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ABSTRACT 

 

 

A planing catamaran is a high-powered, twin-hull water craft that develops the lift 

which supports its weight, primarily through hydrodynamic water pressure. Presently, 

there is increasing demand to further develop the catamaran’s planing and seakeeping 

characteristics so that it is more effectively applied in today’s modern military and 

pleasure craft, and offshore industry supply vessels. 

Over the course of the past ten years, Vorus (1994,1996,1998,2000) has 

systematically conducted a series of research works on planing craft hydrodynamics. 

Based on Vorus’ planing monohull theory, he has developed and implemented a first 

order nonlinear model for planing catamarans, embodied in the computer code CatSea. 

This model is currently applied in planing catamaran design. However, due to the greater 

complexity of the catamaran flow physics relative to the monohull, Vorus's (first order) 

catamaran model implemented some important approximations and simplifications  

which were not considered necessary in the monohull work. 

The research of this thesis is for relieving the initially implemented 

approximations in Vorus's first order planing catamaran theory, and further developing 

and extending the theory and application beyond that currently in use in CatSea. This has 

been achieved through a detailed theoretical analysis, algorithm development, and careful 

coding. 
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 The research result is a new, complete second order nonlinear hydrodynamic 

theory for planing catamarans. A detailed numerical comparison of the Vorus’s first order 

nonlinear theory and the second order nonlinear theory developed here is carried out. The 

second order nonlinear theory and algorithms have been incorporated into a new 

catamaran design code (NewCat). A detailed mathematical formulation of the base first 

order CatSea theory, followed by the extended second order theory, is completely 

documented in this thesis. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Planing Craft 

 

A planing boat, typically either a monohull or catamaran, is a high powered 

water-craft that develops the necessary lifting forces which support its weight primarily 

through hydrodynamic water pressure. This hydrodynamic lifting of a planing craft is 

different from that of a displacement type of vessel, which is supported primarily by 

hydrostatic pressure.  

In order for the planing craft to develop the necessary dynamic lift, its speed must 

be high, and the geometric shape of the wetted regions of the hull must be properly 

configured. When properly configured the hull geometry has a declining deadrise angle 

from bow to stern. A typical planing craft has a hard chine, and may have both 

longitudinal and transverse steps at intermediate positions over the wetted region. The 

planing craft is typically run with a small bow-up trim or attack angle. This attack angle, 

along with the hull geometry, results in the development of high pressure on the bottom 

surface, which lifts the hull, thereby reducing the wetted surface, and hence reducing the 

vessel resistance.  
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For a displacement-type vessel, there is no significant difference between the 

drafts at the running state ( 0≠U ) and at the static state ( 0=U ). However, there is a 

large difference for planing craft. The change in the planing craft’s draft, trim angle, and 

wetted length, are directly related to the craft’s forward velocity and hull geometry.  This 

relationship is highly nonlinear.  

As the planing craft speed increases the hydrodynamic pressure on the bottom 

increases.  The high-pressured water in the displaced volume is forced from under the 

boat in the form of a high-speed jet of water. The pressure differential at the water 

boundary creates what is commonly known as a spray jet. The water in the jet-head 

region, with its high pressure p , generates the spray when it meets the air at the nominal 

atmospheric pressure ap .  Associated with it is a loss of energy, and hence a drag or 

resistance. The jet processes are special processes associated with planing crafts. The 

typical characteristics of a planing craft can be characterized as "small volume, light 

displacement, and high speed".  Thus there are many application areas for planing craft. 

Presently there is an increasing demand for planing monohulls and catamarans 

within the offshore industry. They offer important commercial applications, such as high 

speed and low cost support to the supply operations of the oil industry. This low cost but 

high-speed support is becoming increasingly important as oil production moves into the 

deep-sea area where the high cost of large-scale helicopter operations becomes 

prohibitive.  

The military’s need for high-speed craft is also increasing. In many cases, in spite 

of bad sea conditions, military craft must run at maximum attainable speed to meet 

mission requirements. Therefore, the quantification of seakeeping performance of a 
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planing craft in a seaway is a new challenge that is being pressed on to the Naval 

Architects of today. 

 

1.2 Background on Theoretical Planing Research 

 

Steady, calm water, planing and seakeeping dynamics are the primary 

performance modes that planing craft designers need to consider. However, until very 

recently, the development of the hydrodynamic theory that will support design studies 

has been virtually nonexistent.  

The planing hydrodynamics problem can be classified into three categories 

according to the physics of interest as  

(1) cylinder impact (as in a drop-test);  

(2) steady forward speed in calm water; 

(3)  impact with forward speed in a seaway.  

Each of these problems has its unique characteristics. In the cylinder impact 

problem, there only exists a vertical downward impact velocity. In the steady planing 

problem, there exists a forward speed without a downward impact velocity. In the 

seakeeping case, there exists a forward ship speed and also a downward impact velocity. 

Since in a non-dimensional form the spatial variable x  and the time variable τ  are 

identical (refer to Eq.(1.2)), the solution to the impact problem can be simply used to deal 

with the steady planing problem via slender body theory. 
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Planing hydrodynamic research can also be classified according to craft geometry 

as: 

 (1) Monohull planing hydrodynamics;  

  (2) Catamaran planing hydrodynamics.  

The theoretical and numerical difficulties in solving planing hydrodynamics 

problems are listed as the following:  

(1) Physical flow complexity via the extreme nonlinearity makes the 

hydrodynamic processes difficult to model. For example, the processes of impact into the 

water, extraction from the water, and the jet head detachment as well as reattachment, 

etc., are all complications for modeling;  

(2) The high-speed jet, or water spray, generated in planing is a limiting difficulty. 

For example, in a typical mono-hull steady planing problem, the jet head length may be 

on the order of 0079.000063.0 −=−=∆ cb zzb  as fractions of half-beam (Vorus, 1996), 

depending largely on section deadrise angle. The length is so small and the flow speed is 

so high in this region that it requires small element lengths and extremely high numerical 

accuracy. For instance, Zhao & Faltinsen (1993,1996), in an example of water impact 

with a simple symmetrical semi-infinite wedge-cylinder section, used an element length 

on the order of 1810−  of half beam for their numerical computation.            

(3) Another difficult issue is that the location of the jet-head in the chine-unwetted 

flow is not known in advance; the unknown flow boundary developing with time makes 

the problem virtually impossible to compute using available CFD methods.  

Theoretical research on steady planing dates back to the early of 1930's. The 

pioneering work was von Karman's (1929) impact analysis of seaplane landing, and 
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Wagner's (1932) flat-plate model for investigation of water-entry problems. Over the past 

seventy years, there has been a large amount of published research, not all of which can 

be cited herein due to the limitations of this thesis. Instead, only those papers that relate 

directly to the focus of this research will be cited.  

In the majority of the past research efforts, due to the inherent difficulties in flow 

physics cited above, planing problems have been approximately solved by applying the 

basic assumptions of zero-gravity, zero-viscosity and zero-compressibility. Some 

examples of these approaches via 2-D impact solution and slender body theory are 

Tulin(1957), Cointe (1989,1991), Zhao & Faltinsen (1993,1996), Vorus (1996),  Kim, 

Vorus, and Troesch (1996), Zhao et al (1997), Savander(1997), Royce and Vorus(1998), 

Xu, Troesch, and Vorus (1998), Breslin (2000), Vorus & Royce (2000), Judge (2001), 

and Royce (2001). Lai & Troesch (1995,1996), performed a 3-D lifting surface solution 

for planing but it relied on 2-D/SBT predictions (Vorus(1996)) for the position of the jet-

head boundary. 

The papers cited above all deal with the steady planing of monohulls. Theoretical 

research on catamaran steady planing hydrodynamics, and on the seakeeping 

performance of planing, in general, is nearly blank, existing only a few rather crude 

methods (Zarnick(1978), Payne(1990), Payne(1995), and Akers et al (2000)) which are 

found not to be sensitive enough to geometric detail to provide reliable design guidance. 

The first work leading to the modern approach to planing, beyond that of von 

Karman(1929) and Wagner(1932), was Tulin (1957). Here "strip theory", in the context 

of slender body theory, was applied to steady, calm-water mono-hull planing. Tulin's 

success was due to the use of slender body theory to study three-dimensional planing in 
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terms of two-dimensional (impact) flow in cross-flow planes. He gives the jet velocity 

and spray area length ε , the pattern of stream lines, dynamic lift, spray drag and induced 

drag expressions. The drawback of this paper is that his model is too highly simplified to 

use in practical design. Tulin's development is for a delta-plan form and the jet-head is 

assumed to lie along its edges, or the chine.  Thus, it is a fully "chine-wetted" flow, which 

ignores the very important "chine-unwetted" flow phase, where the jet-head is not known 

in advance. 

A fully non-linear two-dimensional water entry problem has been computed with 

reasonable numerical accuracy for a special simplified ideal section by Zhao & Faltinsen 

(1993, 1996). However, the requirement of the high resolution of element length up to 

1810− of half beam makes its use impractical.  This method has not been applied in a 

planing application, and if it was it could predict only calm-water planing of prismatic 

hulls. 

Savitsky (1964) presented a semi-empirical method for the hydrodynamic design 

of planing monohulls. Savitsky's method allows designers to estimate hull resistance and 

trim angle using the two equations of equilibrium with coefficients regressed from 

empirical data from towing tank tests of prismatic planing hulls. Savitsky's method has 

been very popular with planing boat designers over the years in providing the foundation 

for the majority of the preliminary resistance predictions of planing mono-hulls.  

However, Savitsky's method is clearly not sensitive enough to geometric detail to be of 

use to designers in evaluating even today's planing monohull configurations. 
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1.3 Vorus(1996) Planing Monohull Model and Its Derivatives 

 

Although many methods have been published in the last seventy years, most of 

them are theoretically simplified to the point that they are not practical for use in a design 

environment. Presently, there is believed to be only one theoretical model with enough 

potential resolution of the physical issues to be practically applied in planing monohull 

hydrodynamic design studies. That is the Vorus'(1996) monohull impact and planing 

model .  

For the prediction of impact loads and steady planing resistance, Vorus (1996) 

introduced a "flat" cylinder theory for impact of cylinders with arbitrary sectional 

contour, which was later generalized to temporal cylinder geometry variation for planing 

analysis of hulls with geometry variation longitudinally (under the slender body 

transformation Utx = ). Vorus' method represents a physically consistent approximation 

via ordering of the variables in the exact formulation to lowest order. His work has been 

proved to provide a practical method and a useful tool (a mono-hull hydrodynamic design 

code acronymed VsSea) for analysis of lift and resistance of planing monohulls of rather 

general configuration. It is considered by this writer to be a milestone in planing craft 

hydrodynamic research and development. 

The Vorus’ (1996) monohull theory has provided the basis for the extended 

catamaran work developed in this thesis. The monohull theory is explained with the aid 

of  Fig. 1.1, Fig. 1.2 and Fig. 1.3. In these figures, the body geometry is prescribed and 

deadrise angle, )(zβ , is assumed to be small. 
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Assume a planing craft advancing in water with a constant forward speed U , in 

the coordinate system of Figure 1.1, where 0000 zyxO −  is a space-fixed coordinate 

system. 

 

0y

0x

0z
U

 

Fig. 1.1  A planing monohull 

 

Defining x  as a distance variable in the boat-fixed system (Refer to Chapter 2), 

there is a relation between the spatial variable x  and the time variable t , 

  

tUx ⋅=  (1.1) 

 

Defining the non-dimensional  variables x , τ  and using (1.1), 

 

CHCH z
tU

z
xx ⋅== ,             

CHz
tU ⋅=τ  (1.2) 
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where CHz  is the offset of the hard chine. 

The non-dimension variables, x  and τ , are therefore identical, such that the 

velocity distribution in the hull section at x  corresponds to an impacting cylinder 

solution at time τ . 

To this end there exists a velocity transformation between the 2-D impact velocity 

)(tV  and the forward speed U : 

 

)(tan)( tUtV α⋅=   (1.3) 

 

where )(tα  is the attack angle of the keel relative to the stream speed U. 

By the above relations, a 2-D impact theory can be used as the theoretical basis 

for both steady and unsteady planing. Thus, the impact problem is the theoretical basis 

for the 3-D development.   

 

1.3.1 Vorus’ 2-D impact theory 

 

In Vorus’ 2-D impact theory, on impact, the free-surface is turned back under the 

contour, forming an initially attached jet with velocity )(tV j  (Figure 1.2). )(tzb  and 

)(tzc  are called the “jet spray-root," or "jet-head" and "zero-pressure offset," or 

"separation point,” respectively. Initially, the zero-pressure point )(tzc  closely follows 

the jet spray-root, )(tzb , with both advancing rapidly together outward along the bottom 

contour. The dynamic pressure distribution shows a sharp spike and large negative 
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gradient into the point )(tzc . This process is referred to as the "chine-unwetted" (CUW) 

flow phase, which is depicted in Fig. 1.2. 

With advancing time, when the zero-pressure point )(tzc  reaches the chine, it 

comes to an abrupt halt. The jet-head )(tzb  continues moving outward from under the 

chine and across the free-surface. This is the "chine-wetted" flow phase depicted in Fig. 

1.3. With the jet now separating at the physical hard chine )(xZCH , the pressure peak 

near )(tzc  is reduced.  

In the Vorus (1996) model, the essential step of exploiting the flatness of the 

cylinder and collapsing the cylinder and free-surface contours to the axisz −  for the 

purpose of satisfying (nonlinear) boundary conditions, was a dramatic simplification of 

the mathematical model. In Fig. 1.2 and 1.3, the non-dimensional horizontal axis variable 

is defined as )()( tzz c== τζζ . 

 

 

z
+
bz

+b0.10

y

ζ

)(zβ

pC

)(τV

jV

Chine 

+
cz

 

Fig. 1.2 Planing monohull sectional model for "chine un-wetted" phase  
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z

+
bz

+b0.10

CHz

y

ζ

)(zβ

pC

)(τV

jV

Chine 

wlY

 

Fig. 1.3 Planing monohull sectional model for the "chine wetted" phase 

 

A monohull planing in calm water has a symmetric jet of velocity )(tV j , a jet 

separation point )(tzc , as well as a jet head position )(tzb , the same as in the symmetric 

impact problem.  

In the chine un-wetted problem (Figure 1.2), there are three unknowns:  

• jet velocity: )(τjV ; 

• jet separation point or zero dynamic pressure point on contour: )(τcz   

• jet head location or spray-root truncation point: )(τbz ; 

Based on Vorus(1996), there are three equations from which to determine these 

three unknowns: 

• Velocity continuity (Kutta) condition; 
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• Displacement continuity condition; 

• Pressure continuity condition; 

In the chine-wetted problem, depicted in Figure 1.3, the jet separation point cz  is 

known and fixed at the hard chine )(τCHZ , so that there are only two unknowns:  

• jet velocity: )(τjV ; 

• jet head location or spray-root truncation point: )(τbz ; 

This requires, 

• Velocity continuity condition; 

• Pressure continuity condition; 

Since cz  is fixed at the chine and bz  lies outside the hull, the free-surface 

displacement continuity condition is not needed in the chine-wetted (CW) phase. 

The solution of the monohull planing problem is in terms of hyper-geometric 

functions (refer to equation (47), (55) and (56) in Vorus(1996) for detail). 

 

1.3.2 Development of Vorus’96 model 

 

Vorus' 96 model was extended to a time-dependent hydro-elastic impact model by 

Kim et al. (1996) to solve for the elastic response and coupled dynamics of a vessel at 

impact environment. Savander(1997) applied the Vorus(1996) two-dimensional impact 

model with a "correction" technique to develop a second iteration of the three-

dimensional solution for steady planing. As an extension to Vorus' 96 symmetrical 

impact theory, Xu et al (1998) modeled asymmetrical monohull impact. In Xu's work, 

two possible types of flows with the asymmetric model are studied. Type A model 
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simulates a small asymmetry impact, and Type B model simulates a large asymmetry 

impact. In type A model, CUW and CW flows can be developed at the two sides of the 

contour, but not symmetrically. In type B model, the CUW flow can only be developed 

on one side, the other side always in CW flow phase, refer to Fig.1 in Xu et al (1998).   

The symmetric monohull flow necessarily exhibits Type A flow where the jet heads are 

attached symmetrically on both sides from keel to chine, and both separate together.  The 

symmetric catamaran treated here is assumed to exhibit Type B flow on each of the demi-

hulls because of the assumed large asymmetry of each; the jet-heads are both attached to 

the outside, but separate immediately from the keels to the inside (refer to chapter 2).   

The Type B flow characteristics are addressed further in the catamaran theoretical 

development.  

The experimental work for verifying the Vorus' theory was via the full-scale 

experiments reported in Royce and Vorus (1998), as well as the laboratory impact 

experiments of Judge (2001). Royce (2001) has made efforts to extend Vorus' 96 theory 

to include the reattachment of separated flow for two-dimensional impact. 

In the last ten years, Vorus has performed a series of research works on planing 

hydrodynamics, structure impact reduction and sea-keeping prediction of planing craft, 

including both planing mono-hulls and planing catamarans (Vorus 1992, Vorus 1996, 

Kim, Vorus, Troesch, and Gollwitzer 1996, Royce 1996, Royce and Vorus 1998, Xu, 

Troesch, Vorus 1998, Vorus 1999, Vorus and Royce 2000). The foundation of all of 

above is the Vorus’96 theory. 
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1.4 Present Research and Objectives 

 

A catamaran is a twin-hull planing craft composed of two demi-hulls connected 

by a cross-over structure. The cross-over structure forms the ceiling of an interior air 

tunnel which complicates the mathematical modeling of the catamaran. The planing 

catamaran cross section is depicted in Fig. 1.4.  

 

 

 

Fig. 1.4 Cross section of a planing catamaran viewed from behind transom 

 

Because of the difference in the structure with mono-hulls, there are differences in 

the mathematical modeling of a planing mono-hull verse a planing catamaran. 

Based on the Vorus' 96 theory described above, Vorus has developed and 

implemented a first order nonlinear model for the catamaran hydrodynamic analysis, 

embodied in the computer code CatSea. This model has been applied in planing 

catamaran design. However, due to the greater complexity of the catamaran flow physics 
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relative to the mono-hull, Vorus's model has made some approximations and 

simplifications which were not considered necessary in the monohull work.  

The present research is for relieving the initially implemented approximations by 

Vorus, and further developing and extending the planing catamaran hydrodynamics 

theory and application beyond that currently in use in CatSea. The subject 

approximations and the simplifications are specifically: 

1) A linearized form of the kinematic conditions which does not reflect the 

orders of magnitude of the variables established in Vorus(1996), and 

2) Discard of a part of the temporal derivatives appearing in the pressure 

continuity conditions and in the pressure distribution formulation. 

These two main approximations, particularly, in the simplified first order 

nonlinear CatSea model will be relieved through careful analysis, development, and 

coding. 

In the present work, a new complete second order nonlinear hydrodynamic theory 

for planing catamarans is developed. A detail numerical comparison of the first order 

nonlinear theory and the second order nonlinear theory is carried out. The second order 

nonlinear theory and algorithms have been incorporated into a new catamaran design 

code (NewCat). A detail mathematical formulation of the base 1st order CatSea theory, 

followed by the extended 2nd order theory, is completely documented in this thesis. 
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CHAPTER 2 

CATAMARAN FLOW PHYSICS 

 

 

2.1 Problem Description 

 

The problem addressed is a slender three-dimensional planing catamaran running 

on the surface of water at a high constant forward speed U , with or without ambient head 

or following waves (Fig. 2.1).  

With ambient waves, this is a planing catamaran sea-keeping dynamics problem. 

Without waves, the problem is a steady planing problem. Both cases are treated in this 

thesis. 

     

 
Uy

x

)(tSB)(tS f

)(xα
 

Figure 2.1 Definition of the problem 

 



 

 

17

In Fig. 2.1, the yx,  coordinate system is the boat-fixed bow coordinate system 

which has been described more detail in the following section. U  is the forward speed, 

)(tS f  is the wave surface, )(tSB  is the wetted body surface, )(xα  is the attack angle 

measured from the baseline. 

The following traditional assumptions are made: 

(1) The flow is incompressible, irrotational and homogeneous over the whole 

fluid region; 

(2) Gravity is ignorable, because of the high speed (zero gravity);  

(3) The fluid behaves as ideal (zero viscosity). 

Therefore, the problem can be modeled as a potential flow problem described by a 3-D 

Laplace equation: 
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where ),,( zyxΩ  is the fluid domain. 

 

2. 2 Coordinate Systems 

 

Four coordinate systems are employed to describe the flow of a planing catamaran 

in waves with general three-degree-of-freedom motion. 

 

a) Earth-fixed Coordinate System 0000 zyxO −  
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Coordinate system 0000 zyxO −  is fixed in space. The ),( 00 zx  plane lies on the 

calm water surface, with 0x  positive toward the stern. 0y  is positive upward, as depicted 

in Fig. 2.2.   

 

 

0y

0x
0z

Uy

x

z

py
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px

 

Figure 2.2   Coordinate Systems 

 

b) Boat-fixed Bow Coordinate System xyzO −  

 

Let xyzO −  be a right-handed coordinate system with the origin located on the 

undisturbed free surface and vertical centerplane at the forward end of the waterline. The 

),( zx  plane coincides with the undisturbed free surface, with y  positive upwards, and x  

from the forward keel intersection to the transom. This coordinate system translates with 

the forward speed U , see Fig. 2.2. At the initial time, the xyzO −  system coincides with 

the 0000 zyxO −  system.  
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c) Boat-fixed Transom Coordinate System pppp zyxO −  

 

Define a right-handed coordinate system pppp zyxO −  located at the transom on 

the vertical centerplane in the undisturbed water surface, py  is positive upwards, but px  

is directed from the transom forward against the x  -axis direction. This coordinate 

system translates with the boat with the forward speed U , but no rotation, see Fig. 2.2.  

