small probability say 1 percent, 1-c.  Statistically speaking, value at risk

                                                
4 Other measures to quantify risk, in addition to quantile measures, include standard deviation, interquartile
range, and lower partial moments or shortfall measures.
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measure-in this case- is the 0.01 critical value of the probability distribution of changes in

market value as shown in figure 2.2 below.

Figure 2.2
0.01 Critical Value of Probability Distribution of Changes in Market Value

Assuming Normality

Accordingly, VaR is defined as the upper limit of the one-sided confidence

interval:

Pr [∆P(N) < -VaR] = 1-c                                                      (2-1)

Where c is the confidence level, and ∆P(N) = ∆Pt (N) is the relative change in the

portfolio value ( P&L) over the time horizon N. ∆Pt (N) = P(t + N) - Pt . P(t + N) is the

natural logarithm of the portfolio value at time t + N and Pt is the natural logarithm of the

portfolio value at time t.

Statistically, equation (2-1) means that VaR values are obtained directly from the

probability distribution of P&L as follows,
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Where F[∆P(.)] is the cumulative distribution function, (cdf) of the trading

revenues, ∆P, and f(∆P(.)) is the probability density function of  (pdf) of ∆P.

2.3 VaR Conversion across Time Horizons and Confidence Levels

At a confidence level of 99%, a one day VaR is a one day loss that is expected to

be exceeded in only one trading day out of 100 trading days. A 99% two weeks VaR is a

two weeks loss that will be exceeded roughly once every 4 years. By the same argument,

a 99% three months VaR is a three months loss that will be exceeded once every 25

years. Here we need to recognize that:

Where we assume that the two weeks period contains 10 trading days and the 3 months

period contains roughly 63 trading days. So, in absolute value, VaR1 day < VaR2 weeks<

VaR3 Months, and so on.

For confidence level, if we assume normality, and constant volatility, then a 99%

confidence level VaR can be expressed as a 95% confidence level VaR as follows:

                                           VaR 3.16   10VaR  VaR day 1day 1 weeks2 ≈=

                                VaR 2.51  
10

  63  VaR  VaR

                                          VaR 7.93   63VaR VaR

 weeks2 weeks2Months 3

day 1day 1Months 3

≈=

≈=

                                              VaR  1.41  
1.645
2.326  VaR  VaR 95%95%99% ≈=

( )[ ] ( )[ ] ( )( ) 2)-(2                                       1Pr -cdxxPf = VaRPF < -VaRNP 
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Where 2.326 and 1.645 (known as α’s) are the standard normal deviate

corresponding to a 99% and 95% confidence level. In the same way, the three-months

99% confidence level VaR can be expressed as a one day, two weeks or any horizon

length VaR at any confidence level as follows:

Worth to say that the above conversion method is mostly convenient and

applicable for trading revenues that are normally distributed, where we assume that the

standard deviation of trading revenues is constant.

2.4 VaR Users and VaR in Regulations

In spite of its recent advent as a risk management tool, the use of VaR has blown

up very quickly. VaR was used first by major financial firms in the late 1980’s.

Linsmeier and Pearson (1999) suggest that the releasing of JP Morgan to its

RiskMetricsTM system in 1994 was the reason behind this tremendous use of VaR in spite

of its relatively new age. VaR is now used by most of derivatives’ dealers, even small

financial firms, non-financial corporations, institutional investors and central banks.

Linsmeier and Pearson (1999) report results of some surveys about VaR use by different

types of institutions in their notes section. For more about the developments of using VaR

see Jorion (2001) and Crouhy, Galai and Mark (2001).

Regulators, on the other hand, become increasingly interested in VaR as measure

for risk management, especially after the consecutive financial disasters during the late

      VaR   54.3  
101.645
632.326  VaR  VaR

           VaR   11.19  
1.645

632.326  VaR  VaR

 weeks2  95%, weeks2  95%,Months 3 , 99%

day 1 95%,day 1 95%,Months 3 , 99%

≈=

≈=
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1980’s and 1990’s. Basle Committee on Banking Supervision allows banks to calculate

their capital requirements for market risk based on their own VaR models. The Securities

and Exchange Commissions requires U.S. companies to disclose quantitative measures of

market risk, with VaR listed as one of three possible market risk disclosure measures. For

detailed analysis of VaR in regulations, see Jorion (2001) and Crouhy, Galai and Mark

(2001). Khindanova and Rachev (2000) introduce very summarized and conclusive

review for the developments of VaR in use and VaR in Regulations.

2.5 Components of VaR Measures

In order to implement VaR measures, we should have a histogram like the one in

figure 2.1, or the components of equation 2-2, namely, the cdf, or the pdf that will enable

us to draw a figure as the one in figure 2.2. The histogram in figure 2.1 represents

basically the distribution function. To draw a figure like 2.1 or 2.2 we need to collect data

regarding the current portfolio positions or the trading revenues, P&L, for a specified

time interval, which represents the holding period or the trading horizon. We need also to

build a model to predict the distribution of the P&L of the portfolio as a function of the

market parameters. The last step means that we need to infer the cdf or the pdf. As we

will see later, VaR methodologies are exclusively different in the ways of constructing

pdf’s.

More formally, VaR measure for any trading portfolio depends on its quality on

the following components:

1- the distribution assumption

2- volatility and covariance estimates

3- the window length of the data used for parameter estimates
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4- time horizon or the holding period

5- confidence level

In addition to the above components which assumes the mean of return zero,

some VaR measures as Jackson, Maude and Perraudin (1997) incorporate the mean of

return in VaR analysis. However, their results show no proof for any certain differences

when the mean of returns assumed to be zero.

2.5.1 The Distribution Assumption

As mentioned earlier, VaR methodologies are different basically because of the

way they construct the pdf. Traditionally, VaR techniques approximate the cdf’s in three

broad methods: the parametric method or analytical models, historical simulation or the

empirical based methods and the Monte Carlo simulation or stochastic simulation

method.  The historical simulation and the Monte Carlo simulation are usually called the

non-parametric approaches.  Section 2.6 deals with VaR methods in details.

2.5.2 Volatility and Covariance Estimates

Estimating current volatility is essential in VaR models. When the portfolio

includes several positions, VaR estimates need estimation for the variance-covariance

matrix and the correlation matrix, as we will see in the variance covariance VaR method.

However, with increasing the number of positions this process becomes more

cumbersome.

VaR methods apply different models to estimate current volatility. Traditionally,

VaR estimates use constant volatility models to predict current volatility. But we know

since Engle (1982) that volatility in financial data is not constant and it is moving over
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time. Hull and White (1998b) report that incorporating volatility updating into VaR

models improves substantially VaR estimates.

To account for volatility updating, researchers in VaR use different models.  JP

Morgan (1995) uses a uniform exponential weighting volatility model. Lawrence and

Robinson (1995) use what is know as asset-specific exponential weighting volatility

model. Jackson, Maude and Perraudin (1997) show that certain parameters’ value in

volatility estimate (within the exponential weighting volatility models) leads to higher tail

probabilities. They show that there is a trade off between the degree of approximating

time-varying volatility and VaR predictions. Hendricks (1996) shows that there is a

negative relationship between the size of the parameters of the exponential weighting

volatility model and the variability of VaR measurements. For more about uniform and

asset-specific exponential weighting volatility models see Dowd (1998), Jorion (2001)

and Hull (2002).

Other models of time-varying volatility used in VaR context include the ARCH

models of Engle (1982), GARCH models of Bollerslev (1986), EGARCH models of

Nelson (1991), extreme value theorem EVT as in Bradley and Taqqu (2001), and implied

volatilities from option prices as in Duffie and Pan (2001). Berkowitz and O’Brien (2002)

find that VaR models that depend on GARCH estimation for volatility bound the actual

daily losses in banks’ portfolios closer than internal VaR models used by banks.

Eberlein, Kallsen and Kristen (2001) test the impact of using different methods of

estimating current volatility in VaR models and find that the estimation technique affects

substantially VaR estimates. For different techniques for estimating volatility in VaR and

its effect in VaR estimates see in addition to Eberlein, Kallsen and Kristen (2001), Duffie
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and Pan (1997), Dowd (1998), Khindanova and Rachev (2000), Gencay, Selcuk, and

Ulugulyagci (2001) and Bradley and Taqqu (2001), Jorion (2001) and Hull (2002).

VaR estimates for portfolios that contain many positions needs to estimate also

the correlation matrix beside the covariance matrix. Beder (1995) finds that VaR are

sensitive to correlation assumptions. She calculated VaR for a portfolio under different

assumptions of the correlation matrix. Her results show significant differences of VaR

estimates under those different assumptions of correlation matrix.

2.5.3 The Window Length

The window length is the length of the data sample (the observation period) used

for VaR estimation. The window length choice is related to sampling issues and

availability of databases. The Basle Committee suggests the 250-day (one-year) window

length.

Beder (1995) estimates VaR applying the historical simulation method for 100-

day and 250-day window lengths. Beder shows that VaR values increase with the

expanded observation intervals. Hendricks (1996) calculates VaR measures using the

parametric approach with equally weighted volatility models and the historical

simulation approach. Hendricks (1996) uses different window lengths ranging from 50

days to 1250 days. He reports that VaR measures become more stable for longer

observation periods. Jackson, Mauder and Perraudin (1997) reach to the same conclusion

of Hendricks (1996) by computing parametric and simulation VaRs for 1-day and 10-

day time horizons using window lengths from three to 24 months. They concluded that

VaR predictions based on longer data windows are more stable and reliable.
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2.5.4 The Holding Period and Confidence Level

The holding period or the time horizon in VaR analysis takes any trading

interval. In regulations it varies from one day to two weeks (10 trading days). The

choice of the length of the holding period depends on liquidity of assets and frequency

of trading transactions. A basic assumption in all VaR calculations is the portfolio

composition remains unchanged over the holding period. The Basle Committee

recommends 10-day holding period. RiskMetrics uses 1 day. Most of financial

institutions use 1 day holding period and report VaR estimates at daily basis in their

quarterly and annually reports. Long holding periods are usually recommended for

portfolios with illiquid instruments.

Beder (1995) investigates the impact of time horizon on VaR estimations. She

calculates VaR for three hypothetical portfolios applying four different approaches for

time horizons of 1-day and 10-day. For all VaR calculations with one exception Beder

(1995) reports larger VaR estimates for longer time horizons.

The confidence level, on the other hand, reflects some internal measures of the

financial institution. RiskMetrics uses 95% confidence level. The Basle Committee uses

99% confidence level. Jorion (2001) explains the Committee choice of 99% confidence

level as a reflection of the tradeoff between the desire of regulators to ensure a safe and

sound financial system and the adverse effect of capital requirements. Dowd (1998) and

Jorion (2001) discuss the internal and external rationales for financial institutions to

choose certain parameters (confidence level and holding periods).
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2.5.5 Basle Committee Parameters

As mentioned above, Basle Committee requires financial institutions to calculate

its VaR models at a 99% confidence level and 10-business-days horizon. The resulting

VaR then multiplied by a safety factor, K, equal 3 to provide the minimum capital

requirement for regulatory purposes. Khindanova and Rachev (2000) report that

financial institutions think that 10-day time horizon is inadequate for frequently traded

instruments and is restrictive for illiquid assets. Jorion (2001) suggests that the choice of

the 10-trading-day period reflects the trade off between the cost of frequent monitoring

and the benefits of early detection of potential problems.

According to Basle criteria, a 2 weeks loss value more than VaR would occur

once every 4 years. Jorion (2001) links between the confidence level and the safety

factor choice. That is with low probability of failure to occur once every 4 years, the

safety factor provides near absolute insurance against bankruptcy. Additionally, Jorion

(2001) explains that the safety factor accounts form model risk. Model risk includes

underestimation of VaR numbers because of inaccuracy of VaR components’ choice.

Stahl (1997) justifies the choice of the safety factor to be 3 based on

Chebyshev’s inequality. Other authors link the choice of the number 3 to the kurtosis of

the normal distribution, but this sounds a little unjustifiable.

2.6 VaR Methods

Section 2.5.1 above differentiates among VaR methodologies based on the way

they construct the pdf. This section deals with different VaR approaches and the recent

advancements to VaR methodologies.
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2.6.1 Parametric Methods

In the parametric method, trading revenues (P&L) are characterized by assumed

parametric distribution, as normal distribution, Gamma distribution, Student t-distribution

or any other distribution or a mixture of any set of distributions. Other parametric

methods include a linearization and quadratic approximation of portfolios’ value. VaR

estimates derived by this method appear as a function of the parameters of the assumed

distribution, and that is why it is called parametric.

Parametric methods are subject to some kind of inaccuracy. This inaccuracy arises

from the fact that the distribution assumption might be incorrect. For example, if the VaR

method assumes the P&L to have a multivariate normal distribution (as frequently

assumed) whereas the actual data exhibit excess kurtosis, resulted VaR estimate

underestimates the maximum potential losses at high confidence levels.

Under the parametric method with normality assumption, two VaR approaches

are usually used: the variance covariance approach, and the Greeks approach. Both of

those approaches reserve the normality assumption of risk factors underlying portfolio

returns. While the variance covariance approach assumes a linear relationship between

portfolio returns and the underlying risk factors, the Greeks approach deals with non-

linear cases as in the case of option portfolios and fixed income portfolios.

2.6.1.1 Variance Covariance

The most popular analytical approach for deriving VaR is the variance covariance

method. This approach assumes that all risk factors in the market are normally distributed

and the portfolio is a linear function of those normally distributed risks. This implies that

the P&L distribution for the portfolio is also normally distributed. Under such
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assumptions, VaR calculations become easy to handle. VaR basically is a multiple of the

portfolio standard deviation, and the standard deviation is a linear function of individual

volatilities and covariances of the underlying market risk factors. So, all we need to

calculate VaR is the variance covariance matrix and information about the sizes of

individual positions to determine the portfolio standard deviation. Then, multiply this

standard deviation by a confidence level parameter and scale variable reflecting the size

of the portfolio, as follows in matrix notations, Dowd (1998) and Jorion (2001):

VaRP = -ασPP =-α[wΣwT]1/2 P =[VaR*ρ* VaRT]                             (2-3)

Where α is the standard normal deviate corresponding to a specific confidence

level. σP is the standard deviation of the portfolio, P the scale variable reflecting the size

of the portfolio. w represents n x 1 vector of sizes of individual positions in the portfolio.

ρ is the correlation matrix of positions held in the portfolio and VaR represents n x 1

vector of individual positions’ VaRs (undiversified VaRs), where VaR for individual

positions is -ασW and W is a scaling variable reflects the initial value of individual

positions.

The normality assumption gives VaR estimate great advantages such as

tractability and informativity. Informativity includes translatability across confidence

levels and holing periods (section 2.3 above) and informativity about expected tail losses,

Dowd (1998) and Jorion (2001).

Unfortunately, the variance covariance approach to VaR does not always fit actual

financial institutions’ portfolios. Portfolio returns may be nonlinear in risk factors, as in

the case when the portfolio contains positions in options or fixed-income instruments. In

response to non-linearity, authors use the Taylor series expansion or linear approximation



33

for returns to these instruments, and then use the linear approximation to work out the

VaR estimate. This kind of approximation includes the delta-normal method and delta –

gamma approximation (Greeks). Delta-normal is the first order Taylor series expansion

of the portfolio value, and delta – gamma approximation is the second order Taylor series

expansion.

2.6.1.2 The Greeks Methods

The Greeks methods come basically from the sensitivity parameters of option

prices to different risk factors underlying an option portfolio. Assume the value of the

portfolio depends on the price of the underlying asset, and time to expiration, such that

),( tSPP = . Taking Taylor series expansion or alternatively applying Ito’s Lemma to get

the process for dynamics in the portfolio value, we get:

dSdt
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Pdt
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2
1                                         (2-4)

Note that all higher order of change in t goes to zero, thus the last term in the

right-hand-side of (2-4) goes to zero. The first part in the right hand side of (2-4) is delta

of the portfolio, ∆ , which defined as the change of the portfolio value with respect to the

change in the price of the underlying asset. The second term is gamma of the portfolio,

Γ , which is the second derivative of the value of the portfolio with respect to the

underlying asset price (first derivative of delta to underlying asset price). The third term,

known as theta,Θ , is the change of the value of the portfolio with respect to time to

expiration.

dtdSdSdP Θ+Γ+∆= 2

2
1                                                                (2-5)
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  The simplest approximation produces the so-called delta-normal approach.

Delta-normal by definition is the first order Taylor series expansion of a portfolio’s value

with respect to stock returns. In this case we ignore the second and the third argument in

the right hand side of (2-5).  If we ignore Γ  and Θ  then the potential loss in the value of

the portfolio is then computed as dSdP ∆=  which involves potential change in prices.

This relationship is linear and the worst loss in P is associated with an extreme value of S.

When the distribution of dS is normal the portfolio VaR, VaRP, will be a product of the

sensitivity parameter ∆  and the VaRS of the underlying asset as follows:

VaRP = ∆  VaR S = 0Sασ×∆                            (2-6)

For fixed income securities the underlying asset (risk factor) is the yield, and the

first order Taylor series expansion will be a function of the yield, and the constant in this

case is the modified duration, as follows:

DPdydP −=                          (2-7)

Where D is the modified duration and y is the yield. And the portfolio VaR in this case

will be:

ασ×−= DPdP                          (2-8)

Where dyσ is volatility of changes in the level of yield. Of course with this procedure, we

assume that changes in yield are normally distributed.

Delta-normal restores the linear normality and makes VaR estimation easy.

However, such a simple approximation produces inaccurate VaR estimate. Wilson (1996)

argues that delta-normal approach would produce reliable estimate for VaR for small

holding periods or/and when the portfolio has few option positions (close to normality).
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To get more accurate VaR for non-linear positions (options and fixed income),

some literature including Wilson (1994, 1996), Pritsker (1996), Jamshidian and Zhu,

(1996), and Zangari (1996 a, b) use the quadratic model or the second Taylor series

expansion known as delta- gamma approaches. In terms of equation (2-5), we add the

second term that includes Γ . Then the change in the portfolio value that includes

positions in option would be 2

2
1 dSdSdP Γ+∆= . Gamma is the first derivative of delta

with respect to underlying asset price. It measures the curvature of the relationship

between the portfolio value and the underlying market variable. A non-zero gamma

implies skewness in the distribution of P&L of the portfolio. When gamma is positive

(negative), changes in the portfolio is positively (negatively) skewed.

For a portfolio with positions in fixed income securities the relationship between

the value of the portfolio and the yield will be as follows:

2

2
1 CVdyDPdydP +−=                             (2-9)

Where the second-order coefficient C is the convexity parameter and it is equivalent to

Γ .

The task now is to deal with dS and dS2
 for option portfolios or dy and dy2 for

fixed income portfolios. Pritsker (1996) deals with those terms by taking the variance for

the both sides of the quadratic approximation (2-5). This is what is called delta-gamma-

delta method. If dS is normally distributed then all odd moments will be zero. And with

the assumption that dS and dS2 are jointly normally distributed then dP is normally

distributed and then VaR can be calculated directly.
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Pritsker (1996) use another method to infer VaR estimates based on delta gamma

approximation. In his method known as delta-gamma-Monte Carlo, Pritsker (1996) in the

first place creates a random simulation of the risk factor S. Then he uses the Taylor

approximation to create simulated movement in the option value. VaR in this case can be

calculated from the empirical distribution of the portfolio value. Other modifications of

delta-gamma methods include delta-gamma-minimization of Wilson (1994) and Fallon

(1996).

Zangari (1996 a, b), Fallon (1996) and Pritsker (1996) improve over delta-gamma

method by using Cornish-Fisher expansion which accounts for skewness. In this method,

α , the standard normal deviate corresponding to a specified confidence level is replaced

by γααα )1(
6
1 2 −−=′ , where γ  is the skewness parameter. For more about Cornish-

Fisher expansion see Hull (2002).

 Zangari (1996 a, b), and Pritsker (1996) include another modifications for delta-

gamma approach, the delta-gamma-Johnson. This method chooses a distribution function

for dP and estimates its parameters to match the first four moments of the delta-gamma

approximation.

Jamshidian and Zhu, (1996), Zangari (1996 a, b) and Fallon (1996) report that

delta-gamma approaches improved VaR estimates tremendously compared with delta-

normal. For more about detailed analysis of the developments on delta normal approach

see Khindanova and Rachev (2000).

The Greeks methods still assume normality for the risk factors. Unfortunately,

normality is very strong assumption for finance data, since many empirical studies in

time series data, Bollerslev (1987) for example, show that the rate of return (the
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percentage change) of many financial variables is not normally distributed. It tends to be

skewed and leptokurtic.

The normality assumption of risk factors or P&L of the portfolio would certainly

affect VaR estimates since it depends crucially on the distribution of the tail. Thus, if we

have thicker (thinner) tail compared with the normal distribution, then VaR estimates

based on normality would be under- (over-) estimated. Zangari (1996 c) discusses VaR as

a technique of risk management under departure from normality. He shows that VaR

calculated under normality assumption underestimates risk since the observed

distribution of many financial return series have tails that are flatter than those implied by

conditional normal distribution.

With deviation from normality assumption, we still can use the parametric

(analytical) approach to construct VaR. However, many researchers use non-parametric

approach (the simulation approach) to account for non-normality. In the parametric

approach, an alternative distribution is explicitly assumed instead of the normal

distribution, and based on this assumed distribution; a formula to describe the confidence

interval is analytically derived.

In the non-parametric approach, no particular distribution assumption is needed.

VaR is calculated from the standard theory of order statistics, as in Kupic (1995), or from

Monte Carlo simulations, where VaR is deduced from multiple runs that might be

representative of the possible market price outcomes. In some cases, actual historical

return distribution is used by bootstrapping rather than simulations.
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2.6.1.3 Analytical VaR Approaches with Deviation from Normality

Generally, the parametric approach for VaR estimates with non-normal

distribution classes aims at modifying for kurtosis since VaR estimates depend on the

distribution of the left tail. A probability distribution with fat tails has greater probability

mass out in the tails of the distribution, where large price movement occurs compared

with the normal distribution. Accordingly, VaR estimates tend to under or over estimate

risk if the normal distribution is assumed, Zangari (1996c).

Fat tails in actual finance data comes from stochastic volatility of the underlying

market factor (like stock returns). The size of the “tail fatness” depends on the correlation

between volatility of returns and returns themselves (Duffie and Pan 1997), Das and

Sundaram (1999) and Lewis (2000).  However, Bollerlev (1987) reports that actual

market data are typically found to have flatter tails compared with that would come from

stochastic volatility alone.

Another source of fat tails in the distribution of financial data comes from price

jumps, Bates (1996), Duffie and Pan (1997), Das and Sundaram (1999), Lewis (2001)

and Airoldi (2001). New evidences from Chenov, Gallant, Ghysels and Tauchen (1999),

Chourdakis (2000), Lewis (2002) and Chacko and Viceira (2003) find that stochastic

volatility and jumps are both significant in explaining the dynamics of stock returns for

different frequencies. Chenov, Gallant, Ghysels and Tauchen (1999) find that non-affine

jumps and stochastic volatility are significant in finance time series data.

To account for Kurtosis “tail fatness” in the distributions of underlying risk

factors in VaR estimates, authors use different methods. Fong and Vasicek (1997) assume

that the changes in the portfolio value follow gamma distribution. Additionally, they
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assume that the risk factors underlying the portfolio returns are jointly normally

distributed. Fong and Vasicek (1997) use basically the delta- gamma approximation with

allowing for skewness parameter (not kurtosis) to appear in VaR. Fong and Vasicek

(1997) argue that their model accounts for thick tails in spite that the forth moment does

not appear explicitly in VaR estimate. Worth to say that delta-gamma approximation that

Fong and Vasicek (1997) use differs from Cornish-Fisher approximation of Zangari

(1996 a, b), Fallon (1996) and Pritsker (1996).

Rachev and Mittnik (2000), Khindanova, Rachev, and Schwartz (2001), Rachev,

Schwartz and Khindanova, (2002) use stable Paretian models for modeling the

distribution of the P&L in the portfolio. Stable Paretian models allow for both skewness

and thick tails.  The above set of papers apply VaR measure derived from the stable

Paretian distribution on eight international financial series including S&P 500. They

conclude that stable models produce VaR estimates with higher values compared to

normal distribution.

 Zangari (1996 d & e),Venkataraman (1997), and Hull and White (1998a) use a

mixture of two normal distributions to achieve tail thickness for their VaR estimates.

Duffie and Pan (1997 and 2001) and Gibson (2001) adopts event risk (jumps) as s source

of tail thickness. Duffie and Pan (1997) and El-Jahel, Perraudin, and Sellin (1999) use

stochastic volatility to achieve kurtosis in the underlying risk factors for a portfolio with

derivatives’ positions. El-Jahel, Perraudin, and Sellin (1999) include the first four

moments in their VaR estimation. Levin and Tchernitser (2001) account for tail fatness

by assuming time varying volatility and Levy Processes. Li (1999), on the other hand,
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includes skewness and kurtosis explicitly in VaR estimates. Another wave of literature

utilizes the extreme value theory  (EVT) to account for tail dynamics and thickness.

2.6.2 Non-Parametric Approaches

As we mentioned earlier, a basic component on VaR estimate is the probability

density function. Non-parametric approaches infer the P&L distribution directly from the

standard theory of order statistics, with no need for pre-assumption about the distribution.

The following two sections, examine the two non-parametric approaches and the recent

advances on those approaches.

2.6.2.1 Historical Simulation

This method is the simplest method to construct VaR. It makes no pre-

assumptions about the distribution of trading revenues. Instead, the distribution is

constructed from the historical behavior of the portfolio P&L. The current portfolio is

subjected to actual changes in the market factors during the past. The only assumption

that is made in this method is that the past trends of profits and losses will continue in the

future. One advantage of this method that it is free from any estimating inaccuracy,

Khindanova and Rachev (2000).

However, it has a problem of the trade of between the length of the historical data

used for the simulation process and the irrelevancy. It is important to use as long

historical data as we can to take in to account any rare event happened in the past that

lead to heavy losses. In the same time, the further we go into the past for data, the less

relevant this information is to today’s market, Wiener (1997). Wiener (1997) points out

to another problem of the historical simulation that is it is not applicable for technical
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trading strategies develop on the basis of historical data. That is because we can not use

the same data used to construct VaR for the calibration of technical trading strategies.

To overcome the problem of using older data Duffie and Pan (1997), Show

(1997), and Jorion (2001) suggest the bootstrapped historical simulation method to

generate returns of risk factors by bootstrapping from historical observations. By this

approach, volatilities and correlations are updated rather than estimated from old data.

Butler and Schachter (1996, 1998) suggest combining the historical simulation

with the kernel estimation. They perform this combination in three steps: at the beginning

they approximate the pdf and the cdf of portfolio returns. After that, they approximate the

distribution of the order statistics corresponding to the confidence level. In the last step,

they estimate VaR using the first and the second moments of the pdf for the order

statistics determined by (1-c)th quantile. This modification allows to estimate the

precision of VaR estimate and to construct confidence intervals around them.

Boudoukh, Richardson, and Whitelaw (1998) enter different modification to the

historical simulation method. They combine the historical simulation method with

exponential smoothing. Basically, this method attaches exponentially declining weights

to historical portfolio returns starting from current time and going back. The future

returns are obtained from past returns and sorted in increasing order (regular historical

approach). After that, VaR estimate is computed from the empirical density function.

This modification is know as hybrid approach, and it also ties to overcome the problem of

using past information by accentuates the most recent observations. One advantage of

this method is that it takes into account time varying volatility and it is suitable for fat-

tailed series.
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Boudoukh, Richardson, and Whitelaw (1998) perform the hybrid approach to a

different financial series and compared the results with exponential smoothing and plain

vanilla historical simulations. Results for 99% confidence level VaR, applied to the S&P

500, show a reduction in the absolute error estimation ranging from 30%-40% compared

with the exponential smoothing method. The improvement over the historical simulation

was less obvious. The absolute error reduced by 14%-28% compared with the historical

simulation. Boudoukh, Richardson, and Whitelaw (1998) report that hybrid approach

works better for exchange rate portfolios and heavy-tailed series.

2.6.2.2 Monte Carlo Simulation

The Monte Carlo method is one of the most popular methods among

sophisticated users, Wiener (1997). It has a number of similarities to the historical

simulation. The most significant difference is that Monte Carlo methods apply the

simulation using observed changes in the market factors over the last N periods to

generate N hypothetical portfolio P&L. However, this method simulates the behavior of

risk factors and asset prices by generating random price paths. Monte Carlo simulations

provide N possible portfolio values on a given future date (t + N). The VaR value can be

determined from the distribution of simulated portfolio values.

To perform Monte Carlo approach, we first specify stochastic processes and

process parameters that we think it is the best to capture risk factors dynamics. Then

simulate the hypothetical price trajectories for all risk factors. Hypothetical price

changes are obtained by simulations drawn from the specified distribution. At the end,

we obtain asset prices at time t + N from the simulated price trajectories and compute the
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portfolio value and VaR. One major disadvantage of this method is that it takes long

time to converge.

The modifications for the Monte Carlo method were aiming basically at

improving the accuracy of VaR estimates without much additional timing cost. VaR

estimates by Monte Carlo methods are subject to a tradeoff between accuracy and time

of convergence. Wiener (1997) reports that to increase the precision by a factor of 10

you must perform 100 times more simulations.

Owen and Tavella (1997) use Paskov and Traub (1995) quasi-Monte Carlo idea

to obtain faster valuation financial derivatives and apply it to VaR estimates. Owen and

Tavella (1997) application of the quasi-Monte Carlo method noticeably improve the

convergence of the simulation compared with the traditional Monte Carlo method with

the same level of accuracy.

Pritsker (1996) make two improvements on Monte Carlo methods. The first is

grid Monte Carlo approach, and the other one is the modified grid Monte Carlo. In the

first improvement, he forms a grid of changes in the risk factors. Then he computes the

portfolio values at each node of the gird. The possible realizations of the grid are

obtained from random drawings from pre-decided models. Portfolio values for new

draws are approximated by interpolating portfolio values at adjacent grid points.

However, this method is subject to a problem Pritsker (1996) call it dimensionality

problem.

To alleviate the dimensionality problem in the grid Monte Carlo approach,

Pritsker (1996) tries to lower the dimension grid and combine them with a linear Taylor

approximation. This modification assumes that changes in the portfolio value are caused
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by two types of factors, linear and non-linear. Each type of those changes subject to

different estimation method. Changes in the value according to linear factors are

evaluated by linear approximation. Changes in the portfolio values that are resulted from

non-linear factors are estimated through grid points. Pritsker (1996) find that the

modified gird Monte Carlo method entails the level of accuracy close to delta-gamma

Monte-Carlo approach. However, delta-gamma Monte-Carlo requires less computational

time. Gibson and Pritsker (2000) extend the modified gird method to portfolios contain

positions in fixed income securities.

2.6.3 Comparison Among Different Methods

Application of different VaR methods provides different VaR estimates. The

resulted estimate from different VaR methodologies sometimes not even close. Generally

speaking the choice of the method depends on the composition of the portfolio. VaR

methods always compared among each other regarding several considerations.  The first

is the ability to capture risk factors underlying portfolio returns, with the assumption that

the portfolio includes positions in options and fixed income securities. The second

consideration is the easiness of implementation. The third is how quick in terms of time

computations can be implemented. Other considerations that usually take into account are

the easiness to explain to senior management. Table 2.1 includes a summary of

comparisons among different traditional methods. However, the most important

comparison among different methods includes the tradeoff between the accuracy of the

estimate and the cost of implementing computations in terms of time and the easiness of

implementation.
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The variance covariance method becomes burdensome when the number of

positions in the portfolio increases, because this method requires a computation for the

variance covariance matrix and the correlation matrix of all positions. In implementing

the Monte Carlo simulation method, we face a tradeoff between accuracy and

computation time. One advantage for the Monte Carlo simulation is that it can be

performed under alternative assumptions, which is not available for other methods.

However, the Monte Carlo simulation method subjects to the model risk and

measurement error. Monte Carlo simulation method models risk factors according to a

pre-assumed stochastic process and this pre-assumed stochastic process might be

incorrect. Measurement errors involve in all VaR estimates, because the true parameters

should be estimated.

Dowd (1998), Linsmeier and Pearson (1999), and Jorion (2001) provide a detailed

explanation for traditional VaR approaches. Pritsker (1997) and Pearson and Simthson

(2000) investigate the developments on VaR methodologies to improve the speed of

computations and accuracy.

, Pearson and Simthson (2000) provide Figure 2.3 for comparison. The figure

shows that the full Monte Carlo method is the most accurate and the most time

consuming method. Delta normal on the other side is the least accurate and the fastest to

implement. We notice also that delta-gamma Monte Carlo outperforms the modified gird

Monte Carlo. In the same time, delta-gamma-delta outperforms delta-gamma-

minimization. Roughly speaking, delta-gamma Monte Carlo is the best among the

quadratic approximation methods in terms of balancing between accuracy and speed of

computation
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Table (2.1)
Comparisons of Traditional VaR

Method
Factor

Variance-Covariance Quadratic
Approximations(1)

Historical Simulation Monte Carlo Simulation

Ability to capture risk
Factors for position with
nonlinear dependence on
risk factors

Ineffective at all Can handle it, but the
accuracy diminishes
with their existence.
VaR value understated.

Effective Effective

Assumptions Impose normal
distribution
assumption

Impose normal
distribution assumption

Past trends continue in
the future

 Impose stochastic model
for risk factors

Accounting for thick tails No No Yes,  if the past data
imply it

Yes, if the modeled risk
imply it

Accuracy Inaccurate with thick
tails data and when
recent past is
anomalous(2)

Inaccurate with thick
tails data and when
recent past is anomalous

Future might have
extreme events, or the
opposite

Misleading when the past
is anomalous

Easiness of
implementation

Yes, when the number
of positions in the
portfolio is limited,
difficult with large
number of positions

Yes, with the availability
of data and few number
of position

Yes, with the
availability of data

Yes,  with complex
software

Quickness of computation Relatively quick,
depending on the
number of positions

Relatively quick,
depending on the
number of positions

 Relatively quick Time consuming, tradeoff
between computation
time and accuracy

Easy to explain to senior
management

No No Yes No

Performed under different
assumption

No No No Yes

(1) Includes delta normal and delta-gamma
(2) Different correlations and volatility may be used to account for that
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2.6.4 VaR Drawbacks

There are three major weaknesses for VaR methodologies: the implementation

risk, inability to be applied during transition periods and the assumption of constant

portfolio components during the time horizon (holding period). Implementation risk

means that implementation of the same model by different users produces different VaR

estimates. Marshall and Siegel (1997) conduct a study of implementation risk. They

compare VaR results obtained by several risk management developers using JP Morgan's

RiskMetrics approach. Marshal and Siegel (1997) find that different systems do not

Figure 2.3
Comparisons of VaR Methods Advancements,

Accuracy versus Speed of Computation
Accuracy

     Full
Monte Carlo

Delta-Gamma
Monte Carlo

Modified
Grid Monte
 Carlo

      Delta-Gamma
 Delta

 Delta Normal
       Delta-Gamma

              Minimization

Speed of Computation
Source: Pearson and Simthson (2000), VaR: The State of Play.
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produce the same VaR estimates for the same model and identical portfolios. They

explain the varying in estimates by the sensitivity of VaR models to users' assumptions.

The degree of variation in VaR numbers was associated with the portfolio composition.

Nonlinear securities entail larger discrepancy in VaR results than linear securities. In

order to take into account implementation risk, it is advisable to accompany VaR

computations for nonlinear portfolios with sensitivity analysis to underlying assumptions.

Additionally, VaR measures generally reflect observed risks and they are not

useful in transition periods characterized by structural changes, additional risks,

contracted liquidity of assets, and broken correlations across assets and across markets.

Finally, VaR methodologies assume that trading positions are unchanged during

time horizon. In fact, financial institutions change its portfolio composition frequently.

Therefore, extrapolation of a VaR for a certain time horizon to longer time periods

might be inappropriate. Duffie and Pan (1997) point out that if intra-period position size

is stochastic, then VaR measures obtained under the assumption of constant position

sizes, should be multiplied by a certain factor.

2.7 Back Testing

The Basle Standard requires financial institutions to perform back testing for its

internal VaR models. Back testing is a posterior procedure in which the financial

institution checks how often actual losses have exceeded the level predicted by VaR. A

financial institution that conduct daily VaR over a 99% confidence level should not

observe more than 1% cases of losses exceeds VaR. For 250 days trading period, the

financial institution should notice that actual losses during that period exceeded VaR

estimate only by 3 times.
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Basle Standard computes the market risk capital requirement at time t by:

Where Ct is the market risk capital requirement at time t. At is a multiplication factor

ranging between three and four. SRt is the capital specific risk.

The capital specific risk is part of the market risk. According to the new capital

requirements market risk is classified into general market risk and specific risk. The

general market risk is the risk from changes in overall market factors like equity prices,

commodity prices, exchange rates and interest rates. Specific risk is the risk from changes

in prices of assets for non-market reasons.

In equation (2-10), the value of At depends on the accuracy of the internal VaR

model during the past periods, say past trading year. Basle Standard divides the number

of violations (the number of times when actual daily losses exceeded VaR estimates

during the last 250 days) into three zones: the green zone, the yellow zone and the red

zone. The green zone applies when there are four or less violations, or violations

happened in 1.6% of the time. In this case A takes a value of 3. The yellow zone applies

if the number of violations is between five and nine (violations happened 2% to 3.6% of

the time). In this case A takes a value between 3 and 4. The red zone applies when there

are more than nine violations (more than 4 % of the time) and A takes a value of four. If

A is in the red zone, the whole model should be revised.

Wiener (1997) argue that this procedure prevents banks from setting low levels of

VaR, and with enough capital reserve safety, banks may only set upper bound level for
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VaR rather than precise value. For more details regarding back testing and Basle

Standard, see Jorion (2001).

2.8 Stress Testing (Scenario Analysis)

As we said earlier, VaR is a single, summary, statistical measure of normal

market risk. According to this definition, VaR is just a normal loss that occurs according

to normal market conditions. But when VaR is exceeded, the question becomes by how

large this normal loss can be exceeded?

Stress testing attempts to answer this question. Stress testing is not one of VaR

methods. It is rather a general method that performs a set of scenario analyses to

investigate the effect of extreme market events on portfolio returns. There is no standard

way to apply stress testing, and no standard set of scenarios to consider. The process

depends crucially on the judgment and experience of the risk manager.

Stress testing often begins with a set of hypothetical extreme market scenarios.

These scenarios might be created from stylized extreme scenarios, such as a movement of

the market rates and prices by large amounts expressed in numbers of standard deviation

moves. That might come from actual extreme events. For equity portfolio for example,

the scenarios might be based upon the extreme movements of the U.S. equity prices that

happened on October 19, 1987 when the S&P 500 moved by 22.3 standard deviations.

Or for a less extreme case when the S&P 500 moved by 6.8 standard deviations on

January 8, 1988.

For fixed income securities portfolio, we can use the changes in US dollar interest

rates and bond prices experienced during the winter and spring of 1994. For foreign

exchange rate we can use the changes in some of the European exchange rates that
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occurred in September 1992, or the dramatic changes in the exchange rates of several

East Asian countries during the summer and fall of 1997. After developing a set of

scenarios, the next step is to determine the effect on the prices of all instruments in the

portfolio, and the impact on portfolio value. This requires knowledge of the covariances

and correlations among different positions in the portfolio.

The are two well-known types of stress testing, the worst case scenario analysis

(WCS) of Boudoukh, Richardson and Whitelaw (1997) and the factor-based interest rate

scenarios of Frye (1997). Boudoukh, Richardson and Whitelaw (1997) reports that WCS

result exceeds VaR estimates and WCS can be used beside VaR estimates. Frye’s (1997)

method is suitable to portfolios of bonds and interest rate positions. It generates the

scenarios based on changes in the yield curve and factors underlying it. For details about

the scenario analysis and the modifications on it see Khindanova and Rachev (2000) and

Jorion (2001).

2.9 Conclusion

VaR techniques essentially model a prediction of the maximum expected loss for

a given portfolio during a given time period. In VaR, losses are approximated by the left

tail quantile in portfolio returns distribution. So VaR estimates basically depends on the

distribution of the tail of the P&L of the portfolio. As explained in section 2.6.1.3,

empirical observations exhibit fat tails and excess kurtosis for the distribution of the

underlying risk factors, time varying volatility and discontinuities in the data sample path.

Khindanova and Rachev (2000) conclude that neither the traditional methods of VaR nor

its improvements do give satisfactory and unified estimation for VaR that captures the

above properties of real financial data.
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The variance covariance method and the Greeks approximations do not cope with

the observed thick tail aspect with financial data.  The historical method is not reliable in

estimating low quantiles. Monte Carlo simulation, on the other hand, depends on the

stochastic modeling (distribution assumption) of risk factors, which is usually assumed to

be normally or log-normally distributed.

Berkowitz and O’Brien (2002) test the accuracy of the daily VaR models used by

the largest six U.S banks in predicting actual daily losses during the period January 1998

to March 2000. They find that non of the used VaR models could predict the daily P&L

in an acceptable manner. Berkowitz and O’Brien (2002) report that Banks’ VaR have no

significant ability in predicting Banks’ losses during the periods of the Russian crises and

the near collapse of the LTCM in August and September 1998.   Jorion (2002), on the

other hand, test the informativity of VaR disclosures in quarterly and annually reports for

the largest eight U.S. Banks. He reports that published VaR estimates disclose the actual

quarterly P&L for those banks. However, he makes the same point of the inability of

those VaR estimates to predict losses during the third and the forth quarter of 1998.

The witness from Berkowitz and O’Brien (2002) and Jorion (2002) is as follows:

Berkowitz and O’Brien (2002) report their results for the largest six U.S banks without

naming the banks. But we would know from the quarterly reports what are the major

banks that used VaR models during that period and what VaR methods they used. For

example Bank of New York reports that they use Monte Carlo simulations. Bankers Trust

use proprietary simulations, JP Morgan Chase & Co. use historical simulations, CitiCorp

covariance matrix, and Bank of America describe its method as “sophisticated

techniques”. These methods are disclosed in the quarterly reports (Jorion 2002 report
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them in table 1). So, According to Berkowitz and O’Brien (2002) non of those methods

could predict the Banks’ losses especially in the second half of 1998.

Jorion (2002) is more optimistic compared with Berkowitz and O’Brien (2002).

Jorion (2002) deduced his results based on a regression analysis between the

unpredictable P&L and daily volatility. For me, Jorion’s results are questionable since he

takes quarterly VaR over a 99% confidence level. According to this VaR specification,

we expect to see that a three months loss exceeding VaR occurs once every 25 years, and

any violations should be tested along 25 years or 100 quarters period. However, no data

available with that long.

The conclusion from those works is that non of the VaR methods could predict

the actual banks’ losses even with inclusion of time varying volatility. Berkowitz and

O’Brien (2002) find that VaR estimates that GARCH models for volatility bound actual

daily losses in banks’ portfolios closer than internal VaR models. However, even those

models could not describe actual portfolio dynamics during the periods of the Russian

crises and the near collapse of the LTCM in August and September 1998.

Generally speaking, accounting for thick tails may improve the performance of

VaR estimates. However, VaR estimates that deviate from normality assumption in an

attempt to account for thick tails (section 2.6.1.3) do not consider for the following

aspects:

1. The full kurtosis cannot be captured totally by time varying volatility alone or

jumps (event risk) alone. In Gibson (2001 p.2) language “what is needed is a

model that can combine time varying volatility with event risk” and Gibson

(2001) considers this task is challenging. Similarly, Lewis (2002) reports that
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mixing the stochastic volatility with jumps gives much better fit to both actual

stock price distribution with their wide tails and smile patterns. However, he

considers this as a tough task but it deserves trying for the benefit of getting

more accurate modeling of financial data. Additionally, Chenov, Gallant,

Ghysels and Tauchen (1999), Chourdakis (2000), and Chacko and Viceira

(2003) find that both stochastic volatility and jumps are significant in their

estimations for mixed stock returns processes. Those studies even employ a

non-affine stochastic process and jump-diffusion process.

2. As Airoldi (2001) suggests, with fat tails, volatility grows and updates faster.

The thicker the tail, the faster the dynamics of volatility. Thus jumps and

extreme events cause hyper growth in volatility. Chenov, Gallant, Ghysels and

Tauchen (1999) report similar evidences in their non affine estimations.

Accordingly, the assumed linear relation between volatility dynamics

(updating in volatility) and volatility levels would no longer holds during

jumps and extreme events (fat tails) hence a non-linear representation of

volatility dynamics becomes necessary.

3. When non-linear dynamics involve (even in the case of linear dynamics),

point 2 above, conditional densities provide better description of short term

asset price movements compared with the unconditional densities, which has

very important implication in risk management, (Hsieh 1993). Hence, the

dependence of VaR models on the unconditional densities would not give the

best estimate for VaR when we assume nonlinear dynamics (or even linear).

And we know that there are strong evidences of nonlinear dynamics in short
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term movements of asset returns structure, see Hsieh (1989 and 1991),

LeBaron (1988), and Scheinkman and LeBaron (1989).

4. Kurtosis has non-flat term structure that changes over time and this deepens

the dependence of VaR estimates on the time horizon. As a matter of fact if

we assume that volatility is time varying this means that the fatness of tail

would be time varying, Duffie and Pan (1997), and Das and Sundaram (1999).

And this may create some covariance between the confidence level and the

VaR horizon.

Any efficient VaR estimates should take the above four considerations into

account, and this is the task of the following chapters of this dissertation.
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CHAPTER THREE: DATA ANALYSIS

The purpose of this part is to analyze the data set used for back testing of the

proposed VaR models under thick tails developed in this study. In addition to describing

the data set and data sources and the data manipulation, we performed some back testing

for the internal VaR models used by the banks compared with the actual trading revenues

using Berkowitz and O’Brien (2002) and Jorion (2002) methodologies. The analysis aims

at shedding more light on the need for different kind of VaR models that accounts for fat

tails, stochastic volatility and jumps in underlying risk factors. Here, we are deducting

those features through focusing on VaR violations by actual losses incurred in the trading

portfolios of a sample of six U.S banks.

3.1 Selecting the Sample 

Because of its recent advent, VaR data available publicly are very limited. Before

1995, only few banks disclosed VaR in its quarterly and annually publications. After June

19985, the number of financial institutions disclosing VaR numbers in its public reports

increased tremendously. The Basle Committee on Banking Supervision Accord 1999

                                                
5 In its market disclosure rule FRR No. 48, effective, June 1998, the U.S. Securities and Exchange
Commission (SEC) require all large U.S. publicly traded corporations to report quantitative information
about their market risk in financial reports filed with the SEC. The SEC requires the corporation to choose
among three methods for quantitative market risk disclosure, tabular presentation, sensitivity analysis and
VaR. For more details, see Linsmeier and Pearson (1997).
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(BCBS 1999) reports that 86 percent of financial institutions that Basle Committee

surveyed disclose VaR in their public financial reports6. Work that uses actual trading

revenues (P&L) of financial institutions portfolios and the associated internal VaR

estimates are really limited. Berkowitz and O’Brien (2002) and Jorion (2002) are

pioneers in this area. Berkowitz and O’Brien (2002) check the accuracy of VaR model

used by banks using a sample of six largest U.S. dealer banks with daily trading revenues

and daily VaR estimates over a two years period spanning from January 1998 to March

2000. Berkowitz and O’Brien (2002) use private internal data that is not available at all

for anyone else. They even do not include the names of the six banks that included in the

sample.

Jorion (2002) on the other hand, try to check how informative value at risk

numbers disclosed in the quarterly and annually (10-Q and 10-K) reports. He uses a

sample contains the largest eight U.S. banks. Jorion uses quarterly trading revenues and

daily VaR estimates published on a quarterly basis over almost 6 years period, spanning

from 1995: Q1-2000: Q3. Jorion’s sample includes Bank of America, Bank of New York,

Bankers Trust, Chase Manhattan, CitiCorp, First Chicago, JP Morgan and Nations Bank.