 

d) Boat-fixed Transom Coordinate System TTTT zyxO −  

 

Define the vessel motion coordinate system TTTT zyxO −  to be a body-fixed 

coordinate system, with the origin located at the transom section (refer to Figure 3.7). 

This body-fixed TTTT zyxO −  system moves and rotates with the boat together. The Tx - 

axis is along the longitudinal centerline, from stern to bow and the −Ty axis is upwards. 

The TTTT zyxO −  system is initially superimposed on the translation coordinate system 

pppp zyxO − . 

 

2. 3 Method of Solution: Slender-body Theory, Solution Domain Transformation, and 

Time Marching  

 

In the xyzO −  system, the motion of the cross sectional contour of the planing 

catamaran at x , as viewed from transom, appears to be a 2-D "flat" cylinder contour 

"impacting" through the free surface with velocity )(tan)( xUxV α= , just as with the 
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description of the monohull case in Chapter 1.  This is shown in Fig. 2.3a and 2.3b. In 

these figures, ),( zxβ  is the deadrise angle, )(xV  is the impact velocity. The relation 

between the spatial variable x  and the time variable t  is defined in Eq.(2.2) and (2.3). 
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Fig. 2.3a  2-D cylinder impacting as section of planing monohull 
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Fig. 2.3b 2-D cylinder impacting as section of planing catamaran 
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Using the similar non-dimensional expression as in the mono-hull case in Eq. 

(1.2), but with the normalizing variable being the keel offset )(xzK  (instead of the chine 

offset CHz  with the monohull), we have,   

 

KK z
tU

z
xx ⋅== ,    

Kz
tU ⋅=τ  (2.2) 

 

Therefore, 

 

τ=x    (2.3) 

 

The non-dimensional variables x  and τ  are again identical in the catamaran case. Thus 

it again allows the use of the time dependent impact theory to predict the cross sectional 

flow at any −x  section along the catamaran length. 

Assuming the wetted demi-hulls of the planing catamaran to be slender (Slender 

body assumption), the cross sectional geometry varies slowly in the longitudinal 

direction. Thus, the following relationships between the gradients may be assumed: 
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Substituting the above approximation into Eq.(2.1), the 3-D flow problem can be 

approximated using a slender body model: 
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This transformation means that at any specified time t , the three dimensional 

flow solution of the slender vessel can be obtained approximately by a slender body 

theory as a series of two dimensional cross sectional flow solutions. However, it is worth 

to note that, the solution here is different from the traditional 2-D strip theory, for the 

connection of the upstream solution to the downstream solution through the −x  

derivative terms in the system equations and in the initial conditions. In the traditional 2-

D strip theory, the solution of upstream section is independent of the downstream 

solution.   

This series of 2-D cross sectional flow along the boat length then can be obtained 

using the identical transformation between the spatial domain and the time domain in 

Eq.(2.3). In the zy −  plane of the xyzO −  system, the cross-sectional flows would be a 

series of different 2-D "flat" cylinder contours with local relative vertical velocity 

"impacting" into, or "extracting" from, the free surface continuously in time, from one 

cylinder to the next based on the variation of geometry axially. The solution of the up-

stream station will be needed in the −x  derivative term computation of the down-stream 

station. The 2-D cylinders are changing shape with time and the temporal gradients in 
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the zy −  plane are important. Thus, this sequential solution of 2-D cross sectional flows 

will be found by solving different 2-D "flat" cylinder contours continuously impacting. 

Let ),( zxβ  be the local deadrise angle (Fig. 2.3b), and )(xα  the local trim angle 

(Fig. 2.1). With ),( zxyc  denoting the hull surface, the above transformation of the 3-D 

problem to the 2-D problem must satisfy the following geometrical constrains: 

),(tan
),( zx

z
zxyc β=

∂
∂

 (2.7) 

 

and 

 

x
U

t ∂
∂=

∂
∂  (2.8) 

 

The sectional downward impact velocity )(xV  in the steady planing case can be 

found using Eq.(2.8): 

 

)(tan)( xUxV α=  (2.9) 

 

where )(xα  is a small angle of attack.  This sectional impact velocity at x  is for the 

calm-water planing only. In the seakeeping case, the sectional impact velocity will have 

additional components. The detail expression may refer to (3.105).  

With the sectional flow fields solved, the hydrodynamic forces and the moments 

can be found by integration of the pressure distribution over each cross section. The 

motion of a planing catamaran in waves can then be found by a forward integration of 
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Newton's second law. Continuing time steps with the updated wave and ship motion 

conditions gives the motion and load time history of the planing catamaran. 

 

2.4  Sectional  Flow Physics 

 

In catamaran case, the chine-unwetted phase may be depicted in Fig. 2.4a and the 

chine-wetted phase may be depicted in Fig. 2.4b.  
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Figure 2.4a Chine unwetted phase of a conventional type catamaran 
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Figure 2.4b Chine wetted phase of a conventional catamaran 

 

In Fig. 2.4, the body geometry of the catamaran consists of two symmetrical 

single hulls with the assumption of small deadrise angle ),( zxβ .  The bottom contour 

starts from a knuckle, or the keel, denoted as kz  (it is denoted as −
cz  in Fig. 2.4). A hard 

chine exists on the outside, at CHZ . )(xV  is the downward impact velocity of the section. 

−
bz  and +

bz  are the inner and outer jet spray-roots. −
jV  and +

jV  are the jet velocity 

respectively.  

Analogous to Vorus's description of the planing mono-hull (Vorus, 1996), for 

conventional catamarans, in the CUW impact phase, the water surface is forced to turn 

back under the bottom of the contour (Fig. 2.4a). Part of the flow near the keel forms an 
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inner jet with a jet velocity −
jV , separated at the keel due to the sharp angle of the keel, 

and part of the flow forms the outer jet attached to the contour. 

Point B, in Figure 2.4, with coordinate )(tzb
+ , is called the outer jet-head offset, 

where the jet is truncated. Point C, with the coordinate )(tzc
+ , called the jet separation 

point offset, is the zero dynamic pressure point on the body contour. The inner jet 

separates at the keel kz , which denoted as −
cz , the inner jet-head is truncated at )(tzb

− . 

Point D, E and elZ arg  are reference points.   

The jet head point )(tzb
+  separates the outer flow into branches. The upper branch 

is bounded by lines DC −  and EB − , and the lower branch is bounded by the line 

LargeZB −  located on the free-surface contour bounding the lower flow domain. 

Let ),( tzVs  be the cylinder and free surface contour tangential velocity. In the 

chine-unwetted flow phase (Fig. 2.4a), the flow velocity ),( tzVs  in the jet head region 

( ++ − cb zz ) and on the upper branch is much higher than the impact velocity: 

 

),(),( txVtzVs >>                                                                 on the upper branch        (2.10) 

 

Conversely, on the lower branch, the flow velocity is much lower than the impact 

velocity, due to the large volume of the lower flow domain relative to the jet dimensions: 

 

),(    ),( txVtzVs <<                                             on the lower branch        (2.11) 
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In the chine-wetted flow phase (Fig. 2.4b), the separation point has reached the 

hard chine, CHc Ztz =+ )( . The line DC −  is now on the water surface contour, and the 

flow velocity in the upper branch drops to a lower order. The jet-head moves out across 

the free surface. 

The description of the outer flow in CW phase is applicable to the inner flow of 

catamarans. However, there is a difference for the inner flow of the catamaran. The inner 

flow does not exist as a chine-unwetted flow, only as a chine-wetted flow. The inner 

separation point )(tzc
−  is the keel point )(xzk . 

The flow characteristic that, the CUW flow can only be developed on one side, 

the other side always in CW flow phase, described above for catamarans is the same as 

the "type B" flow in the asymmetric impact model for planing mono-hulls (Xu et al, 

1998).  For the catamaran, the outer jet flow is attached to the outside, but the inner flow 

separates from the keel. The characteristic of large asymmetry, manifest in steep deadrise 

to the inside, clearly make the catamaran flow a “type B” flow (refer to Fig. 1 in Xu et al, 

1998).  

Following Vorus(1996), the flatness of the bottom contour of the catamaran is 

exploited by collapsing the bottom contour and the free surface to the −z  axis for the 

purpose of satisfying boundary conditions. 

The −z  axis of Figs. 2.4a and 2.4b shows the boundary segments where different 

boundary conditions are satisfied (refer to Fig. 2.6). The boundary switches from the 

upper branch at point B to the lower branch with a discontinuity in jet tangential velocity 

),( tzVs  (but with continuous potential) (Vorus 1996), which is depicted in Fig. 2.4a. 
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Fig. 2.4c shows a conventional catamaran with a transverse step. In modern 

catamaran design, the downstream shoulder of the step will generally return to 

approximately the original hull lines, thereby separating the hull into different regions, as 

depicted in Fig. 2.4c. The concept of the step is to eliminate the relatively ineffective 

chine-wetted region of the hull. Since that part of the hull, aft of the chine wetting point, 

has a very small contribution to the useful dynamic lift, but a substantial contribution to 

unwanted frictional resistance, its operational efficiency is very low. In today's new 

design concepts, a step produces a trip which changes the low-pressure chine-wetted 

region to a high-pressure chine-unwetted region, thereby allowing the after part of the 

craft to increase its operational efficiency. In essence, the chine-wetted flow is interrupted 

and detached by the step and then starts over on re-attachment as a chine-unwetted flow. 

The step shown on Figure 2.4c is exaggerated in size for conceptual clarity. 

 

Step

CUW  region CW  regionChine 

Keel 

 

Fig.2.4c A transverse step and  CUW , CW regions 

 

 



 

 

29
2.5 Vortex Distribution Model 

 

 A vortex distribution theory has been applied in modeling the catamaran sectional 

hydrodynamics problem. 

With every variable normalized on the keel offset )(xzk , we have: 

 

)(xz
z

k

=ζ                                                                                                            (2.12) 

 

The normalized physical model is depicted in Fig. 2.5, where  

 

kb zzb ++ = , kb zzb −− = , kcc zzz += , 1==−
kkc zzz                                      (2.13) 

 

A vortex distribution model with boundary conditions on the −z  axis, based on 

the normalized physical model of Fig. 2.5, is shown in Fig. 2.6. Since the scale of Fig. 2.6 

is so small, it is very difficult to show the hull segment in the same figure, the reader may 

refer to Fig. 2.5 when reading Fig. 2.6.  
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Figure 2.5  Normalized physical model 
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Fig. 2.6 Vortex distribution model 
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In Fig. 2.6, ),( τζsV  and ),( τζnV  are the tangential and normal velocities on the 

boundary, which are normalized on the impact velocity )(xV . Vortex sheets are arranged 

along the contour to satisfy the boundary conditions. 

The bound vortex ),( τζγ c  is located on the body contour, the free vortex 

),( τζγ +
s  is located on the outer jet head region, and the free vortex ),( τζγ −

s  is located 

on the inner jet head region. 

 

),(),( τζγτζγ c=                                                                                  cz≤≤ ζ1        (2.14) 

),(),( τζγτζγ += s                                                                          )(τζ +≤≤ bzc        (2.15) 

),(),( τζγτζγ −= s                                                                               1≤≤− ζb         (2.16) 

 

2.6 Sectional Boundary Value Problem 

 

Based on the physical model in Fig. 2.6, the sectional boundary value problem 

can be solved by using the proper boundary conditions and a group of constraint 

conditions as follows:   

 

(1) Governing Equation: 
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(2) Kinematic boundary condition:  

 

On the body wetted surface, the flow must satisfy the zero normal velocity 

kinematic boundary condition (refer to Fig. 2.6): 

 

nV
n

=
∂
∂

= )(τζζ

φ                                   )(τζζ =                                                    (2.18) 

 

In the body-fixed coordinate system xyzO − , the kinematic boundary condition 

can be expressed as (Fig. 2.6): 

 

0=nV                                                                           +≤≤ bζ1       CUW       (2.19)  

0=nV                                                                           cz≤≤ ζ1        CW         (2.20) 

 

(3) The pressure condition (dynamic boundary condition) 

 

The pressure on the free surface and the body surface beyond the wetted points is 

equal to atmospheric pressure, which is appropriately defined as zero (Fig. 2.6): 

 

0),( =τζPC                                                      1≤≤− ζb  and  +≤≤ bzc ζ       (2.21) 

0),( =τζPC                                     on the FS sheet: −<≤ bζ0  and +> bζ      (2.22) 
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(4) The Kutta constraint condition 

 

The Kutta condition should be satisfied at the separation points, i.e. 1=ζ  and 

cz=ζ , which requires the vortex strength to be continuous across these points (Fig. 2.6). 

 

∞<),( τζγ c                                     at  1=ζ  and cz=ζ                     (2.23) 

 

(5) Displacement continuity constraint condition (mass conservation condition) 

 

This constraint requires a continuous body-free-surface contour at the jet-head 

point  b+ in CUW flow. 

 

),(),( ττ ++ = byby sc                            when  += bζ                             (2.24) 

 

Here, sy  is the elevation of free surface.  

Let *
cγ  represent the time-integrated displacement vortex strength (refer to 

Chapter 3 for *
cγ  definition), the Kutta condition on the displacement vortex strength 

requires:  

 

∞<),(* τζγ c                                when +→ bζ                                  (2.25) 
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The above formulation states the mathematical foundation to solve the boundary value 

problem in this thesis. 

 

2.7 Steady Planing Problem 

 

The first problem to be studied in this thesis is the steady planing of a catamaran 

in calm water.  

In the steady planing problem, there are two essential variables: ),( xz , where z  

variable is the transverse coordinate and x  is the coordinate along the vessel length (refer 

to Fig. 2.2). The equivalent nondimensional form is ),( xζ  for convenience. Since x  is 

identical with τ  according to Eq.(2.3), thus variable pair ),( τζ  will be used in the steady 

planing model. 

In the steady planing problem, refer to Fig. 2.5, there are two symmetrical jet 

velocities )(τ+
jV  and )(τ−

jV , two jet heads )(τ+
bz  and )(τ−

bz , two jet separation points, 

)(τ+
cz  and )(τ−

cz  for a catamaran. Since the inner flow separates at the keel kz  at any 

time, kc zz =− )(τ , this leaves one unknown jet separation point )()( ττ += cc zz .  

In the chine un-wetted flow phase, there are therefore five unknowns:  

• Two jet velocities )(τ+
jV  and )(τ−

jV ; 

• Two jet head locations )(τ+
bz  and )(τ−

bz ; 

• One jet separation point or zero dynamic pressure point on contour, )(τcz   

And there are five equations according to the description in Section 2.6: 
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• Two velocity continuity conditions (Kutta conditions) when kzz →  and 

+→ czz ; 

• Two pressure continuity conditions at )(τ+= bzz , )(τ−= bzz ; 

• One free-surface displacement continuity condition when )(τ+→ bzz ; 

In the chine-wetted flow phase, on the other hand, since the jet separation point 

+
cz  is known and fixed at the chine CHZ , there are four unknowns:  

• Two jet velocities )(τ+
jV  and )(τ−

jV ; 

• Two jet head locations )(τ+
bz  and )(τ−

bz ; 

As in the case of the mono-hull, since +
cz  is known, the free-surface displacement 

condition is not needed in this case. This leaves the four equations for the CW phase: 

• Two velocity continuity conditions (Kutta condition) at kzz →  and 

+→ czz ; 

• Two pressure continuity conditions; 

 

2.8 Seakeeping Problem of a Planing Catamaran 

 

The second problem to be studied in this thesis will be the sea-keeping problem, 

or an unsteady planing problem, of a planing catamaran in waves.  

In the sea-keeping problem, there are three essential independent coordinates: 

),,( txz , the equivalent nondimensional form is ),,( τξζ . But by using the time marching 

method, the seakeeping problem can be transformed into a series of two dimensional 
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cross-section cylinder impact problems at each time step, but with a complete x-flow 

problem solved for each time. 

In seakeeping, at each time step, for the complete −x  flow problem, there are 

same number of unknowns and same number of equations as in the mathematical model 

of the steady planing. Comparing with the steady planing, the difference is that, the 

solution process in the steady planing is only one-time-step process, but it is a multi-time-

step process in seakeeping. The wetted surface and the water line of the catamaran vary at 

each time step in seakeeping. 

The velocity continuity condition and the displacement continuity condition in 

seakeeping at each time step are the same as those in the steady planing. However, the 

pressure continuity condition in seakeeping is different from the pressure condition in the 

steady planing since the pressure );,( tzxp   involves the time variable t .  

 In seakeeping, an unsteady planing model, wave model, and the vessel motion 

model will each need to be developed. 
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CHAPTER 3 

FIRST ORDER NONLINEAR CATAMARAN HYDRODYNAMIC THEORY 

 

 

William Vorus has developed a first order nonlinear hydrodynamic theory to 

support his research and engineering activities for catamaran craft design. CatSea is a 

catamaran design code based on the first order theory developed by Vorus. The basis of 

the first order theory is a non-linear slender-body theory, with the near-field being the 

nonlinear sectional impact flow adapted from the theory of Vorus (1996) for the twin hull 

case. In the time domain, the near-field section cylinders effectively change shape in time 

according to the variation of geometry axially as they impact with the local relative 

vertical velocity between the water surface and the keel. The effects of the jet formed by 

the large transversely squeeze-flow (both out and in) under the relatively flat hull sections 

is rationally included in the first order nonlinear theory (refer to Fig. 2.3b and Fig. 2.4). 

CatSea has been successfully applied in planing catamaran design. However, due to the 

complexity of the problem itself, Vorus' first order model has made some significant 

approximations and simplifications. This chapter briefly reviews Vorus' first order 

nonlinear theory as the basis of the second order nonlinear extension developed as the 

central contribution of this thesis. 

We first review Vorus’ first order model for steady planing in calm water, and 

then his first order model for dynamics in a seaway.  
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3.1 Steady Planing in Calm Water 

 

3.1.1 First order kinematic boundary condition  

 

As discussed in Chapter 2, in the chine un-wetted flow phase of both the first and 

second order models, there are five unknowns, thus we need five equations for a unique 

solution. Let us first review the velocity continuity equations. 

A downward moving coordinate system ηζ −− keelo  on the body boundary is 

depicted in Fig. 3.1. In Fig. 3.1, )(ζsV  and )(ζnV are the total tangential and normal flow 

velocities on the bottom contour, and )(ζv , )(ζw are the respective perturbations. β  is a 

small deadrise angle,  and V  is the section impact velocity.  
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Fig. 3.1 Kinematic boundary condition 

 

In Fig. 3.1, the kinematic boundary condition requires a solid wall non-

penetration condition (refer to Fig. 2.5 and Fig. 2.6), 
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0),( =τζnV                                                                  for cz≤≤ ζ1              (3.1) 

 

By applying the above condition, we can find the following equation on the hull, the 

detailed derivation of which can be found in Appendix A: 

 

)(),( ττζ Vv −=                                                                   for cz≤≤ ζ1       (3.2) 

 

By the Biot-Savart law, an integral equation can be derived from the kinematic 

boundary condition in (3.2) (refer to the derivation of (21) in Vorus (1996)).  
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τζγ
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Vd
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+

+
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−

            on  cz≤≤ ζ1              (3.3) 

 

 The vortex strength γ  is distributed on the axis as described in Fig. 2.6. The 

unknown bound vortex ),( τζγ c  in (3.3) over the hull segment can be expressed in terms 

of the free vortex ),( τζγ +
s  and ),( τζγ −

s  over the free surface segments; refer to Figure 

2.6. Considering the fact that on 11 0 ≤≤− ζ , 0),( 0 =τζγ c , the integral equation in (3.3) 

can be expressed as (refer to Appendix A):  
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0 τζζ
ζζ
τζγ

π
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c

c

z

z

c =
−∫

−

                                              cz≤≤ ζ1         (3.4) 

 

where, 
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b
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π
ττζ         (3.5) 

 

with the integration region as defined in Fig. 2.5.  

(3.4) is a standard Hilbert type integral equation to be solved for the vortex 

distribution ),( τζγ c . It can be inverted semi-analytically using the Hilbert integral 

transform at time τ   for the contour vortex strength ),( τζγ c .  

The solution to the above singular integral equation applied in CatSea is: 
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)(2),(                                 on cz≤≤ ζ1              (3.6) 

 

where )(ζχ  is the kernel function. 

The integral kernel function introduced in (3.6) has the following form, the detail 

derivation of which is in the Appendix F.   

 

))(1(
1)(

222 ζζ
ζχ

−−
=

cz
                                                                                  (3.7) 

 

Expand equation (3.6) considering the symmetry of )(ζχ  and ),( τζf . After 

substituting the kernel function )(ζχ , and the right-hand-side )(ζf  of (3.5) into (3.6), 

the bound vortex strength ),( τζγ c  is the following: 
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To simplify (3.8), introduce a useful partial fraction reduction identity (Vorus 

1996): 

 









−
+

−−
=

−− 22
1

2
1

2
0

22
0

2
1

2
0

22
1

111
))((

1
ζζζζζζζζζζ

                                     (3.9) 

 

The bound vortex strength ),( τζγ c  becomes: 
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where )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  in (3.10) are the parameter integral terms defined  as: 
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 (3.10) has singularity points in its solution domain when 1→ζ  and cz→ζ . The 

Kutta condition in (2.23) requires the vortex strength to be continuous across these 

points. By non-singularization in (3.10), two velocity continuity conditions could be 

derived from (3.10) (refer to Appendix A), which will provide the two of five equations 

for solving the five unknowns in CUW phase: 
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Therefore, with the first order KBC (3.4), the solutions of  (3.10), (3.14) and 

(3.15) obtained by Vorus consist of the Elliptic integrals of the first kind, second kind and 

third kind. For example, the singular integral term in (3.11) will be in the following form, 
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where,  
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where )11,
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( 2
czF −π , )11,

2
( 2

czE −π , and )11,
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( 2
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c z
z

z
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−
−

∏
ζ

ζπ  are the 

Elliptic integrals of the first, second and third kind respectively (refer to Gradshteyn and 

Ryzhik, 1965). 

 After mathematical reduction, the semi-analytical expression of the integral terms 

in (3.14) have the form, 

 

)]}()([{1)1( 2 kFkEz
z c

c

−=Λ                                                                              (3.20) 

)]}\(1[)1)((
2

{1)1()( 20
222

2 kz
z c

c

εζζ
ζ
πζ Λ−−−=Λ−Λ−         1≤≤− ζb    (3.21) 



 

 

44

 

)]}\(1[))(1(
2

)(
1

{1)1()( 30
222

2

2 kzkF
z

z
z c

c

c

c

εζζ
ζ
πζ Λ−−−−

−
=Λ−Λ+  

+≤≤ bzc ζ    (3.22) 

 

where, 
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In above expressions, ),
2

()( kFkF π= , ),
2

()( kEkE π= are the first kind, second 

kind elliptic integrals respectively. 

With the integral terms )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  in terms of the Elliptic 

integral functions, the reduced form of the velocity continuity condition in Eq.(3.14) 

becomes: 
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 Similarly, the semi-analytical form of the integral terms in (3.15) is obtained by 

the similar evaluations in terms of elliptic integrals: 
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Substituting the above integrals into (3.15), the semi-analytical form of the velocity 

continuity equation at  cz→ζ   is: 
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(3.28) and (3.32) are two of the five equations needed for a unique solution. 

 

3.1.2 First order displacement continuity condition 

 

 

 

Fig. 3.2 Displacement continuity condition model 
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Revert temporarily back into the time domain of the equivalent impact problem, 

],0[ t . In the chine-unwetted phase, the dimensional body bottom contour ),( tzyc  can be 

expressed from Fig. 3.2 as: 

 

Vttzhtzy cc −= ),(),(                      +≤≤ bk zzz                              (3.33) 

 

where ),( tzhc is the water surface elevation above the keel. 
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The second branch of ch  is an approximation, assuming that the fluid surface is 

first order undeflected as the fluid separates at the keel.  

Define the net vertical fluid velocity of the contour, from (3.2) as: 
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t
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∂
∂

                              on +≤≤ bk zzz      (3.35) 

 

Integration of the above equation in time and nondimensionalization of the results 

yield the following equation (refer to Appendix B):   
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where, the "asterisk" superscript denotes the time integrated variables: 
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where wlY~  is the nondimensionalized water-line transient draft and, 
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The vertical velocity time integral, ),(* τζv  in Eq. (3.36), is expressible in terms 

of the time-integrated displacement vortex strength, ),(* τζγ c , by the Biot-Savart law.  By 

replacing ),(* τζv  in terms of the integral of ),(* τζγ c  in (3.36), Vorus has derived an 

integral equation for the displacement continuity condition (refer to Appendix B) as:  
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where ∫
=

=
t

cc d
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00
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τ

ττζγζγ  is the time-integral of the vortex strength. 

Using the standard Hilbert type singular integral equation transform as in (3.6), 

the solution to ),(* τζγ c  of (3.40) is,  
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The corresponding  kernel function )(* ζχ  (refer to Appendix G) in (3.41) is: 
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The difference of )(* ζχ  from the kernel function )(ζχ  in (3.7) is that its 

solution domain is now on the arcs of −+ −≤≤− bb ζ  and +− ≤≤ bb ζ , versus )(ζχ  in 

(3.7) on 1≤≤− ζcz  and cz≤≤ ζ1 . 

Substituting (3.42) into (3.41) and grouping the singular terms together, the vortex 

strength ),(* τζγ c  will have the following form: 
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When +→ bζ , a continuous displacement from the section contour onto the free-surface 

contour at += bζ  requires that the ),(* τζγ c  be bounded (refer to (2.25) when in the 

chine-unwetted flow phase, this requirement results in the displacement continuity 

condition: 
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 The numerical model for evaluating the integral (3.45) and (3.46) will be given in 

chapter 5. 

 

3.1.3  First order pressure continuity condition  

 

The pressure continuity condition is the dynamic boundary condition of 

atmospheric pressure on the jet and free-surface. Referring to Fig. 2.6, zero pressure is 

required on the free contour and the free surface beyond cz=ζ  ((2.21) and (2.22)). 

The pressure coefficient can be obtained from the unsteady Bernoulli equation as: 
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Define the following coordinate transformations (refer to Fig. 3.3): 
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 In this coordinate transform, 1)( −τcz  is the wetted contour length in the −ζ  

coordinate, )1( −+b  and )1( −−b  are the distances to the ends of the outer and inner jet 

heads relative to the keel.   
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In terms of these transformations, the solution domain has a new coordinate 

system, shown in Fig. 3.3; and the body wetted contour is normalized into the ]1,0[  

region at all times. 
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Fig. 3.3 s  coordinate system  

 

In the new coordinate system, the pressure distribution in the outer-jet region of 

+≤≤ ss0  is (refer to Appendix C): 
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Similarly, in the inner-jet region of 0≤≤− ss ,  
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At the jet head +
bz , apply the dynamic boundary condition: 0),( =+ τsC p . Eq. 

(3.49) gives (refer to Appendix C), 
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Using the coordinate transform relation in (3.48),  
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Expansion of (3.52) gives the spray root velocity: 
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Recall that in the chine un-wetted flow 0),( =+ τsVn  on the attached free sheet segment, 

and in the chine wetted flow 1),( =+ τsVn  (Fig. 2.6). Therefore, the pressure continuity 

condition at += ss  developed in first order model is, from (3.53), as follows: 

 

• In the chine un-wetted flow  
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• In the chine wetted flow  
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At the jet head −
bz , the keel at kz  is always chine-wetted (Fig. 2.6). By the 

dynamic boundary condition, similarly the pressure continuity condition at −= ss  is  

therefore: 
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1)( τττ

−− = sVb s                              at −= ss                         (3.56) 

 

The two pressure continuity conditions, in addition to the two velocity continuity 

and one displacement continuity conditions, sum to the five equations needed to match 

the five unknowns (four in the chine-wetted case).  However, the vortex sheet 
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distributions on the free sheets in the CUW and CW cases need to be specified. On the 

free jet-head sheets of 0≤≤− ss  and +≤≤ ss1  (Fig. 3.3), a constant pressure is required 

(Fig. 2.6). To solve for the vortex sheet distribution, differentiation of the pressure 

distribution on the free sheets, 

 

0
),(

=
∂

∂
s
sC p τ

                       in          0≤≤− ss  and +≤≤ ss1            (3.57) 

 

gives the following Euler equation (Appendix C): 
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This is a one-dimensional inviscid Burger's differential equation (Vorus, 1996) that the 

vortex distribution on the free jet-head sheet must satisfy.  

Similarly, in the region of 0≤≤− ss , the Burger's equation is of the same form, 
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− τ
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τ sVz
s
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c
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s                   0≤≤− ss       (3.59) 

 

These two equations simply state that there is no particle acceleration once the 

particles separate at the jet heads. The correspondent numerical analysis is covered in 

Chapter 5.  
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The pressure distribution on the contour can be obtained from Eq.(3.49). After the 

mathematical reduction (details refer to Appendix C), the pressure distribution has the 

following form: 
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• In chine wetted case, 1),( =+ τsVn : 
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• In chine un-wetted case, 0),( =+ τsVn : 
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3.2 Planing Dynamics in Seaway 

 

 As described in Chapter 2, in steady planing (the calm water case), the 

nondimensional variables x  and τ  are identical, thus the steady planing solution (or the 

−x  problem solution) can be predicted by using the time dependent impact solution. 

However in the seakeeping case, the time variable τ  and the distance variable x  are now 

no longer dependent. In seakeeping, at each time step, given the specified position and 

velocity of the hull at this time step, we solve a complete −x  problem. Then the motion 

equations are applied to update the position and motion of the boat at the beginning of the 

next time step. Continuing the time marching, step by step, with the updated wave and 

hull position at each step, the time histories of the coupled boat motions and forces are 

evaluated by Newton's Law. In the seakeeping computation, the first run is a steady 

planing (calm water) case, to determine the calm-water equilibrium transom draft and 

trim angle. This prediction is used as the initial condition in the seakeeping computation.         

In this section, we first review the equations for a unique solution in the 

seakeeping case, then review the vessel motion model and the impact velocity model.  

 

3.2.1 Pressure continuity condition in seakeeping  

 

The velocity continuity condition and the displacement continuity condition in 

seakeeping at each time step are the same as those in the steady planing. However, the 

pressure continuity condition in seakeeping is different from the condition in steady 

planing.  
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Vorus gives the pressure continuity conditions based on the unsteady Bernoulli 

equation in the seakeeping case: 
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As discussed in Section 2.8, in the seakeeping case there are three independent 

coordinates ),,( tzx  (refer to Chapter 2). The correspondent nondimensional variables are 

),,( τζξ , where the nondimensional longitudinal variable ξ   is defined as, 

 

)(
)(

τ
τξ

L
x=                                                                                             (3.64) 

 

where )(τL  is the transient wetted length of the vessel in waves. The correspondent 

transverse variables in seakeeping case are: 

 

)(xz
z

k

=ζ , ),( τξ++ = bb , ),( τξ−− = bb , ),( τξ+= cc zz                                           (3.65) 

 

The real-time solution domain is shown in Fig. 3.4. By the catamaran variable 

transformations in Eq. (3.48), the solution domain in Fig. 3.4 can be transformed into a 

regular computation domain depicted in Fig. 3.5. 



 

 

59

 

x

y

z

cz

bz

U

 

Fig. 3.4 Real solution domain in chine wetted and chine un-wetted phases 
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Fig. 3.5 Transformed solution domain 

 

Following the same procedure as in Section 3.1.3, the pressure distribution can be 

obtained as following; the details are developed in Appendix D:   
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Similarly, in the region of 0≤≤− ss  or 1≤≤− ζb  ,  
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0≤≤− ss  or 1≤≤− ζb   (3.67) 
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In the numerical model of the unsteady hydrodynamics, pressure via the Bernoulli 

equation requires computation of the ),( τ
τ
φ x

∂
∂  term in (3.63). The formulation involves 

computation in a moving coordinate system in the time domain. Therefore, the ),( τ
τ
φ x

∂
∂  

term will be: 
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==
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ξ

ξ
φ

τ
φττξ

τ
φ τ

ξξ

]),([                                 (3.68) 

 

where )(τξ  is defined in (3.64), )(τLL = . 

The second term in (3.68) is readily incorporated in the dynamic boundary 

conditions and in the pressure calculation. However, the first term requires differentiation 

across the time step, which is implied to be numerical. And there are problems in 

differentiating in time on the fixed −ζ  grid. This is most notably at the position of chine 

wetting, which changes with time such that the time gradients can become very large. 

Vorus simplified Eq.(3.68) in the 1st order model by assuming that the time derivatives 

were dominated by temporal wetted length and that the 1st term in Eq. (3.68) was higher 

order. That is, Vorus used the 
xL

Lx
∂
∂φτ  term in (3.68), ignoring  the 

const=∂
∂

ξτ
φ term. This 

made the numerical computation of the 1st order seakeeping model well behaved. 

With the one-term reduction of (3.68), two pressure continuity conditions can be 

derived from (3.66) and (3.67). At the jet head +
bz , 0),,( =+ τsxC p  (see Fig. 2.6). Apply 

this condition and recall that in the chine un-wetted case 0),( =+ τsVn , and in the chine 
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wetted case VsVn =+ ),( τ  (refer to Fig. 2.6), and assuming constant kk zxz =)(  along the 

ship length thus 1)( =ξkz  in the ηζ −  system. Therefore the pressure continuity 

condition (ignoring the time variation 
fixed=∂

∂

ξτ
term) in the 1st order seakeeping model at 

+= ss  is, 

 

• At the jet head +
bz , in the chine un-wetted phase 
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• At the jet head +
bz , in the chine wetted phase 
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2
1)1( τξτ ++ =− sVb

L
Lx sx                                           at += ss                       (3.70) 

 

• At the jet head −
bz , in the chine wetted phase 

 

),,(
2
1)1( τξτ −− =− sVb

L
Lx sx                                       at −= ss                           (3.71) 

  

 The Euler differential equation similar to (3.58) and (3.59) implemented in the 

first order seakeeping model, again dropping the time variation 
fixed=∂

∂

ξτ
term, is: 
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On the hull contour, the pressure distribution can be derived directly from 

Bernoulli’s equation (refer to (3.63)); the mathematical reduction process is found in 

Appendix D, with the time variation 
fixed=∂

∂

ξτ
term discarded, the contour pressure 

distribution is,  

 

• In the chine wetted case: 
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• In the chine un-wetted case: 
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Therefore the pressure continuity condition (3.69) - (3.71) together with the 

previous velocity continuity condition (3.14) - (3.15) and the displacement continuity 

condition (3.44) provide enough equations to solve for the unknowns in sea-keeping 

problem. However, since the solution proceeds in the time domain, the vessel motion 

equilibrium model is needed, as discussed at the beginning of this section.  

 

 3.2.2 Water wave model 

 

 

 

 

 

 

 

 

Fig. 3.6 Definition of wave system 
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The incoming water wave is defined in the transom coordinate system 

pppp zyxO − , but the input parameters of the wave system are defined in the bow 

coordinate system xyzO − . Fig. 3.6 depicts the definition of the wave system. In Fig. 3.6, 

)(τL  is the transient wetted length, measured from the transom section forward to the   

instantaneous intersection of the keel and the surface of the wave; 

px : the distance of x  section, measured from the transom section forward; 

x :  measured from the bow coordinate system xoy  which is located on the calm water 

surface, from the entry point to the stern, with origin right under the intersection point; 

LOAx : PPL , the total boat length. 

Assuming the wave length λ  is much longer than the boat length, 

 

PPL>>λ                                                                                               (3.76) 

 

Thus, the disturbance (diffraction) of the incoming waves by the hull can be ignored. The 

non-dimensional regular wave expression is:  

 

]))((sin[);( 0θττςτς +−+Ω= xLkx ea                                               (3.77) 

 

Where ),( τς x  is the wave elevation non-dimensionalized on the maximum keel 

offset kz , the non-dimensional wave number λπ2=k , λ  is the wave length, and 

)1(0
αςς −−= ea  is a transient wave front where ∞→0:α , 0ς  is non-dimensional wave 
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amplitude, 0θ  is the initial phase. The non-dimensional encounter frequency eΩ  is 

defined as, 

 

we k αcos0 −Ω=Ω                                                                          (3.78) 

 

where 0Ω  is the non-dimensional wave natural frequency 
U

zk⋅
=Ω 0

0
ω

, wα  is the 

incoming wave angle. In the present code, wave angle is set to be either head sea or 

following waves ( wα  =  zero or 180 deg). 

The random waves are defined as, 
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, ]))((sin[);( θττςτς                                     (3.79) 

 

where the non-dimensional wave amplitude is: 

 

kii zeh )1(
2
1 ας −−=                                                                      (3.80) 

 

with the wave height ih  defined according to the specified wave spectrum. For example, 

for the  JONSWAP spectrum (Chakrabarti,  1994), characteristic of littoral-zone seas: 

 

ωωω ςς ∆⋅⋅⋅= )(0.20.2)( Shi                                                       (3.81) 
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The parameter in (3.81) and (3.82) may refer to Chakrabarti (1994). 

 
 

3.2.3 Vessel motion model 

 

The vessel motion model is defined with the help of the boat-fixed coordinate 

system TTTT zyxO −  (refer to section 2.2) (see Figure 3.7).  

Let 3η  and 5η  be the heave and pitch angle, respectively, defined at the transom 

section relative to the translation coordinate system pppp zyxO − . 
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Fig. 3.7 Vessel motion definition  

 

Assume that the boat’s non-dimensional weight, denoted by WC , is located at CGx  

measured from the transom section. The total lift acting on the boat is LTC , located at 

LFx , measured from the transom section (Fig. 3.7). Define the Froude number, 
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K
n zg

UF
⋅

=                                                                                        (3.83) 

 

where Kz  is the transom keel offset, U  is the forward speed of the boat. 

The hydrodynamic lift is represented by LC  integrated from the sectional lift 

coefficient ifC ,  (refer to Vorus, 1996),  
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where the nondimensional pressure coefficient )(sC p∆  is defined as: 
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2
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psC p
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∆=∆                                                                                 (3.84a) 

where p∆ is the dynamic pressure. 

The static buoyancy (relative to the calm water planing waterline) is represented 

by LBC ,  
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where V  is the static nondimensional displacement volume of the boat. 

Then the total lift is defined as,  
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airLLBLLT CCCC ,++=                                                                               (3.86) 

 

where airLC ,  is the aerodynamic lift. The lift moment relative to the transom origin is: 

 

LFLTMT xCC ×=                                                                                          (3.87) 

 

The total lift center is defined as: 
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=                                                      (3.88) 

 

where Lx  is the hydrodynamic lift center, Bx  is the buoyancy center, and airx  is the 

aerodynamic lift center.  

Based on the Newton's second law, taking the mass coupling effect into account, 

the boat heave and pitch accelerations are the solution to: 
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where CGx  is the longitudinal center of gravity defined in Fig. 3.7, m  is the non-

dimensional mass of the boat, and the inertia moment J  is defined as: 

 

2rmJ =                                                                                                        (3.90) 
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where r  is the non-dimensional radius of gyration from the transom. The non-

dimensional boat weight WC  in (3.89) is defined as, 

 

22 21 K
W zU

WC
ρ

=                                                                          (3.91) 

 

Denote the determinant of the coefficients in (3.89) as: 

 

][ 22222
CGCG xrmxmmJ −=−=∆                                                   (3.92) 

 

The solution gives the boat’s accelerations at the time τ   as: 

 

∆
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∆
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=
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)(5
WLTCGCGWMT CCmxxCCmτη&&                            (3.94) 

 

Thus, the time trace of the heave and pitch of the catamaran can be readily obtained by 

the numerical integration of above equations numerically in time, step by step. 

 

3.2.4  Wetted length and the transient draft 

 

 The vertical transient draft of the catamaran can be described by using Fig. 3.8. 
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Fig. 3.8 Definition of transient draft 

 

 The vertical transient draft kY , measured from keel to the transient wave surface, 

is defined as: 

 

)()())(()(),(),( 5030 xyxLtttxLHtxY kwTk −−⋅+−−−+= ηαηζ           (3.95) 

 

where 0TH  is the initial draft at the transom, ),( txLw −ζ  is wave elevation defined at 

transom coordinate system, )(0 xα  is the initial local keel camber trim angle, and )(xyk  is 

the keel upset. 

To find the transient wetted length )(tL  in the transom coordinate system 

ppp yOx , we define the draft )0(kY  as zero at the entry point 0=x : 

 

)0())(()(),(0 5030 kwT yLtttLH −⋅+−−+= ηαηζ                                   (3.96) 

 

Solve Eq.(3.96) for the wetted length )(tL (refer to Fig. 3.8):  
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),()0()())(()( 5030 tLytLttH wkT ζηαη −+⋅+=−                                     (3.97) 

 

This equation serves as the condition to iterate to find the wetted length )(tL  at each time 

step. Substitute Eq.(3.97) back into Eq.(3.95), the new expression of the transient draft at 

any time step is given by: 

 

),(),()()0()(),( 50 tLtxLxyyxtxY wwkkk ζζηα −−+−+⋅+=                 (3.98) 

 

3.2.5 Impact velocity in waves 

 

The sectional impact velocity in waves will be needed for solving the −x  

problem in each time step. The vertical impact velocity in the seakeeping problem can be 

determined from the transient draft equation in Eq.(3.95). 

Defined the transient wetted surface as, 
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From the material derivative, 
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the impact velocity is: 
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Recall the normalized variable 
)(tL

x=ξ  (refer to (3.64)), then the derivatives of ),( txYk  

implemented in CatSea are, 
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Thus the impact velocity is: 
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Since in CatSea, the input parameters of the wave system are defined in the translating 

bow system, considering the sign of −x  derivatives of ),( txlw −ζ  taken in the bow 

coordinate system, the impact velocity has following form: 
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In this chapter, we have systematically reviewed the first order theory developed 

by Vorus. In the next chapter, the second order extension to the first order theory is 

developed.   
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CHAPTER 4 

SECOND ORDER NONLINEAR CATAMARAN HYDRODYNAMIC THEORY 

 

 

The first order catamaran theory outlined in the preceding chapter is useful in 

catamaran design and analysis as it stands. However, due to the complexity of the 

problem itself, some significant approximations and simplifications have been made in 

the first order theory. This chapter presents a complete nonlinear catamaran 

hydrodynamic theory which relieves the major approximations and simplifications in the 

first order theory. This extended theory is referred to as the “second order nonlinear 

theory”. 

Keeping the same order as in Chapter 3, we first introduce the second order 

theory on steady planning in calm water, followed by the second order seakeeping theory 

of catamarans.   

 

4.1 2nd Order Calm Water Steady Planing Theory 

 

In the second order model, we have same number of unknowns (five in the chine 

un-wetted flow phase and four in the chine wetted phase) as in the 1st order model. In this 

section, we follow the solution procedure in Chapter 3, where it differs, to develop the 

same number of equations for the unique solution.  
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4.1.1 Second order velocity continuity equations 

 

4.1.1.1 Kinematic boundary condition and its integral equation 

 

Use the same downward moving coordinate system ηζ −− keelo  as depicted in 

the Fig. 3.1 to construct the kinematic boundary condition.  

The normal and tangential velocities on the hull contour, in terms of the 

perturbation velocities v  and w  in Fig. 3.1, are derived in Vorus (1996), and can be 

expressed as, 

 

ββ sincos)1( wvVn −+=                                                                   (4.1) 

ββ cossin)1( wvVS ++=                                                                   (4.2) 

 

where )(ζsV  and )(ζnV are the total tangential and normal flow velocities on the bottom 

contour, β  is a small deadrise angle. 