Except for Nations Bank that includes only 14 observations, Jorion’s (2002) sample

includes 23 observations for each bank.

The criterion for inclusion a bank in the analysis is the availability of VaR

estimates, assuming that trading revenues are available too. All banks that Jorion (2002)

include in the sample started to disclose VaR since December 1994. However, Jorion

                                                
6 Most of small and regional banks are exposed to the interest rate risk, thus they report sensitivity analysis
to shocks in interest rate rather than reporting VaR.
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(2002) derives his data set from the SEC website (the only public available source),

where the quarterly and annually reports are available beginning of December 1993.

For the purpose of testing VaR models under thick tails developed in this

dissertation, this study uses the same bank sample that Jorion (2002) uses but for a time

period extended from 1995:Q1–2002: Q3. In terms of banks number, the sample includes

six banks rather than eight banks. The reason is that some banks witnessed merging

activities during the sample period. During the sample period, Nations Bank merged into

Bank of America and Chase Manhattan and JP Morgan Merged into JP Morgan Chase.

Accordingly, banks used in this dissertation for back testing are Bank of America, Bank

of New York, Bankers Trust, Bank One/First Chicago, CitiCorp, and JP Morgan Chase.

The data collecting from the quarterly (10Q) and annually (10K) reports available in the

companies filling in the SEC website.

Figure 3-1 below, shows example of Bank of New York VaR disclosure. Bank of

New York illustrates that they use VaR as one of three measures to manage trading risk.

The bank measures VaR at the 99 percent confidence level over one day. Bank of New

York also tells that he uses Monte Carlo Simulation approach to calculate VaR. The

breakdown by type of risk indicates that this is a diversified portfolio. Bank of New York

reports the average, high, low of the quarter, the average, high, low of the report period,

and end-of-period VaR across categories of market risk and for the portfolio as a whole.

By September 2002, all banks included in the sample (except Bank of America) disclose

VaR in this manner. Other banks' disclosures include some back testing through a

histogram of P&L compared with VaR of a graph. Some banks (JP Morgan Chase) report

their stress testing results.
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Table 3-1 summarizes the characteristic of VaR estimates disclosed in companies

filling in the SEC.  Table 3-1 shows that all banks in the sample started to announce VaR

numbers at December 1994. VaR estimate is available until September 2002 (the most

recent Q10) except for Bankers trust, which is available only for December 2001. Table

3-1 shows also that banks in the sample are diversified in using VaR method.

Figure (3-1)
Excerpts from the Quarterly Report of Bank of New York, September 2002

Dealing with Value at Risk
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Table (3-1)
Description of VaR Disclosure of 6 U. S. Commercial Banks

Bank VaR
Method
Used

Reporting
Details as of

Sep. 2002

First VaR
Disclosure

Reported
Average

Since

Reported
End-

Quarter

VaR Confidence Level

Bank of America Historical
Simulation

Average, Min,
Max, End

Dec. 1994 1998:3 1995:4-
1998:3

95%, 97.5% and 99%
since 98:3

Bank of New
York

Monte Carlo
Simulation

Average, Min,
Max and End

Dec.1994 1996:4 1997:4 95% until 1997:4
99% since 1998:1

Bankers Trust Proprietary *
Simulation

Average, Min,
Max and End

Dec.1994 1998:3 1998:3 99% **

Bank One /
First Chicago

Statistical
Model ***

Average, Min,
Max and End

Dec.1994 1994:1 1997:4 %99.87 until 98:2, 99%
97:4 and after 98:2

CitiCorp Covariance
Matrix

Average, Min,
Max and End

Dec.1994 1997:4 1997:4 97.7% until 97:3 and
99% since 97:4

JP Morgan
Chase & Co.

Historical
Simulation

Average, Min,
Max and End

Dec.1994 1994:4 1997:4 97% until 95:3, 95%
until 97:3, 99% after 97:4

* Bankers Trust stopped publishing VaR disclosure in Dec. 2001. The VaR method as Reported in 10K 2001.
** Bankers Trust Report VaR at 10 days horizon until 1999:Q3, after that VaR reported at 1 day 99%.
***Bank One reports that VaR is calculated based on a statistical model applicable to cash and derivative
positions, including options. However, they mentioned that VaR calculated at 2.33 standard divination from the mean.
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3.2 Trading Revenues

Quarterly trading revenues are collected from banks' quarterly reports (10-Q) and

annual reports (10-K), along with the banks' VaR disclosures. Quarterly trading revenues

are available in the SEC fillings beginning of March 1993. However, because banks

begin disclosing VaR data in 1994, trading revenue data are collected from 1994 to the

third quarter of 2002.

Most banks report "total trading-related revenues," which includes (1) direct

trading revenues, (2) fees, and (3) interest revenues on trading assets net of the costs to

fund trading positions. Fees and net interest earned on assets and liabilities are more

stable over time than are trading revenues. When banks construct VaR they exclude

those stable items from trading revenues and they calculate VaR for trading revenues

abstracted from fees and interest revenues, see Jorion (2002) and Berkowitz and O’Brien

(2002). To abstract the expected component from of trading revenues -to construct a

measure of unexpected trading revenues- I follow Jorion (2002) methodology. Jorion

(2002) correct for the expected component of the trading revenue by measuring the

unexpected component as the difference between the quarterly trading revenue and its

moving average over the previous four quarter. He reasons the use of the previous four

quarters as a benchmark due to the fact that trading revenues are not seasonal.

Accordingly, the unexpected trading revenues are defined as

∑
=

−++++ −=−
4

1
1111 4

1][
i

itttt RRRER                        (3-1)

Jorion (2002) concludes that this transformation should produce an expected

value of unexpected trading revenues indistinguishable from zero. Additionally this
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transformation imposes a non-autocorrelation among trading revenues. However, with

this transformation, we expect to see some kind of autocorrelation. A quarter with large

negative trading revenues will pull down the estimate of expected trading revenues

][ 1+tRE  for the next three quarters which will result in positive values for unexpected

trading revenues for the next three quarters, Jorion (2002).

Empirically, as Table 3-2 and Figure 3-2 show that real data proves the

improvement of unexpected trading revenues over the reported trading revenues. The

new aspects of unexpected trading revenues (zero expected value and zero

autocorrelation) are necessary for a certain types of back testing of VaR models, like the

one Jorion (2002) uses.

Table 3-2 reports the average and standard deviation of quarterly trading related

revenues in millions of dollars. It shows in the same time some statistics on the measure

of unexpected component of trading revenues. The average trading revenues differs

widely across banks, ranging from almost 40 millions for Bank One/First Chicago to 746

millions for JP Morgan Chase. The standard deviation is ranging widely among the

banks in the sample. It is ranging from 24 million for Bank of New York to 784 million

for JP Morgan Chase.

Table 3-2 show that the mean of unexpected trading revenues is far less than the

mean of trading revenues. The average unexpected trading revenues ranging from –9

millions for Bankers Trust to 69 millions for CitiCorp. The null hypothesis that the mean

of unexpected trading revenues is indistinguishable from zero could not be rejected for

four banks and could not be accepted for two banks (Bank of New York and CitiCorp).
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Table (3-2)
Descriptive Statistics of the Trading Revenues and the Unexpected Trading Revenues in the Banks Sample

Trading Revenues Unexpected Trading RevenuesBank
Average*** Std.

Deviation
ρ(1)(1) Jarque-

Bera(2)
Average Std.

Deviation
ρ(1)(1) Jarque-

Bera(2)

Bank of
America

227.90 249.42 0.37** 3.61 11.98 220.39 0.011 8.25**

Bank of New
York

44.97 24.29 0.85*** 1.60 4.79** 12.18 0.293* 0.62

Bankers Trust 87.3 196.97 0.18 8.56** -9.02 196.47 -0.05 16.82***

Bank One /
First Chicago

39.55 33.34 0.04 8.33** 4.51 34.53 -0.02 1.19

CitiCorp 619.94 262.65 0.86*** 2.62 69.44*** 138.67 -0.081 0.29

JP Morgan
Chase & Co.

764.03 784.22 0.46*** 35.48*** 10.12 700.48 0.162 150.69***

*** Significant at 1%.
** Significant at 5%.
* Significant at 1%
(1) First order autocorrelation.
(2) Test for normality, H0: the null hypothesis is the trading revenues are normally distributed. H1: the alternative hypothesis,

the distribution does not follow normality.
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This is different from the mean of trading revenues that is statistically different

from zero at high significance level for all banks.

Table 3-2 shows also, that unexpected trading revenues satisfy the condition of

zero autocorrelation. The first order autocorrelation, ρ(1), for unexpected trading

revenues is indistinguishable from zero for five banks, with weak degree of significancy

(10%) for Bank of New York. The case is not the same for the related-trading revenues,

where the first order and other higher orders autocorrelation are significant for most of

the banks in the sample.

From Table 3-2, we can see that the transformation used to deduct the

unexpected trading revenue almost keeps the same distribution assumptions of trading

revenues. Jarque-Bera test for normality indicates that we can not reject the normality

assumption for three banks. This analysis is almost the same for both the related-trading

revenues and unexpected trading revenues.

Figure 3-2 shows that both unexpected trading revenues and the related trading

revenues took the same path over time. This reflects the fact that all dynamics in related -

trading revenues comes basically from the dynamics in unexpected trading revenues.

Which approximately means that related-trading revenue is just a scalar transform of the

unexpected component.

Figure 3-2 deducts also a very volatile upward trend in the banks' trading-related

revenues and unexpected trading revenues. Volatility was very high, with some banks’

big losses during the third quarter of 1998. The period of turmoil in financial markets,

beginning with the Russian default and the near collapse of Long-Term Capital
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Figure (3-2)
Unexpected and Reported Trading Revenues for the Banks’ Sample
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Figure (3-3)
The Distributions of Unexpected Trading Revenues (P&L) For Banks in the Sample during the Period 1995Q1-2002Q3(1)

Bank of America Bank of New York Bankers Trust

Bank One/First Chicago CitiCorp JP Morgan Chase

            (1) Bankers Trust Sample Ended 2002Q1
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Management (LTCM). Financial markets were severely disrupted when it appeared that

LTCM might collapse, due to the huge size of LTCM's positions.

Figure 3-3 on the other hand, shows the detailed statistical characteristics of

unexpected trading revenues. Figure 3-3 represents histograms of unexpected trading

revenues for all banks in the sample with additional statistical characteristics like

skewness and kurtosis. Consistent with financial data series, unexpected trading revenues

for banks in the sample are negatively skewed and five banks exhibit kurtosis exceeds 3.

However, negative skewness is not significant in many cases. Actually test for normality

(Jarque-Bera) rejects normality assumption only in three cases.

3.3 Value at Risk

A normal practice, as reported in Figure 3-1, financial institutions measure VaR

over a short period horizon, one day to two trading weeks, assuming the current positions

are fixed over that horizon. However, we know that financial institutions change

positions actively during the trading horizon. Additionally, the actual losses may be less

than VaR estimate if management takes corrective actions when losses start to appear.

With long holding periods, like quarterly horizons, the assumption of fixed positions in

the portfolio during the holding period becomes more problematic.

From the definition of VaR, the maximum loss that will be exceeded with a small

percentage over the next N days, back testing implies, Ideally, matching VaRt (VaR

estimate at time t) with the TRt+N (subsequent trading revenue at time t+N). With N =

three months, we have to match the VaR estimate at the end of quarter t with the t+1

quarter trading revenues.
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 As Table 3-1 shows, banks began disclosing annual VaR numbers in 10-K forms

in 1994.  However, because the SEC’s market disclosure rule FFR-48 was effective on

January 1, 1998, some banks start to disclose VaR estimates in 1998, see Table 3-1.

VaR data for trading activities were collected from the 10-K and 10-Q reports. As

mentioned earlier, the standard is to use the end of the quarter VaR to match it with the

subsequent quarter trading revenues. As Table 3-1 indicates, most of the banks started to

publish end of quarter VaR in the 1997 10-K. Bank of America published the end of the

quarter VaR during the period March 1995 to March 1998, and then they started to

publish the average only. However, we can deduce the end of quarter VaR for recent

quarters from daily VaR graphs. Bankers Trust also started to publish end of quarter VaR

since March 1998.

Because of those differences, the following decision rule is used in collecting

VaR estimates:

1) If  quarterly VaR data are available

a) End-of-quarter VaR data for the previous quarter when available.

b) Average VaR for the previous quarter.

2) If quarterly data are not available, I resort to annual data.

a) VaR reported at the end of the previous year.

b) Average VaR for the previous year.

This approach selects the VaR number that is the closest to the beginning of the

subsequent quarter over which trading revenue is measured.

Additionally, banks report VaR on daily basis in their reports while publish

trading revenues on quarterly basis. More over, in previous periods, some banks used to
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disclose VaR at confidence level different than 99% (see Table 3-1). Accordingly, we

need to convert the daily VaR at different confidence levels to quarterly VaR at 99%

confidence level. For that, we used the conversion rules described in section 3 of chapter

two.

3.4 The Accuracy of Banks’ Disclosed VaR

The aim of this section is to test for the ability of VaR models developed by

banks to predict future losses. It is very important to evaluate banks VaR models to

know the need for developing more accurate VaR models accounting more for financial

data aspects. As shown in chapter 2, if we define the quarterly P&L distribution by Rt ,

so that at the end of each quarter t the bank forecasts the next quarter P&L (Rt+1) using

VaR technique. The forecast is the amount VaRt that is calculated at the end of t quarter

such that Pr[Rt+1 < VaRt] = 1-c over the next quarter. Here c = 99%, so the model

predicts a lower bound on losses not to be exceeded with 99 percent confidence. Using

the definition of unexpected trading revenues from equation (3-1)

Pr[Rt+1 – E(Rt+1 ) < VaRt] = 1-c                          (3-2)

Where E(Rt+1 ) as defined in equation (3-1). Here we use VaRt instead of VaRt+1 just to

match the notation with our data set. To investigate whether VaR accurately predict

future losses we use the usual back testing method or forecast evaluation as in Berkowitz

and O’Brien (2002) where the number of violations or realizations beyond VaR are

counted. Or we can use VaR based volatility regressions used by Jorion (2002).

3.4.1 Forecast Evaluation

This approach basically performed by comparing the targeted violation rate 1-c

with the observed violations. As we know a 99% confidence level quarterly VaR predicts
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to observe one quarter loss exceeding VaR once in 25 years (100 quarters) trading period.

However, we can not apply this principle easily, since we have only 31 quarter of data.

Accordingly, we expect to see this violation only 0.31 quarters during the sample period.

The 0.31 trading quarters are equivalent to 20 trading days, assuming the quarter contains

63 trading days. As long as we do not have the daily P&L we can not use this daily

definition. Thus the best would be to analyze the number of violations during the sample

periods. Figure 3-3 that represents the histograms for unexpected trading revenues can

help in that to see the number of quarters that VaR has been exceeded by.  Or the number

of quarter can be transformed into percentage to see the percentage of violations if it

exceeds 1% of the sample.

 The analysis is clearer in Figure 3-4, which shows unexpected trading revenues

bounded by VaR from below and absolute VaR from above. Figure 3-4 roughly shows

that there are 4 banks that had violations more than once during the sample period.

Violations mean times where actual losses exceed VaR. Figure 3-4 shows that VaR could

bind actual trading revenues totally for two cases, Bank of New York and Bank One/First

Chicago. For the other 4 banks, VaR could not bind actual losses regardless of actual

profits. Figure 3-4 shows that violations are not limited to the third quarter of 1998, the

period that witnessed the Russian crises and the near collapse of the LTCM. Actually, 3

banks out of those 4 banks witness violations after the third quarter of year 2000 in

addition to the period of the Asian crisis.

Table 3-3 gives more details of those violations. The first column shows the 99th

percentile losses. The 99th percentile loss represents 2.326 standard deviations below the

mean assuming normal distribution. For four banks in the sample, the average VaR lies
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outside the 99th percentile loss. The numbers in column 3 are the banks’ mean VaR but

standarized with unexpected trading revenues’ standard deviation. A bank with a

standarized average VaR less in absolute value than 2.326 means that the mean of VaR

lies outside the 99th percentile and we expect to see violation in this bank. Again column

3 emphasizes The conclusion that 4 banks have mean VaR lies outside the 99th percentile

and 2 banks their average VaR lies within the 99th percentile. Accordingly we expect to

observe violations in 4 banks.

Column 4 reports the number of violations (Losses went beyond VaR) in each

bank of the four banks that have violations. The number of violations is relatively big. If

we compare it with the 1% percent target, we conclude that VaR estimates were very

conservatives. VaR is exceeded with more than 6 % in two banks and with more 20% in

the other two banks.

The last four columns in Table 3-3 show the mean size of violations and the

maximum violation for each bank. The violation size represents the difference between

the actual loss and VaR estimate. The largest violation in terms of mean happened in

Bank of America. The mean violation for Bank of America is 1.47 standard deviation.

The violations in columns 6 and 8 are bigger than expected value conditional on

exceeding the quantile for the normal distribution. The expected value conditional on

exceeding the quantile (known also as expected shortfall, tail conditional expectation,

conditional loss or tail loss) for normal distribution is 2.667. For normal distribution, the
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Figure (3-4)
Internal VaR Estimates and Unexpected Trading Revenues P&L For Banks in the Sample during the Period 1995Q1-2002Q3
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Table (3-3)
VaR Violation Statistics

Bank 99th

Percentile(1)

Mean VaR
$Millions

Mean
VaR(3)

In Stds

No. of
Violations

Mean(2)

Size of
Violations
$ Millions

Mean(3)

Size of
Violations

in Stds

Max
Violation
$Millions

Max
Violation

Std.

Bank of
America

-512.63 -213.48 -0. 948 2 -320.9 -1.47 -479.76 -3.19

Bank of New
York

-28.33 -35.70 -2.93 0 NA(4) NA NA NA

Bankers
Trust

-456.99 -169.24 -0.86 7 -113.61 -0.58 -364.75 -1.86

Bank One /
First Chicago

-80.32 -155.1 -4.49 0 NA NA NA NA

CitiCorp -322.55 -297.85 -2.15 2 -42.35 -0.31 -51.00 -0.37

JP Morgan
Chase & Co.

-1629.32 -274.38 -0.39 8 -342.06 -0.49 -864.83 -1.23

(1) Calculated as the multiplication of the standard deviation of the unexpected trading revenues and the 99th percentile of
normal deviate. This is by definition -2.236 standard deviation below the mean.

(2) The amount of loss exceeding VaR, which equal to average loss – VaR.
(3) Normalized in standard deviation.
(4) NA: Not Applicable
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tail conditional distribution exceeds the normal deviate of 99% confidence level

by 0.341 standard deviations which is close to violations in 3 banks but it is less than the

maximum violations in the four banks that have such violations. Berkowitz and O’Brien

(2002) report relatively higher violations in their daily samples and VaR estimates.

Generally, based on quarterly data and disclosed VaR, and using the expected

forecast method, we report the following conclusion. Disclosed banks’ VaR data do not

accurately measure the maximum expected loss for the banks. So there is a need to find

more accurate measure. As Berkowitz and O’Brien (2002) conclude, there is a need for

VaR estimates that takes into account tail fatness, time varying volatility, and high

correlation among positions especially during the times of collapse and crisis. As

reported by Airoldi (2002) volatility updates faster and correlation increase among asset

returns during periods of collapses.

3.4.2 VaR Based Volatility Method

Jorion (2002) uses different method to test for the informativeness of VaR

disclosure in the banks’ quarterly and annual reports. Jorion’s (2002) method retrieves

volatility of the trading revenues from VaR estimate and then looking for a certain

distributional relationship between volatility and the expectations of trading revenues.

The first step in this method is to retrieve trading revenue’s volatility from VaR

estimates. As we know, for normally distributed risk factors, VaR measure is the

forecasted volatility st multiplied by the standard normal deviate α for selected

confidence level. α = 2.326 for one tailed confidence level of 99%. Then

VaR = α st                    (3-2)
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With normally distributed risk factors, the expected absolute value | Rt+1| is

Equation 3-3 shows that the expected absolute value of trading revenue is linearly

increasing with the forecasted volatility of trading revenues that are proportional to VaR.

Jorion (2002) claims that this setup is valid for a wide class of trading revenues provided

that the conditional distribution of trading revenues is fixed and symmetric.  However,

the coefficient of this relationship depends on the type of the distribution. For example,

with the six degrees of freedom Student-t distribution (typical distribution for daily

financial time series) this coefficient is 0.74.

Jorion (2002) tests the predictive power of banks quarterly VaR disclosure by

estimating an equation of the form:

Where Rt+1 is the trading revenues for quarter t+1, and σt is the forecasted

volatility of quarterly trading revenue inferred from VaR at quarter t. As we know,

trading revenues are published quarterly as a summation of daily trading revenues.

Whereas VaR is disclosed quarterly based on one-day horizon. Jorion (2002) uses the

conversion method explained in chapter 2 section 3, assuming that the quarter includes

63 trading days, as the following:

( ) 3)-(3                                                                              8.02
1 ttt ssRE ×=×=+ π

5)-(3                                                                                                     63 s t=tσ

4)-(3                                                                                     1t1 ++ ++= εσ tt baR
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According to this analysis, VaR is informative about future trading revenues risk

if b in equation 3-4 is significantly positive. However, the accuracy of this estimate and

the closeness of b estimation to its theoretical value of 0.8 depend on several

assumptions. The first factor is the error in measuring σt. This approximation assumes

that trading revenues daily volatility is almost constant and does not move quickly across

trading days in the quarter. The other source of error in σt estimation is that VaR models

assume that composition of the trading portfolio is constant over the trading horizon that

VaR calculated for. This also might create error in trading revenues themselves.

An important assumption to apply equation 3-3 is that the Rt+1 has a mean zero

and is normally distributed. Additional important assumption is that trading revenues are

not autocorrelated. Then Rt+1 should be the unexpected component of trading revenues.

As mentioned earlier, the reported trading revenues contain expected components like

fees and interest rate. Even banks do not take this expected component into account when

calculate VaR.

 As showed above in equation 3-1, this expected component is factored out by

taking the unexpected trading revenue as a difference between the latest trading revenue

and the average over the previous four quarters. Unlike reported trading revenues,

unexpected trading revenues are closer to have zero expected mean and zero

autocorrelation as in table 3-2 and figure 3-2. This transformation could overcome the

last problem. By replacing trading revenues with unexpected trading revenues in equation

3-1, equation 3-4 can be rewritten for the purpose of estimation in the following fashion:

[ ] 6)-(3                                                                         1t11 +++ ++=− εσ ttt baRER
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The same criterion still applies. If banks’ VaR is informative, b should be

positively significant from zero and the regression R2 should be high implying that σt

captures much of the variations in unexpected trading revenues. As we know, the

regression will produce meaningful results only if σt varies across the quarters.

Unfortunately, using annual VaR-based volatility data instead of quarterly data, should

reduce the accuracy of the risk forecast because in the regressions four quarterly trading

revenue observations correspond to the same value of the VaR-based volatility.

Before testing for the accuracy of disclosed VaR, it is important to see the

correlation structure among unexpected trading revenues for the banks in the sample.

Table 3-4 reports relatively high correlation among unexpected trading revenues in the

sample. It exceeds 60% between certain banks.

To test for the accuracy of disclosed VaR, equation 3-6 is estimated first for

Table 3-5 reports the results of the six banks specific time-series regressions of

unexpected trading revenues of VaR based volatility. Generally speaking, regression

results did not report any form of informativeness of disclosed VaR about future risk

expectations. For OLS results, only Bankers Trust shows the assumed positive

relationship between unexpected trading revenues and VaR based volatility. However,

the relationship seems very weak as indicated by OLS regression. As the table shows,

the confidence level of rejecting H0 (the slope coefficient equal zero) for Bankers Trust

is less than 95% (t-statistic is significant at 10%).
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Table (3-4)
The Correlation Matrix of Unexpected Trading Revenues for Banks in the

Sample

B.A

B.NY

B.T

B.ONE

CITI

JP

B.A

1.00

0.41

0.56

0.43

0.63

0.38

B.NY

0.41

1.00

0.16

0.39

0.21

0.28

B.T

0.56

0.16

1.00

0.09

0.46

0.27

B.ONE

0.43

0.39

0.09

1.00

0.52

0.09

CITI

0.63

0.21

0.46

0.52

1.00

0.12

JP

0.38

0.28

0.27

0.09

0.12

1.00

* BA stands for Bank of America, B.NY stands for Bank of New York, B.T stands for
Bankers Trust, B. ONE stands for Bank One, CITI stands for CitiCorp, and JP stands for
JP Morgan Chase and Co.