According to the physical model in Fig. 3.1, the tangential velocity )(ζsV  

associated with the vortex strength distribution ),( τζγ , can be written: 

 

),(sin)(),(
2
1),( τζβττζγτζ VVs +−=                                              (4.3) 

 

where V  is the section impact velocity , ),(sin)( τζβτV  is the stream component along 

the contour.  
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In the downward moving coordinate system ηζ −− keelo  on the hull boundary, 

the kinematic boundary condition requires (refer to Fig. 2.6 and (3.1)): 

 

0),( =τζnV        for cz≤≤ ζ1                                                                                (4.4) 

 

By applying the above condition with (4.1) - (4.4), the following kinematic 

condition on the hull results. This condition is the same as developed by (Vorus, 1996) 

for the monohull case, refer to (3.2) for comparison with the first order case. The detailed 

derivation is in Appendix A: 

 

),(cos)(),(sin),(
2
1),( 2 τζβττζβτζγτζ Vv −=+                   for cz≤≤ ζ1       (4.5) 

 

Assuming the deadrise angle ),( τζβ of the section contour to be small for order-

of-magnitude argument, that is )(),( ετζβ o= , the relative orders of magnitude of the 

variables in (4.5) are assigned in Table 4.1 on the basis of the impact physics (refer to 

Vorus 1996).  
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Table 4.1 Order-of-magnitude of variables 

 

Variables −<≤ bζ0  1<≤− ζb cz≤≤ ζ1  +≤< bzc ζ  +> bζ  

 (CW) (CW) (CUW) (CW) (CUW) (CW) (CUW&

CW) 

),( τζv  O( β ) O( β ) O(1) O(1) O(1) O( β ) O( β ) 

),( τζsV  O( β ) O(1) O( β1 ) O( β1 ) O( β1 ) O(1) O( β ) 

),( τζγ  O( β ) O(1) O( β1 ) O( β1 ) O( β1 ) O(1) O( β ) 

),( τζnV  V+ O( β ) V+ O( β ) 0 0 O( β ) V+ 

O( β ) 

V+ O( β )

)(τV  O(1) 

 

Based on the orders-of-magnitude in Table 4.1, it is easy to see that all terms in 

Eq. (4.5) are O(1).  

 Comparing Eq. (4.5) to the Eq. (3.2) in the first order model, an additional leading 

term ),(sin),(
2
1 τζβτζγ  has arisen. For simplification of the analysis in the case of the 

1st order model, Vorus used a simplified relation in Eq. (3.2) for the KBC by considering 

this leading term in Eq.(4.5) as a product of perturbations and higher order: o( )β .  In the 

present second order theory, the deadrise angle ),( τζβ  is still the small parameter, of 

order ε . But the order of the vortex strength ),( τζγ  is assigned as order of O(
β
1 ), 

consistent with the increasing "squeeze" flow transversely from under the hull as β  
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decreases. Therefore, the product term ),(sin),(
2
1 τζβτζγ  in (4.5)  is O(1) and therefore 

retained in the boundary condition. This is a basis for the name “second order nonlinear 

theory.” Although the theory in this regard is actually only a consistent first order theory.  

It is also still a linear boundary condition in the unknowns since β  on the hull contour in 

(4.5) is known.  (The solution is, however, nonlinear in the dynamic boundary condition, 

just as it was in Chapter 3.) 

 Comparing Eq. (4.5) to the Eq. (3.2), it is clear that the deadrise angle ),( τζβ  

appears explicitly in the KBC of the 2nd order model, but not in the 1st order. 

Express the perturbation velocity ),( τζv  in (4.5) in terms of vortex strength 

distribution ),( τζγ  (Fig. 2.6) by the Biot-Savart law, just as with the 1st order theory in 

Chapter 3, Eq. (3.3): 
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=

b
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)(
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1),(
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ζ
ζζ
τζγ

π
τζ                                                                               (4.6) 

 

Therefore a singular integral equation representing the kinematic boundary condition 

(4.5) is: 
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In (4.7), comparing with (3.3) of the first order model, the added leading term appears. 

Eq.(4.7) again can be expressed in terms of the free -sheet vortex strengths 

),( τζγ +
s  and ),( τζγ −

s  as follows (refer to Eq. (3.4)); refer to Appendix A for the details. 
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),( 
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1),(sin),(
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c

c

z

z

c
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−
+ ∫

−

          cz≤≤ ζ1       (4.8) 

 

where: 

 

0),( 0 =τζγ c                                                          on 11 0 ≤≤− ζ                  (4.9)  

 

With non-dimensionalization on the keel offset, kz , the region 11 0 ≤≤− ζ  in (4.8) is the 

free space between the demi-hulls (refer to Fig. 2.5). The right hand side of (4.8) is 

(compare to Eq. (3.5)): 

 

∫∫
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− −
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−⋅−≡ +−
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0
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2 ),( 1),( 1)(cos),( ζ
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π

ζ
ζζ

ζτζγ
π

τβτζ  

(4.10) 

 

Note the new terms in (4.8) and (4.10) due to the reordering discussed at (4.5). 

Eq.(4.8) is the Carleman-type singular integration equation (Muskhelishvili 1958, 

Vorus 1996), instead of the Hilbert-type of Chapter 3. Solution of (4.8) is the first 

theoretical extension of the 1st order theory. Following the same procedure as with Eq. 
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(3.4), an inversion procedure exists for developing a semi-analytic solution to (4.8).   

Muskhelishvili(1958) and Tricomi(1957) give the general solution of the Carleman 

singular integral equation. Following the derivation of Vorus (1996), which was adapted 

from Muskhelishvili(1958), a solution for (4.8) is developed in Appendix A as (refer to 

(3.6)), 

 

∫
− −

⋅−=
c

c

z

z
c s

ds
s

sff
ζτχ

β
π

τζχβτζββτζγ
),(

)( ~cos),(~cos2),( ~cos~sin2),(                

on cz≤≤ ζ1   (4.11) 

 

where ),( τζχ  is the kernel function defined below, and, 

 

)],([sintan),(~~ 1 τζβτζββ −==                                                                    (4.12) 

 

The function ),( τζγ c  satisfies the Hölder condition1 (Muskhelishvili 1958) on 

1−≤≤− ζcz  and cz≤≤ ζ1 , as required for the solution procedure outlined by 

Muskhelishvili.   

Comparing with the 1st order solution in Eq. (3.6), an additional term has 

appeared in the 2nd order solution, (4.11).  

 

                                                           
1 Hölder condition: A function )(sφ  is said to satisfy a Hölder condition on L , if for any two points, 

Ls ∈1 , Ls ∈2 ,  
µφφ )()()( 1212 ssAss −⋅≤−  
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4.1.1.2 Kernel function ),( τζχ  

 

The kernel function for the Carleman integral equation (4.11) is developed in 

Appendix F. It has been expressed in following (4.13) and (4.16). It is different from the 

kernel function in the monohull case (Vorus, 1996). It has two singular points, one 

located at the keel and the other at the cz  point for the catamaran, versus one for the 

monohull, at cz  only. It is also different from the kernel function of the 1st order model in 

Eq.(3.7), with an additional singular product function term ),( τζk  (see (4.13)  to reflect 

the effect of the variation of the deadrise angle ),( τζβ .  

 

(1) the case of a general ),( τζβ  in (4.11):  

 

))(1(
),(),(

222 ζζ
τζκτζχ

−−
=

cz
                                                                            (4.13) 

 

where the function ),( τζk  is defined as a product function involves the J-element 

piecewise linear discretization of the contour in cz≤≤ ζ1 ( the contour discretization 

detail refer to Fig. 5 in Vorus(1996)). 
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where A and µ  are positive constants. A is called the Hölder constant and µ  is the Hölder index. 
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In (4.14) the jt  and )(~ τβ j  are the end offsets and angles of the jth element.  

In general, the deadrise angle ),( τζββ =  varies in both ζ  and time τ  as the jet-

head advances. For simplifying the computation, the contour will be specialized to be 

constant deadrise, without transverse camber, so that )(τββ = . However, this theory 

applies to the general case as well. 

 

(2) the case of ),( τζβ  constant  in ζ : 

 

For deadrise contours )(),( τβτζβ =  is constant in ζ  direction, defining 

),(),( 0 τζκτζκ =  in this case, then: 
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Such that (4.13) becomes: 
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4.1.1.3 Bound vortex ),( τζγ c  

 

Expanding the equation (4.11) and considering the symmetry of ),( τζχ  and 

),( τζf , the bound vortex strength ),( τζγ c  is the following: 
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 cz≤≤ ζ1   (4.17) 

Substitution of ),( tf ζ  from (4.10) into (4.17) yields:  
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cz≤≤ ζ1  (4.18) 
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Introduce the same partial fraction reduction identity as in Chapter 3 (refer to 

(3.9)): 
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                                   (4.19) 

 

Substitute the (4.19) into the solution (4.18). Manipulation of that result yields the same 

convenient form for the bound vortex ),( τζγ c  as with the 1st order solution (3.10); refer 

to Appendix E for details. The solution is conveniently written, via (4.19), as the 

superposition of groups singular and non-singular terms: 

 

),(),(),( sin τζγτζγτζγ gularnormalc +=                                                                  (4.20) 

 

Here the normal component is the non-singular part of the solution, 
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                            (4.21) 

 

The singular component, from the singular part of the kernel function (refer to (3.10)), is:  
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where ζ  is the independent variable ; 0ζ , 1ζ  are the dummy integration variables, with 

(refer to (3.11) ~ (3.13)) : 
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Comparing (4.20), (4.21) and (4.22) with the hull contour bound vortex 

expression of the 1st order model in (3.10), it is seen that the simplification of the 1st order 

model has led to the existence of only the similar term of (4.22) in cγ , without the term 

of (4.21).   Eq. (4.20) represents the second significant difference from 1st order theory. 

The numerical analysis for the bound vortex distribution ),( τζγ c  in Eq.(4.21) 

and Eq.(4.22) can be found in Chapter 5 and Appendix E . 

The velocity continuity condition, which is from the singular component of the 

vortex distribution, (4.22), is now derived. 
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4.1.1.4 Velocity continuity condition 

 

Equation (4.22) has two singular points in its solution domain, at 1=ζ  and 

cz=ζ . This is when 1→ζ  or cz→ζ , where ∞→),( τζχ . However, in real (high 

Reynold's number) flow, the velocities at these points must be finite and continuous.  

Following the 1st order development, when +→1ζ , the requirement that cγ  be 

bounded results in the following velocity continuity equation (or Kutta condition). This is 

same as Eq. (3.14) of 1st order model. ( For detailed derivations refer to Appendix A): 
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When cz→ζ , the requirement for boundedness similarly results in the second velocity 

continuity equation; this is the parallel of (3.15): 
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The two velocity continuity equations have the same form as the velocity 

continuity equations in Eq. (3.14) and Eq. (3.15) of 1st order model. But the integrations 

of Eq. (4.26) and Eq. (4.27) are in terms of the hyper-geometric functions and Beta 

functions, which are different than the elliptic integral functions of the 1st order model. 

For example, the singular integral in Eq. (4.23) has the following form (refer to Eq. (3.16) 

- Eq. (3.19)): 

 

)()()( 321 ζζζ III ++=Λ                                      cz≤≤ ζ1                                   (4.28) 
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In (4.31) since the integral )(3 ζI  in the 2nd order model can not be expressed in a 

semi-analytical form as 1I  and )(2 ζI  did, this author thus has modeled the )(3 ζI  

integral as a piecewise constant function discretization integral. The whole integral 

domain 12 −cz  has been discretized into N elements, jt  is mean value of the discretized 

integral element ( 1, +jj tt ). The detail derivations can be found in Chapter 7 and in 

Appendix H.  When, in (4.31), 
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• Case 2: jt<2ζ   
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• Case 3: 1
2

+<< jj tt ζ  
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In (4.29) to (4.35), );;,( zF γβα is Gauss’ hypergeometric function, and ),( yxB  

is the Beta function (refer to Gradshteyn and Ryzhik, 1965). 

The semi-analytical forms of the velocity continuity equations in Eq. (4.26) and 

Eq. (4.27), which are comparable to the 1st order equations (3.28) and (3.32), are 

expressed  in Chapter 5. 

As covered in Chapter 3, the catamaran calm water steady planing case has five 

unknowns (in CUW case): )(τ+
jV , )(τ−

jV , )(τ+
bz , )(τ−

bz , and )(τcz . The Kutta (velocity 

continuity) conditions of the kinematic boundary condition provide two out of the five 

equations (Eq.(4.26) and Eq. (4.27)) needed for the uniqueness. In the following sections, 

the remaining three required conditions are developed.  
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4.1.2 Displacement continuity condition 

 

 4.1.2.1 Water surface elevation 

 

Again, like in the 1st order case, revert back into the time domain of the equivalent 

impact problem, ],0[ t . In the chine-unwetted phase, the dimensional body bottom 

contour ),( tzyc  can be expressed as (refer to Fig. 3.2): 

 

Vttzhtzy cc −= ),(),(                                                       +≤≤ bk zzz                   (4.38) 

 

where again ),( tzhc  is the water elevation above the keel: 
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Define the net vertical fluid velocity of the contour, from (4.5) as: 
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                          on +≤≤ bk zzz     (4.40) 
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It is clear that Eq. (4.40) is just another form of the expression of the KBC with 

tytV c ∂∂−=)( . Comparing with the definition in (3.35) of the 1st order model, an 

addition term has been added in (4.40). 

Following the same process as in Chapter 3, integration of the above equation in 

time domain and nondimensionalization of the results yield the following equation (refer 

to Appendix B):  

 

),()(sin),(
2
1),( 1

** τζζβτζγτζ fv =+                       +≤≤ bζ1                       (4.41) 

 

where, again, the "asterisk" superscript denotes the time integrated variables: 
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and, in (4.41): 
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where wlY~  is the non-dimensional water-line transient draft, ),(~ τζch  may be a general 

contour or may be a deadrise contour, of the form: 
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
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For simplifying the analysis, a simple deadrise contour form is again adapted here. 

The vertical velocity time integral, ),(* τζv  in Eq. (4.41), is again expressible in 

terms of the time-integrated displacement vortex strength, ),(* τζγ c , by the Biot-Savart 

law. Thus the integral equation resulting from the displacement condition is essentially 

the same form as the KBC velocity condition in (4.7), (also refer to the DC condition in  

(3.40): 

 

),(

1),( 
2
11),( 

2
1)(sin),(

2
1

1

0
0

0
*

0
0

0
**

τζ

ζ
ζζ

τζγ
π

ζ
ζζ

τζγ
π

ζβτζγ

f

dd
b

b
c

b

b
cc

=

−
+

−
+ ∫∫

+

−

−

+

−

−
 

       +≤≤ bζ1      (4.45) 

where 

 

0),( 0
* =τζγ c                                                                       on 11 0 ≤≤− ζ        (4.46) 

 

by the definition of (4.44). 

Comparing Eq. (4.45) with Eq. (3.40), it is shown that the integral equation of the 

displacement condition in the 2nd order model has an additional leading term. Again, 

Eq.(4.45) is of the Carleman-type singular integral equation. Using the same solution 
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approach as in Eq.(4.11), the solution of Eq.(4.45) is found to be the following (refer to 

(3.41)); for details refer to Appendix B: 
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where ),(* τζχ  is the kernel function. 

Note again in (4.47) the additional leading term in the 2nd order solution. 

 

4.1.2.2 Kernel function ),(* τζχ   

 

The kernel function ),(* τζχ  for the integral in Eq.(4.47) is developed in 

Appendix G. The difference of ),(* τζχ  from the kernel function ),( τζχ  in (4.13) and 

(4.16) is that its solution domain is now on the arcs of −+ −≤≤− bb ζ  and +− ≤≤ bb ζ , 

the ends of which are where the free vortex sheets separate. This is the same as in the first 

order solution at (3.42). 

(1) The same discussion as for the kernel function ),( τζχ  before, in general 

),( τζββ =  case, the kernel function in (4.47) is of the form (refer to (3.42)): 
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where the function ),( τζk  has the same definition as in (4.14), 
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where the jt  and )(~ τβ j  in above formula are the end offsets and angles the same as 

defined in (4.14). 

 (2) In the case of )(τββ =  independent of ζ , the kernel function is 
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where,  
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The kernel function ),(* τζχ  in (4.48) or (4.50) in the 2nd order theory is different 

than the kernel function ),(* τζχ  of the 1st order model in (3.42), with additional product 

term ),( τζκ  to represent the variation of the deadrise angle, ),( τζβ . See (4.13) to (4.16) 

for the similar form in ),( τζχ  of the 2nd order velocity boundary condition. 
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4.1.2.3 Displacement continuity equation 

 

Substituting ),(1 τζf  in (4.43) into the solution of (4.47), and applying the 

symmetries of ),(1 τζf  and ),(* τζχ , the solution (4.47) is: 
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When +→ bζ , there is a singularity in the kernel ),(* τζχ . To separate the 

singularity, a partial fraction reduction identity from (Vorus 1996) is again used: 
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Substituting Eq.(4.53) into Eq.(4.52): 
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(4.54) 

 

As described in Chapter 3, the real flow physics requires a continuous body-free-

surface contour at +b  in CUW flow. Thus when +→ bζ , the vortex strength ),(* τζγ c  in 

Eq.(4.54) must be bounded (refer to (2.25)). This requirement results in the following 

displacement continuity condition:   
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Define the followings relative to (4.55): 
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The displacement continuity condition is then expressed in terms of 1I  and 2I  as (refer to 

(3.44)), 

 

21 tan)tan~(0 IIYwl ⋅−⋅+= ββ                                                             (4.58) 

 

(4.58) provides one additional condition for solving the five unknowns in steady planing.  

Two additional conditions are now required.  

 Comparing the displacement continuity condition of (4.58) in the 2nd order model 

with the same condition in the 1st order model, (3.44), both have the same form, but the 

integrals 1I  and 2I  are functionally different. In the 1st order model, the 1I  and 2I  of 

(4.58) are in the Elliptic integral form; in the 2nd order model, the results are in Gauss’ 

Hyper-geometric functions and Beta functions (refer to the numerical model in Chapter 5 

for details).  

     

4.1.3 Pressure continuity condition for steady planing  

 

The pressure continuity condition of the 2nd order theory for steady planing is the 

same equation as in the 1st order theory. Therefore, we only list the main equations for 

solving the unknowns. The derivation process may refer to chapter 3.  

At the outer jet-head +
bz , the pressure continuity condition is  (refer to Eq. (3.54), 

(3.55) and Eq. (3.56)), 

 

• In the chine un-wetted flow phase: 
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• In the chine-wetted phase:   

 

),(
2
1)( τττ

++ = sVb s                              at += ss                            (4.60) 

 

where +s  is the nondimensional outer jet-head defined in the catamaran coordinate 

transform in (3.48).  

At the inner jet head −
bz , since the flow at the keel kz  is always chine-wetted 

(Fig. 2.6), the pressure continuity condition thus is: 

 

),(
2
1)( τττ

−− = sVb s                              at −= ss                            (4.61) 

 

where −s  is the nondimensional inner jet-head defined in the catamaran coordinate 

transform in (3.48).  

These are the same pressure continuity conditions as with the 1st order model.  

On the free jet-head sheets of 0≤≤− ss  and +≤≤ ss1  (refer to Fig. 3.3), a 

constant pressure is required (refer to Fig. 2.6). To find the vortex sheet distributions 

required for applying (4.59) to (4.61), as in the 1st order model (refer to (3.57)), 

differentiate the pressure distribution (refer to Appendix C), on the free sheets. This gives 

the following Euler equation (same as (3.58)): 
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In the region of 0≤≤− ss , the Euler's (Burger's) equation is (refer to (3.59)), 
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Again, the two Euler equations in Eq. (4.62) and Eq. (4.63) required for the free vortex 

sheet distributions are the same form as those in 1st order model, refer to Eq. (3.58) and 

Eq. (3.59), and simply imply a constant particle velocity post-separation. The required 

numerical analysis is covered in Chapter 5.   

In the 2nd order model, the pressure distribution formulation is the same as that in 

the 1st order model, refer to (3.61) and (3.62). In the 2nd order model, the pressure 

distribution computation on the contour is (details refer to Appendix C):   
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• chine un-wetted case 
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At this point five equations are available for solving for the five unknowns in the 

CUW case: )(τ+
jV , )(τ−

jV , )(τ+
bz , )(τ−

bz  and )(τcz .  They are:   

• Two velocity continuity conditions when kzz →  and +→ czz  in Eq. (4.26) and Eq. 

(4.27); 

• Two pressure continuity conditions at )(τ+= bzz , )(τ−= bzz  in Eq. (4.59) and Eq. 

(4.61); 

• One free-surface displacement continuity condition when )(τ+→ bzz  in Eq. (4.58); 

In the chine wetted CW case, since the jet separation point +
cz  is known and fixed 

at the hard chine CHZ , the displacement continuity condition is not needed. In this case, 

we have four equations and four unknowns: 

• Two velocity continuity conditions at kzz →  and +→ czz  in Eq. (4.26) and Eq. 

(4.27); 

• Two pressure continuity conditions in Eq. (4.60) and Eq. (4.61) 

to solve for the four unknowns: )(τ+
jV , )(τ−

jV , )(τ+
bz  and )(τ−

bz .  

Therefore, the steady planing problem has a unique solution. 
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Next we will develop the 2nd order theory for catamaran seakeeping. 

 

4.2 Second Order Nonlinear Sea-keeping Theory 

 

In this chapter, we also develop the 2nd order seakeeping theory for the planing 

catamaran. As discussed in Chapter 3, the time variable t  and the longitudinal variable x  

are independent in the seakeeping analysis. In the 2nd order seakeeping theory, at each 

time step, a complete −x  flow problem is solved, just as it is in the 1st order case of the 

last chapter. 

In the seakeeping model, at each time step, we have the same number of 

unknowns in the −x  flow problem as in the steady planing problem. Thus we need the 

same number equations as in steady planing for a unique solution at each time step, as 

described in the section 3.2. The velocity continuity condition and the displacement 

continuity condition are the same as those in the steady planing problem. However, the 

pressure continuity condition in seakeeping is different from the condition in the steady 

planing since the pressure involves independent x  and time variables.  

 

4.2.1 Pressure distribution model 

 

Following the derivation procedure in the 1st order model, we develop the 

pressure continuity conditions based on the unsteady Bernoulli equation in the 

seakeeping case. 
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4.2.1.1 Pressure continuity condition 

 

In the seaway dynamics problem defined in Chapter 2, assuming the boat is 

advancing in waves with a constant forward speed U , Bernoulli's equation gives:  
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Define the streamwise flow perturbation velocity 
x

u
∂
∂= φ . Thus the 

−x component of the relative velocity in the boat-fixed bow system xyzO −  will be: 

 

xx UuUV φ+=+=                                                                                                 (4.67) 

 

In the catamaran coordinate system of Fig. 3.3 (refer to Fig. 3.4 for the 

longitudinal variable x  definition), the pressure coefficient is of the following from (see 

(4.66)): 
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where )(τLL =   is the wetted water line length at each time step. 
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 Define the non-dimensional longitudinal variable )(τξ  same as in the 1st order 

theory (refer to (3.64) and Fig. 3.5): 
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τ
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L
x=                                                                                                         (4.69) 

 

and the transverse non-dimensional variables ζ , ),( τξ+b , ),( τξ−b , ),( τξ+
cz   same as 1st 

order model in Eq. (3.65), furthermore in seakeeping the s  coordinate will be (refer to 

(3.48)), 
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The pressure continuity conditions can be obtained in the same way as in the first 

order model. For the pressure continuity condition at the jet-head +
bz , staring from 

Eq.(3.66).  

At the jet head +
bz , 0),,( =+ τsxC p  (see Fig. 2.6). (3.66) gives,  
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Since 
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bs  in (4.70), (4.71) becomes: 
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The jet head velocity can therefore be found from (4.72), 
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where, according to the total time derivative definition in (3.68) and the axial variable 

transform (4.69), the total time derivative of the jet-head )(τ+b  is (see Fig. 3.5): 
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In the above, 
fixed

bb
=

+
+

∂
∂=

ξ
τ τ

is the temporal derivative term while the −x  axial variable 

ξ  is fixed. +
τb  is the first term of the total time derivative in (4.74), which has not been 

considered in the 1st order model.    
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Recall that in the chine un-wetted case 0),,( =+ τξ sVn  and in the chine wetted 

case ),(),,( τξτξ VsVn =+  (refer to Fig. 2.6) and 1)( =ξkz  in the ηζ −  system. Thus 

from (4.73) the pressure continuity condition in 2nd order seakeeping model at += ss  is, 

 

• In the chine un-wetted phase 
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• In the chine wetted phase 
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At the jet head −
bz , applying the dynamic boundary condition 0),,( =− τsxC p , 

and using the coordinate transformation relation 
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head velocity found at −= ss  is, 
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Since at the keel kz , the flow is always in the chine-wetted phase (Fig. 2.6), 

),(),,( τξτξ VsVn =− , thus we obtain the inner jet head pressure continuity condition at 

−= ss : 
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L
Lxb sx                              at −= ss                       (4.78) 

 

Thus, as in the steady planing case, we have two pressure continuity conditions in either 

the chine un-wetted or chine-wetted flow phase. 

Comparing Eq. (4.75), (4.76) and (4.78) with the pressure continuity condition of 

the 1st order model in Eq. (3.69) - Eq. (3.71), it is seen that the temporal derivative terms 

have been taken into account in the pressure continuity condition of the 2nd order theory.  

 

4.2.1.2 Burger's equation and location of free vortices 

 

For applying the pressure continuity conditions Eq. (4.75), (4.76) and (4.78) on 

the vortex sheets, the vortex sheet distribution must be specified. Differentiation of the 

pressure distribution in Eq.(4.68) gives: 
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Substituting all derivative terms of (4.79), developed in Appendix D, back into 

(4.79), an Euler differential equation of the vortex sheet distribution is then derived that 

contains the temporal derivitive terms discarded in the 1st order model; see (3.72) for 

comparison: 
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Just as in the steady planing problem, this is an inviscid Euler's (Burger's) differential 

equation that governs the free vortex distribution, comparable with the Burger's equation 

in Eq.(4.62) for steady planing.  

Comparison (4.80) with the Euler equation (3.72) of the 1st order model, confirms 

that the temporal derivative term 
fixed=∂

∂

ξτ
has been included in the 2nd order model. 

Similarly, in the region of 0≤≤− ss , starting with the differentiation of the 

pressure distribution in Eq.(4.68) , gives the inside Burger's equation for the inside free 

vortex sheet (refer to (3.73)), 
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Physically that the equations (4.80) and (4.81) are equivalent to the Euler 

equation:   
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Jet flows during impact are formed when free vortices are shed at the separation 

points cz  and kz . Since the effects of viscosity and gravity are neglected, the free 

vortices continue advancing outward with the separation velocities. As discussed in 

Chapter 3, Eq. (4.80) and (4.81) state that there is no particle acceleration on the free 

vortex sheets separated at +
cz and kz .  

The solutions to (4.80), (4.81) can be developed in terms of the Galaen 

transformation of the initial and boundary conditions (refer to Chapter 10 and Vorus 1993 

for details) These solutions gives the particle positions at current time based on the 

previous time step information. Thus, the discretized motion of the free vortices can be 

calculated as time progresses, i.e., the location at time τ  for the particle deposited at cz  

onto the vortex sheet at time 0τ , can be derived by using an approximate second order 

algorithm of 
const=∂

∂

ξτ
, (see Chapter 10 for details) as, 
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The detailed mathematical model treating the free vortices movement can be 

found in Chapter 10. 

 

4.2.1.3 Pressure distribution formulae 

 

On the contour of the hull, the pressure distribution can be found from (4.68) 

(refer to Appendix D),  

 

• In the chine wetted case: 
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• In the chine un-wetted case: 
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Comparing with (3.74) and (3.75), Eq. (4.84) and (4.85) have taken the 

fixed=∂
∂

ξτ
term into account 

Therefore the pressure continuity conditions in (4.75), (4.76) and (4.78) together 

with the previous velocity continuity conditions in (4.26) and (4.27) and the displacement 

continuity condition (4.58) provide the necessary equations to solve for the unknowns in 

the sea-keeping case.  

To proceed to obtain the time history of the solution, we need the wave model, the 

vessel motion model and the transient sectional impact velocity model, just as in the 1st 

order case.  

 

4.2.2 Water wave model 

  

The wave model in the 2nd order theory is the same as described in Chapter 3.  For 

reducing the redundancy, we just cite the wave expressions here: 

The non-dimensional regular wave is:  
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For the random wave, according to the Jonswap spectrum given in (3.81) and 

(3.82), 
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 For the definition of variables in (4.86) and (4.87) refer to Chapter 3. 

    

4.2.3 Vessel motion model 

 

Based on the Newton's second law, the boat motion (heave and pitch) in waves is 

described as: 

 

3η&&mF
k

k =∑                                                                                    (4.88) 

5, η&&JM
k

ko =∑                                                                                  (4.89) 

 

where m  is the mass of boat, kF  and koM ,  are the external forces and moments. The 

inertia moment J  is defined in (3.90). 

 Taking the coupling effect into account, the non-dimensional motion equations 

are: 

53 ηη &&&& CGWLT mxCCm −−=                                                              (4.90) 

35 ηη &&&& CGCGWMT mxxCCJ −×−=                                                     (4.91) 

 

where the force and moment WC , LTC  , MTC  and CGx  refer to the definitions in Chapter 

3. 

Solving the above equations in the time domain, the heave and pitch time-history 

of the boat in seaway can be predicted by the numerical integration. 
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 4.2.4 Boat impact velocity in waves 

 

 The wetted length )(τL  at any time can be found using the same condition (3.97) 

as in Chapter 3: 

 

),()0()())(()( 5030 tLytLttH wkT ζηαη −+⋅+=−                                     (4.92) 

 

 The transient draft at any section can be solved by the same equation (3.98): 
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In seakeeping, at each time step a complete −x  problem will be solved. The 

sectional impact velocity at each time will be needed to find the solution of the −x  

problem by using the slender body impact theory, refer to Fig. 6.1 of chapter 6 for the 

solution procedure. The section impact velocity in waves of the 2nd order theory is (refer 

to (3.105):  
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 This chapter has systematically introduced the second order extension to the 

Vorus’ first order nonlinear theory. The numerical models and the solution procedures for 

both theories will be given in following chapters. 
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CHAPTER 5 

NUMERICAL MODELS 

 

 

 The first and second order theoretical models for planing catamarans have been 

described in previous chapters. These two formulations are solved by numerically 

executing the semi-analytic solutions developed. In this chapter, we concentrate on the 

descriptions of the numerical discretization models for both methods in the steady calm-

water planing case. In next chapter, the time marching solution procedures for seakeeping 

are covered. 

 As shown in section 2.7 of Chapter 2 on steady planing, the non-dimensional 

variables x  and τ  are identical (refer to (2.3)), so that the steady planing solution can be 

constructed directly from the time dependent impact solution. Thus the solution of steady 

planing must be numerically stepped forward in the impact time space from the initial 

condition at 0τ  in discrete steps to iτ  ( ni ,,1 L= ) in satisfying the three general 

continuity conditions on velocity, pressure, and the displacement (see Chapter 3 and 4). 

 We first review the numerical model of the 1st order theory, and then proceed to 

the 2nd order theory. 
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5.1 First Order Numerical Model 

 

 The system solution equations of the 1st order theory consist of the velocity Kutta 

conditions (3.14) and (3.15) (or equivalently (3.28) and (3.32)), the displacement 

continuity condition (3.44), and the pressure continuity conditions (3.54) to (3.56). The 

discrete formulations of these system equations for use in the numerical forward time 

integration in the impact-time space are as follows. 

  

5.1.1 Numerical analysis of 1st order velocity continuity equations 

 

 Discretize the segment of the keel free vortex ),( τζγ −
s  sheet (refer to Fig. 2.6) in 

the region 1≤≤− ζb  into )(τ−
iN  elements at each impact-time step iτ , and the segment 

of the +
cz -side hull free vortex ),( τζγ +

s  sheet ++ ≤≤ bzc ζ  into )(τ+
iN elements. 

Subscript i  represents the impact-time step iτ  here.   

In discrete notation, the velocity continuity conditions of (3.28) and (3.32) can be 

written as: 
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where )(kF , )(kE  are the complete elliptic integrals of the first and second kind 

respectively (refer to Gradshteyn and Ryzhik, 1965), k , 2ε , 3ε , 0Λ   are all defined in 

Chapter 3 (refer to (3.23) - (3.27)).  

In the above equations, −
jζ  and +

jζ  ( −= iNj ,,1 L  or +
iN ) represent the discrete node 

positions on the keel and the side hull free vortex sheets, respectively. −
jε  and +

jε  stand 

for the numerical grid length on the keel and the side-hull sheet, respectively. 

 The semi-analytical form of the discrete integrals in the above equations can be 

found by the mathematical reduction (refer to Vorus 1996). The final semi-analytical 

forms are given below: 
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In the above expressions, 
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In the above expressions, )
2

arcsin(
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jj

ε
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2
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ε
ζη , )arcsin(λη = , 

+− ≤≤ λλλ , 2/−−+ += jj εζλ , 2/−−− −= jj εζλ , 
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t 1= . Again ),( tF η , ),( tE j
+η , 

),( tE j
−η , ),( tE µ  and ),( tE η  in above formula are the Elliptic integrals of the first kind 

and the second kind, respectively. 

Substituting (5.3) - (5.8) into (5.1) and (5.2) to simplify the numerical expression 

of the velocity continuity equations, there results: 

 



 

 

119

jj

N

j
jS

jj

N

j
jS

j

N

j
jS

c

c

c

Ik

Ik

IkF
z

z

kFkEz

i

i

i

13,30
1

,

12,20
1

,

11
1

,

2

)],(1[)(
2
1

)],(1[)(
2
1

)()(
11

)]()([0

⋅Λ−−

⋅Λ−−

⋅
−

−

−−=

∑

∑

∑

+

−

+

=

+

=

−

=

+

ετγ

ετγ

τγ
π

                                                    (5.9) 

j

N

j
jS

j

N

j
jS

j

N

j
jS

c

c

c
c

Ik

Ik

IkF
z

z

kF
z

kEz

i

i

i

2330
1

,

2220
1

,

21
1

,

2

2

)]\(1[)(
2
1

)]\(1[)(
2
1

)()(
11

)](1)([0

⋅Λ−−

⋅Λ−−

⋅
−

−

−−=

∑

∑

∑

+

−

−

=

+

=

−

=

−

ετγ

ετγ

τγ
π

                                                    (5.10) 

 

Represent (5.9) and (5.10) in a compacted-matrix form, 
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where the matrix coefficients are, 
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In the above expressions, +
jη , −

jη ,  µ , +u , −u ,η , +λ , −λ  are defined as before. 
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The unknowns in (5.11) and (5.12) at any time step i  are )(, iNS i
τγ −

−  and )(1, iS τγ + , 

which are the first separated elements at iτ  at the keel and at the side-hull jet separation 

points, respectively. Therefore we may separate the unknowns, and group the known 

terms together. The known terms are: 
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The system equations are now reduced to the following: 
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Define the determinant, 

 

12,121,22,111, CCCC
ii NN ⋅−⋅=∆ −−                                                                        (5.23) 

 

The solutions for the unknown γ ’s are then: 
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Therefore, based on the vortex distribution of the previous time steps, the vortex strength 

of the element shed at a new time step is solved by Eq.(5.24) and Eq.(5.25), which can be 

viewed as eliminating the unknown jet separation velocity )(τ+
iV , )(τ−

iV  (or ),1( τsV , 

),0( τsV  in the s  coordinate system of Fig. 3.3. It is based on the following relation of the 

line vortex strength ),( τζγ  and the contour tangential velocity ),( τζsV  (refer to (4.3)): 

 

 ),(sin)(),(
2
1),( τζβττζγτζ VVs +−=                                                           (5.26) 

 

5.1.2 Numerical model of 1st order displacement continuity condition 

 

 In the numerical model of the 1st order displacement continuity condition, CatSea 

has used a new coordinate transformation as shown in Fig. 5.1. In this R coordinate 

system, the transverse −ζ  coordinate has been normalized by the keel side jet head 

coordinate −b . The hull side jet head coordinate now is defined as −+= bbe , the keel jet 

head now is at 1=R , the keel is at −b1 , and the jet-head separation location is −bzc . 

This R coordinate system is used specially for the derivation of the semi-analytic form of 

the integral transformation in the displacement continuity equation.  

Fig. 5.1 shows the relationship of the −ζ , −s  and −R  coordinate 

transformations. 
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Fig. 5.1 R coordinate system 

 

 In this −R  coordinate system, the displacement continuity condition will become 

(refer to (3.44)): 

 

0tan)tan~( 21 =⋅⋅−⋅+ − IbIYwl ββ                                                                 (5.27) 

 

where the integrals in (5.27) are as following,  
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In another form, the displacement continuity condition in (5.27) can be written as: 
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1

21 )(
tan~
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−⋅+−
⋅= β                                                                             (5.30) 

 

To calculate Eq. (5.30), the semi-analytical form of the integral terms 1I  and 2I  

need to be developed. The kernel function in 1I  and 2I  is (refer to (3.42)): 
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In the coordinate system of Fig. 5.1, the kernel function becomes, 
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Substituting (5.32) into the integral 1I  in (5.28), 
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After careful integral transform and mathematical reduction, the easily calculated semi-

analytical form of the integral 1I  can be found in an elliptic function form (refer to 

Gradshteyn and Ryzhik, 1965, p277.12): 
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),(1),(1 qF
e

qEeI λλ ⋅−⋅=                                                                            (5.34) 

 

where 
1

)1(arcsin 2

22

−
−=

−

e
beλ , 

e
eq 12 −= , ),( qE λ  is the elliptic integral of the 

second kind, ),( qF λ  is the elliptic integral of the first kind. 

Similarly substituting the kernel function in (5.32) into 2I , 
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In 2I , make a variable transformation, 2
0ζ=t , then make the following variable 

transformations in order: tes −= 2 , sbs ⋅= − 2
1 )( , 

1)( 2
1

2 −
= +b

ss , and θ2
2 sin=s . After 

these step transformations, 2I  will have the following form: 
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where, ))(1(
)(

1
2
1 222

2
−++

− −−⋅⋅= bbb
b

α , 22

2 1
−+

+

−
−=
bb

bβ . 

Then follows the integral in Gradshteyn and Ryzhik (1965, p158.3), an easy-

calculated semi-analytical form of 2I  is found as: 
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5.1.3 Numerical model of 1st order pressure continuity condition 

 

The relations that must be satisfied for zero pressure on the jet-head and free-

surface are in (3.54), (3.55) and (3.56), with the vortex sheet distribution in (3.58) and 

(3.59).  

 With zero gravity, Euler’s equations (3.58) and (3.59) require that for fluid 

particles flowing from the sectional contour, onto the free vortex sheet, and out the jet, 

the velocity of each particle stays constant at its separation values at )'(τkz  or )'(τcz  for 

all time 'ττ >  thereafter. The solution to (3.58) and (3.59) can be developed in terms of 

the Galaen transformation of the initial and boundary conditions (refer to Chapter 10 and 

Vorus 1996 for details).  

 In the s  coordinate system in Fig. 3.3, at the hull jet-head region )(1 τ+≤≤ ss , 

this solution gives the particle position on the free vortex sheet motion as ŝ , whose 

velocity is ),ˆ( τsVs , as : 
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where τ  is current time stamp, ),'(ˆ τss  and )',(ˆ ττs stand for the current particle position. 

0τ  is the time at which the particle was shed, where ),'( 0τsVs  in )('1 0τ+≤≤ ss  is known 

from the initial condition. 'τ  is a reference time at separation. For any ττ <' , )',1( τsV  (jet 

velocity at the separation point cz ) in (5.39), is always known from previous time step 

computations. 

 There are two important points to keep in mind. One is that at the current time 

step, with ττ =' , 1)',(ˆ =ττs , the jet velocity ),1( τsV  is an unknown (refer to the 

discussion for the velocity continuity conditions in section 5.1.1). Another is that from 

the pressure continuity conditions in (3.54), (3.55) and (3.56), it is easy to see that the jet-

head velocity is always less than the jet velocity of the particle at the jet-head position. 

That is, ]),([̂)( 0 τττ ++ ≤ sss  for all 0ττ ≥ . This implies that the outward motion of the 

jet-head lags behind that of all the particles in the jet which have been overlaid with it at 

previous times. 

 Similarly, at the keel jet-head 0≤≤− ss  in Fig. 3.3, the free vortex particle 

positions are: 
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where )',0( τsV  is the jet velocity at the keel kz . 
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 At each current discrete time iτ , the free vortex strength distribution has to be 

constructed as depicted in Fig. 5.2 (here, for example, is shown only the outboard jet-

head region of )(1 τ+≤≤ ss , refer to Vorus, 1996). This distribution is first constructed 

for all particle positions at 1,,1,0 −= ij Lτ . The jet velocities ),1( jsV τ , ij < are known 

for all previous times. The particle position ),(ˆ jis ττ , ij <  can be found from (5.39). 
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Fig. 5.2 Free vortex distribution 

 

 The jet-head free vortex sheet is then overlaid on the particle velocity distribution 

in Fig. 5.2 to determine the distribution of the sheet vortex strength at current time iτ , 

exclusive of that at the separation point 1ˆ =s . However, the jet-head offset )( is τ+  itself 

is an unknown at current time iτ , and it must be determined by the iteration in satisfying 

the condition of Figure 5.2. The other unknown in Fig. 5.2 is the jet velocity ),1( isV τ ; it 
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must be determined in conjunction with satisfying the velocity continuity condition in 

(5.25). 
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Fig. 5.3 Free vortex sheet discretization 

  

The discretizing structure of the free vortex sheet can be conceptually constructed 

as in Fig. 5.3. In Fig. 5.3, for example, +
ijs,γ , += iNj ,,1 L  are the piecewise constant free 

vortex strengths at the segments of length jis ,∆ , evaluated at the jis ,  and averaged to 

apply at the segment midpoints. The jis ,  coordinate are distributed along the free-sheet 

segment of Fig. 5.2 from 10, =is  to )(, iNi ss
i

τ+=+ . A new segment is added to the front 

of sheet in each time step (refer to Vorus 1996).  

 The pressure continuity condition in (3.54) and (3.55) then can be applied to the 

above free vortex sheet structure.  For example, in the chine-unwetted phase, at the hull 

side, the jet head offset from, 
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The essential unknowns in this case can be considered to be ),1( isV τ  and 1,is∆  

from Fig. 5.2 and Fig. 5.3, 1,is∆  is the segment length added at cz=ζ  ( 1=s ) at the step 

iτ .  In any case, the pressure continuity numerical model, in conjunction with satisfying 

the velocity continuity conditions (and the displacement condition in the chine un-wetted 

flow phase) will be sufficient to determine these five unknowns ),0( isV τ , ),1( isV τ , +∆ 1,is . 

−
−∆
iNis ,  and icz ,τ . 

 At the keel free vortex sheet in region 0≤≤− ss , the numerical model 

description is the same as above, except at the keel kz , the flow is always chine wetted, 

and the displacement continuity condition is not required. 

 

5.1.4 Numerical model of the 1st order bounded vortex strength distribution 

),( τζγ c  

  

 The contour tangential velocity distribution ),( τζsV , )(1 τζ cz≤≤  is determined 

by the associated contour bound vortex distribution ),( τζγ c  (refer to Fig. 2.6, and Eq. 