However, this confidence level improved with using SUR regression. The b

coefficient for Bankers Trust is significant at 95% confidence level under VaR

regression. Although the joint test for all coefficients in SUR model significantly

different than zero, the joint test for slops only is not significant. Those results are

different than the results reported by Jorion (2002). Jorion reports positive significant

result for Bank of America, JP Morgan Chase and Bank One/First Chicago. One reason

may explain this difference in results is the different data set. Jorion’s (2002) estimation

does not include recent quarters where many banks witnessed high violations of their

VaR estimates.
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Table (3-5)
Bank-Specific Regression of Absolute Value of Quarter t+1 Unexpected Trading

Revenues on Quarter t VaR-Based Volatility

OLS SUR
Constant Slope Constant Slope

Bank Period
No. of

Observations (t-Statistic)
R2

(t-statistic)
Bank of
America

95,Q1-02,Q3
31

161.452
(2.488)

-0.153
(-0.239)

0.002 143.103
(3.131)

0.0188
(0.0456)

Bank of New
York

95,Q1-02,Q3
31

10.024
(2.478)

0.026
(0.104)

0.0004 10.272
(2.930)

-0.013
(-0.063)

Bankers Trust 95,Q1-02,Q1
29

55.9639
(1.1745)

1.009*
(1.840)

0.111 77.175
(2.165)

0.717**
(2.065)

Bank One /
First Chicago

95,Q1-02,Q3
31

38.168
(3.502)

-0.145
(-0.937)

0.030 23.870
(3.104)

0.030
(0.284)

CitiCorp 95,Q1-02,Q3
31

135.343
(3.725)

-0.077
(-0.305)

0.003 103.295
(3.518)

0.119
(0.619)

JP Morgan
Chase & Co.

95,Q1-02,Q3
31

338.177
(1.697)

0.484
(0.324)

0.004 347.007
(1.663)

0.285
(0.165)

Joint test of
all Parameters

=0

368
P<0.001

• * Significant at 10%.
• ** Significant at 5%.
• Number of observation for SUR is 29. Another SUR performed without including

Bankers Trust with 31 observation for each bank. The results are qualitatively the same.
• The joint test for the slopes = 0 is not significant.

[ ][ ] 1,,1,1, +++ ++=− titiiititi baRER εσ
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Figure  (3-5)
Absolute Unexpected Trading Revenues in
Quarter t+1 and VaR-Based Volatility in Quarter t:

Pool Sample

 In contrast to single bank data that do not show the significant positive

relationship between absolute unexpected trading revenues and VaR based volatility,

figure 3-5 shows this relationship. Figure 3-5 displays the pool sample data. From figure

3-5 we can notice that higher VaR based volatility is associated with greater variationf in

unexpected trading revenues.

Table 3-6 reports the results of a cross-sectional estimation of equation 3-6, with a

sample of 185 observations. The pool sample OLS results (with and without intercept)

report significant relationship of coefficient of VaR based volatility. Tests applied on
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Table (3-6)
Pooled Regression of Absolute Value of Quarter t+1 Unexpected Trading Revenues on

Quarter t VaR-Based Volatility

Period Constant SlopePooled Method
Observations (t-Statistic)

Pooled Sample OLS
without Intercept

95,Q1-02,Q3
184

NA 1.452**
(7.213)

Pooled Sample OLS 95,Q1-02,Q3
184

59.077
(1.740)

0.986**
(2.945)

Pooled GLS
Cross weighting

95,Q1-02,Q3
184

12.221
(1.243)

0.788**
(5.883)

Pooled SUR 95,Q1-02,Q1
184

30.624
(4.718)

0.577
(6.517)

Fixed Effect Pool OLS 95,Q1-02,Q3
184

NA 0.274
(0.704)

Fixed Effect Pool GLS 95,Q1-02,Q3
184

NA -0.036
(-0.314)

Fixed Effect Pool
SUR

95,Q1-02,Q3
184

NA 0.155
(1.596)

GLS Random Effect
Pool

95,Q1-02,Q3
184

103.929
(1.830)

0.434
1.159

• * Significant at 5%.
• ** Significant at 1%.
• NA: I did not report the fixed effect intercept.

single bank’s data reject both heteroskedasticity and serialcorrelations7, but the case is

different for pooled data.  To correct for heteroskedasticity and cross-sectional correlation

in the pool data a cross section weights Generalized least Squares (GLS) method is

applied. The results are reported in raw 3 in table 3-6. I checked for the random and fixed

effects in the pool data, but the results do not show distinctive results for either random or

fixed effect, so I report the results for both of them. However, it is insignificant.

                                                
7 LM test, White and ARCH tests applied to test for heteroskedasticity and all show that there is no
heteroskedasticity on a single bank level. Serial correlation for single banks is also rejected using LM test
except for CitiCorp. The result are different for pooled data, figure 3-5 might give some ideas about
heteroskedasticity.

[ ][ ] 1,,1,1, +++ ++=− titiiititi baRER εσ
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Pool regression results give some indications for the informativeness of VaR models used

by banks to predict extreme losses. However, bank-specific regression do not show such

a relationship. Maybe with longer data set we can discover such relation. In conclusion,

VaR based volatility method (like the forecast evaluation method) do not give distinctive

proof for the accuracy of banks VaR models. As table 3-1 indicates banks used different

VaR techniques, which means that those VaR techniques do not usually give accurate

estimation for the maximum expected loss at a certain confidence level. As Berkowitz

and O’Brien (2002) suggest any VaR model that takes into account tail fatness and time

varying volatility would be more appropriate for capturing banks’ losses especially in

times of crisis and collapse.

3.5 Trading Portfolios

Trading portfolios’ sizes are necessary for calculating VaR. For the purpose of

back testing of VaR models developed in this dissertation, I collect trading portfolios

from the 10Qs and 10Ks starting of December 31, 1994. One thing we should note here is

that changes in trading portfolios do not reflect trading profit and losses. Trading

portfolios are defined in the 10Qs and 10Ks as the trading assets and liabilities and

derivative positions, and this is modified daily. Derivative positions widely exceed

trading assets and liabilities for equities and bonds. Trading portfolios in all banks in the

sample exceeds $1 billions (Thus they are all required by the SEC to disclose a measure

for market risk).  Table 3-7 reports the mean and the standard deviation of trading

portfolios for the set of banks included in the sample.
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Table (3-7)
The Mean and Standard Deviation of the Trading Portfolios

 (Trading Assets and Liabilities including Derivatives)

Trading Portfolio

($Millions)

Bank

Average Std. Deviation

Bank of America 71,776.53 36780.34
Bank of New York 253,283.55 129551.95
Bankers Trust 56064.62 28437.87
Bank One /First Chicago 14989.47 3972.09
CitiCorp 61516.94 9247.01
JP Morgan Chase & Co. 156,735.34 111974.83

From table 3-7, we see that all banks in the sample have average trading assets

and liabilities including derivatives of more than $14 billions. The lowest trading

portfolio is for Bank One/ First Chicago and the highest is for Bank of New York. Figure

3- 6 shows the movement of trading portfolios as measured of trading asset and liabilities

including derivative securities over time. Figure 3-6 shows that Bank of America, Bank

of New York and JP Morgan Chase’s trading portfolios are upward trending.  Bankers

Trust and Bank One show downward trending over the sample period, and CitiCorp

shows a flat trend in its trading portfolio. Figure 3-7 below compares trading portfolios

over time, where we see that Bank of New York maintains the highest trading portfolio

over time, and Bank One has the lowest and the most stable portfolio over the sample

period.  The portfolio trending and levels explains significant part of the trending and the

levels of VaR estimates as we will see later.
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(Figure 3-7)
Trading Portfolios Sizes for Individual Banks in The Sample during The Period 1994:Q4-2002Q: Q3
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  (Figure 3-8)
Trading Portfolio Sizes for All Banks over The Sample Period.
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CHAPTER FOUR: METHODOLOGY

As mentioned in Chapter three, VaR estimates that banks announce or use

internally can not capture losses experienced by banks during the Russian Crisis and the

near collapse of the LTCM. Additionally, as in chapter two, VaR models that account for

tail thickness do not account for many aspects of financial data. Table 4-1 summarizes

the literature that investigate VaR under the assumption of thick tails distribution, more

explanations are available the literature review, chapter 2.

Table (4-1)
Summary of the Literature Deals with VaR under Thick Tails Distribution

The Paper Sources of Kurtosis VaR Method
Zangari(1996),
Venkataraman (1997), and
Hull and White (1998)

Mixture of two
distributions

VaR percentile

Duffie and Pan (2001,
F&S) and Gibson (2001)

Event risk (jumps) Delta-Gamma Approach

Levin and Tchernitser
(2001)

Gamma – Variance
Model/ Maximum
Entropy Approach

Delta-Gamma Approach

Li (1999) Includes skewness and
kurtosis explicitly in VaR

VaR percentile,
(Cornish-Fisher Expansion).

El-Jahel, Perraudin and
Sellin (1999)

Stochastic Volatility Delta-Gamma Approach

For example non of the models above account for full thickness of the tail

distribution, by taking a model that combine both jumps and stochastic volatility, the two

sources of kurtosis in financial data, see Gibson (2001) and Lewis (2002). As mentioned
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earlier, both jumps and stochastic volatility are significant in financial data as in Chenov,

Gallant, Ghysels and Tauchen (1999), Chourdakis (2000), and Chacko and

Viceria(2003). Additionally, non of the models deals with fast volatility during crashes

and collapse as Airoldi (2001) suggests.

4.1 The Assumed Processes for P&L

To account for those gaps in the previous literature, we derive an approximate

analytical estimate of VaR for a class of non-normally distributed market risk factors and

non-normally distributed portfolio’s P&L that allows for the maximum tail thickness and

fast volatility updating. To obtain such non-normal distribution, it is assumed that the

P&L and the underlying market risk factors are evolving according to a mix of a non-

affine stochastic volatility-jump diffusion model (NASVJ) in the form used by Chacko

and Viceira (2003). According to this specification, trading revenues are assumed to

evolve according to the following process:

Where vP WW ,  are Wiener processes with instantaneous correlation ρ , µ  is the

expected return on the banks portfolio or trading revenues, tv  is the instantaneous

variance of the portfolio, 0, >du JJ , are stochastic jump magnitudes. 0, >du λλ  are

constants the determine jump frequencies. Hence, )(]1[exp( uuu dNJ λ−  is a positive jump

and )(]1[exp( ddd dNJ λ−− is a downward jump. Here, the upward and downward jumps

are asymmetric. γσθκ ,,,  are constants. κ  represents the speed of adjustment, θ  is the

              1)-(4                                                                                   )(

)(]1[exp()(]1[exp(

2
vttt

ddduuuPt
t

t
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long term mean, and σ is volatility of the instantaneous volatility. When γ  takes value

greater than 1, ( )1>γ , stochastic volatility is described to be non-affine stochastic

volatility process, with ( )1=γ , stochastic volatility process would be described as affine

process. Following Chacko and Das (2002) and Chacko and Viceira (2003), we assume

here that jumps magnitudes are determined by draws from exponential distribution rather

than a Poisson distribution, with the densities









−=

i

i

i
i

JJf
ηη

exp1)(                                    (4 - 2)

Where i = u, d.

The stochastic differential equation in 4-1 (even if we disregard stochastic

volatility) is a mixed of normal process, Geometric Brownian Motion, (GBM), and

Poisson-Exponential process in the jump part. This mixture result in an unknown

conditional density function for Pt. Additionally, with discretely sample data, it is

difficult to know which returns have a discontinuous component in it and which one does

not. The matter becomes worse when we add stochastic volatility, since it is unobservable

stochastic variable, and also the density function is unknown (even with jumps

exclusion).

Jumps are regularly used in finance to capture discontinuous behavior in asset

pricing. Merton (1976) was one of the first who use jump diffusion processes in finance.

Returns discontinuities typically exhibit themselves in discretely sampled data in the

form of excess kurtosis. So, one part of kurtosis in trading returns can be captured by

jump diffusions. The other part of kurtosis is captured by the instantaneous correlation

between the Brownian Motions of portfolio returns and volatility of returns on the
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portfolio ρ . Notice here that dynamics in volatility are non-linear of the squared

volatility, which makes volatility updating faster.

Thus a process in such form allows for the complete kurtosis in trading revenues

(portfolio returns). The non-affine stochastic process gives faster updating in volatility

compared with affine volatility stochastic processes, which might explains the case of

hyper volatility that arises with thick tails, Airoldi (2001). A VaR estimate based on such

distribution should be able to predict losses that banks experience during market crashes.

The cases where internal banks’ VaR models and GARCH based VaR models failed to

capture, as reported by Berkowitz and O’Brien (2002).

With certain restrictions on the parameters of the NASVJ, five well-known

processes are emerged. If we suppress 0, =du λλ and σ=tv , (dv = 0), we get the popular

Geometric Brownian Motion process (GBM). On the other hand of we restore jump

intensities 0, >du λλ , with the assumption that σ=tv (dv = 0) we would be left with a

jump diffusion process with asymmetric jumps (JD). If we suppress the jump frequencies

( 0, =du λλ ) and 1=γ , we get the square root process (SV) as in Heston (1993). With

0, >du λλ  and 1=γ , we get a mixed stochastic volatility process with jumps (SVJ).

Finally, if we restrict γ  to be greater that 1 ( 1>γ ) and restrict jump intensities to equal

zero  ( 0, =du λλ ), we get the non-affine stochastic volatility (NASV). Table 4-2

summarizes those restrictions and the resulted special cases processes.
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Table (4-2)
Restrictions on the NASVJ and the Resulted Special Cases

Restrictions Resulted Process Notes

0, =du λλ and σ=tv ,
Pt

t

t dWvdt
P

dP
+= µ

Log-normal Distribution,
zero skewness and kurtosis

0, >du λλ , and σ=tv Jump diffusion Part of skewness and
kurtosis is captured

0, =du λλ  and 1=γ Square Root process Part of skewness and
kurtosis is captured

0, >du λλ  and 1=γ Mixed stochastic volatility
process

The whole skewness and
kurtosis is captured

0, =du λλ and 1>γ Non-affine stochastic
volatility

Part of skewness and
kurtosis is captured, but
volatility updates faster.

Those processes are well known in finance literature. However, it got limited use

in VaR literature. Cardenas, Fruchard, Koehler and Michel (1997) and Rouvinez (1997)

derive an analytical estimate for VaR assuming that mark to market evolves according to

a multidimensional GBM process. El-Jahel, Perraudin and Sellin (1999) derive VaR

estimate for portfolio contains derivative securities based on stochastic volatility model.

Duffie and Pan (2001) derive an analytical delta-gamma VaR estimate for jump diffusion

process. On the other hand, Levin and Tchernitser (2001) derive VaR model under

different levy processes one of which Ornestein Uhlenbeck process.

4.2 The General Methodology

VaR deals with the probability of loss. Thus the first task is to identify the

distribution of the left tail. To derive an explicit solution of VaR, the dissertation assumes

that trading revenues’ of the bank follow NASVJ and the other special cases processes

summarized in Table 4-2. Unfortunately, the probability distribution function (pdf) and

the cumulative distribution function for those processes are unknown. So the first step is
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to derive the conditional distribution function for those processes. The necessity of using

the conditional distribution rather than unconditional one comes from Hsieh’s (1993)

concern that conditional densities provide better description of asset price movements in

the presence of non-linear dynamics.

As mentioned earlier, the cdf for those processes is unknown. However, we can

solve explicitly for the characteristic function (cf).  Epps (1993) defines the characteristic

function for a random variable X at some real number ω as the center of mass of the

distribution of ωX wrapped around the unit circle in the complex plane. The

characteristic function can be represented by:

The cf uniquely defines the distribution function, cdf through the Fourier

inversion theorem of the cf that gives the cdf. According to the Fourier transforms

theorems if:

The function φ(ω) is called the Fourier transform of f(x), and the f(x) is the

inverse Fourier transform of φ(ω). The constants preceding the integral sign in equation

system 4-4 can be any constant different from zero as long as their product is 
π2
1 . In our

case φ(ω) is the characteristic function and f(x) is the probability density function.
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However, in our analysis we are in need for the cdf rather than the pdf. For more about

the characteristic function and the Fourier transformation theorems see Sturat and Ord

(1994: chapter 4), and Pollock (2000: chapter 13).

Inferring the distribution function from the characteristic function has a long

history in statistics. Imhof (1961) and Bohman (1961) start this effort. Bohman (1970,

1972, 1975,1980), Davies (1973) and Schorr (1975) originally propose algorithms to

invert numerically characteristic function to obtain cumulative distribution function.

Bohman (1975) gives five methods for numerical inversion of cf to get the cdf. However

his five methods are applied for random variables with zero mean and unit variance.

Waller, Turnbull and Hardin (1995) and Waller (1995) apply the first method of Bohman

(1975) which is the least accurate among the five methods at some known distributions

and they conclude that the numerical inverse of the characteristic function distinguish the

distribution function.

Using the characteristic function to infer the distribution function in economics

starts with Shephard (1991). He derives the Fourier theorem version to infer the

cumulative distribution function and he extends it to multivariate random variables.

Additionally, Shephard (1991) establishs the condition of this inversion theorem.

Shephard (1991) setup the cdf function as an inversion of the characteristic function

according to the following equation:

Where Re[.] is the real part of the imaginary root.

 After that the theory of inversion used extensively in both option pricing and

estimation. In option pricing, Stein and Stein (1991) use the inversion method for the
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moment generating function rather than the characteristic function. However, the moment

generating function does not uniquely identify the distribution as Waller, Turnbull and

Hardin (1995) and Waller (1995) indicate. Heston (1993) uses the Fourier theorem in

deriving option pricing under stochastic volatility. Bates (1996 a, b) use the same

methodology for deriving option pricing under jumps. Schobel and Zhu (1999) apply the

inversion method in option pricing stochastic volatility with Ornstein-Ublenbeck process.

Bakshi, Cao and Chen (1997) and Scott (1997) use the Fourier inversion to calculate

option prices under different stochastic process with jumps in pricing and evaluating the

performance of different option pricing models. Benhamou (1999), on the other hand,

uses the fast Fourier transform (discrete algorithm) to evaluate discrete Asian options.

Many authors try to generalize the Fourier inversion of the characteristic function

for pricing certain type of derivatives. Duffie, Pan and Singleton (2000) generalize the

Fourier transform method for pricing assets with affine jump diffusion returns. Chacko

and Das (2002) generalize this approach for pricing interest rate derivatives. Lewis (2000,

2001, 2002) introduce a general derivation for a fundamental transform method of the

characteristic function depends on the payoff of the option and the type of the stochastic

process of the underlying asset.  In his work, Lewis could specify the imaginary strips

where the fundamental transform method applies.

Using the characteristic function for the purpose of estimation starts to appear

recently in economics and finance as a substitute of the unknown distribution function.

Most of the work in using the characteristic function in estimation uses the

generalizations of Duffie, Pan and Singleton (2000) and Chacko and Das (2002).  Jiang

and Knight (2002), Knight and Yu (2002), and Knight, Satchel and Yu  (2002) use the
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empirical characteristic function to develop a maximum likelihood estimator (MLE) for

continuous time processes. Yu (1999) uses the empirical characteristic function to

estimate a jump diffusion model. Singleton (2001) uses this method in developing EMM

estimation of affine processes. Finally Chacko and Viceira (2003) use the conditional

characteristic function to estimate the NASVJ and its special cases for the S&P 500 data.

Using the inversion of the characteristic function to obtain the cumulative

distribution function in VaR context is very limited. Cardenas, Fruchard, Koehler and

Michel (1997) assume that the mark to market follow multidimensional pure Ito’s

process. In their work they derive the characteristic function and then they numerically

invert it with fast Fourier inversion method. Using Taylor expansion, they expand trading

revenues to include vega rather than delta and gamma only. After they numerically obtain

the cumulative distribution, they include this estimation into delta-gamma approach for

option portfolios with analytical solution for VaR for a pure diffusion model. The source

of skewness and kurtosis in their model is gamma.

El-Jahel, Perraudin, and Sellin (1999) use the characteristic function to derive

numerically the third and the fourth moments for stochastic volatility process and include

them in the delta-gamma approach to calculate VaR for derivative securities. El-Jahel,

Perraudin, and Sellin (1999) do not invert the characteristic function to obtain the

cumulative distribution but instead they calculate the higher moments of the stochastic

volatility model numerically and include them in the delta gamma method.

Duffie and Pan (2001) use a jump diffusion model with return jumps at Poisson

arrival. They infer the tail distribution by deriving the characteristic function and then

invert it numerically via Fourier inversion theorem. Duffie and Pan (2001) in their
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method replace the simulation step in VaR with a jump diffusion model for option

portfolio through delta-gamma approach.

This work differ from the above three papers in four aspects:

1- We do not use the delta-gamma or any Greeks. Instead, we derive analytical

solution for VaR that is a function of the tail distribution (the tail percentile)

and its deviates. Then we estimate tail percentile using the numerical

inversion of the conditional characteristic function. After that we substitute

the percentile deviate into VaR equation to get VaR estimate.

2- This work assumes diffusion processes that contain both stochastic volatility

and jumps simultaneously to capture the full skewness and kurtosis.

3- This dissertation adopts a non-affine stochastic volatility model that allows for

fast updating of stochastic volatility.

4- In the back testing part, this dissertation applies its theoretical VaR estimate

on a real sample of portfolio trading returns, in a try to mimic actual trading

losses of those actual portfolios during high volatility periods and market

crashes. This method of testing has not been applied by any of the papers who

produced analytical VaR estimates. Most of the papers apply the VaR estimate

on a hypothetical portfolios contain one option position written on the S&P

500.

Table 4-3 summarizes the differences between this work and other work that use

the characteristic function. The comparison includes those who use the Fourier inversion

like Cardenas, Fruchard, Koehler and Michel (1997) and Duffie and Pan (2001). Or those

how use the characteristic function to derive the moments rather than the distribution like
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El-Jahel, Perraudin, and Sellin (1999). As a matter of fact, Perraudin, and Sellin (1999)

methodology in calculating VaR is a bit different from the method used here. Their

methodology does not use the Fourier inversion, and Fourier inversion is crucial in this

work.

 In deriving an analytical VaR for the NASVJ and the special cases (SV, JD, SVJ,

and NASV) we proceed according to the following steps:

1- Deriving an analytical VaR estimate as a function of the distribution deviate α

associated with a specific confidence level (99%).

2- Derive the cumulative distribution function for each process, to get α, and this

can be obtained by:

a- Deriving the conditional characteristic function for each process

b- Invert the characteristic function according to equation 4 –5 for each

characteristic function

c- Obtain the deviate α that is associated with the 99% confidence level and

substitute is in the derived analytical solution for VaR.

The methodology of deriving the conditional probability distribution mentioned

above is applicable for affine processes. As a matter of fact, it is applicable only for

affine processes as Shephard (1991), Duffie, Pan and Singleton (2000) and Chacko and

Das (2002) show. For non-affine process, we need first to transform the non-affine

processes to affine process, mostly by using some kind of Taylor series expansion and

then perform the Fourier-inversion.
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Table (4-3)
Summary of the Existing Literature Using the Characteristic Function in VaR Estimate

            Paper

Indicator

Cardenas
et.al.(1997)

El-Jahel et.al
(1999)

Duffie and Pan
(2001)

The
Proposed Work

Source of Dynamics Mark to market in
Options Portfolio

Underlying Assets
in Options Portfolio

Underlying Assets
in Options Portfolio

The whole trading
revenues (P&L)

Source of Tail
thickness

Ito’s  Process for
stochastic
Volatility, Vega
Term

 Square Root

Stochastic

Volatility

Jumps Non affine
Stochastic
Volatility and
Jumps

Inferring The
Distribution

Inverting The
Characteristic
Function

Including higher
moments into VaR

Inverting The
Characteristic
Function

Inverting The
Characteristic
Function

Volatility Estimate Assumed
Parameters

Assumed Volatility
Parameters

Pre-Exist Data Historical
Volatility

VaR Method Delta-Gamma
Approximation

Delta-Gamma
Approximation

Delta-Gamma
Approximation

VaR Percentile



98

Schobel and Zhu (1999) argue that applying the inversion formula and solving the

integral in equation 4-5 is not a trivial issue. Even they consider the numerical solution

for such integral of real value is also not trivial. In Schobel and Zhu (1999, p. 28)

language “Numerical integration of these real valued probability integrals is not trivial.