(5.26)). The numerical analysis of the bound vortex distribution ),( τζγ c  is as follows. 

The ),( τζγ c  is given as (3.10): 

)]}()([),( 1

)]()([),( 1

)]()[(){(4),(

002
0

2
0

0

0

1

02
0

2
0

0

ζζζ
ζζ

ζτζγ
π

ζζζ
ζζ

ζτζγ
π

ζτζχ
π
ζτζγ

Λ−Λ
−

+

Λ−Λ
−

+

Λ−=

++

−−

∫

∫
+

−

b

z
S

b
S

c

c

d

d

V

              on cz≤≤ ζ1  (3.10) 



 

 

131

where )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  are the parameter integral terms defined in (3.11) to 

(3.13). These integral terms can be transformed into the semi-analytical forms as follows: 
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where )(kF , )(kE  are the complete elliptic integrals of the first and second kinds, 

respectively, )\( kF ε  and )\( kE ε  are the incomplete elliptic integral of the first and 

second kinds, and, 

  

{ })'\()]()([)'\()(2)\(0 kFkEkFkEkFk εε
π

ε −−=Λ                                              (5.46) 

2

11sin
cz

k −== α , 
cz

k 1cos' == α , 
1
1arcsin 2

2

1 −
−=

c

c

z
z

z
zε ,  

)
1

arcsin( 2
0

2

2
0

2 ζ
ζε

−
−

=
c

c z
z , 

1
arcsin 2

0

22
0

3 −
−

=
ζ

ζε cz
. 

 



 

 

132

With these integrals of )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  expressed in the semi-analytical 

forms of (5.43) to (5.46), the bounded vortex strength ),( τζγ c  can be numerically 

computed at each impact-time step. 

 At this point, we have outlined the numerical model of the 1st order solution. Next 

we move to the numerical model of the second order solution, with the same order of 

presentation. 

  

5.2 Second Order Numerical Model  

 

The numerical model for the 2nd order theory is very similar to that of the 1st order 

theory. However, the semi-analytic solutions are different, resulting in very different 

numerical analysis. In the 1st order theory, the solution formulation is expressed in terms 

of elliptic integrals. In the 2nd order theory the solution is in terms of hypergeometric 

function and Beta functions (see examples in (4.29) to (4.31)). 

  

5.2.1 Numerical analysis of 2nd order velocity continuity equations 

 

The Kutta conditions, via the kinematic boundary condition, provide two velocity 

continuity equations (Eq. (4.26) and Eq. (4.27)): 
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The fundamental integral terms )(ζΛ , )()( 0 ζζ Λ−Λ−  and )()( 0 ζζ Λ−Λ+  in Eq. 

(4.26) and Eq. (4.27) are derived in an analytical form developed in Appendix H, which 

consists of Beta functions and hypergeometric functions. The main results are listed here: 
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where ),( νµB  and );;,( zF γβα  are the Beta and Hypergeometric functions (refer to the 

section 8.38 and 9.10 of Gradshteyn and Ryzhik (1965)). 

The domain of the integral )(,3 ζjI∆  in the above equations has different values 

according to the variation of the variable ζ  (refer to (4.32) to (4.37)). To simplify the 

expression of the above equations define: 
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Based on these notations, Eq.(5.47) to Eq.(5.49) can be expressed in the following 

form: 
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Recall in Chapter 4, we have introduced that the solution domain for the kinematic 

boundary condition is cz≤≤ ζ1  (refer to Fig. 2.5), and there are two singular points at 

1=ζ  and cz=ζ . When 1=ζ  or cz=ζ , where ∞→)(ζχ . Therefore, in the derivation 

of the velocity continuity conditions (refer to Eq. (4.26) and Eq. (4.27)), we set that 

+→1ζ , )( cz→ζ  and require that the unbounded terms disappear.  
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For +→1ζ , in the numerical formula of the integral )(,3 ζjI∆ , jt<2ζ , thus the 

case 2 formulation applies (refer to (4.34), (4.35) and (5.55)):  
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For )( cz→ζ , in the numerical formula of the integral )(,3 ζjI∆ , 1
2

+> jtζ , the 

case 1 formulation applies (refer to (5.55), (4.32) and (4.33)): 
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Therefore, from (5.56) and (5.57), 
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Substituting the above integral expressions into the velocity continuity equations in 

Eq.(4.26) and Eq.(4.27), the following system of equations is obtained: 
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Discretization Eq.(5.64) and Eq. (5.65), the following two equations for satisfying 

the velocity continuity conditions results: 
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where (referring to (5.3) to (5.8) for 1st order theory), 
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Define the following coefficients in the above equations to simplify the 

expressions (refer to (5.13) to (5.16) for 1st order theory):  
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 Comparing the coefficients in (5.72) to (5.75) with the corresponding coefficients 

of (5.13) to (5.16) in 1st order numerical models, it is shown that these coefficients play 

the same roles in the numerical models, but with different numerical evaluations.  

The two coupled equations are then expressed as follows (refer to (5.11) and 

(5.12)), 
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The unknowns at any time step i  will be )(, iNS i
τγ −

−  and )(1, iS τγ +  as described in 

the 1st order solution. Separating the unknowns, and grouping the known terms together 

gives the corresponding equations of the 1st order solution ((5.19) and (5.20)):  
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The system equations in the compact form for the 1st order solution are (refer to (5.21), 

(5.22)): 
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Proceeding as in the 1st order case, define the determinant from (5.80) and (5.81): 
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The solutions of the unknowns are therefore again (refer to (5.24), (5.25)): 
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Therefore, based on the velocity continuity conditions and the vortex distribution of the 

previous time step, the vortex element strengths shed at a new time are from Eq.(5.83) 

and Eq.(5.84). 

Comparing the above numerical model of the velocity continuity conditions with 

the numerical model in the 1st order theory, it is seen that equations are of the identical 

final form, but the coefficients of the equations are different in detail. 

   

5.2.2 Numerical model of displacement continuity equations 

 

 The displacement continuity equation derived in Eq. (4.58) is: 

 

21 tan)tan~(0 IIYwl ⋅−⋅+= ββ                                                              (4.58) 

   

The displacement continuity condition is readily computed numerically when the integral 

terms 1I  and 2I  are known. The semi-analytic form of the integrals 1I  and 2I  can be 

derived mathematically. For the variable transformation of the integral 1I  in (4.56), we 

first set the variable transformation 2ζ=t , then define the new variable transformation 

2)( −−= btx , and finally use the integral formula in Gradshteyn and Ryzhik (1965, p287, 

§3.197.8). The integral 1I  has the following analytical form; refer to Appendix B for 

details: 



 

 

142

)
)(

)()(;2;
~

2
3;

2
1()

~

2
3,

~

2
1()()(

2
1

))((

2

22

12

22

22*1

−

−+

−

−+

=
+

−−+⋅+−⋅−=

−
= ∫

+

−

b
bbFB

b
bb

b
dI

b

b

π
β

π
β

π
β

ζζχ
ζ

ζ            (5.85) 
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Gradshteyn and Ryzhik (1965) provides an integral transformation for the 

hypergeometric function: 
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Applying Eq. (5.86) to (5.85), the integration 1I  has the following easily computable 

semi-analytical form: 
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Similarly the integral 2I  has the semi-analytical form (refer to Appendix B): 
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 Again, comparing the displacement conditions in the 2nd order model with that in 

the 1st order, it is shown that the displacement continuity equations are of the same form, 

but the expressions of the integrals 1I  and 2I  (refer to (5.34), (5.37) and (5.87), (5.88)) 

are functionally different. 

  

5.2.3 Numerical model of pressure continuity equations 

 

 The pressure continuity equations are derived in Eq. (4.59), Eq. (4.60) and Eq. 

(4.61) for the steady planning problem. In steady planing, the numerical model of the 

pressure continuity conditions for the 2nd order theory is the same as that for the 1st order 

theory. To avoid redundancy, we just refer to the numerical model in the 1st order theory 

in the Section 5.1.3. 

 

5.2.4 Numerical model of bound vortex distribution ),( τζγ c  

 

The bound vortex distribution ),( τζγ c  representation in Eq.(4.20) has two terms: 

the normal component in Eq. (4.21) and the singular component in Eq. (4.22). Since the 

singularity has been removed from the singular component in Eq. (4.22) by the velocity 
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continuity requirements, we call the component in Eq. (4.22) the de-singular term from 

now on.  

 

5.2.4.1 Computation of  the ),( τζγ normal  term 

 

Discretizing the integrals of the normal term in (4.21), the segment of the free jet 

region 10 ≤≤− ζb  is divided into )(τ−
iN  elements at different times iτ  as described in 

the Section 5.1.3. Similarly, the segment of the region of +≤≤ bzc 0ζ  is divided into 

)(τ+
iN  elements.  

 Therefore, the normal term of the bound vortex will be: 
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where ),( τζ+
sV  and ),( τζ−

sV  are the jet velocities, distributed on the free sheets 

according to Fig. 5.2 and Fig. 5.3,  and the jiJ ,  ( 2,1, =ji ) coefficients are defined as the 

integrals appearing in (4.21): 

 

22

2
1

2

02
0

2
0

022
0

0
12 ln

11

−

−
+

−

−
=

−
−=

−
= ∫∫

−
+

−

−
+

− j

j
j

j

j

j

ddJ
ζζ

ζζ
ζ

ζζ
ζζ

ζζ
ζ ζ

ζ

ζ

ζ

                          (5.90) 



 

 

145

22

22
122

0022
0

0
22 ln)(ln

2
1 1

1

ζζ

ζζ
ζζζ

ζζ
ζ ζ

ζ

ζ

ζ −

−
=−=

−
=

+

+
+

+
+

+

+
+

+
∫

j

jj

j

j

j

dJ                        (5.91) 

 

5.2.4.2 Computation of the ),(sin τζγ gularde−  term 

 

It is convenient to represent the de-singular term in (4.22) as the sum of three 

individual terms.  
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where the integral terms )(ζΛ , )()( 0 ζζ Λ−Λ−  and )()( 0 ζζ Λ−Λ+  are given in (5.47), 

(5.48) and (5.49).  
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The above integrals in (5.93), (5.94) and (5.95) can be analytically transformed to 

the following easily-computed forms in terms of standard special functions. The details 

are in Appendix E. 

The ),(0 τζγ c  has following form: 
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where 11B , 11F , 12F , jI ,3∆  defined in Section 5.2.1. 

Substituting the definite integrals in Eq. (5.56) into the equation of ),( τζγ −
c , 

(5.94), yields the numerical formula of ),( τζγ −
c : 
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where  11B , 12F , 21F  and jI ,3∆  defined in Section 5.2.1, the integral 12J  defined in (5.90) 

and the integral 11J  term is, 
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 Similarly, numerically discretizing the equation of ),( τζγ +
c  in Eq. (5.95) yields 

the numerical formula of ),( τζγ +
c : 
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where  11B , 12F , 22F  and jI ,3∆  are defined in Section 5.2.1, the integral 22J  defined in 

(5.91), and the integral 21J  term is, 
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 To this point, the most important formulations for the 1st and 2nd order in the 

steady planing have been given. The numerical model for dynamics in waves 

(seakeeping) uses the basic elements of the steady planing solution as an inner loop in the 

time integration (refer to discussion in section 3.2 of Chapter 3). The algorithm for the 

multi-step time marching for both the 1st and 2nd order seakeeping dynamics models is 

covered in the next chapter.  
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CHAPTER 6 

TIME DOMAIN NUMERICAL SOLUTION 

 

 

6.1 Solution Procedures 

 

 The time domain solution leading to a steady planning is also included as the case 

of zero wave height in the solution procedure for seaway dynamics. The dynamics 

solution has only the additional multi-time marching loops. Therefore, instead of 

explaining both, we concentrate on the solution procedure for seakeeping dynamics in 

this chapter, which uses the numerical procedures of the last chapter in −x  problem in 

the time marching steps. The solution procedure is the same for both the 1st and the 2nd 

order models, other than in details.  

The data flow of the solution procedure is listed in the following "NewCat2-4" 

flow chart (see Fig. 6.1), which is the same as in the original 1st order CatSea2-4a code. 

The system solution is carried-out numerically in a time-marching, multiple-nested 

iteration of the semi-analytic solution formulae (see Chapter 5). Generally, the following 

steps are executed (refer to Fig. 6.1):  

Step 1: Start at the time step loop 0ττ = , where τ  is the non-dimensional time, 

the time step index TNIALL ,,2,1,0 L= , TN  is the total time step number. At each time 

step, repeat the following steps (refer to the box 5 in Fig. 6.1). 



 

 

150
Step 2: Start the vessel loop (the main body and the transverse steps); index 

HULLNMHUL ,,3,2,1 L= . For each hull/segment between any transverse steps, repeat the 

following steps and then go to Step 9 (refer to the box 7 in Fig. 6.1).   

Step 3: Find the transient wetted length )(τL  or, )(max τx  at each time step (refer 

to the box 10 in Fig. 6.1). The numerical algorithm may refer to (3.97), (4.92) and 

Appendix I. This step is searching for the point where the sectional draft 0),( =τpk xY  

(refer to Fig. 3.8); the correspondent vessel water line length will then be the wetted 

length pxL =)(τ .     

Step 4: Set up the initial parameters or the initial condition of the entry section 

(see Vorus (1996) and refer to box 11 and 12 in Fig. 6.1). 

Step 5: Set the −x  section discretization along the length in the index 

Mi ,,2,1 L=  (refer to the box 13 in Fig. 6.1). As described in Chapter 3 and Chapter 4, 

the −x  problem is computed at each time step as in steady planing, but with the 

additional velocities and displacements associated with the craft motion and the sea 

waves. This uses the same time dependent impact solution; the numerical formulae have 

been given in Chapter 5. 

Step 6: At each −x section, iterate to solve the system equations, (refer to Chapter 

5 and the box 14 to box 18 in Fig. 6.1).  

• Interpolate to get the geometry function values; for example, keel camber )(xyk , 

average deadrise angle )(0 xβ , etc., for the specified section ixx = ; 
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• Compute the incoming wave field in the seakeeping case (refer to (3.77), (3.79) 

and (4.86), (4.87) for details); for the dynamic evolution to steady planing from an 

arbitrary initial state the wave elevation will be set to zero; 

• Calculate the sectional impact velocity ),( txV  (refer to (3.105) and (4.94));  

• Find the solutions for the chine-unwetted flow or the chine-wetted flow. In the 

chine-unwetted flow phase, iterate at each ix  to find the solution for )(xV j
+ , 

)(xV j
− , )(xzb

+ , )(xzb
−  and )(xzc

+ , (refer to (5.24), (5.25), (5.27), (3.54), (3.56) for 

the 1st order model and (5.83), (5.84), (4.58), (4.59), (4.61) for the 2nd order 

model). In the chine-wetted flow phase, iterate to find the solution for )(xV j
+ , 

)(xV j
− , )(xzb

+ , )(xzb
−  (refer to (5.24), (5.25), (3.55), (3.56) for the 1st order 

model and (5.83), (5.84), (4.60), (4.61) for the 2nd order model);   

• Solve for the bound vortex distribution )(ζγ c , cz≤≤ ζ1 , refer to (3.10), (5.43), 

(5.44), (5.45) for the 1st order model and (5.89), (5.92) for the 2nd order model;  

• Solve for the tangential velocity on the side-hull: 

  

),(sin),(),(
2
1),;( ζβττζγτζ xxVxV cs +−=                                          (6.1) 

 

• Solve for the pressure distribution )(ζpC  cz≤≤ ζ1 . For the 1st order model, 

refer to (3.74), (3.75). For the 2nd order model, refer to (4.84), (4.85).    

• Compute the sectional hydrodynamic lift and drag )(xCL  and )(xCD coefficients, 

(refer to (3.86)).  
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Step 7: At each −x section, repeat Step 6. Then integrate total hydrodynamic lift 

force and drag forces along the vessel length appropriately to produce the x-y plane 

hydrodynamic forces and moments (refer to the box 19 in Fig. 6.1).  

Step 8: Add the aerodynamic force and moment components and the hydrostatic  

force and moment components to the hydrodynamic  components from step 7 (refer to the 

box 20, 21 in Fig. 6.1). The aero-dynamic forces have been predicted from a low-aspect-

ratio wing model representing the cross-over structure connecting the catamaran demi-

hulls.  

Step 9: Add the forces and moment components contributed by each hull segment 

separated by the transverse steps (refer to the box 20, 21 in Fig. 6.1). 

Step 10: Solve the two coupled motion equations (Newton's Law) to find the 

heave and the pitch accelerations )(3 τη&& , )(5 τη&&   (see the box 22 in Fig. 6.1 and refer to 

(3.93) and (3.94) for details).  

Step 11: Then perform double time integrations of the accelerations over the iτ∆  

interval (refer to the box 6 in Fig. 6.1). The first time integral gives the new hull heave 

and pitch velocities )(3 iττη ∆+& , )(5 iττη ∆+& , which become components of the relative 

onset velocity distribution for the next time step (refer to (3.105), (4.94) and Appendix I). 

The second time integral gives the displacement )(3 iττη ∆+  and )(5 iττη ∆+  of the 

vessel in the wave system at iττ =  for re-solving the −x  problem at the new time, 

iτττ ∆+= ; refer to (3.95), (4.93) and Appendix I. The artificial damping coefficient 

DEPS is involved in the two time integrals. The detail definition of the damping 

coefficient and its use in the time integrals is covered in Appendix I.    



 

 

153

Step 12: Marching the time variable one step forward: iτττ ∆+=   (refer to the 

box 5 in Fig. 6.1), update the vessel to the new position. Go to Step 2.  

Repeatedly executing these steps in a looping procedure gives the time history 

record of the motions of a planing catamaran in waves. The first step is always the calm 

water at 00 =τ . The waves are then ramped-in according to (3.77) or (3.79).  
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1. Read Input from file: 
#16 CatSea.IN 

2. Geometry Discretizing: 
• Distributing side hull in ζ  space; 
• Discretizing standard grid in  x  space 

• SPREAD 
• SPREDOUT 

 

 

4. Read Input File 
#18, RESTART 

3. Re-Start 

5. TIME LOOP 
6000  iii τττ ∆+= −1  

   1+= IALLIALL

N 

Y 

 

 

6. Integrates the acceleration of the previous time step to 
velocity and to displacement increments 

 

8. Read Geometry Input File 
#15, CaTs.IN 

9. Set up Transom Section State 
TH , trim angle 

10. Find the transient wet length )(τL or )(max τx
and associated geometrical parameters  

• ENTRY 

7. Ship Hull Segment Loop 
 

3500 MHUL = MHUL + 1 
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11. 
• Entry section impact velocity 

),0( τvv  
• Generating entry section Initial  

Condition, solve for +−
jj VV ,,0τ  

• Initial-Cond 

12. Initialize Parameters at 0xx =  section 

• Keel camber ky ; 

• Transient draft )(τwlY  

• Average deadrise angle 0β ; 

• Contour *
ch∆ ; 

• Chine location chZ ; 

• Keel distance )(0, τkZ  

• Wave elevation; 
• Half width of water line cz ; 

• Impact velocity )(τvv  

• BANG(2) 
• CONTOUR(2) 
• ALFAT (2) 
• CHINE(2) 
• WAVE(3) 
• CIT(XARG) 

IF 0=UK  

 Static buoyancy calculation 

N 

Y

• SPEEDZERO 

 

Modifying )(ix∆   
21  X(I)=X(I-1)+DX(I) 

13. −x section LOOP  
along ship length 

 
512    I=I+1 
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• BANG(2) 
• ALFAT(2) 
• KEEL(2) 
• CHINE(2) 
• WAVE(3) 
• CIT(XARG) 

14. Initialize Parameters at )(ixx =  
section 
• Keel camber ky ; 

• Transient draft )(τwlY  

• Average deadrise angle 0β ; 

• Contour *
ch∆ ; 

• Chine location chZ ; 

• Keel distance )(0, τkZ  

• Wave elevation; 
• Half width of water line cz ; 

• Impact velocity )(τvv  

• Interpolate 
±∆b , ±

SV  • QUADFIT 

0>vv

Extraction 
Set up 0=±

SV  

Y 

N

 

1MI >

Y 

15. Chine unwetted case solution at x :
+−
jjcbb VVzzz ,,,, 21 ; modify x∆  • COMPUTE 

16. Chine wetted case solution at x :
+−
jjbb VVzz ,,, 21  

Modifying )(ix∆  or τ∆ ? 
NICE = 1 ? 

Y 

N 

N 
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• GAMT( 2 ) 

17. )(ζγC distribution atx  

cz≤≤ ζ1  

 Flow velocity  

)(sin)(
2
1)( ,0 iivvjw jc βγ +−=

 18. Pressure distribution results 
)(sCP , 10 ≤≤ s  

• CPSUB( I ) 

19.  Section lift and drag coefficients at 
x  

DLDL CCCC ,,

Y 

N )(τLx >
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20.  Integration of total force along single 
step hull length 

LBLLT CCC +=  

DBDVDPDT CCCC ++=  
• HYDROS 
 

Buoyancy 
calculation 

22. Solving for Heave and Pitch Accel.
)(),( 53 τητη &&&&  

maxTT >
N 

Y 

21. airL

nhull

i
iLTL CCC ,,, += ∑  

 airD

nhull

i
iDTD CCC ,,, += ∑  

MHUL < NHULS   
GO TO 3500 

N 

Y 

 

 

24. Write #18, FILE='DUMP' 
(used for restarting) 

N 

Y 

Deposit Data? 