Heston (1993) as well as Bakshi, Cao and Chen (1997) did not report their numerical

procedures in detail. Bates (1996) evaluated the integrals in his formula using Gaussian

quadrature software and obtained sufficiently accurate results except for extreme and

implausible jump parameters”.

Scott (1997) compared the Fourier inversion method with Monte Carlo

simulations and finite difference methods and report that the Fourier inversion method is

superior with respect to accuracy and computing time. Schobel and Zhu (1999) results

support Scott (1997) results in the superiority of Fourier inversion method to Monte

Carlo simulations.  As mentioned earlier, Bohman (1961, 1970, 1972, 1975, and 1980)

invent five accurate methods to solve this integral numerically. Bohman (1975)

summarizes those methods and test those methods in terms of accuracy and time

consuming.

4.3 Deriving VaR Estimator

In this section, the formal derivations of VaR for the NASVJ and all other special

cases including the GBM are introduced. As stated earlier, the derivation procedure starts

with the confidence level (α). After that, we derive the conditional characteristic function

for each process, which is known with a closed form. Finally, using the Fourier inversion

theorem introduced in equation 4-5, we infer the cumulative distribution function (cdf)

for each process.
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    Through the derivation, the following notations will be used,

 Pt: The portfolio size at time t.

τ: The holding period or time horizon over which the portfolio held without

change in position. τ is the   holding period over which we calculate VaR.

 ∆Pt+τ: The profit and the loss of the bank or the trading revenue over the period τ.

c: The confidence level (99% for example).

α: The deviate associated with the confidence level, 2.326 for 99% confidence

level of a standard normal distribution. We use αsn for standard normal distribution.

pt : lnPt

∆pt+τ : ∆lnP t+τ, and it represents return on the portfolio over τ holding period.

vt: The volatility at time t, v without subscript is used when the volatility is

constant. When volatility is constant v = 2
0σ  and 0σ=v .

4.3.1 Value at Risk (VaR)

Value at risk (VaR) is defined as the maximum expected loss in the market value

that would be exceeded by a small probability (1-c)% over a defined trading time horizon

τ. if we assume that Pt is the value of the portfolio at time t and ∆Pt is the profit and loss

(P&L) of the bank or the trading revenues over the time horizon τ, then the Pr (-∆Pt+τ ≥

VaRτ) = (1-c)%. Expressed in terms of the percent point function Pr (-∆Pt+τ ≥ G(1-c)) =

(1-c)%, where VaR = G(1-c) = G(F(-VaR)).

Following Jorion (2001) in constructing VaR, assume that there is a lowest value

of the portfolio donated P* at a confidence level of c%, which means that there is a

probability of (1-c)% that the portfolio value would be less than P*. Assume that the
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lowest level of the portfolio is associated with a return on the portfolio of ∆P*. Where
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τ  (4-6)

Notice here that P*satisfies the definition of VaR. Then:
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τ (4-7)

4.3.1.1 The GBM Case (Log-Normal Case)

Assume that the P&L (trading revenues) follow a Geometric Brownian Motion

process of the form:

PP
t

t dWvdt
P

dP
+= µ (4-8)

Where µP is the expected return on the portfolio. Then by Ito's Lemma

    PPtt dWvdtvPddp +
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In case of standard normal equation (4-7) becomes
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From equation (4-10) we recognize that

    
τσ

τµ
α

τ

0

2
11ln

)1(
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P
VaR

cG
P

t
sn                         (4-11)

For equation (4-11) we can obtain αsn from the standard normal cumulative

distribution tables. For confidence level of c = 99%, αsn = -2.326. Accordingly,
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 − τσατµ
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02
1

1
snP v

t ePVaR (4-12)

4.3.1.2 VaR under Thick Tails

Since VaR is related to the distribution of the tail of the P&L of the bank, in this

part, we are looking to get an estimate for the VaR under different processes that allow

for thick tails. We start with generalizing a model for the non-affine stochastic volatility

process with jump (NASVJ). Then we find stochastic Volatility process (SV), the jump

diffusion process (JD), a mixed process of stochastic volatility and jump (SVJD), non-

affine stochastic volatility process (NASV), all as special cases. The stochastic volatility

process and the jump diffusion process allow for skewness and excess kurtosis, the mixed

process allows for the maximum tail thickness. Whereas the non-affine structure

(including the general model) allow for hyper volatility updating as in the cases of stock

market crashes. Airoldi (2001) argues that in case of thick tails, volatility updates faster

than linear relation with past volatility, as in the case of the near collapse of the LTCM.

Under those processes, the probability of getting trading revenues under certain

level, like, α can be written as

( ) )%1(lnPr cPt −=≤∆ + ατ (4-13)
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From equation (4-7) above ατ =−=







− ))1((1ln cG

P
VaR

t

, accordingly, we find

VaRτ to be:

[ ]α
τ ePVaR t −= 1 (4-14)

The task now is to infer α associated with the confidence level, i.e. deriving the

cumulative distribution function. As mentioned earlier, because the cdf is unknown for

those processes, deriving the cdf requires first deriving the conditional characteristic

function (ccf) for each process and then using the Fourier inversion theorem.

 4.3.2 The Conditional Characteristic Function of Non-normal Processes

    Deriving the ccf will be implemented according to the following steps:

    1.  Deriving the Kolomogorov Backward Equation (KBE) or Fokker-Plank

Forward Equation (F-PFE), two names for same equation. The KBE or the

F-PFE is a partial differential equation with a known solution form. The

conditional characteristic function is the solution for that equation. And this

whole procedure is known as Feynman-Kac Formula.

    2. To solve KBE we conjecture a solution for the characteristic function and

substitute this conjecture into the KBE.

    3. When substituting the conjecture into the KBE, we get two ordinary

differential equations (ODE) of the form of Raccati equations.

    4. Solving those two Raccati equations gives the parameters of the

characteristic function.
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4.3.2.1 Deriving the ccf for the NASVJ Process

    Assuming that the trading revenues evolve according to NASVJ, means that the

P&L are evolving according to equation (4-1) in section 4-1 above:

 )(

)(]1[exp()(]1[exp(

2
vttt

ddduuuPt
t

t

dWvdtvdv

dNJdNJdWvdt
P
dP

γ

σθκ

λλµ

+−=

−−+−++=

Parameters are as defined in section 4.1 above. Applying Ito’s Lemma, to get the

log transformation gives the following

 )(

)()()
2
1(ln

2
vttt

ddduuuPttPtt

dWvdtvdv

dNJdNJdWvdtvPddp
γ

σθκ

λλµ

+−=

−++−==
(4-15)

Donate the ccf by ),,,( τωφ tt vp , the Feynmann-Kac formula, implies that

[ ] 0),,,( =τωφ tt vpdE . This is the same as Heston (1993) assumption that ),,,( τωφ tt vp

is martingale. The solution for the partial differential equation (pde)

[ ] 0),,,( =τωφ tt vpdE  is the characteristic function ),,,( τωφ tt vp  with the terminal

condition pi
tt evp ωωφ =)0,,,( . ω is a real valued dummy variable and i is the imaginary

root, where 1−=i .

By Feynmann-Kac formula:
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(4-16)

Equation 4-16 is known as Kolomogrov Backward Equation (KBE) or

Fokker - Plank Forward Equation and the conditional characteristic function
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),,,( τωφ tt vp  is the solution for this equation. The last two terms concerning jumps in 4-

16 are very familiar in the jump literature. Kushner (1967) and Gihman and Skorohod

(1972) provide a full derivation to such terms. Merton (1971,1976) Ahn and Thompson

(1988), Duffie, Pan and Singleton (2000), Singleton (2001), Chacko and Das (2002) and

Chacko and Viceira (2003) use Kushner (1967) and Gihman and Skorohod (1972).

    To solve for the conditional characteristic function explicitly, we guess a

functional form for the characteristic function of the form

)()(),,,( ττωτωφ BApi
tt evp ++=  (4-17)

with the terminal condition pi
tt evp ωωφ =)0,,,(

    Substituting the conjecture in equation (4-17) and its derivatives in the KBE,

equation (4-16) we get:
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The term (4-18) contains [ ] [ ]1 and 1, 2
1

−−+
+

du Ji
d

Ji
utt eEeEvv ωω

γ
γ λλ  which are non-

linear. For the terms [ ] [ ]1 and 1 −− du Ji
d

Ji
u eEeE ωω λλ  we apply the moment generating

function (mgf) method for the exponential distribution as reported in Rose and Smith

(2002, p.142) for [ ] [ ]du JiJi eEeE ωω  and , which gives:

[ ]
u

Ji

-i
 eE u

ωη
ω

1
1

= (4-19)

[ ]
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i
 eE d

ωη
ω

+
=−

1
1 (4-20)
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Chacko and Viceria (2003) adopt the transformation above for those non-linear

terms. Another way is to follow Chacko and Das (2002), by applying the mgf method for

the whole terms [ ] [ ]1 and 1 −− du JiJi eEeE ωω :

[ ]
u

uJi

i
 eE u

ωη
ωηω

+
−=−1 (4-21)

[ ]
d

dJi

i
 eE d

ωη
ωηω

−
=−− 1 (4-22)

Here we follow Chacko and Viceria (2003) by adopting the transformation shown

in (4-19) and (4-20). For the terms 2
1

 and 
+γ

γ
tt vv , we apply some kind of perturbation

method to linearize the parameters in vt. This approximation is basically a Taylor series

expansion around the unconditional mean volatility process θ as follows:

tt vv 1)1( −+−≈ γγγ γθγθ (4-23)
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Substituting the terms (4-19), (4-20), (4-23), and (4-24) into (4-18) and

rearranging,
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Redefining 4-25 as
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2
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d
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d
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Each parameter of c, a, and b consists two parts, the first part is independent and

the second part depends on the state variable vt. We can rewrite those parameters in the

following formats:

tvaaa 21 += (4-27)

tvbbb 21 +=            (4-28)

tvccc 21 +=            (4-29)

Where, 
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Now, substituting a1, a2, b1, b2, c1, and c2 into 4-26
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(4-30) can be written in the following fashion:
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As in Ingersoll (1987, chapter 18), the equality in (4-31) can only hold if both

sides of the equation are zeros, because the state variable vt is stochastic. This leads to the

following ordinary differential equations
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τ
τττ

d
dBAbAac )()(

2
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111 =++ (4-32)

τ
τττ

d
dAAbAac )()(

2
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222 =++ (4-33)

With the boundary conditions A(0)=0, and B(0)=0.

Equations (4-32) and (4-33) are the well know imaginary Raccati equations,

Duffie, Pan and Singleton (2000), Liu (2001) and Duffie, and Schachermayer (2002)

introduce a general solution for such kind of equations. However, the solution for

equation (4-33) is given by:

( ) ,2,
12

21

21

2121

2 











−

−
=

ee
ee
uu

uu

uu

uuuu
b

A ττ

ττ

ωτ (4-34)
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The solution for )(τB  in (4-32) is given by:
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Where u here is the integral dummy. From (4-33),
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Distributing the integral through out the expressions, we get:
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Since A(0) = 0, then integrating the first and the third terms:
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Where u1, and u2 as defined above.

Accordingly, the solution for the ODE (4-32) is given by:
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To get the value of the characteristic function for the NASVJ process, we

substitute the values of a1, a2, b1 b2, c1 and c2 in A(τ) equation (4-34) and B(τ) equation

(39), in the conjectured form of the characteristic function in (4-17).

After substituting the values of a1, a2, b1 b2, c1 and c2 in A(τ) and B(τ) then we find

that
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4.3.2.2 Deriving the ccf for the Special Cases Processes

Depending on the restrictions we impose on the parameters in the process, we can

derive the characteristic function for the special processes. All we need to do, is to adjust

the values for a1, a2, b1, b2, c1, and c2 taking into account the restrictions on the

parameters estimate. Restrictions are shown in table 4-2.

As mentioned above, cdfs for such processes are not known in a closed form, but

the characteristic function (cf) are known. The cf has 1 to 1 correspondence with the cdf,

and the Fourier inversion of the cf gives the cdf, as indicated in section 4.2 above

according to equation
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Where Pr(∆p≤α) is the probability of the portfolio value to be less than or equal α where

α any quantile in the distribution. So by solving the integral in (4-5) we can get a value

for α at any confidence level and then substitute it in (4-14) to get VaR under thick tails

distributions, represented by the above processes. Unfortunately, the integral in the (real

part) above does not have closed form solution, and the only way is to solve it

numerically. Solving the integral above numerically is not a trivial step as Schobel and

Zhu (1999). Most of papers that use this method did not report how the solve this

integral. Using this method of obtaining the cdf is the most efficient method in terms of

accuracy and time compared with the Monte Carlo simulations and finite difference

methods, Scott (1997). As mention earlier, a great credit for inventing methods to solve

this integral goes to Bohman work listed earlier especially Bohman (1975).

4.4 Estimating Volatility of Trading Revenues

As mentioned earlier, estimation of current volatility is a crucial issue in estimating VaR.

As explained in section 2.5.2 of chapter 2, VaR literature use different models for

estimating current volatility including constant volatility models, exponential weighting

volatility model, ARCH, GARCH, EGARCH models and implied volatility from option

pricing. VaR models that use stochastic volatility as a risk factor including Cardenas,

Fruchard, Koehler and Michel (1997) and El-Jahel, Perraudin, and Sellin (1999) pre-

assumed the volatility process parameters rather than estimate them.

    We can use the characteristic function in estimating the diffusion processes above to

get the current volatility and all continuous time processes. Recently, authors including

Yu (1999), Singleton (2001), Jiang and Knight (2002), Knight and Yu (2002), Knight,

Satchel and Yu (2002), and Chacko and Viceira (2003) start to use the characteristic
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function for estimation continuous time processes because it is known in closed form for

many continuous time processes. A great advantage of those methods depend on the

characteristic function that they do not need to discretize the data. Chacko and Viceira

invented a GMM estimator ( they called it Spectral GMM) in which they integrate the

unobserved variable (volatility in this case) in estimating the continuous time processes.

     In our case, we already derived the characteristic functions which is the most

challenging part in the estimation processes. With the existence of volatility  and non

zero correlation between the portfolio trading revenues and the portfolio revenue the

portfolio revenue is Markovian. Thus the conditional characteristic function that we

calculated is conditional only on the previous portfolio value. Accordingly, the

characteristic function do not condition on the entire path of portfolio value, but on the

portfolio value in the previous period.

     For Chacko and Viceira's (2003) estimation method, volatility is latent variable and it

is unobservable. Thus, to implement their GMM method, we have to integrate volatility

out. In this case, we still condition on the previous portfolio level, but the portfolio

trading revenues is no longer Markovian. It is only Markovian if it is associated with the

volatility process through the correlation between volatility and returns on the portfolio.

When we integrate volatility out, the previous portfolio level will not reflect the entire

path of the portfolio level, because we lost the knowledge of volatility. With this

necessary modification, our estimation loses some efficiency but the estimation timing

improves tremendously. For more details see Chacko and Viceira (2003).
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CHAPTER FIVE: APPLICATION OF VaR MODELS UNDER
THICK TAILS

This chapter applies VaR models under the six different stochastic processes

derived in chapter four on the data sample discussed in chapter three. In each section, we

compare VaR estimate based on each process with unexpected trading profits and losses,

and disclosed banks’ VaR estimate. Additionally, we compare VaR model derived based

on different processes to explore the effect of jumps, stochastic volatility and non-affine

stochastic volatility on VaR estimate. This comparison considered is as a form of back

testing, where the two back testing methodologies explained in chapter three sections

3.4.1 and 3.4.2 are used.

5.1 The GBM VaR Model (Log-Normal Case)

As indicated in chapter four earlier, VaR based on the GBM process takes the

form shown in equation 4-12.

Where α represents the normal deviate. At a 99% confidence level, α = -2.326.  The

parameters µ and σ0 are estimated based on the method discussed in chapter four using

the actual banks’ sample unexpected trading revenues. Appendix A-1 shows parameter

estimates for the GBM process for the sample’s banks unexpected trading revenues. With

knowing the parameters µ and σ0 and the size of the trading portfolio we can calculate
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GBM VaR. Figure 5-1 gives GBM VaR estimate compared with unexpected trading revenues for

the banks in the sample during the period 1995: Q1-2002: Q3.

5.1.1 Forecast Evaluation Back Testing

This section uses the back testing methodology described in section 3.4.1 to evaluate the

performance of GBM VaR and compare it with the performance of the disclosed banks’ VaR.

Figure 5-1 is similar to figure 3-4, in that it shows the number of violations under GBM

VaR. Violations are the numbers of times that actual trading losses exceed GBM VaR. As

mentioned earlier in chapter three, a 99% confidence level quarterly VaR means that a quarter

losses can exceed VaR estimate once every 25 years. For our 31 quarters sample, a 99%

confidence level quarterly VaR should be exceeded only 0.31 times during the sample period.

 In our sample period, figure 5-1 shows that all banks in the sample witness at least one violation

during the sample period. If we compare this result with banks VaR estimate in figure 3-4, we

find that violations under GBM VaR occur more frequent across the banks in the sample. For

banks’ VaR there are violations only in four banks in the sample as figure 3-4 indicates.

However, the size and the number of violation under GBM VaR are different. Figure 5-1 shows

that violations for GBM VaR in four banks of the sample occur also during the last quarter of

1997 and the third quarter of 1998, the periods of the Asian crisis, Russian debt crisis and the

near collapse of the LTCM. Except for JP Morgan Chase. GBM VaR could not bind trading

losses accurately. The violation occurs after the crisis periods of 1997 and 1998. Table 5-1 gives

a detailed look at the number and sizes of those violations in terms of dollar value and standard

deviations.
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Figure (5-1)
Unexpected Trading Revenues and GBM VaR For the Banks in the Sample During the Period 1995:Q1-2002: Q3.

*For Bankers Trust the analysis is ended by 2003:Q1.
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Table (5-1)
GBM VaR Violation Statistics

Bank
Mean
VaR
$Millions
(test-stat)

Mean VaR –
Minus 99th

Percentile(1)

(Test-stats)(2)

Mean
VaR(3)

In Stds

No. of
Violations

Mean(4) Size of
Violations
$ Millions
(test-stat)(5)

Mean Size
of
Violations
in Stds(6)

Max
Violation
$Millions

Max
Violation
Std.

Bank of
America

376.31 -136.32***
(-4.09)

0.67 2 325.39***
(3.46)

1.48 513.2 2.329

Bank of New
York

16.22 -12.11***
(-8.43)

1.39 2 1.25***
(10.29)

0.09*** 1.35 0.11

Bankers
Trust

183.60 -273.39***
(-15.45)

0.96 3 189.73***
(6.86)

0.94 331.04 1.65

Bank One /
First Chicago

44.94 -35.38***
(-16.581)

1.29 4 5.50***
(10.97)

0.16*** 8.95 0.26

CitiCorp 144.62 -177.93***
(-44.85)

1.04 3 61.27***
(4.66)

0.44 82.29 0.59

JP Morgan
Chase & Co.

1220.83 -408.49**
(-2.67)

1.70 1 234.09 0.33 234.09 0.33

(1) Calculated as the difference between the mean VaR in millions and the 99th percentile. The 99th percentile is multiplication of the standard deviation
of unexpected trading revenues and the 99th percentile of normal deviate, the numbers are provided in table 3-3. This is by definition -2.236
standard deviation below the mean.

(2) H0: the absolute Mean of GBM VaR equals the absolute 99th percentile.
(3) Normalized by the standard deviation of unexpected trading revenues.
(4) The amount of loss exceeding VaR, which is equal to average loss – VaR.
(5) H0: Mean violations = 0
(6) H0: Mean violations in terms of standard deviation is different than the expected value conditional on exceeding the 99th

percentile (0.341 standard deviations) for normal distribution. H0: |mean violation of GBM| - 0.341= 0.
(7) *** significant at 1% , ** significant at 5% and * is significant at 10%.
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The first column in table 5-1 shows the difference between the mean of GBM

VaR and the 99th percentile losses. As indicated earlier, the 99th percentile loss represents

2.326 standard deviations below the mean assuming normal distribution. For the six

banks in the sample, the average GBM VaR significantly lies outside the 99th percentile

loss  (absolute value of GBM VaR is significantly less than the absolute value of the 99th

percentile loss). The numbers in column 3 show this fact in a clear way. It tabulates the

mean GBM VaR standarized with unexpected trading revenues standard deviation. A

bank with a standarized average GBM VaR less in absolute value than 2.326 means that

the mean of GBM VaR lies outside the 99th percentile and we expect to see violations in

this bank. Unlike table 3-3, in table 5-1, we see that both Bank of New York and Bank

One/ First Chicago are now falling outside the 99th percentile loss, which means that we

expect to see violations in those two banks also.

Column 4 reports the number of violations (Losses went beyond GBM VaR) in

each bank of the sample. The number of violations is relatively big. If we compare it with

the 1% percent target, we conclude that GBM VaR estimates are relatively conservative.

GBM VaR is exceeded with more than 6 % for two banks and with more than 9% in

other three banks.

The last four columns in table 5-1 show the mean size of violations and the

maximum violation in each bank.  Violation size represents the difference between the

actual loss and GBM VaR estimate. In the six banks, we see that the mean of violations is

significantly different from zero. The largest violation in terms of mean (in dollar value

and measured in standard deviation) happened in Bank of America. The mean violation

in Bank of America is 1.48 standard deviation, however, it does not differ from zero
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significantly. The mean violations in 3 banks of the six are bigger than the expected value

conditional on exceeding the 99th percentile (0.341 standard deviations) for normal

distribution, but the test statistics shows that those mean violations do not differ

significantly from 0.341 in those 3 banks. For other two banks (Bank of New York and

Bank One) the mean violation is significantly less than 0.341 standard deviation. The

case is similar when we look at the last column, which shows the maximum violations of

GBM VaR for banks’ sample.

Figure 5-2 and table 5-2, on the other hand, compare the disclosed banks’ VaR

and the GBM VaR estimate. Figure 5-2 shows that the absolute value of GBM VaR is

lower than the absolute banks’ VaR in 3 cases, (Bank of New York, Bank One and

CitiCorp), and higher in one case (JP Morgan Chase and Co.). Generally, the GBM VaR

and disclosed banks’ VaR takes the same trend in all cases. However, banks’ VaR

estimates are more volatile than GBM VaR for the reason that GBM VaR assumes

constant volatility.

In one case (JP Morgan Chase), GBM VaR is higher than the Bank’s VaR for all

portfolio positions, and during the whole sample period. For Bank One, GBM VaR is less

than the Bank’s VaR during the entire sample period. For Bank of New York, GBM VaR

is less than the Bank’s VaR for most of the quarters. Actually, the disclosed VaR of Bank

of New York equals GBM VaR in the third quarter of year 2000. For Bank of America,

GBM VaR and the Bank’s VaR are started to be close until the first quarter of 1998,

when the GBM VaR jumped and the Bank’s VaR plunged down. GBM VaR for Bank of
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Figure (5-2)
The Absolute Value of The GBM VaR versus The Absolute Value of The Disclosed Banks’ VaR (Logarithmic Scaling)
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America increased suddenly because of the increase in the trading portfolio for

the Bank from $37 billions in June 1998 to $84.5 billions in September 1998. However,

the Bank’s VaR witnesses a similar jump in December 1999. As we see in figure 2, the

two VaR measures for Bankers Trust take the same path during the whole period. They

start the downward sloping at September 1998. CitiCorp VaR starts very high compared

with GBM VaR measure then it drops down towards GBM VaR, but it continues to be

higher after the first quarter of 1999.