25. Seakeeping OUTPUT  

END 

23. Statistical analysis 

 

Fig. 6.1 "NewCat 2-4"  flow chart 
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6.2 Non-Null and Null Hydrodynamics in the Impact or Extraction Phase 

 

 When a planing boat is running at sea, it undergoes relative motions with the 

wave system such that any section is either in an impact or extraction state. During the 

impact state, the sectional relative velocity 0),( ≥txV  (refer to (3.105)) is directed 

downward; the boat experiences positive hull surface pressure and upward lift. During 

the extraction phase, the sectional velocity gradient 0<τddV , and the hull section will 

at times be subjected to a downward suction force, such that the flow may detach 

depending on the magnitude of the negative gradient, and the direction and magnitude of 

),( txV . 

 As demonstrated in Vorus(1996), the fluid detachment process under extraction 

velocity gradients involves a very rapid "unzipping" on the hull contour from the outside 

in corresponding to )(τcz  moving inward toward the keel and a jet velocity of zero.  As a 

result, the surface pressure is reduced to zero very soon after the unzipping commences.  

The unzipping may commence at a positive impact velocity with a large enough negative 

gradient, but the threshold ),( txV  will be near zero and decreasing if still positive. In the 

present theory, it is assumed that the unloading of the hull at any −x  section occurs 

immediately as ),( txV  passes through zero, and not before. Thus we assume that the 

extraction phase is a null hydrodynamic process; the sectional hydrodynamic pressure is 

taken as zero during extraction. 

 A numerical example of the null hydrodynamic process and the case where the jet 

velocity 0),()( ==+ ττ csj zVV  is given in Fig. 15 and Fig. 16 of Vorus (1996) and its 
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discussion. There the flow field and the contour pressure distribution in a specified 

decreasing impact velocity case are plotted.  

Based on Vorus’ (1996) research results, a non-null hydrodynamics condition has 

been posted in the present seakeeping model as follows: 

There are three conditions for non-null hydrodynamics at a section: 

1)  Section must be moving downward ( 0),( ≥txV ); 

2) The zero pressure point, )(τcz , must lie above the level of the instantaneous 

undisturbed free surface; 

3) The jet velocity must be greater than zero, 0),()( >=+ ττ csj zVV . 

2) and 3) above are both evaluated by satisfying the velocity continuity condition 

(KC).  Previous impact theory (Vorus 1996) showed that a )(τcz  below the surface 

occurs when the jet velocity goes to zero; this is the unzipping case. There, the position of 

the inward advancing unzipping point )(τcz  is the zero Cp point for the hydrodynamic 

pressure, which migrates to the keel very quickly, leaving zero dynamic pressure over the 

section, as discussed above. In consideration of hydrostatics, it is assumed, as a 

simplification, that the section pressure drops to zero immediately when conditions 1), 2), 

and 3) are not met, and gravity fills immediately to the level of the free surface (FS).  

Hydrostatic pressure is therefore assumed to still act. 

 

6.3 Solution Procedures for CUW and CW Phases 

 

The non-null solution for the x-section hydrodynamics is now addressed.  
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In the 2nd order algorithm, there are temporal derivative terms in the pressure 

continuity condition (refer to (4.75), (4.76) and (4.78), the pressure distribution (refer to 

(4.84) and (4.85)) and Euler’s equation ((4.80) and (4.81)), which make the algorithms 

are complicate. For simplicity in the description of the algorithms in this section, only the 

1st order algorithm and the 2nd order algorithm without considering the temporal 

derivative  
const=∂

∂

ξτ
 terms,  will be described here. The fully conditions will be treated 

later in chapter 10. 

 

6.3.1 Solution procedure for CUW phase ( 1MI < ) 

 

In the chine un-wetted (CUW) case, as developed in Chapter 5, there are five 

unknowns: −++−+
jjcbb VVzzz ,,,, , and there are five equations: one displacement continuity 

equation (1-DC); two pressure conditions (2-PC); and two velocity continuity conditions 

(2-VC). 

The data flow of the solution procedure for CUW is depicted in Fig. 6.2, which 

occurs when the contour section in the chine un-wetted flow (refer to the box 15 in Fig. 

6.1 for the system solution procedure).   
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1. DC condition 

 

−
bz

 
 

2. PC condition −
sV

+
sV

 
3. VC condition 

 
 

+
cz

+
bz

−
bz

ε<− ++ 'ss VV'+
sV

−
sV

 

Fig. 6.2 Iteration procedure for the solution of CUW phase 

 

The solution procedure follows as:   

Step 1: Assume −
bz  and iterate to solve for +

bz  (refer to the box 1 in Fig. 6.2) by 

requiring: 

 

ε<
−

wl

wlwl

Y
YY ~

                                                                                         (6.2) 

 

where the section draft )( ikwl YY τ=  (refer to (3.98))  corresponds with the waterline at 

time iii τττ ∆+= −1   , and wlY~  is an iteration of the local section draft from displacement 

continuity condition (refer to (3.44) and (4.58)). . In the 2nd order model, 
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 )1( tan~
1

2 −=
I
IYwl β                                                                                   (6.3) 

 

where 1I , 2I  are defined in (5.87) and (5.88) which involve the +
bz  iterate sought. 

Step 2: Using the +
bz  obtained from the step 1, calculate ),( τ+bVs  by the pressure 

continuity (PC) condition (refer to the box 2 in Fig. 6.2).  From Eq. (4.75), in the chine 

un-wetted case the PC condition is: 

 

),,(2
),(),,(

)1(
22

τξ
τξτξτ

τ +

+
++

⋅
−

=−+
bV

VbVb
L
Lxb

s

s
x                                             (6.4) 

 

Ignoring the term of +
τb  for now, as discussed, Eq.(6.4) becomes: 

 

),,(2
),(),,(

)1(
22

τξ
τξτξτ

+

+
+

⋅
−

=−
bV

VbVb
L
Lx

s

s
x                                                    (6.5) 

 

 Denote +−= τ
τ

τ b
L
LxB )1( , ),,( τξ ++ = bVV ss  and solve for the jet velocity from 

the above equation (also refer to (3.69)): 

 

22 VBBVs ++=+
ττ                                                                          (6.6) 

 

 Add the stream component to the jet velocity: 
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)(sin][ 22 τβττ VVBBVs +++=+                                                  (6.7) 

  

Step 3: Assume −
sV  and solve for −

bz  by PC condition in Eq. (3.71), (4.78) (refer 

to the box 2 in Fig. 6.2), then return to step 1 for updating −
bz . Iterate step 1 to step 3 to 

convergence. 

Step 4: Assume +
cz , and with the results of +

bz , −
bz , and calculate the +

sV , −
sV  by 

the velocity continuity (VC) condition (refer to the box 3 in Fig. 6.2 and (5.24), (5.25), 

(5.83), (5.84)). The iteration error criteria for the VC condition is: 

 

001.0
'

'
<

−
+

++

s

ss

V

VV
                                                                                         (6.8) 

 

where '+
sV   is the trial iterate value. 

Then iterate +
cz  for equality with +

sV  from the step 2. 

Step 5: Iterate −
sV  with the guessed value of −

sV  in step 3. 

 

6.3.2 Solution procedure for CW phase ( 1MI > ) 

 

In Chine Wetted (CW) case, as discussed in Chapter 2, the jet separation point +
cz  

is known and fixed at the chine CHz , therefore there are four unknowns left: 
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−+−+
jjbb VVzz ,,, , and correspondently there are four equations: two pressure conditions (2-

PC); and two velocity continuity conditions (2-VC). 

The data flow of the solution procedure for CW is depicted in Fig. 6.3.   

 

 

 
1. PC condition 

 

 
 

2. VC condition 
 

−
bz

ε<− −− 'ss VV

−
sV

ε<− ++ 'ss VV

+
sV

+
bz

'−
sV

'+
sV

 

 

Fig. 6.3 Iteration procedure for the solution of CW phase 

 

The solution procedure is: 

Step 1: Assume +
sV , −

sV  and solve for +
bz , −

bz  by PC conditions (refer to the box 

1 in Fig. 6.3 and (3.70), (3.71)).  

Step 2: With the results of +
bz , −

bz  from step 1, calculate +
sV , −

sV  by VC 

conditions (refer to the box 2 in Fig. 6.3 and (5.83), (584)).  
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Step 3: Iterate +
sV , −

sV  obtained from the step 2 for equality with +
sV , −

sV  from 

the step 1. The iteration error criteria for +
sV  is: 

 

001.0
'

'
<

−
+

++

s

ss

V
VV

                                                                                         (6.10) 

 

Iterate −
bz  for equality with −

sV  from the step 1, the iteration error criteria for −
bz  

is: 

 

0001.0
'

<
−

−

−−

b

bb

z
zz

                                                                                           (6.11) 

 

 We have outlined the system solution procedure, the null hydrodynamics and the 

non-null hydrodynamics algorithm in this chapter. Till now, we have completed the 

instructions of the theoretical and numerical models of the catamaran hydrodynamics for 

the 1st order model and the 2nd order model. In next following chapters, we will give the 

numerical comparison of calculated results from the 1st order model and the 2nd order 

models.     
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CHAPTER 7 

VALIDATION OF THE NUMERICAL ANALYSIS IN THE 2ND ORDER THEORY 

  

 

 Starting from this chapter, we begin to validate the numerical model for the 2nd 

order theory, and to compare the numerical prediction results of the 2nd order theory 

(refer to Chapter 4) with the results of the 1st order theory (refer to Chapter 3). The 

fundamental parameter integral terms )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  (in (3.11), (3.12) and 

(3.13) for 1st order model,  in (4.23), (4.24) and (4.25) for 2nd order model) have played 

an important role in the derivation of the velocity continuity conditions (refer to Chapter 

3 and 4). The numerical accuracy of the bound vortex distribution ),( τζγ c  has a key 

effect in the flow velocity field computation (refer to (4.3), (5.89), (5.92), (5.96), (5.97) 

and (5.99)). In this chapter, we give the results for the numerical models of the 

fundamental integrals and the bound vortex strength ),( τζγ c  of the 2nd order theory, 

relative to the 1st order. In the succeeding closing chapters, the comparisons of the 

numerical prediction results for the 1st and the 2nd order theories, in steady planing, in 

regular waves, and in random waves, are presented.       
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7.1 Three Fundamental Integrals 

 

 The three fundamental parameter integral terms )(ζΛ , )( 0ζ−Λ  and )( 0ζ+Λ  (refer 

to (3.11), (3.12), (3.13), (4.23), (4.24) and (4.25)) are in the same form, but defined in the 

different value domains. Each of them can be separated into three elemental integrals 1I , 

)(2 ζI  and )(3 ζI  (refer to (3.16) and (4.28)). In following, the comparative study for the 

1I , )(2 ζI  and )(3 ζI  integrals in 1st order model with the 2nd order model is given.  

 

7.1.1 Validation of the elemental integral 1I  and 2I  

 

 According to (4.29) and (4.30) (refer to the derivation in Appendix H), as 

presented in Chapter 5 by  (5.49), 1I  and 2I  in the 2nd order model have the following 

semi-analytical forms: 
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where the angle ),(~ τζβ  is defined in (4.12); the ),( yxB  is the Beta function, and 

);,,( zF γβα  is Gauss’ single variable hypergeometric function. 

In the 1st order model, the integral 1I  and 2I  have different forms (refer to (3.17) 

and (3.18)).  
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)11,
2

( 2
1 cc zEzI −= π                                                                              (7.3) 

)11,
2

(1)1()( 222
2 c

c
c zF

z
zI −⋅−−= πζζ                                                (7.4) 

 

where ),
2

( kF π , ),
2

( kE π  are the Elliptical integrals of the first kind and second kind 

respectively. 

 The kernel function )(ζχ  as well as the elemental integral 1I , )(2 ζI  in the 1st 

order model (refer to (3.17), (3.18) and (3.7)) is a special case of the kernel function and 

the elemental integrals in the 2nd order model (refer to (4.29), (4.30) and (4.16)). It is 

correspondent to the deadrise angle 0)( =zβ  (and therefore, 0)(~ =zβ ) in the 2nd order 

model. 

Therefore to verify the numerical accuracy of the formulae (7.1) and (7.2), a code 

has been developed to compute the numerical results in (7.3), (7.4) and the result in (7.1), 

(7.2) for the test case of deadrise angle 0)( =zβ . 

Fig. 7.1 shows the comparison of 21, II )(ζ  for the 1st and the 2nd order model for 

this special case ( 0)( =zβ ). As is necessary, the results are numerically identical (refer 

to (7.1), (7.2), (7.3) and (7.4)). The deadrise angle was then increased to 38=β  degree. 

In this case, the results with the 1st order model stay the same since they are independent 

of β . However the results of the 2nd order model change since they are functions of β .  

Fig. 7.2 shows this comparison. 
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Fig. 7.1: Comparison of I1 & I2 integrals, 00=β  

 

-4

-2

0

2

4

1.0 1.1 1.2 1.3 1.4 1.5

2nd Model: I2 integral
2nd Model: I1 integral
1st Model: I2 integral
1st Model: I1 integral

ZC = 1.5, β = 380 I1
 a

nd
 I2

 in
te

gr
al

s

 

Fig. 7.2: Comparison of I1 & I2 integrals, 038=β  
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 7.1.2 Numerical comparison and numerical accuracy of the )(3 ζI  integral  

 

In the 1st order model, 0=β , therefore, the elemental integral )(3 ζI  of 1st order 

model in (3.19) has different formulations from the integral )(3 ζI  of 2nd order model in 

(4.31). For example, in 1st order model, 
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where the parameter definitions in above formula may refer to chapter 3 and Appendix J.  

In 2nd order model, since the )(3 ζI  integral can not be expressed in a direct semi-

analytical form as it is in the 1st order model, it has been expressed in a discretized 

numerical integral form: 

 

)(1))(1(
2
1)( ,3

1

222
3 ζζζζ j

N

j j
c I

t
zI ∆⋅×−−−= ∑

=
                                    cz≤≤ ζ1  (7.6) 

 

where the parameter definition in (7.6) refer to chapter 4. 

In different value domains of the variable ζ , the integral )(3 ζI  has different computable 

semi-analytical forms (refer to (J.28), (J.42) and (J.52) in Appendix J for 1st order model, 

refer to (4.31), (4.32), (4.34), (4.36) and Appendix H for 2nd order model). 



 

 

172

 In the computation of the )(3 ζI  integral in  (4.31), (4.32), (4.34) and (4.36) of the 

2nd order model, there is an important parameter that needs to be determined. That is the 

number of the elements N  used in the computation. Recall in the discretized )(3 ζI  

integral in (4.31), (5.47), (5.48) and (5.49), the integral domain 12 −cz  has been 

discretized into N elements. More elements, means higher accuracy, but also need more 

computer CPU time. Recall that in the seakeeping solution procedure (refer to Chapter 6), 

at every time step, a complete −x  problem needs to be solved. Therefore the hull will be 

discretized into many segments (in our example, the main body is discretized into 80  

segments, and 2 steps, with the sections after the steps discretized into 50 segments). 

Each segment must then be discretized into the transverse computation grids (above 60 

axis−ζ  sub-elements in our examples). At each computation grid iζ , it is necessary to 

calculate )(3 iI ζ  for the bound vortex strength ),( τζγ ic , and also necessary to calculate 

)(3 iI ζ  when iζ  is on the free vortex sheets for the velocity continuity conditions and for 

the vortex distributions. However, a large number of segments N for the )(3 iI ζ  

computation would greatly slow down the computation speed, where N is the integral 

element number for the integral )(3 iI ζ  (refer to (7.6)). For the )(3 ζI  integral 

computation in the 1st order model, it does not need to discretize into N elements. It can 

calculate the )(3 ζI  integral value directly by the semi-analytical forms in (J.28), (J.42) 

and (J.52). 

 Comparing with the 1st order model, if assuming the CPU time needed by the 1st 

order model for )(3 iI ζ  computation as )1(O  (refer to (J.28), (J.42) and (J.52)) since it 

can calculate the integral value directly, then the CPU time for the 2nd order model would 
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be )(NO (refer to (7.6)), with N being the number of segments. This )(3 iI ζ  computation 

is the main reason why the computation speed in 2nd order model appear to be so much 

slower than that in the 1st order model.  

  The following example demonstrates the relation of the accuracy and the 

computation speed for )(3 iI ζ  computation. 

 

7.1.2.1 Deadrise angle 0=β  case 

 

 In the case of the deadrise angle 0=β , the formula in Eq. (J.28), (J.42) and 

(J.52) in the 1st order model are the established analytical evaluation of the integral )(3 ζI  

in different value domains of the variable ζ . Thus to estimate the accuracy of the  

integral )(3 ζI   formula (4.31), (4.32), (4.34) and (4.36)  in the 2nd order case, in the 

interest of debugging the code, the numerical results of the )(3 ζI  in the 2nd order model 

in 0=β  case have been compared with the results in the 1st order model. A code based 

on the mathematical models in (4.31), (4.32), (4.34) and (4.36) has been developed for 

the purpose of comparison. 

 Fig. 7.3 shows the comparison of )(3 ζI  in the region of cz<< ζ1 . In this 

example, the non-dimensional cz  is set to be 1.5. The segment number N in (7.6) is 

chosen to be 3000=N ; the sensitivity to N is considered later. A good agreement is 

shown for the two different models. The difference in the two curves on Fig 7.3 

represents numerical error, sine both formulations analytically produce the 1st order 

)(3 ζI  at 0=β . 
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Fig. 7.3: I3 integral in the domain: cz<< ζ1 , 0=β , 3000=N  

  

Fig. 7.4 shows the comparison of )(3 ζI  in the region of +≤< bzc ζ . In this 

example, 5.1=cz , 8.1=+b . These parameters were chosen from the computation result 

of CatSea2-4a.  The element number in (7.6) is chosen to be 3000=N . A nearly perfect 

agreement for the two different theoretic models has been achieved. Similarly, Fig. 7.5 

shows a very good agreement for the )(3 ζI  in the domain of 1<≤− ζb . Again, in (7.6) 

N is set to be 3000. 
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Fig. 7.4: I3 integral in the domain: +≤< bzc ζ , 0=β , 3000=N  
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Fig. 7.5: I3 integral in the domain: 1<≤− ζb , 0=β , 3000=N  
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 Fig. 7.3, Fig. 7.4 and Fig. 7.5 confirm that the algorithm for )(3 ζI  in 2nd order 

model is correct and that the new code for the )(3 ζI  computation is free of error. 

However, this accuracy is the accuracy when 3000=N . 

 Practically, if 3000=N  is chosen in the seakeeping computation, our PC-type 

computer may need to continually run several months to get results. For balancing the 

CPU time and with the necessary accuracy, at present examples, 300=N  is proposed in 

the seakeeping computation. However, with 300=N , the accuracy is much lower. 

 Fig. 7.6 shows the comparison of )(3 ζI  computation in the region of cz<< ζ1  

with 300=N . Comparing with Fig. 7.3, it is seen that the numerical results for the 2nd 

order model are off the analytical 1st order results, again at 0=β . Fig. 7.7 and Fig. 7.8 

show the differences of numerical results in the region of +≤< bzc ζ  and 1<≤− ζb  

respectively with 300=N . However, these differences may be acceptable at the present 

PC-type computer ability. 
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Fig. 7.6: Comparison of the I3 integral in the domain: cz<< ζ1 , 00=β , N=300 
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Fig. 7.7: Comparison of the I3 integral in the domain: +≤< bzc ζ , 00=β , N=300 
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Fig. 7.8: Comparison of the I3 integral in the domain: 1<≤− ζb , 00=β , N=300 

 

 

7.1.2.2  Deadrise angle 0≠β  case 

 

 The formulae of )(3 ζI  computation in the 2nd order model can take the 0≠β  

effect into account, but the 1st order model can not. Fig. 7.9 shows the comparison of the 

)(3 ζI  computation results for 0=β  and 038=β  case. It has a completely different 

trend for the results in the 038=β  case from the results at 0=β . Fig. 7.10 shows the 

family curves for the )(3 ζI  computation results for 2nd order model when the deadrise 

angle β  changes, where N = 300. 
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Fig. 7.9: I3 integral in the domain: cz<< ζ1 , 038=β , N=300 
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Fig. 7.10: β  variation effect: I3 integral in the domain: cz<< ζ1 , N=300 
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From the above research, the following conclusions may be drawn: 

• The formulae of the )(3 ζI  computation in (4.31), (4.32), (4.34) and (4.36) in the 2nd 

order model are correct, so it can be used as an approximate numerical model; 

• )(3 ζI  integral needs more segments, N, to achieve a high numerical accuracy. Small 

N, i.e., several hundreds, in the )(3 ζI  integral results in crude accuracy. However, 

more segments will greatly increase the computation time. A combination method for 

the segment numbers could be used. A numerical test shows that 500=N  could be 

used in the critical area (the area of steepest slope of the function), and a cell number 

300=N  could be used for other areas to effectively speed up the computation. 

 

7.2 Comparison of The Numerical Results For ),( τζγ c  Computation  

 

 The computation of the vortex strength ),( τζγ c  is a key issue for the craft 

computation. A run-time error problem in the )(zcγ  computation was caused by the 

crude extrapolation in )(3 ζI  to the end of the interval where a small numerical error in 

removing the singular terms in satisfying the velocity continuity condition existed. When 

the numerical accuracy in the )(3 ζI  algorithm was refined, the run-time error problem in 

the )(zcγ  computation was resolved. 

The numerical model of ),( τζγ c  in the 1st order model is given in Chapter 5 

(refer to (3.10), (5.43), (5.44) and (5.45)). The numerical model of ),( τζγ c  in the 2nd 

order is given in (5.89), (5.92), (5.96), (5.97) and (5.99).  