Table (5-2)
GBM VaR versus Banks’ Disclosed VaR

($Millions)

Bank
Mean VaR

Difference(1)

(test-stats)(2)

No. of
Violations
GBM VaR

No. of
Violations

Banks’ VaR

Mean(3) Size of
Violations
Difference
(test-stat)(4)

Max
Violation
Difference

Bank of
America

157.72***
(6.29)

2 2 4.5
(0.03)

33.44

Bank of New
York

-20.11***
(-10.28)

2 0 1.25***
(10.23)

1.49

Bankers Trust 16.26*
(1.37)

3 7 76.13
(1.11)

-33.71

Bank One /
First Chicago

- 105.61***
(-12.99)

4 0 5.50***
(10.97)

8.95

CitiCorp -143.48***
(-5.28)

3 2 18.92*
(1.64)

31.29

JP Morgan
Chase & Co.

941.24***
(7.32)

1 8 -107.97***
(-3.82)

-630.74

(1) Calculated as the difference between the absolute value of GBM VaR and the
absolute value of Bank’s Disclosed VaR.

(2) H0: The difference between mean VaRs equals zero.
(3) The difference between the absolute value of mean sizes of violation of GBM

VaR and the absolute value of mean sizes of bank’s VaR. Positive sign means that
GBM VaR violations are bigger than the Banks’ VaR violations.

(4) H0: The difference of the mean violations equal to zero.
(5) *** significant at 1% , ** significant at 5% and * is significant at 10%
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Table 5-2 analyzes closely the differences between the GBM VaR estimates and

the disclosed banks’ VaR. The first column of the table shows the differences between

the absolute mean of GBM VaR and the absolute value of the banks’ VaR.  Positive

number means that GBM VaR is higher than the bank’s VaR, and negative numbers

imply the opposite.  From table 5-2, we see that GBM VaR is significantly higher in 3

cases (Bank of America, Bankers Trust and JP Morgan Chase and Co.). In the other three

cases, the mean GBM VaR appears to be significantly less than the banks’ VaR disclosed

by the Bank of New York, Bank One and CitiCorp. And that is why we see some

violations under GBM VaR estimates in those banks.

Because the GBM VaR is significantly less in three banks, we see that those

banks witness higher number of violations under GBM VaR compared with the disclosed

banks’ VaR.  GBM VaR is violated twice for Bank of New York and Bank One,

compared with now violations under their own VaR estimates. For CitiCorp, the number

of violations increases to 4 under GBM VaR estimates compared with 3 violations under

its own VaR measure. Bankers Trust and JP Morgan Chase and Co. that have high

number of violations under their own VaR measures, the number of violations decreases

significantly under GBM VaR estimates in those banks.

The last two columns in table 5-2 compare the mean violations and the maximum

violations respectively between the two VaR measures. The mean violation difference is

calculated as the difference between the absolute mean violation under GBM VaR and

the absolute mean violation under the banks’ disclosed VaR.  The positive numbers for

the first five banks in the sample means that the absolute mean violation under GBM

VaR is higher than the absolute mean violation under the banks’ VaR, and the opposite
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for JP Morgan Chase. Statistically speaking, the means of violations under GBM VaR are

higher than the means of violations under the banks’ VaR for only 3 banks. For the other

two banks the means of violations are statistically insignificant. JP Morgan own VaR

estimates seemed to be very conservative, the high number of violations and the sizes of

violations are extremely higher than the GBM VaR calculations.

The last column shows the difference between the maximum violations under

GBM VaR estimates and the disclosed banks’ VaR estimate.  The results are almost the

same as the means of violations comparison except for Bankers Trust, where the

maximum violation under the Bank’s VaR is higher than the maximum violation under

the GBM VaR.

From the analysis above, we see that GBM VaR estimates produce less desired

results compared with disclosed banks’ VaR. It produces higher number as well as higher

sizes of violations in most of the cases. In some cases GBM VaR produces more

favorable results compared with some banks results, but that is can not be generated.

5.1.2 Volatility Method

The first step in this method is to retrieve trading revenue’s volatility

from GBM VaR estimates according to equation 3-2, and then apply the regression

formula in equation 3-6 that describes the absolute value of unexpected trading revenues

as a linear function of volatility.

As mentioned earlier, GBM VaR reflects the future trading revenues risk if the

parameter b is significantly positive. For the purpose of back testing of GBM VaR

model, equation 3-6 is first estimated for each bank individually using a univariate

[ ]                                           1t11 +++ ++=− εσ ttt baRER
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Ordinary Least Square (OLS) and Seemingly Unrelated Regression (SUR). The SUR

method is used to account for the correlation among of unexpected trading revenues

among banks as reported in table 3-4.

Table (5-3)
Bank-Specific Regression of Absolute Value of Quarter t+1 Unexpected Trading

Revenues on Quarter t GBM VaR-Based Volatility

OLS SUR
Constant Slope Constant Slope

Bank Period
No. of

Observations (t-Statistic)
R2

(t-statistic)
Bank of
America

95,Q1-02,Q3
31

90.136
(1.381)

0.188
(0.985)

0.032 101.072
(1.844)

0.291
(1.844)

Bank of New
York

95,Q1-02,Q3
31

5.5465
(1.864)

0.687*
(1.831)

0.104 5.673
(2.075)

0.672501
(1.984**)

Bankers Trust 95,Q1-02,Q1
29

-8.935
(-0.164)

0.843***
(2.843)

0.230 36.980
(0.875)

1.108***
(2. 684)

Bank One /
First Chicago

95,Q1-02,Q3
31

40.581
(2.979)

-0.629
(-0.918)

0.028 39.538
(3.088)

-0.573
(-0.891)

CitiCorp 95,Q1-02,Q3
31

5.057
(0.046)

1.949
(1.105)

0.201 27.385
(0.282)

1.582
(1.020)

JP Morgan
Chase & Co.

95,Q1-02,Q3
31

295.372
(1.619)

0.199
(0.653)

0.015 260.942
(1.489)

0.2679
(0.916)

Joint test of
Slope

Parameters =0

16.5
P= 0.011

• * **Significant at 1%.
• ** Significant at 5%.
• * Significant at 10%.

Table 5-3 reports the results of the six banks specific time-series regressions of

unexpected trading revenues of GBM VaR based volatility. For OLS results, Bank of

New York and Bankers Trust show the assumed positive relationship between

unexpected trading revenues and VaR based volatility. Those results improve over the

result in table 3-5 which shows a weak significant positive value of b only for Bankers

[ ][ ] 1,,1,1, +++ ++=− titiiititi baRER εσ
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trust. The OLS results in table 5-3 strongly suggest that b takes a positive value in case

of Bankers Trust, and Bank of New York.

Those significant positive values for b improve by using SUR regression for

both banks, and b coefficient becomes statistically significant at 1% level.

Additionally, the joint-test of all slopes in SUR model is significantly different from

zero. And this is additional improvement over the results in table 3-5 where the joint

test for slopes is insignificantly different from zero.

Figure 5-3 displays the pool sample data. The figure shows that higher VaR based

volatility is associated with greater variation in unexpected trading revenues for the cross

sectional and time series data. Accordingly, pool estimation for equation 3-6 is performed

to back test on the whole data set.

Figure  (5-3)
Absolute Unexpected Trading Revenues in Quarter t+1 and GBM VaR-Based

Volatility in Quarter t: Pool Sample
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Table 5-4 reports the results of a cross-sectional estimation of equation 3-6, with

a sample of 184 observations. The pool sample OLS results (with and without intercept)

report significant relationship of coefficient of VaR based volatility. To correct for

heteroskedasticity and cross-sectional correlation in the pool data across section weights

Generalized Least Squares (GLS) method is applied. The results are reported in raw 3 in

table 5-4, which still shows significant positive results for the coefficient b.  Unlike the

case for the disclosed bank’s VaR, the fixed effect and random effect pool regression

are both showing significant positive b coefficient for the GBM VaR based volatility.

Table (5-4)
Pooled Regression of Absolute Value of Quarter t+1 Unexpected Trading

Revenues on Quarter t GBM VaR-Based Volatility

Period Constant SlopePooled Method
Observations (t-Statistic)

Pooled Sample OLS
without Intercept

95,Q1-02,Q3
186

NA 0.338***
(3.088)

Pooled Sample OLS 95,Q1-02,Q3
186

3.088
(2.496)

0.297***
(2.720)

Pooled GLS
Cross weighting

95,Q1-02,Q3
186

52.592
(2.076)

0.498***
(5.477)

Pooled SUR 95,Q1-02,Q1
186

21.049
(2.043)

0.296***
(121.614)

Fixed Effect Pool OLS 95,Q1-02,Q3
186

AUR 0.308***
(2.764)

Fixed Effect Pool GLS 95,Q1-02,Q3
186

AUR 0.519***
(5.642)

Fixed Effect Pool
SUR

95,Q1-02,Q3
186

AUR 0.308***
(235.600)

GLS Random Effect
Pool

95,Q1-02,Q3
186

71.366
(6.256)

0.242**
(2.276)

• ** Significant at 5%.
• *** Significant at 1%.
• AUR: The fixed effect and random effect intercepts are not reported

here, but it is available upon request (AUR).
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In summary, volatility back testing shows that GBM VaR gives better result in

compared with the disclosed banks’ VaR, since it gives more significant results for the

related coefficient. The pool regression results indicate that GBM VaR gives some

informativeness about future risk, but the specific OLS and SUR regressions could not

provide the same power of anticipating future risk in each single bank.

5.2 VaR Models Under Thick Tails

As derived in chapter four earlier, VaR based on processes allow for thick tails

takes the form

Where α represents the distribution deviate at 99% confidence level. We obtain α

parameter by numerically inverted the characteristic function of each process using

equation 4-5. Thus, the processes’ parameters are estimated and then substituted in the

inversion formula of the characteristic function (equation 4-5). As explained in chapter 4,

the estimation method proposed by Chacko and Viceira (2003) for estimating continuous

time processes is used to estimate parameters. The parameters are estimated based on

actual banks’ data of unexpected trading revenues.

Tables A-1 to A-6 in appendix show parameters’ estimate for those processes.

One important notice on the parameter estimate is that the correlation coefficient between

the stochastic volatility process and the trading revenue process ρ is significant in some

cases, which imply skewness and thick tails distribution. On the other hand, the inclusion

of jump diffusion with the stochastic volatility could in some cases capture part of the

skewness and kurtosis, through reducing the estimated value of the correlation coefficient

[ ]α
τ ePVaR t −= 1
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ρ., Tables A-4 and A-6 show additionally that for certain banks in the sample, both the

stochastic volatility parameters and the jump diffusion parameters are significant.

 Another important feature we deduce from the estimate that in certain cases, the

estimate for the updating volatility parameter, γ, seems to be significantly exceeding 1, a

required condition for non-affine stochastic volatility.  Which means that volatility could

be updating faster than what the square root process assumes.

After obtaining α, equation 4-5 is applied for specific portfolio sizes. For each

bank in the sample, within every single process, α has been calculated 31 times (except

for Bankers Trust, where it has been calculated 29 times). Across the five thick tail

processes, α has been calculated 155 times for each bank, and almost 775 times for all

banks across all processes. In a clear way, α (and hence a VaR estimate) have been

calculated for the six banks in the sample across the five thick tail processes for the

period 1995:Q1 – 2002:Q3. The total VaR estimates that have been calculated for the

thick tail process are 775 times in addition to 184 GBM VaR. VaR numbers in the

following analysis are presented through graphs and averages rather than tables because

of the large number entries.

Parameters’ estimate is also used to estimate volatility updating in the five thick

tail processes (SV, SVJ, NASV, and NASVJ) that assume stochastic volatility. We need

the estimated parameters to obtain the updated volatility level based on equations 4-59 to

4-62 in chapter 4 also α in the cases where volatility is changing. Basically, this might be

the reason for seeing that thick tail processes in general produce a more volatile VaR

estimate compared with the GBM VaR.
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Figure 5-4 plots VaR estimates for all banks, for all processes during the study

period in addition to the disclosed banks’ VaR. As seen from the figure different

processes yield different levels of VaR numbers. Roughly speaking, we can say that the

GBM process produces the lowest VaR and the non–affine stochastic volatility with

process yields the highest VaR. Among those two high and low VaR estimates, other

processes produce mixed results of VaR sizes. Additionally, we can see that all processes

provide more volatile VaR estimates compared with the GBM VaR method.

Table 5-5 on the other hand, shows the mean and the standard deviation of the

absolute value of VaR estimates derived based on the assumptions of thick tails and faster

volatility updates compared with the GBM VaR and disclosed banks’ VaR. The first note

that we deduce from table 5-5 is that the mean and the standard deviation of all thick tails

and updating volatility VaR models exceed the GBM VaR mean and standard deviation,

and this is one of the basic assumptions of the analysis. Regarding the proposed models,

except for Bankers Trust and Bank One, VaR estimates are coming in the following

acceding order, GBM VaR, SV-VaR, JD VaR, NASV VaR, and NASVJ VaR. In the

other two cases, the mean of JD VaR exceeds SV-VaR.

Regarding the banks’ disclosed VaR, table 5-5 indicates that the disclosed VaR

measures of Bank of New York and Bank One have exceeded all the proposed VaR

measures (except NASVJ VaR for Bank of New York). The last note from table 5-5 is

that the proposed VaR models, started from the GBM VaR to the NASVJ VaR have

exceeded with a big difference the disclosed VaR by JP Morgan Chase. Actually, we

conclude that JP Morgan Chase’s VaR estimates are very conservative since it suffers 8

violations during the sample period.
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Figure (5-4)
Derived VaR measures Compared to the Bank’s Disclosed VaR, 1995:Q1-2002:3
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Volatility of VaR estimates takes almost the same path as the mean with some

exceptions. Among the developed models, the NASVJ is the most volatile and the GBM

VaR is the least volatile. In between those two extremes, the volatility of the processes

(SV-VaR, JD VaR, SVJ VaR and NASV VaR) models, the volatility direction among

those processes is less obvious.  Banks’ VaR seems to be more volatile compared with all

other developed VaR methods in three cases, Bank of New York, Bank One and

CitiCorp.

5.2.1 The Stochastic Volatility Process-Based VaR (SV-VaR)

The basic assumption for using stochastic volatility is that stochastic volatility is a

source of tail thickness in financial data. As mentioned earlier, the parameter that

determines tail thickness of the distribution is the correlation coefficient between the

stochastic volatility process and the trading revenue process, ρ. From Table A-2, we see

that ρ is significant in some cases. This implies that the distribution of trading revenues in

those cases exhibit some kind of deviation from the tail thickness of normal distribution.

Hence they should result in VaR estimates different from the VaR estimate based on the

GBM process.

The estimated parameters in table A-2 are used to estimate α parameter through

equation 4–5, and to estimate volatility dynamics for the purpose of computing VaR. We

calculated 184 stochastic volatility based VaR (SV-VaR) for the six banks during the

period 1995:Q1 – 2002:Q3. Figure 5-5 plots SV-VaR estimates as upper and lower

bounds for unexpected trading revenues for the six banks in the sample.

 Two issues should be noted from figure 5-5, if it is compared with figure

5-1 and figure 3-4 that pertains to the GBM VaR and disclosed banks’ VaR respectively.
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Table (5-5)
Means and Variances for Different VaR Estimates

Bank
Banks’VaR

Mean
St. D

GBM-VaR
Mean
St. D

SV-VaR
Mean
St. D

JD VaR
Mean
St. D

SVJ VaR
Mean
St. D

NASV-VaR
Mean
St. D

NASVJ
Mean
St. D

Bank of
America

218.58
107.73

376.31
185.58

457.53
228.45

438.22
213.07

536.26
262.49

491.75
244.82

603.75
296.85

Bank of New
York

36.33
13.62

16.22
8.00

26.86
12.11

25.84
11.23

33.59
14.67

30.28
13.38

37.52
16.51

Bankers
Trust

167.34
114.04

183.60
95.26

254.08
123.37

258.84
115.39

285.78
124.93

267.78
129.04

303.28
121.38

Bank One /
First Chicago

150.55
49.91

44.94
11.88

66.90
18.37

86.85
21.04

110.35
28.91

99.83
23.28

123.90
31.91

CitiCorp 288. 10
142.62

144.62
22.09

383.44
74.02

357.32
66.24

452.12
81.75

411.90
77.23

507.48
88.91

JP Morgan
Chase & Co.

279.58
174.36

1220.83
852.09

1499.00
1051.43

1416.01
994.58

1765.04
1215.99

1610.44
1124.94

1954.87
1339.00

* An F-test rejects the null hypothesis that the means of all VaR models are equal
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The first issue is that the number of violations (losses beyond VaR) reduces significantly

based on SV-VaR model. Violations appear only in 3 banks rather than in 4 banks as in

the case of the disclosed bank’s VaR estimate and in all six banks according to GBM

VaR estimate. Additionally, the maximum number of violations is two under SV-VaR,

rather a maximum of 8 violations as seen from table 3-4 pertain to bank VaR and 4

violations in all six banks according in GBM VaR estimate.

The other issue that we should note in figure 5-5 (and figure 5-4) compared with

figure 5-1is that SV-VaR is more volatile compared to the GBM VaR. This issue can be

seen from table 5-5 that tabulates the standard deviation of VaR according to each

measure. One reason is that GBM VaR assumes constant volatility whereas, by

assumption, the SV-VaR model assumes that volatility is changing over time.

Table 5-6 below shed more lights on the performance of SV-VaR for all six banks

in the sample compared with GBM-VaR and banks’ VaR. The first column in table 5-6 is

identical to that in table 5-1, in that, it gives the difference between the mean of 99%

confidence level SV-VaR and the 99th percentile of the banks’ unexpected trading

revenues distribution. Five out of six banks shows that the SV-VaR mean falls outside the

99th percentile. However, only two of those five banks appear to be significantly falling

outside the 99th percentile. The other one case (CitiCorp) shows that the mean of SV-VaR

falls significantly inside the 99th percentile.

The second two columns in table 5-6 compare the mean of absolute SV-VaR with

the mean of absolute banks’ VaR and GBM VaR. The mean of SV-VaR estimate appears

to be significantly higher than the GBM VaR estimate in all cases and this is what we

expect from using stochastic volatility in VaR. We expect stochastic volatility to produce



132

Figure (5-5)

Stochastic Volatility VaR Compared With Unexpected Trading Revenues, 1995:1-2002:3

-1000

-500

0

500

1000

95 96 97 98 99 00 01 02

Absolute SV VaR Unexpected Trading Revenue SV VaR

Va
R 

an
d 

Tr
ad

ing
 R

ev
en

ue

Bank of America

-60

-40

-20

0

20

40

60

95 96 97 98 99 00 01 02

Absolute SV VaR Unexpected Trading Revenu SV VaR

Va
R 

an
d 

Tr
ad

ing
 R

ev
en

ue

Bank of New York

-800

-600

-400

-200

0

200

400

600

95 96 97 98 99 00 01 02

Absolute SV VaR Unexpected Trading Revenue SV VaR

Va
R 

an
d 

Tr
ad

ing
 R

ev
en

ue
s

Bankers Trust

-150

-100

-50

0

50

100

150

95 96 97 98 99 00 01 02

Absolute SV VaR Unexpected Trading Revenue SV VaR

Va
R 

an
d 

Tr
ad

ing
 R

ev
en

ue
s

Bank One

-600

-400

-200

0

200

400

600

95 96 97 98 99 00 01 02

absolute SV VaR Unexpected Trading Revenue SV VaR

Va
R 

an
d 

Tr
ad

ing
 R

ev
en

ue
s

CitiCorp

-4000

-2000

0

2000

4000

95 96 97 98 99 00 01 02

Absolute SV VaR Unexpected Trading Revenue SV VaR



133

Table (5-6)
Stochastic Volatility VaR Violation Statistics

Bank
Difference
from  99

percentile(1)

(test-stat)(2)

Mean
Difference
Compared

with Banks’
VaR

(test stats)(3)

Mean
Difference
Compared
with GBM

VaR
(test-stats)(4)

No. of
Violations

SV-VaR
Mean(5) Size

of
Violations
(test-stat)(6)

Max SV-
VaR

Violation

Mean
Violation

Compared
with GBM

VaR(7)

(test-stat) (8)

Mean Violation
Compared with

Bank VaR(9)

(test-stat) (10)

Bank of
America

-55.1*
(-1.34)

238.95***
(7.31)

81.23***
(9.01)

2 82.287***
(3.06)

466.56 -43.10
(-0.22)

-38.61
(-0.23)

Bank of New
York

-1.47
(-0.67)

-9.47***
(-3.90)

10.64***
(9.33)

0 0 0 -1.25
NA

0

Bankers Trust -202.91***
(-8.86)

86.74***
(6.97)

70.48***
(6.99)

2 189.95***
(9.28)

230.89 0.21
(0.01)

76.34
(1.02)

Bank One /
First Chicago

-13.42***
(-4.06)

-83.65***
(-10.59)

21.96***
(13.76)

0 0 0 -5.5
(NA)

0

CitiCorp 60.89***
(4.58)

95.34**
(2.84)

238.82***
(23.46)

0 0 0 -61.27
NA

-42.35
NA

JP Morgan
Chase & Co.

-130.32
(-0.69)

1219.42***
(7.40)

278.18***
(4.81)

1 29.60 29.60 -204.49
NA

-312.46***
(-4.09)

(1) Calculated as the difference between the absolute SV-VaR and absolute value of the 99th percentile. The 99th

percentile is reported in table 3-3.
(2) H0: The absolute Mean SV-VaR minus absolute 99th percentile=0.
(3)  The difference between the mean absolute SV-VaR and the mean absolute banks’ VaR is zero.
(4) The difference between the mean absolute SV-VaR and the mean absolute GBM VaR is zero.
(5) The amount of loss exceeding SV-VaR, which equal to average loss minus SV-VaR.
(6) H0: Mean violation = 0.
(7) Defined as absolute mean violation of SV-VaR minus absolute mean violation GBM VaR.
(8) H0: the difference between the mean violation of SV-VaR and GBM VaR equal to zero.
(9) Defined as absolute mean violation SV-VaR minus absolute mean violations banks’ VaR.
(10) H0: the difference between the mean violation of SV-VaR and banks’ VaR equal to zero.
(11) *** Significant at 1%, ** significant at 5% and * is significant at 10%.
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higher VaR measure because it is one source of tail thickness in financial data. By

comparing SV-VaR with banks’ own VaR, we see that SV-VaR is significantly higher in

4 cases and significantly less in two cases.  The two cases where the banks’ VaR is higher

are Bank of New York and Bank One. Those banks that have not experienced any

violations according to their own VaR estimates, which means that they have originally

representative VaR models.

Table 5-6 shows also the number of violations within SV-VaR estimate.

Compared to tables 3-3 and 5-1, we see that SV-VaR has performed better compared

with the banks’ VaR and GBM VaR. The numbers of violations in each bank and

maximum number of violations in all banks are decreased also. Under SV-VaR,

violations occur only in three banks with a maximum of two violations, compared with

violations in 4 banks with a maximum of 8 violations according under the banks’ VaR

and violations in all banks under GBM VaR with a maximum of 4 violations. With SV-

VaR violations happen in Bank of America, Bankers Trust and JP Morgan Chase.

Under SV-VaR model, the number of violations stays the same for Bank of

America as in GBM-VaR and bank’s VaR estimates.  The mean size of violation

decreases noticeably under SV-VaR compared with the GBM VaR and the Bank’s own

calculated VaR. The mean size of violation decreases by $43.11 millions and $38.61

millions for GBM VaR and the Bank’s own VaR respectively. Even with this sizable

reduction in the mean of violation, those differences seem to be statistically

indistinguishable from zero. On the other hand, if we take the differences in the

maximum violations, we notice the same reduction, where the maximum violation drops
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from $479.76 millions and $513.2 millions under the Bank’s VaR and GBM VaR

respectively to $466.6 millions.

For Bankers Trust, the number of violations decreases from 7 violations and 3

violations according to the Bank’s VaR and GBM VaR measures respectively to only 2

violations under SV-VaR measure. According to the mean size of violation, it increases

under SV-VaR model rather than decreases as expected. The reason behind this negative

difference refers to the high number of violations under the Bank’s own VaR and GBM

VaR.  However, this increase in the mean size of violations under SV-VaR is statistically

insignificant, and it is relatively small in dollar size. If we look at the maximum size of

violation occurs under SV-VaR compared with the Bank’s own VaR and GBM VaR we

see a different picture. The maximum violation decreases significantly from $364.75

millions and $324.3 under the Bank’s VaR and GBM VaR respectively to only $230.9

million under SV-VaR.

For JP Morgan Chase, the number of violations decreases from 8 violations under

the Bank’s VaR to 1 violation under GBM VaR, and this violation continues to appear

under SV-VaR measure. However, the size of this violation decreases from

$234.1millions according to GBM VaR to $29.6 millions under the SV-VaR. In case of

CitiCorp the number of violations decreases from 2 violations and 3 violations according

to CitiCorp’s VaR and GBM VaR calculations respectively to no violations at all. Bank

of New York and Bank One show no violations under SV-VaR model compared to two

violations under the banks’ own VaR and GBM VaR calculations.

In conclusion, the inclusion of SV process could improve the VaR performance of

compared with banks’ VaR and GBM VaR measures. In terms of VaR size, stochastic
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volatility produces higher VaR in all cases compared with GBM process and it also

produces higher VaR measures in 4 cases compared with the bank’s VaR. As a result of

the higher VaR measure based on stochastic volatility, the number and size of violations

are decreased numerically compared with GBM VaR and banks’ VaR, however, the

results are not so robust statistically.

5.2.2 The Jump Diffusion Process-Based VaR (JD-VaR)

Like in case of stochastic volatility VaR, the basic assumption for using jump

diffusion is that jumps are the other source of tail thickness in financial data beside

stochastic volatility. From Table A-3, we see that jump sizes and jump intensities (ηu, ηd

and λ u, λd ) are significant in certain cases. This implies that the distribution of trading

revenues in those cases exhibit some kind of tail thickness compared with normal

distribution. Hence they should result in VaR estimates higher than VaR estimates based

on GBM process.

The estimated parameters in the table A-3 are used to estimate α parameter

through equation 4–5. 184 jump diffusion based VaR (JD VaR) are calculated for the six

banks during the period 1995:Q1 – 2002:Q3. Figure 5-6 plots JD VaR estimates as an

upper and lower bounds for unexpected trading revenues for the six banks in the sample.

As in figure 5-5 belongs to SV-VaR, two issues should be noted from figure 5-6, if it is

compared with figure 5-1 and figure 3-4 that pertains to the GBM VaR and disclosed

banks’ VaR respectively.

 The first issue, like in case of SV-VaR, the number of violations (losses

beyond VaR) reduces significantly based on JD VaR model. Violations appear only in 3

banks rather than in 4 banks as in case of the disclosed bank’s VaR estimate and in all the
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six banks according to GBM VaR estimate. Additionally, the maximum number of

violations is only two violations, rather than a maximum of 8 violations as in table 3-4

pertain to banks’ VaR and 4 violations in all six banks according to GBM VaR estimate.

Those results are identical to the results associated with using the stochastic volatility in

VaR estimate, however, the sizes of those violations in each bank are pretty much

different.

The other issue that we should note in figure 5-6 (and figure 5-4) compared with

figure 5-1is that JD VaR is more volatile compared to the GBM VaR. However, it is less

volatile compared with SV-VaR estimates. And this is assured almost by table 5-5, which

shows the standard deviation of VaR estimates under different stochastic processes.

Table 5-7 below addresses the differences in the mean between JD VaR estimates,

the banks’ VaR estimates, the GBM VaR and the SV-VaR. The first column in the table

shows the difference between the mean of JD VaR and the 99th percentile of the

unexpected trading revenues assuming normality. Negative numbers show that JD VaR

falls outside the 99th percentile of unexpected trading revenues. Table 5-7 shows that

average of JD VaR estimates for four banks fall outside the 99th percentile. However, two

of them (Bank of America and Bankers Trust) appear to be significantly falls outside the

99th percentile. On the other hand, averages of JD VaR estimates for Bank One and JP

Morgan are significantly fall within the 99th percentile of unexpected trading revenues.

According to the mean difference between JD VaR estimates and banks’ VaR

estimates, the absolute mean of JD VaR exceeds significantly the absolute mean of

bank’s VaR in four cases (Bank of America, Bankers Trust, CitiCorp and JP Morgan
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Chase). On the other hand, the absolute mean of banks’ VaR exceeds the absolute mean

of JD VaR significantly in the other two cases (Bank of New York and Bank One).

Compared with GBM VaR, the effect of inclusion jump diffusion in VaR models

is obvious.  The absolute mean of JD VaR estimates exceeds significantly the absolute

mean of GBM VaR estimates in all cases. For the SV-VaR the case is a little different.

The absolute mean of JD VaR estimates appear to be significantly less than the mean of

SV-VaR estimate in 4 banks (Bank of America, Bank of New York, CitiCorp and JP

Morgan).

For Bankers Trust and Bank One, results are flipped over. The absolute mean of

JD VaR estimates appears to be significantly higher only in case of Bank One. In

conclusion, we can say that the absolute mean of SV-VaR is higher than the absolute

mean JD VaR in 4 cases, equal it in one case and appear to be significantly less in one

case. Based on that, we may conclude that the SV produces higher VaR estimate than the

jump diffusion. That is may be the case because SV affects VaR through two avenues,

the correlation issue (tail thickness) and the changing in volatility.

Table 5-8 below provides the number, size, maximum size of violations and mean

size of violations comparison. Banks that do not have violations under JD VaR estimates

are excluded from the table.  As in case of SV-VaR, the number of violations drops

significantly. Only three banks suffer violations under JD VaR rather than 4 as in the case

of banks own VaR or in all banks as in case of GBM VaR. The number of violations in

each bank under the JD VaR is again less than the number of violations that appears

under the banks own VaR and GBM VaR.  As a matter of fact, the number of violations
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Figure (5-6)
JD VaR and Unexpected Trading Revenues, 1995:1-2002:3
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Table (5-7)
JD VaR Absolute Mean Differences Compared with

Banks’ VaR, GBM VaR and SV-VaR

Bank
Difference from
99 percentile(1)

(test-stat)(2)

JD VaR
Mean-Banks’
VaR Mean(3)

(test stats)(4)

JD VaR
Mean-GBM
VaR Mean(5)

(test stats)(6)

JD VaR Mean-
SV-VaR VaR

Mean(7)

(test stats)(8)

Bank of
America

-74.41**
(-1.94)

219.64***
(7.20)

61.91***
(7.84)

-19.32***
(-5.24)

Bank of New
York

-2.49
(-1.23)

-10.49***
(-4.34)

9.62***
(8.44)

-1.03**
(-1.84)

Bankers
Trust

-198.15***
(-9.25)

91.49***
(7.52)

75.23***
(8.44)

4.75
(0.53)

Bank One /
First Chicago

6.53**
(1.73)

-63.70***
(-8.39)

41.91***
(21.37)

19.95***
(12.49)

CitiCorp 34.77***
(2.92)

69.22**
(2.14)

212.70***
(24.55)

-26.12***
(-5.14)

JP Morgan
Chase & Co.

-213.31
(-1.19)

1136.43***
(7.36)

195.19***
(3.90)

-82.99**
(-1.76)

(1) The difference between the mean of JD VaR and the normal 99th percentile of
unexpected trading revenus.

(2) H0: the absolute Mean JD VaR minus the absolute 99th percentile equals zero.
(3) Absolute mean JD VaR minus absolute mean Bank’s VaR.
(4) H0: absolute mean difference equals zero.
(5) Absolute mean JD VaR minus absolute mean GBM VaR.
(6) H0: absolute mean difference equals zero.
(7) Absolute mean JD VaR minus absolute mean SV-VaR.
(8) H0: absolute mean difference equals zero.
(9)*** significant at 1% , ** significant at 5% and * is significant at 10%.

in each bank under JD VaR estimates is identical to the number of violations in each bank

under SV-VaR estimates.

For Bank of America, the number of violations appears to stay the same under the

four VaR models including the JD VaR. The mean size of violation under the JD VaR

decreases in case of Bank of America compared with the Bank’s own VaR, the GBM

VaR and the SV-VaR. However, this reduction in the mean size of violation is

statistically insignificant in the three cases in Bank of America, which means that we can
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not reject the hypothesis that the mean size of violations under the four VaR models

(under comparison) are equal.  If we compare the maximum violations under JD VaR

estimates compared with the Bank’s own VaR, the GBM VaR and SV-VaR respectively

in Bank of America, we find that the maximum violation decreases by $15.4 millions,

$48.9 millions and $2.21 millions.

As in the case of SV-VaR, the number of violations decreases for Bankers Trust

from 7 violations and 3 violations under the Bank’s own VaR and GBM VaR to 2

violations under the JD VaR.  Compared with Bankers Trust’s own VaR, the mean size

of violation increases by  $63.43 millions under the JD VaR. This increase is attributed to

the large number of VaR violations under the Bank’s own VaR that contains small

violations that reduced the mean of violations under the Bank’s own VaR and then

disappeared under the JD VaR.  Comparing the mean size of violations under JD VaR for

Bankers Trust with the GBM VaR and SV-VaR, we find that the mean of violations

under the JD VaR is less.  However, the statistical test shows that the mean of VaR

violations for Bankers Trust does not differ significantly from the mean violations under

the Bank’s own VaR, the GBM VaR and the SV-VaR.

For JP Morgan Chase and Co. the number of violations decreases form 8

violations under the Bank’s VaR to one violation under the GBM VaR, SV-VaR and JD

VaR. Compared with the Bank’s VaR and the GBM VaR, the mean violation decreases

by $246.2 millions and $156.2 millions respectively. In comparison with the SV-VaR, the

mean of violations increases by almost $48.3 millions, which means that the SV-VaR

performs better than the JD VaR in the case of JP Morgan.
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Table (5-8)
JD VaR Violation Statistics Compared with Banks’ VaR, GBM VaR and SV-VaR, for The Banks that Have Violations
(Means of Violations in Absolute Value)

Bank
No. of

Violations
in JD VaR

JD VaR
Mean(1)

Size of
Violations
(test-stat)(2)

Max JD
VaR

Violation
(Millions)

Mean
Violation

Compared
with Bank

VaR(3)

(test-stat) (4)

Mean
Violation

Compared
with GBM

VaR(5)

(test-stat) (6)

Mean
Violation

Compared
with SV-

VaR(7)

(test-stat) (8)

Bank of
America

2 275.59***
(2.92)

464.36 -45.32
(-0.26)

-49.80
(-0.26)

-6.70
(-0.04)

Bankers
Trust

2 177.04***
(10.35)

211.25 63.43
(0.81)

-12.70
(-0.14)

-12.91
(-0.34)

JP Morgan
Chase & Co.

1 77.86 77.86 -264.20***
(-4.03)

-156.23 48.26

(1) The absolute mean of JD VaR violations.
(2) H0: The absolute Mean SV- VaR =0.
(3) Absolute mean of JD VaR minus absolute mean of Banks’ VaR.
(4) H0: The difference between the mean of absolute JD VaR and the mean of absolute banks’ VaR is zero.
(5) Absolute mean of JD VaR minus absolute mean of GBM VaR.
(6) H0: The difference between the mean absolute JD-VaR and the mean absolute GBM VaR is zero.
(7) Absolute mean of JD VaR minus absolute value of SV-VaR.
(8) H0: The difference between the mean absolute JD-VaR and the mean absolute SV-VaR is zero
(9) *** significant at 1% , ** significant at 5% and * is significant at 10%.
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5.2.3 Stochastic Volatility-Jump Diffusion Based VaR Model (SVJ VaR)

This model combines both stochastic volatility and jump diffusion processes to

obtain the maximum tail thickness of the P&L distribution. Accordingly, with this

stochastic volatility jump diffusion process we expected to find VaR estimates that

exceed SV-VaR estimates and JD VaR estimates. Table A-4 does not show a lot of

significant numbers that relate to the stochastic volatility, jump sizes and jump intensities

(ρ, ηu, ηd and λ u, λd). This may be because of the short period of the estimation.

However, as mentioned earlier (in chapter 2) many of the studies find that both jumps and

stochastic volatility are significant in financial data in general.

 The estimated parameters in the table A-4 are used to estimate α parameter

through equation 4–5. 184 stochastic volatility-jump diffusion based VaR (SVJ VaR) are

calculated for the six banks during the period 1995:Q1 – 2002:Q3. Figure 5-7 plots the

SVJ VaR estimates as an upper and lower bounds for unexpected trading revenues for the

six banks in the sample.  As in figures 5-5 and 5-6 belongs to the SV-VaR and JD VaR

respectively, some issues can be distinguished from figure 5-7 if it is compared with

GBM VaR and disclosed banks’ VaR in one hand or the SV-VaR and the JD VaR on the

other hand.

The first issue is that number of violations under the SVJ VaR is less than the

number of violations under banks’ VaR and GBM VaR and this is very obvious.   In spite

that figure 5-7 looks like figures 5-5 and 5-6, but we can see that the one violation that

appears under the SV-VaR and the JD VaR in JP Morgan has disappears under the SVJ

VaR.  Accordingly, we have two violations in each of Bank of America and Bankers
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Trust. Even one of the violations in Bank of America is very small that even hard to

recognize from the figure. An immediate result that can we deduce from figure 5-7 is that

the SVJ VaR improves over both the SV-VaR and the JD VaR, especially in case of JP

Morgan Chase.

Table 5-9 below addresses the differences in the average between SVJ VaR

estimates in one hand, and the banks’ VaR estimates, GBM VaR, SV-VaR and JD VaR

estimates. As in table 5-7, the first column in table 5-9 shows the difference between the

mean of SVJ estimate and the 99th percentile of unexpected trading revenues assuming

normality. As mentioned before, negative numbers show that SVJ VaR falls outside the

99th percentile of unexpected trading revenues. Table 5-9 shows that only in one case

(Bankers Trust) the absolute mean of SVJ VaR falls significantly outside the 99th

percentile. Of the other five cases, the mean of SVJ VaR models in 3 banks (Bank of

New York, Bank One and CitiCorp) falls significantly inside the 99th percentile. The

other two cases (Bank of America and JP Morgan Chase) the positive differences

between the absolute mean of SVJ VaR estimates for those banks and the 99th percentile

of unexpected trading revenues are statistically insignificant.

Regarding the mean difference, table 5-9 shows that the mean of SVJ VaR

estimates significantly exceeds the mean of banks’ VaR estimates in four cases (Bank of

America, Bankers Trust, CitiCorp and JP Morgan Chase). On the other hand, the absolute

mean of banks’ VaR exceeds the absolute mean of SVJ VaR in the other two cases, only

the mean for Bank One’s VaR exceeds the SVJ VaR significantly.

The discussions of the SV-VaR and JD VaR shows that both (SV-VaR and JD

VaR) improve significantly over the GBM VaR. The previous analysis shows also that
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Figure (5-7)
Stochastic Volatility Jump VaR Models and Unexpected Trading Revenues, 1995:1-2002:Q3
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both SV-VaR estimates and JD VaR estimates are significantly higher than the GBM

VaR.  Additionally, the violations in terms of size and number decrease significantly with

the inclusion of the stochastic volatility alone or jump diffusion alone into VaR analysis.

Accordingly, we expect to see that the SVJ VaR produces higher estimates compared

with the GBM VaR and that is clear from the table 5-9, where the absolute mean of SVJ

estimates is significantly higher than the mean of GBM VaR estimates in all cases. The

important issue here is whether the inclusion of the mixed stochastic volatility jump

diffusion into VaR analysis improves over the SV-VaR alone and the JD VaR alone.

Table 5-9 shows explicitly that the absolute mean of SVJ VaR estimates is significantly

higher than the absolute mean of SV-VaR and JD VaR estimates in the six banks. With

such results, we become sure that the SVJ VaR utilizes the maximum tail thickness in the

data and produces the highest VaR estimate compared with the SV-VaR and the JD VaR.

In conclusion, we see that the absolute mean of SVJ VaR estimates is

undoubtedly higher than the absolute mean of the GBM VaR, SV-VaR, JD VaR and in

some case (not all) the banks’ own VaR.

Table 5-10 provides the number, the size, the maximum size of violations and the

mean size of violations comparison. Under the case of SVJ VaR, the number of violations

drops significantly. JP Morgan Chase who experienced 8 violations under the Bank’s

own VaR appear now to have no violations under the SVJ VaR. Bank of America and

Bankers Trust are the only banks who still suffer violations under SVJ VaR. The number

of violations does not change it stays two violations, as in the cases of SV-VaR and JD

VaR. However, the mean sizes of violation in those two banks are different though.
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Table (5-9)
SVJ VaR Absolute Mean Differences Compared with Banks’ VaR, GBM VaR, SV-VaR and JD VaR

Bank
Difference from
99 percentile(1)

(test-stat)(2)

SVJ VaR
Mean-Banks’
VaR Mean(3)

(test stats)(4)

SVJ VaR
Mean-GBM
VaR Mean(5)

(test stats)(6)

SVJ VaR
Mean-SV-VaR
VaR Mean(7)

(test stats)(8)

SVJ VaR
Mean JD-VaR
VaR Mean(9)

(test stats)(10)

Bank of
America

23.63
(0.50)

317.68***
(8.35)

159.95***
(11.14)

78.72***
(12.15)

98.04***
(9.93)

Bank of New
York

5.26**
(1.99)

-2.74
(-1.04)

17.37***
(10.77)

6.72***
(10.41)

7.75***
(9.85)

Bankers
Trust

-171.21***
(-7.38)

118.43***
(9.29)

102.17***
(10.07)

31.69***
(3.60)

26.94***
(2.90)

Bank One /
First Chicago

30.03***
(5.78)

-40.20***
(-5.34)

65.41***
(19.94)

43.45***
(17.18)

23.50***
(11.81)

CitiCorp 129.57***
(8.82)

164.02***
(4.88)

307.50***
(27.16)

68.68***
(11.72)

94.80***
(15.41)

JP Morgan
Chase & Co.

135.72
(0.62)

1485.45***
(7.65)

544.21***
(6.73)

266.03***
(4.59)

349.02***
(5.51)

(1) The difference between the mean JD VaR and the 99th percentile of the data assuming normality.
(2) H0: absolute Mean JD VaR minus the absolute 99th percentile equals zero.
(3)  Absolute mean SVJ VaR minus absolute mean Bank’s VaR.
(4) H0: absolute mean difference equals zero.
(5) Absolute mean SVJ VaR minus absolute mean GBM VaR.
(6) H0: absolute mean difference equals zero.
(7) Absolute mean SVJ VaR minus absolute mean SV-VaR.
(8) H0: absolute mean difference equals zero.
(9) Absolute mean SVJ VaR minus absolute mean JD VaR.
(10)  H0: absolute mean difference equals zero.
(11)  *** significant at 1% , ** significant at 5% and * is significant at 10%.
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Numerically speaking, the mean size of violation under the SVJ VaR is less than

the mean size of violation under all comparable VaR models in the table. Only one case

in Bankers Trust appears that the SVJ VaR violation is higher than the Bank’s own VaR

model. Statistically speaking, we could not reject the null hypothesis that the mean size of

violations under the SVJ VaR model is the same as the mean sizes of violations under the

banks’ VaR, GBM VaR, SV-VaR and JD VaR. In JP Morgan Chase where there are no

violations registered under the SVJ VaR we could see one case where a test statistic show

a significant difference from the Bank’s VaR estimate.

If we compare the maximum violations under the SVJ VaR model with the

Bank’s own VaR, the GBM VaR the SV-VaR and the JD VaR respectively in Bank of

America, we find that the maximum violations decrease by $50.0 millions, $83.5

millions, $36.8 millions and $34.6 millions respectively. For Bankers Trust, we see that

the maximum violation under the SVJ VaR decreases by $178.0 millions, $144.4

millions, $44.20 millions and $24.6 millions compared with the Bank’s own VaR, the

GBM VaR, the SV-VaR and the JD VaR respectively. Generally speaking, we find that

the SVJ VaR improves as expected over the SV-VaR and JD VaR estimates.
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Table (5-10)
JD VaR Violation Statistics Compared with Banks’ VaR, GBM VaR, SV-VaR and JD VaR, for The Banks that Have
Violations (Means of Violations in Absolute Value)

Bank
No. of

Violations
in JD VaR

SVJ VaR
Mean(1)

Size of
Violations
(test-stat)(2)

Max SVJ
VaR

Violation
(Millions)

Mean
Violation

Compared
with Bank

VaR(3)

(test-stat) (4)

Mean
Violation

Compared
with GBM

VaR(5)

(test-stat) (6)

Mean
Violation

Compared
with SV-

VaR(7)

(test-stat) (8)

Mean
Violation

Compared
with JD-
VaR(9)

(test-stat) (10)

Bank of
America

2 245.23***
(2.66)

429.74 -75.68
(-0.44)

-80.16
(-0.43)

-37.06
(-0.20)

-30.36
(-0.16)

Bankers
Trust

2 149.32***
(7.99)

186.70 35.71
(0.47)

-40.42
(-0.46)

-40.63
(-1.03)

-27.72
(-0.77)

JP Morgan
Chase & Co.

0 0 0 -342.06***
(-4.13)

-234.09 -29.60 -77.86

(1) The absolute mean of SVJ VaR violations.
(2) H0: The absolute Mean SVJ VaR =0.
(3) Absolute mean of SVJ VaR minus absolute mean of Banks’ VaR.
(4) H0: The difference between the mean absolute SVJ VaR and the mean absolute banks’ VaR is zero.
(5) Absolute mean of SVJ VaR minus absolute mean of GBM VaR.
(6) H0: The difference between the mean absolute SVJ VaR and the mean absolute GBM VaR is zero.
(7) Absolute mean of SVJ VaR minus absolute value of SV-VaR.
(8) H0: The difference between the mean absolute SVJ VaR and the mean absolute SV-VaR is zero.
(9) Absolute mean SVJ VaR minus absolute value of JD VaR.
(10) H0: The difference between the mean absolute SVJ VaR and the mean absolute SV-VaR is zero.
(11)  *** significant at 1%, ** significant at 5% and * is significant at 10%.
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5.2.4 The Non-Affine Stochastic Volatility VaR Models (NASV VaR and

NASVJ VaR)

The basic assumption behind including the non-affine stochastic volatility is the

assumption that volatility updates faster during crashes and collapses of financial

markets. As mentioned earlier, volatility is a crucial factor in constructing VaR estimates.

Faster updating of volatility affects positively VaR estimates, Hull and White (1998b).

This section deals basically with two VaR models developed in this dissertation; the non-

affine stochastic volatility VaR model and the non-affine stochastic volatility jump

diffusion VaR model. The later model considered the general model that compromises all

other VaR models developed in chapter four as special cases.

As mentioned above, the inclusion of non-affine stochastic volatility would lead

to higher VaR estimate because volatility updates according to non-affine specification

rather than the square root assumption that usually adopted. The basic parameter that

controls this faster updating is γ in equation 4-1. Tables A-5 and A-6 give estimation for γ

in equations 4-55 and 4-1 respectively. The basic assumption for non-affine stochastic

volatility is that γ should be significantly greater than one. However, actual data did not

give significant indication for that.

 The estimated parameters in the tables A-5 and A-6 are used to estimate α

parameter through equation 4–5 with the characteristic functions of those processes as

shown in equations 4-18, 4-37, 4-43, 4-56 and 4-57. By calculating α for the NASV and

NASVJ we could calculate 184 non-affine stochastic volatility based VaR (NASV VaR)

and 184 non-affine stochastic volatility with jump based VaR (NASVJ VaR) for the six

banks during the period 1995:Q1 – 2002:Q3. Figures 5-8 and 5-9 plot the NASV VaR
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and the NASVJ VaR estimates respectively as an upper and lower bounds for unexpected

trading revenues for the six banks in the sample. Actually, the analysis should focus here

on how the NASV VaR improves over the SV-VaR and how the NASVJ VaR improves

over SVJ VaR.

If figure 5-8 compared with figure 5-5 and figure 5-9 compared with figure 5-7

we should note that VaR estimates in 5-8 and 5-9 are higher and may be more volatile

compared with VaR estimates in figure 5-5 and 5-7 respectively. This is because of the

faster updating in volatility assumption. If we compare figure 5-8 with figure 5-5 that

belongs to the SV-VaR we will find that the only one violation in JP Morgan that appears

under the SV-VaR is vanished under the NASVJ. This explicitly means that the non-

affine stochastic volatility has improved over the square root (affine) stochastic volatility.

The matter is less obvious for figures5-9 and 5-7. But in all cases, VaR estimates in

figure 5-9 (NASVJ VaR) should be at least as much as VaR estimates in figure 5-7

(NASV VaR).

As mentioned above the comparison between SVJ VaR and NASVJ VaR

is less obvious because they have the same number of violations in each bank. As figures

5-8 and 5-9 show, Bank of America and Bankers Trust are the only banks that still have

violations under the NASV VaR and NASVJ VaR. As we noted before those banks still

have the same number of violations as under the SVJ VaR which is two violations in each

bank. However, as indicated below (table 5-12), even with the same number of violations

in those two banks, the mean sizes of violations and the maximum violation sizes are not

the same, at least numerically.
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Figure (5-8)
Non-Affine Stochastic Volatility with Jump VaR and Unexpected Trading Revenues, 1995:Q1-2002: Q3
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Figure (5-9)
Non-Affine Stochastic Volatility with Jump VaR and Unexpected Trading Revenues, 1995:Q1-2002: Q3
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Table 5-11 below addresses the effect of including the non-affine volatility

component in the SV-VaR and the SVJ VaR. The table below compared the means of

NASV VaR and NASVJ VaR estimates with the means of SV-VaR and SVJ VaR

estimates. As in previous tables, the first two columns in table 5-11 show the differences

between the means of the NASV and NASVJ estimates and the 99th percentile of

unexpected trading revenues assuming normality. Negative numbers show that those VaR

means falls outside the 99th percentile of unexpected trading revenues.

To get sense of the effect of non-affine stochastic volatility, the best way is to

compare the first column of table 5-11 with the first column of table 5-6, and the second

column of table 5-11 with the first column of table 5-9. The first column in table 5-11

indicates that there are three banks fall inside the 99th percentile under the NASV VaR,

two of them significantly fall inside this percentile. This is one improvement over the SV

VaR where only the mean of SV-VaR in CitiCorp falls inside the 99th percentile.

Additionally, some of the banks that significantly fall outside the 99th percentile are no

longer significant under the NASV. The picture is also clearer with the NASVJ VaR

model, where the mean of NASVJ VaR for 5 banks (Bankers Trust is the only exclusion)

is now significantly fall inside the 99th percentile compared with only 3 banks that are

significantly falling within the 99th percentile under the SVJ VaR.

Table 5-11 also gives another avenue to see how the non-affine structure increases

VaR estimates through comparing the means of VaR estimates with and without the non-

affine stochastic component. The third and fifth columns in table 5-11 explore more the

effect of the non-affine structure of stochastic volatility on VaR estimates. In those
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Table (5-11)
NASV VaR and NASVJ VaR Absolute Mean Differences Compared with SV-VaR, and SVJ VaR.

Bank
Mean NASV

VaR
Difference
from  99

percentile(1)

(test-stat)(2)

Mean
NASVJ VaR
Difference
from  99

percentile(3)

(test-stat)(4)

NASV VaR
Mean Minus
SV- VaR
Mean(5)

(test stats)(6)

NASV VaR
Mean Minus
SVJ VaR
Mean(7)

(test stats)(6)

NASVJ VaR
Mean Minus

SVJ VaR
Mean(8)

(test stats)(6)

NASVJ VaR
Mean Minus
NASV VaR

Mean(9)

(test stats)(6)

Bank of
America

-20.88
(-0.47)

91.12**
(1.71)

34.22**
(12.91)

-44.51
(-13.84)

67.49***
(9.494)

112.00***
(11.06)

Bank of New
York

1.95
(0.81)

9.19***
(3.10)

3.42**
(22.84)

-3.31***
(-13.41)

3.93***
(16.55)

7.24***
(5.34)

Bankers
Trust

-189.12***
(-7.89)

-153.71***
(-6.82)

13.67*
(1.52)

-18.02**
(-1.99)

17.50***
(3.87)

35.52***
(6.56)

Bank One /
First Chicago

19.51***
(4.67)

43.58***
(7.60)

32.93***
(18.11)

-10.52***
(-6.14)

13.55***
(7.25)

24.06***
(10.55)

CitiCorp 89.35***
(6.44)

184.93***
(11.58)

28.46***
(5.84)

-40.2***
(-6.86)

55.37***
(8.11)

95.58***
(12.63)

JP Morgan
Chase & Co.

-18.88
(0.09)

325.55*
(1.35)

111.43**
(2.25)

-154.60***
(-2.87)

189.83***
(3.11)

344.4343***
(5.12)

(1) The difference between the mean NASV VaR and the 99th percentile of the data assuming normality.
(2) H0: the absolute mean of NASV VaR minus the absolute 99th percentile equals zero.
(3) The difference between the mean NASVJ VaR and the 99th percentile of the data assuming normality.
(4) H0: the absolute mean of NASVJ VaR minus the absolute 99th percentile equals zero.
(5) Absolute mean of NASV VaR minus absolute mean of SV-VaR.
(6) H0: absolute mean difference equals zero.
(7) Absolute mean of NASV VaR minus absolute mean of SVJ VaR.
(8) Absolute mean of NASVJ VaR minus absolute mean of SVJ VaR.
(9) Absolute mean of NASVJ VaR minus absolute mean of NASV VaR.
(10)  *** significant at 1%, ** significant at 5% and * is significant at 10%.
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two columns the mean of NASV VaR and NASVJ VaR estimates are compared with the

means of SV-VaR and SVJ VaR estimates respectively. As mentioned before positive

values imply that the absolute means of NASV VaR and NASVJ VaR estimates are

higher than the absolute means of SV-VaR and SVJ VaR estimates respectively. Easily,

we can see that the means of NASV VaR and NASVJ VaR exceed significantly the

means of SV-VaR and SVJ VaR respectively in all banks included in the sample. Those

results are undoubtedly emphasizes the role of the non-affine structure of stochastic

volatility in improving VaR results.

Columns 4 and 6 in the table compare the effect of non-affine structure of

stochastic volatility with the jump component. The non-affine structure of volatility and

the assumed jump diffusion of trading revenues both improve the estimate of VaR

measures. Although those two components have the same effect on VaR, the source of

increment to VaR is different under each of those components. Non-affine stochastic

volatility increases VaR because it gives higher estimate of volatility that affects VaR

positively. The jump diffusion affects VaR estimate on the other hand, by contributing to

the tail thickness of the distribution, which is the core idea of VaR estimates.

Table 5-11 shows that the jump diffusion assumption contributes more in

increasing VaR estimates.  Column 4 shows in all cases that the absolute mean of NASV

VaR is significantly less that the absolute mean of SVJ VaR. On the other hand, column 6

indicates that the absolute mean of the NASVJ VaR is significantly higher than the

absolute mean of the NASV VaR. This means that VaR models that include jump

structures have significantly higher mean than VaR models that include the non-affine

structure. However, we need to be careful here, not to conclude that jump diffusion
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contributes to (distribution’s tail thickness) and hence VaR more than what stochastic

volatility (the other distribution’s tail thickness source) contributes. The conclusion here

is that the jump as a tail thickness source contributes to VaR estimates more than the non-

affine structure which is volatility increasing source (rather than a tail thickness source).

Table 5-12 below explores the effect of the non-affine stochastic structure through

changes in the violation sizes.  The table provides the number of violations, the mean size

of violations and the difference in the mean size of violations between the NASV VaR

and NASVJ VaR in one side and the SV-VaR and the SVJ VaR in the other side.

As mentioned above, under the NASV VaR, SVJ VaR, and NASVJ VaR, Bank of

America and Bankers Trust witness two violations in each bank. In addition to those two

banks, JP Morgan Chase (excluded from table 5-12) witnesses one violation under SV-

VaR which directly give the sense that NASV VaR perform better than SV-VaR in

binding banks’ losses.

The first issue that we see from table 5-12 is that the mean violation under

the NASVJ VaR is less than the mean violations under the NASV VaR. This means that

jumps improve VaR estimates better than the non-affine structure. However, as the last

column in the table shows, those differences in violations’ mean are statistically

insignificant.

On the other hand, we can see that the inclusion of the non-affine structure

to the stochastic volatility reduces the mean size of violations in the NASV VaR and

NASVJ VaR compared with the SV-VaR and SVJ-VaR, only numerically. If we check

for how significant those difference in the mean of violations under those different VaR

models, we find that non-of those differences is significant. The same is applicable to the
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Table (5-12)
NASV VaR and NASVJ Violation Statistics Compared with SV-VaR and SVJ VaR, for The Banks that Have Violations under
the NASV and NASVJ VaRs, (Means of Violations in Absolute Value)

Bank
No. of

Violation
s in

NASV
VaR

NASV
VaR

Mean(1)

Size of
Violations

(test-
stat)(2)

No. of
Violation

s in
NASVJ

VaR

NASVJ
VaR

Mean(3)

Size of
Violations

(test-
stat)(4)

NASV
Violation

Minus
SV-

VaR(5)

(test-stat)
(6)

NASV
Violation

Minus
SVJ

VaR(7)

(test-stat)
(8)

NASVJ
Violation

Minus
SVJ-

VaR(9)

(test-stat)
(10)

NASVJ
Violation

Minus
NASV
VaR(11)

(test-stat) (12)

Bank of
America

2 263.94
***

(2.86)

2 213.60***
(2.35)

-18.34
(-0.10)

18.71
(0.10)

-31.63
(-0.17)

-50.34
(-0.28)

Bankers
Trust

2 164.55
***

(8.17)

2 140.38***
(7.44)

-25.40
(-0.63)

15.23
(0.39)

-8.93
(-0.24)

-24.17
(-0.62)

(1) The absolute mean of NASV VaR violations.
(2) H0: The absolute Mean NASV VaR =0.
(3) The absolute mean of NASVJ VaR violations.
(4) H0: The absolute Mean NASVJ VaR =0.
(5) Absolute mean NASV VaR minus absolute mean of SV-VaR.
(6) H0: The difference between the mean absolute NASV VaR and the mean absolute SV-VaR is zero.
(7) Absolute mean NASV VaR minus absolute mean of SVJ VaR.
(8) H0: The difference between the mean absolute NASV VaR and the absolute mean SVJ VaR is zero.
(9) Absolute mean NASVJ VaR minus absolute value of SVJ VaR.
(10) H0: The difference between the mean absolute NASVJ VaR and the absolute mean SVJ VaR is zero.
(11) Absolute mean NASVJ VaR minus absolute mean of NASV.
(12) H0: The difference between the mean absolute NASVJ VaR and the absolute mean NASV VaR is zero.
(13)  *** significant at 1% , ** significant at 5% and * is significant at 10%.
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comparisons of jump component and non-affine structure that shows that mean

violations are less under VaR models that include jumps. However, as mentioned before,

those differences are statistically insignificant.

Comparing the maximum violations under the NASV VaR and NASVJ VaR

models with the SV VaR and SVJ VaR models respectively should give clearer picture.

In case of Bank of America, the maximum violation under NASV VaR decreases by

$18.0 millions compared with SV VaR, and increases by $18. 8 millions compared with

SVJ VaR. The same direction of changing in the maximum violation appears in Bankers

Trust, where the maximum violation decreases under the NASV VaR by $26.1 compared

with the SV-VaR and increases by $18.1 millions compared with the SVJ VaR.

The maximum violation under the NASVJ VaR in Bank of America decreases by

$34.1 millions compared with the maximum violation under the SVJ VaR, but it

decreases by almost $53 millions compared with the NASV VaR. The same trend in

changing maximum VaR violation is noticed in Bankers Trust, where the maximum

violation under NASVJ VaR decreases by $8.6 millions compared with the SVJ VaR and

by more than triple of this amount, under the NASV VaR.

All of the above results in this section indicate that the inclusion of the non-affine

structure to the volatility improves VaR estimates compared with the affine square root

structure of volatility. But the inclusion of jump diffusion has more significant impact on

VaR estimation, since jumps affect directly tail thickness of the distribution and hence

VaR estimate, whereas the non-affine structure affects volatility magnitude which also

affect VaR positively.
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5.3. Conclusion

The empirical investigation and estimation of the proposed VaR models on this

dissertation through applying it to the data sample yields the following conclusions:

1- As Assumed, the stochastic volatility and jump models, as two sources of tail

thickness of the distribution, could produce higher estimates for VaR.  VaR

estimates under the stochastic volatility and jump diffusion model appear to

be significantly higher than the GBM VaR estimate (the plain vanilla VaR

model) almost in all cases.

2- The inclusion of both stochastic volatility and jumps in VaR estimate could

improve the estimate of VaR compared with the VaR models that include the

stochastic volatility alone or the jump diffusion alone. This could be a way to

prove that stochastic volatility and jumps are tail thickness sources in financial

data as many theoretical and empirical studies show.

3- The results of comparisons of SV-VaR model and JD VaR model give some

how mixed results. In some cases the SV-VaR estimates appeared to be

higher, in other cases, JD VaR estimates to be higher. The general impression

might be that the SV gives higher VaR estimates compared with jump

diffusion models. However, this conclusion can not be distinctive because

volatility varying it self could produce higher levels of volatility and hence

higher VaR estimate.

4- Non–affine component of stochastic volatility seems also to improve VaR

estimates. This is because of the faster updating of volatility that might

produce higher volatility levels and hence higher VaR estimates. In spite the
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fact that the non-affine structure improves VaR estimates, it has contributes

less compared with jumps that affect the tail thickness rather than volatility as

in the case of the non-affine structure. Researches should explore more the

non-affine structure of stochastic volatility in finance literature.  The non-

affine structure appears to be very suitable in modeling volatility during

collapses and crashes where volatility updates vary fast. Thus I think that

finance people should focus of such volatility models.

5- VaR models developed in this dissertation could produce VaR estimate closer

to the actual unexpected trading revenues of the banks in the sample. The

number of violations and the sizes of violation decreased significantly under

the proposed VaR models, which means that the proposed VaR models could

bind the actual bank losses better than the banks’ VaR in some cases.

Generally speaking that NASVJ VaR produced the highest VaR estimates

among all the proposed models, and of course the GBM VaR produces the

lowest. The second highest VaR estimate comes with the association of

stochastic volatility with jumps, the NASV VaR model produces roughly the

third highest VaR estimate.

6- All the developed VaR models fail to bind the losses for two banks, Bank of

America and Bankers Trust during the late 1997 and 1998, in spite that the

sizes of violations decrease noticeably under the proposed models.

7- Some banks appear to have very low and conservative VaR estimates that is

even less that the GBM VaR, others have relatively higher VaR estimates that

exceeds the estimates of all proposed models. The banks with conservative
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VaR estimates witnesses more frequent violation (losses went beyond VaR)

during the analysis period. On the other hand Banks with high VaR estimates

do not suffer any violations of its models during the analysis period.
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APPENDIXES

Parameter Estimate of the Processes

Table (A-1)
Parameter Estimate for GBM Model*

Bank Obs.
No.

µ
(S. E)

v
(S. E)

Bank of America 94:Q1-02:Q3
35

-0.093
(0.096)

4.397
(2.462)

Bank of New York 94:Q1-02:Q3
35

0.030
(0.044)

0.063
(0.048)

Bankers Trust 94,Q1-02,Q1
33

0.119
(0.103)

2.927
(2.722)

Bank One/First
Chicago

94:Q1-02:Q3
35

0.422
(0.641)

2.653
(0.966)

CitiCorp 94:Q1-02:Q3
35

1.083
(0.848)

2.256
(2.033)

JP Morgan Chase 94:Q1-02:Q3
35

0.743
(1.006)

6.726
(3.328)

* Estimate parameters numbers are multiplied by 1000.
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Table (A-2)
Parameter Estimate for Stochastic Volatility Model*

Bank Obs.
No.

µ
(S. E)

σ
(S. E)

θ
(S. E)

κ
(S. E)

ρ
(S. E)

Bank of America 94:Q1-02:Q3
35

-0.071
(0.041)

4.757
(3.661)

0.067
(0.116)

0.277
(0.198)

-0.678
(0.031)

Bank of New York 94:Q1-02:Q3
35

0.052
(0.022)

1.199
(0.865)

0.031
(0.062)

0.135
(0.287)

-0.433
(0.389)

Bankers Trust 94,Q1-02,Q1
33

0.131
(0.018)

3.227
(2.143)

0.011
(0.006)

0.136
(0.251)

-0.586
(0.198)

Bank One/First
Chicago

94:Q1-02:Q3
35

0.575
(0.284)

2.258
(1.061)

0.020
(0.012)

0.217
(0.189)

0.201
(0.236)

CitiCorp 94:Q1-02:Q3
35

0.972
(0.664)

4.127
(4.054)

0.051
(0.053)

0.566
(0.611)

-0.489
(0.277)

JP Morgan Chase 94:Q1-02:Q3
35

0.883
(0.755)

9.935
(5.217)

0.184
(0.058)

0.693
(0.469)

0.266
(0.432)

* Estimate parameters numbers are multiplied by 1000 except for the correlation coefficient ρ.
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Table (A-3)
Parameter Estimate for Jump-Diffusion Model*

Bank Obs.
No.

µ
(S. E)

σ
(S. E)

η u
(S. E)

λ u
(S. E)

η d
(S. E)

λd
(S. E)

Bank of America 94:Q1-02:Q3
35

-0.089
(0.058)

4.397
(2.462)

0.008
(0.013)

1.231
(1.385)

0.041
(0.016)

2.016
(0.953)

Bank of New York 94:Q1-02:Q3
35

0.028
(0.026)

0.063
(0.048)

0.012
(0.009)

0.882
(0.241)

0.074
(0.058)

1.284
(0.691)

Bankers Trust 94,Q1-02,Q1
33

0.114
(0.094)

2.927
(2.722)

0.024
(0.016)

0.632
(0.915)

0.088
(0.060)

0.944
(0.830)

Bank One/First
Chicago

94:Q1-02:Q3
35

0.399
(0.422)

2.653
(0.966)

0.031
(0.029)

0.446
(1.125)

0.053
(0.044)

1.373
(1.521)

CitiCorp 94:Q1-02:Q3
35

1.001
(0.766)

2.256
(2.033)

0.017
(0.019)

0.523
(0.213)

0.080
(0.076)

2.026
(3.115)

JP Morgan Chase 94:Q1-02:Q3
35

0.684
(0.953)

6.726
(4.428)

0.048
(0.011)

0.961
(0.807)

0.082
(0.107)

1.363
(2.171)

* Estimate parameters numbers are multiplied by 1000.

)(]1)[exp()(]1)[exp(           , ddduuutP
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P
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Table (A-4)
Parameter Estimate for Stochastic Volatility, Jump-Diffusion Model*

Bank µ
(S. E)

κ
(S. E)

θ
(S. E)

σ
(S. E)

ρ
(S. E)

η u
(S. E)

λ u
(S. E)

η d
(S. E)

λd
(S. E)

Bank of
America

-0.112
(0.096)

0.213
(0.209)

0.061
(0.108)

4.625
(4.326)

-0.241
(0.017)

0.010
(0.004)

1.046
(1.247)

0.040
(0.017)

2.008
(1.628)

Bank of New
York

0.064
(0.059)

0.213
(0.215)

0.024
(0.058)

1.031
(0.847)

-0.131
(0.243)

0.011
(0.013)

0.625
(0.323)

0.055
(0.141)

1.310
(0.991)

Bankers
Trust

0.162
(0.133)

0.331
(0.624)

0.020
(0.018)

2.773
(2.554)

-0.201
(0.137)

0.026
(0.014)

0.547
(0.857)

0.076
(0.058)

0.874
(0.602)

Bank One 0.690
(0.333)

0.219
(0.128)

0.012
(0.027)

3.055
(2.136)

0.009
(0.012)

0.038
(0.211)

1.224
(1.264)

0.044
(0.056)

1.879
(1.488)

CitiCorp 0.948
(0.739)

0.486
(0.441)

0.048
(0.055)

4.008
(4.106)

-0.163
(0.236)

0.019
(0.027)

0.511
(0.384)

0.065
(0.153)

2.166
(3.045)

JP Morgan
Chase

0.944
(0.962)

0.681
(0.545)

0.167
(0.096)

7.328
(4.619)

0.113
(0.362)

0.054
(0.023)

0.755
(0.821)

0.096
(0.367)

1.328
(2.112)

* Estimate parameters numbers are multiplied by 1000 except for ρ.

)(]1)[exp()(]1)[exp(, ddduuutPt
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Table (A-5)
Parameter Estimate for Non-affine Stochastic Volatility Model*

Bank Obs.
No.

µ
(S. E)

κ
(S. E)

θ
(S. E)

σ
(S. E)

γ
(S.E)

ρ
(S. E)

Bank of America 94:Q1-02:Q3
35

-0.073
(0.054)

0.258
(0.164)

0.061
(0.135)

3.696
(2.931)

1.128
(0.489)

-0.531
(0.631)

Bank of New York 94:Q1-02:Q3
35

0.048
(0.020)

0.104
(0.221)

0.022
(0.056)

1.125
(0.743)

1.101
(0.662)

-0.504
(0.326)

Bankers Trust 94,Q1-02,Q1
33

0.127
(0.011)

0.122
(0.230)

0.005
(0.002)

2.883
(1.938)

2.370
(2.602)

-0.311
(0.166)

Bank One/First Chicago 94:Q1-02:Q3
35

0.516
(0.291)

0.187
(0.111)

0.016
(0.011)

2.161
(0.967)

1.991
(0.438)

0.124
(0.212)

CitiCorp 94:Q1-02:Q3
35

0.899
(0.618)

0.511
(0.586)

0.049
(0.050)

3.814
(3.610)

1.583
(1.714)

-0.367
(0.463)

JP Morgan Chase 94:Q1-02:Q3
35

0.857
(0.671)

0.644
(0.407)

0.167
(0.066)

9.278
(6.681)

1.335
(0.932)

0.217
(0.292)

* Estimate parameters numbers are multiplied by 1000 except for γ and ρ.
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Table (A-6)
Parameter Estimate for Non-affine Stochastic Volatility, Jump-Diffusion Model*

Bank µ
(S. E)

κ
(S. E)

θ
(S. E)

σ
(S. E)

ρ
(S. E)

γ
(S.E)

η u
(S. E)

λ u
(S. E)

η d
(S. E)

λd
(S. E)

Bank of
America

-0.136
(0.110)

0.256
(0.241)

0.060
(0.041)

4.414
(4.228)

-0.451
(0.026)

1.116
(1.454)

0.017
(0.108)

1.112
(1.004)

0.039
(0.018)

2.354
(1.929)

Bank of New
York

0.098
(0.072)

0.300
(0.143)

0.027
(0.050)

1.102
(0.832)

-0.201
(0.252)

1.646
(2.088)

0.016
(0.064)

0.852
(0.428)

0.031
(0.019)

1.564
(1.352)

Bankers Trust 0.221
(0.151)

0.414
(0.802)

0.023
(0.020)

2.728
(2.623)

-0.338
(0.325)

1.626
(1.021)

0.023
(0.113)

0.544
(0.818)

0.069
(0.065)

0.885
(0.618)

Bank One/First
Chicago

0.711
(0.328)

0.288
(0.155)

0.017
(0.024)

3.221
(2.432)

0.014
(0.018)

1.868
(0.324)

0.029
(0.109)

1.381
(1.098)

0.071
(0.039)

1.924
(1.631)

CitiCorp 0.955
(0.689)

0.499
(0.442)

0.042
(0.054)

4.057
(4.326)

-0.231
(0.182)

1.479
(2.700)

0.034
(0.025)

0.771
(0.828)

0.045
(0.043)

1.968
(2.102)

JP Morgan
Chase

0.858
(0.822)

0.573
(0.474)

0.18
(0.091)

6.581
(4.588)

0.116
(0.069)

1.311
(1.698)

0.041
(0.022)

0.722
(0.686)

0.073
(0.047)

1.753
(2.277)

* Estimate parameters numbers are multiplied by 1000 except for γ and ρ.
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