 

 

181

 A numerical comparison has been conducted for the ),( τζγ c  computation. The 

necessary input parameters are obtained from the output results of CatSea2-4a for the 

seakeeping case. Fig. 7.11 shows the comparison of the bounded vortex strength ),( τζγ c  

computations in 0=β  case. At the end point, the vortex strengths for two methods are 

identical. At the other points, there exist some differences which may result from the 

difference in the mathematical models between the 1st order model and the second order 

model. Fig. 7.12 shows the effect of the variation of β  in the 2nd order model. The 

bounded vortex strength ),( τζγ c  model in the 2nd order model can take the β  variation 

effect into account.  
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Fig. 7.11 Comparison of the vortex strength distribution )(ζγ c ( 00=β ) 
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Fig. 7.12  Effect of the variation of β  

 

 From the above numerical comparison, the ),( τζγ c  computation accuracy in the 

2nd order model is considered acceptable 

 In this chapter we have validated some important parts of the numerical model in 

the 2nd order theory. In next chapter, the numerical predictions for steady planing and 

comparisons between the 1st and 2nd order models are presented. 
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CHAPTER 8 

NUMERICAL COMPARISONS FOR STEADY PLANING 

 

 

8.1 30ft High-Speed Planing Catamaran With Steps  

 

A tool for catamaran performance prediction has been developed according to the 

second order nonlinear theory of hydrodynamics for planning catamarans. The name of 

the software is NewCat (version 2-4a), the program flow charts for which are shown in 

Chapter 6. 

We have applied this software to a planing catamaran that was developed by 

William Vorus and Larry DeCan. This high-speed catamaran has two transverse steps in 

the planning region of the hull. 

Figs. 8.1 - 8.3 show the views of the Vorus-DeCan planning catamaran (the steps 

are not shown). Fig. 8.4 is the section view. 
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Figure 8.1 Stepped planing catamaran 

 

 

Figure 8.2  Stepped planing catamaran: bow end view 
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Figure 8.3  Stepped planing catamaran: top view 
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Figure 8.4 Cross section view at station #4  (12 ft forward of transom) 
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Fig. 8.5 to 8.7 are the longitudinal distributions, respectively, of deadrise angle 

)( ixβ  (in degrees), chine offset )( iCH xZ , and keel upset with the two steps. The −XI  

coordinate in these figures is the coordinate of the initial wetted length maxx , it starts from 

bow to stern ( max0 x→ ). Because NewCat needs a high degree of accuracy in the 

computation, all geometric parameters used here are in the form of higher order 

continuous polynomials. Fig. 8.5 through Fig. 8.7 has shown the smooth geometric 

distributions. The geometry distributions plotted in Fig. 8.5 - Fig. 8.7 are the results of the 

first main hull and the subsequent two stepped hulls together. Fig. 8.7 also shows a ten-

time amplified keel upset curve for zoom view.  
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Fig. 8.5 Deadrise angle )(xβ  distribution over the boat length (in degree) 
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Fig. 8.6 The variation of chine )(xZCH  along the boat length 
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Fig. 8.7 Keel upset (2 steps) 

 



 

 

189
The main geometric parameters of the Vorus-DeCan planing catamaran are listed 

in the Table 8.1, where, 

kZ : The dimensional keel offset measured from the center line, in FT; 

CHZ : The dimensionless chine offset; 

W  : The boat displacement, in lbs; 

massX : The non-dimensional mass, )21( 3
kmass gZWX ρ= ; 

cgr : The dimensionless gyration radius; 

cgx : The center of gravity measured from transom; 

stepx : The non-dimensional distance from transom to step (refer to Fig. 8.7);  

As an example, the input values to the codes for the main hull segment are listed 

in Table 8.2. The data for the two aft hull segments can be found in Appendix K. 
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Table 8.1 Geometric parameters of the Vorus-DeCan high speed stepped catamaran 

 

Denomination Symbol Formulation Units Value 

Keel offset kZ  kZ  Ft 2.0 

Chine offset CHZ  CHZ  - 1.5 

Weight W  W  LBS 6000 

Mass XMASS )21( 3
kmass gZWX ρ= - 24.04 

Radius gyration 

from transom 

GYRAD 
kcgcg Zxrr 22 +=  - 6.33 

Center of gravity 

from transom 

XCG kcg Zx  - 5.0 

Overall fitting 

length in 

computation 

XLOA kLOA ZLx =  - 13.5 

Max half-keel 

offset 

ZKM KMZ  Meter/Ft 0.61/2.0 

Fwd step location 

from transom 

XLSTEP(1) kstepstep ZLx 1,1, =  - 4.58 

Aft step location 

from transom 

XLSTEP(2) kstepstep ZLx 2,2, =  - 2.29 

Deadrise angle at 

transom 

BET1 1β  Degree 17.00 
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Table 8.2: Input geometry parameters of the main hull segment 

 

Denomination Symbol Formulation Units Value 

Keel upset at 

entry 

YK0 kk ZY 0,  - 0.675 

Keel slope at 

entry 

YK0P '
0,kY  - -0.30 

Keel curvature at 

entry 

YK0PP ''
0,kY  - 0.09 

Keel upset at 

transom 

YK1 kk ZY 1,  - -0.00 

Keel slope at 

transom 

YK1P '
1,kY  - -0.00 

Trial water line 

length  

XMAX kZxmax  - 8.92 

Forward keel 

tangent point 

from transom 

XLA kLA Zx  - 0.17 

Aft keel tangent 

point from 

transom 

XLC kLC Zx  - 0.00 

Entry deadrise BETA0 0β  Degree 38.00 
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Slope of deadrise 

angle at entry 

BETA0P x∂∂ 0β  Deg. Per non-

dim. distance 

-3.33 

Deadrise angle at 

transom 

BETA1 1β  Degree 17.00 

Slope of deadrise 

angle at transom 

BETA1P x∂∂ 1β  Deg. Per non-

dim. distance 

-0.00 

Forward deadrise 

angle tangent 

point from 

transom  

XLAB kLAB Zx  - 0.00 

Deadrise angle at 

keel at entry 

BET11 11β  Degree 38.00 

Deadrise angle at 

chine at entry 

section 

BET12 12β  Degree 38.00 

Deadrise angle at 

keel at transom 

BET21 21β  Degree 17.00 

Deadrise angle at 

chine at transom 

BET22 22β  Degree 17.00 

Keel offset at 

entry 

ZK0 kk ZZ 0,  - 1.0 

Slope of keel at 

entry 

ZK0P xZZ kk ∂∂='
0,  - 0.0 
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Keel offset at 

transom 

ZK1 kk ZZ 1,  - 1.0 

Slope of keel at 

transom 

ZK1P xZZ kk ∂∂='
1,  - 0.0 

Chine offset at 

entry 

ZCI0 kCH ZZ 0,  - 1.10 

Slope of chine 

offset at entry 

ZCI0P xZZ CHCH ∂∂='
0,  - 0.20 

Max. chine offset ZCIM kMCH ZZ ,  - 1.50 

Chine offset at 

transom 

ZCI1 kCH ZZ 1,  - 1.50 

Slope of chine 

offset at transom 

ZCI1P xZZ CHCH ∂∂='
1,  - 0.00 

Fwd tangent PT 

to ZCIM from 

transom 

XLAC kLAC Zx  - 2.17 

Aft tangent PT to 

ZCIM from 

transom 

XLCC kLCC Zx  - 0.00 
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8.2 Steady Planing Computations 

 

The case of steady planing corresponds to the 0=τ  time step computation of the 

general seaway dynamics codes, NewCat or CatSea. However, the multi-time stepping 

computation is used to obtain the equilibrium trim and transom draft in steady planing. 

Integrating forward in time from an initial guessed trim and draft, the transient dies in 

time as the boat reaches an equilibrium steady planing. Once an equilibrium steady 

planing is established the seaway dynamics can commence. Thus, the multi-time step 

dynamic computation of NewCat and CatSea has been applied to find the equilibrium 

draft and trim angle. During this preliminary computation, the time step number was set 

at 2000IALL = , the non-dimension 3.0=∆τ , so that the non-dimensional time length 

600=∆×== τIALL
Z
UtT

k

 was used. 

In this steady planing computation, the forward speed is set as 70=U  knots. The 

fractional artificial damping coefficient used in this computation is set to be 

5.0=∆×
m

C τ . (This value, along with the 3.0=∆τ , are significantly larger than used for 

the wave computations because of the slowly varying non-equilibrium calm-water case, 

and the fact that only the final equilibrium state is of interest). The initial draft and trim 

angle of the each hull segment for the equilibrium computation are shown in Table 8.3.  

In Table 8.3, the intermediate draft values are related to the transom draft by the rigid 

body trim rotation. The two principal unknowns are the transom draft of hull segment 3 

and the trim angle. 
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Table 8.3: Initial transom draft and trim angle for the comparison computation 

 

Denomination Symbol Formula Initial Value 

Transom draft 

at hull segment 

1 

HT kT ZH  0.1176  

Transom draft 

at hull segment 

2 

HT kT ZH  0.1609 

Transom draft 

at hull segment 

3 

HT kT ZH  0.2043 

Trim angle 

(deg) at hull 

segment 1 

TRIM 0α  1.088 

Trim angle 

(deg) at hull 

segment 2 

TRIM 0α  1.088 

Trim angle 

(deg) at hull 

segment 3 

TRIM 0α  1.088 
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Define T  as the maximum time of the computation. The computation reached 

steady state at the time T = 300. Fig. 8.8 shows the time histories of the transom draft and 

trim angle for 1st order model and 2nd order model. The transient state due to the non-

equilibrium value assumed and its decay to achievement of steady planing state at around 

T = 300 is clearly shown.  The computed value are unchanged to the time limit of T = 

600. 
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 Fig. 8.8  Comparison of histories of draft and trim angle at transom 

 

Table 8.4 lists the comparison values of the transom draft and trim angle at the 

steady planning state. The level of differences shown on Figure 8.8 and in Table 8.4 

reflects the level of theoretical difference between the 1st and 2nd order models.  
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Table 8.4: Comparison of the transom draft and trim angle in steady planing 

 

Denomination Symbol Formula 1st Order  

Method 

2nd Order 

Method 

Transom draft 

at hull 1 

HT kT ZH  0.1214 0.1232 

Transom draft 

at hull 2 

HT kT ZH  0.1652 0.1672 

Transom draft 

at hull 3 

HT kT ZH  0.2091 0.2112 

Trim angle 

(deg) at hull 1 

TRIM 0α  1.101 1.104 

Trim angle 

(deg) at hull 2 

TRIM 0α  1.101 1.104 

Trim angle 

(deg) at hull 3 

TRIM 0α  1.101 1.104 

 

Table 8.5 shows the comparison of numerical results obtained from the two 

methods. The predicted lift and the center of lift are in a good agreement with the 

required design values. The lift produced by the planing hydrodynamics is in balance 

with the boat weight, and the lift force center is same as the gravity center, therefore the 

boat is running at a steady planing equilibrium. Then lift/drag ratios predicted by the two 

models are essentially the same, and are high values for a boat speed of 70 knots. 
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Table 8.5  Numerical comparison of two models in steady planing 

 

Denomination Symbol Formula 1st Order  

Method 

2nd Order 

Method 

Required lift CLT0 ) 5.0( 22
kZUW ρ 0.11085820 0.11085820      

Total lift CL ) 5.0( 22
kZUL ρ  0.11091274      0.11123141      

Total drag  CD ) 5.0( 22
kZUD ρ  0.02384798 0.02393888 

Center of 

gravity required 

XCG kcg Zx  5.00000000 5.00000000      

Center of lift 

from transom 

XBT kCL Zx  5.00001578      5.00093329      

Lift-drag-ratio XLOD DL CC  4.65082233      4.64647336      

 

The following comparison and discussion are based on the results at the steady 

planning state. Figures 8.9 to 8.12 are computation results from the 2nd order nonlinear 

model. Again, the −x  coordinate in these figures is the coordinate of the initial wetted 

length, it is from bow to stern. Fig. 8.9 is the sectional lift distribution over the hull 

length. In Fig. 8.9, each hull segment has its own contribution to the total lift distribution. 

The transverse steps restart a chine-unwetted flow, as evidenced by the large lift 

distributions off the steps. From Fig. 8.11, it is clearly shown that the jet velocity has a 

large jump across the steps. This large jet velocity results in the large sectional force peak 
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developed downstream of the steps (Fig. 8.9); refer to the ),1(2 τsV  term in the pressure 

formulae of (4.84) and (4.85) in Chapter 4.  

There is a singularity in the sectional force distribution  at the chine-wetting point. 

This is due to the slope discontinuity of the hard-chine geometry. The sudden stop in cz  

advancement when the chine is reached, results in an infinite velocity gradient, which is 

the reason for the negative suction pressure indicated on Figure 8.9.  The forces are, of 

course, integrable. 

Fig. 8.10 gives the plan view of the flow field geometry. It shows the jet-head 

offsets )(xzb
+  and )(xzb

− . Within this plot it is clearly evident that in the flow fields the 

aft two step hull segments are chine-unwetted. Without the steps, the flow of the first hull 

segment would develop into a chine-wetted flow, and the hull would continue to be 

chine-wetted from that point aft. As we expected, the steps are therefore seen to maintain 

the flow as chine-unwetted, which is desirable. 

Fig. 8.12 is the running half-body plan. It shows the wetted and non-wetted hull 

contours, for all three hull segments, from the transom up to the forward end of the 

waterline.  
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Fig. 8.9 Lift distribution over the boat length (Steady planning, 70 Knots) 
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Fig. 8.10  Flow geometry in the plan view (70 knots) 
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Fig. 8.11  Jet velocity distribution (Steady planning, 70 knots) (zoom view) 
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Fig. 8.12  Body plan (Steady planning, 70 Knots) 
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Fig. 8.13 to Fig. 8.15 show the comparison of the computation results of the 2nd 

order nonlinear model (NewCat 2-4a) with the 1st order nonlinear model (CatSea 2-4a) at 

the same steady planing. In general, the results of 2nd order model are in good agreement 

with the results of 1st order, excepting some local differences. Fig. 8.13 shows the 

comparison of the sectional lift distributions. The total lift results predicted by the two 

models, of course, have to be the same since the same boat weight was specified in the 

two equilibrium computations (ref. to Table 8.5). However, there are local differences 

when the details of the two computations are compared. Fig. 8.14 is the comparison of 

the jet head offsets in the plan view. The horizontal projection of the jet heads +
bz  and −

bz  

predicted by the 2nd order model are wider than that predicted by the 1st order model. Fig. 

8.15 shows a longitudinal comparison of the jet velocity distributions. Again, the jet 

velocities predicted by the 2nd order model are larger than that by the 1st order model at 

the inside jet. 
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Fig. 8.13  Comparison of the sectional lift distributions in steady planning 
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Fig. 8.14  Comparison of the horizontal projection of the jet heads (zoom view) 
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Fig. 8.15  Comparison of the jet velocity distribution along the boat length 
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Fig. 8.16 and Fig. 8.17 show a comparison of the pressure distribution in the main 

hull segments, CP is the pressure coefficient defined by (3.61), (3.62), (4.64) and (4.65). 

Fig. 8.18 and Fig. 8.19 show the comparison of the pressure distribution in the second 

hull segment, Fig. 8.20 and Fig. 8.21 show the comparison of the pressure distribution in 

the third hull segment. In these figures, the pressure distributions at the bow are much 

higher than that at the transom. Again, from these figures, it is found that the pressure at 

the two steps are much higher than at the main hull. The shape of the pressure 

distribution for the planing catamaran is, unlike the monohull (Vorus, 1996), close to a 

constant distribution, this appears to stem from the requirement for atmospheric pressure 

at the two jets. The pressure distributions appear to be almost discontinuous at each of the 

jets, but in fact they are not. 

Generally speaking, the shape and the amplitude of resulting curves in the 2nd 

order model (NewCat) are very similar to the results in the 1st order model (CatSea), 

however, on the local details of the flow field and on the pressure distribution, there are 

some differences. The comparisons of results have established that the results of the 2nd 

order nonlinear model, for calm water planing, are compatible with the 1st order model, 

although the formulations have very clear differences. 
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Fig. 8.16 Comparison of pressure distribution at hull segment 1, section 3  

(from the entry 0681.0=ix in 2nd order model, 067.0=ix  in 1st order model) 
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Fig. 8.17 Comparison of pressure distribution at hull segment 1, section 81  

(from the entry 5552.4=ix in 2nd order model, 4786.4=ix  in 1st order model) 
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Fig. 8.18 Comparison of pressure distribution at hull segment 2, section 3  

(from the forward step 034236.0=ix ) 
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Fig. 8.19 Comparison of pressure distribution at hull segment 2, section 51  

(from the forward step 29.2=ix ) 
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Fig. 8.20 Comparison of pressure distribution at hull segment 3, section 3  

(from the aft step downstream 068242.0=ix ) 
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Fig. 8.21 Comparison of pressure distribution at hull segment 3, section 51  

(from the aft step downstream 29.2=ix ) 
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CHAPTER 9 

HIGH SPEED CATAMARAN PLANING IN WAVES 

 

 

 At present, modern, high speed craft are usually not limited so much by structural 

strength requirements, but instead by the ability of the crew to survive the sometimes 

large impact accelerations associated with craft operation in the seaway. It has been noted 

that impact accelerations are sensitive to minor variations in the hull geometry. This is 

especially true where small changes in the deadrise angle can significantly reduce impact 

accelerations (Garner 2000). Therefore, the ability of the nonlinear model to correctly 

predict the high speed planing catamaran performance in a seaway is a focus of the 

present research. 

 As was described in Chapters 2 through 4, we solve the planing catamaran 

hydrodynanics problem in the time domain. The present nonlinear models (1st and 2nd 

order) predict the spatially varying pressure in time on the instantaneous wetted surface 

of the hull. This pressure is used to predict the nonlinear hydrodynamic force and 

moment on the planing hull. The impact accelerations are then computed from Newton's 

law in two degrees of freedoms. These accelerations are then integrated to compute the 

heave and pitch velocities and displacements. The new heave and pitch velocities and 

displacements, along with the ambient wave velocities and displacements along the hull, 

are used in the next time step as the initial conditions for that time step. This process is 
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repeated as time progresses. The histories of the heave and pitch motions, including 

accelerations at the bow, center of gravity, and stern, are thereby obtained. 

 

9.1 Numerical Results of 2nd Order Model 

 

The 2nd order design tool NewCat (2-4a) has been applied to the 30ft high speed 

stepped catamaran described in Chapter 8 for the regular wave cases.  

In this computation example, we set up the forward speed 70=U  knots, same as 

that in the steady planing case. Time step number was set at 500,12IALL = , with an 

initial non-dimension time step increment 02.0=∆τ . The non-dimensional time for the 

computation is therefore 2501250002.0 =×=T . It is 4.24 seconds in real dimensional 

time. The fractional artificial damping coefficient 1.0=∆×
m

C τ . This is reduced from the 

Chapter 8 calm-water equilibrium calculation since the details of the time response is of 

interest here. 

The programs (NewCat or CatSea) have a restart capability. The computation can 

be stopped after a specified number of time steps and a data DUMP file created at the 

stop. The DUMP file becomes the RESTART file on resumption of the computation with 

some possible adjustments in the input data such as the time step size or the convergence 

criteria, if necessary.   

In this example, a non-dimensional regular, head wave of height 50.0=
k

S

z
H

 is 

used; this corresponds to a dimensional wave height of 1.0 ft. The wave length 60=
kz

λ , 
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and the initial wave phase angle 0
0 0=θ , corresponding to placement of a zero-wave 

amplitude at the at 0=τ . 

For the computation, the instantaneous wetted main hull segment was divided into 

80 −x elements along its length, and the two instantaneous wetted sub-segment lengths 

were divided into 50 −x  elements each. 

Fig. 9.1 – Fig. 9.6 are the computation results of the 2nd order model. The 1st order 

model results will be listed in next section. Fig. 9.1 depicts the time histories of the 

regular sinusoidal wave elevations at the bow and at the transom, the bow displacement, 

the transom draft, the step drafts, and the pitch angle. From Fig. 9.1, it is evident that the 

pitch curve is not a simple harmonic response curve, and its phase shifted relative to the 

wave elevation at the bow. The drafts at the transom and steps are decreasing slightly 

over the time span of the computation. It can be noted from Figure 9.1 that the boat is 

rising in the regular wave system (decreasing draft and increasing bow elevation). As will 

be shown, this is due to the DC shift in the acceleration response (more up than down). 
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Fig. 9.1 Displacement histories (2nd order model) 

 

Fig. 9.2 shows the predicted vertical acceleration, in g's, at the bow (solid line), at 

the center of gravity (dash line), and at the transom (dash-dot line). It is remarkable to 

observe the asymmetry of these curves. The positive upward acceleration peaks are much 

larger than the downward. Although the exciting wave is simple harmonic, the 

acceleration response is not, showing a strong non-linear, irregular characteristic. This 

non-linear behavior of the planing catamaran acceleration response demonstrates that the 

frequency response amplitude operator (RAO's) method is not valid for the computation 

of acceleration response, as in the typical small amplitude displacement-type ship case. 

Furthermore, the linear response superposition method is not applicable for predicting the 

acceleration response in the irregular seaway, i.e., a frequency domain solution method is 

not acceptable for predicting the response of the planing catamaran in waves. 
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Fig. 9.2 also shows that the boat is out of water at the wave trough region (refer to 

Fig. 9.3), the correspondent vertical acceleration at the transom is close to –1.0 g, which 

is the downward gravity acceleration. Therefore, when the boat re-contacts the wave 

surface, it experiences a large impact.    
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Fig. 9.2 Vertical accelerations (2nd order model) 

 

Fig. 9.3 depicts the time histories of the wetted length (solid lines) and the chine-

wetted length (dashed lines) for each of the three boat segments. Recall that the wetted 

water line length kZxL max)( =τ , is the distance from the each hull segment transom to 

its forward waterline-end (entry point) (refer to Fig. 3.8). The chine-wetted length 

kcwcw ZxL /)( =τ  is the distance to the point of chine-wetting from the each hull segment 
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transom. From these curves it is easy to see that the waterline length of the main hull 

changes with the period of the incoming waves; the waterlines of the sub-hull segments 

experience less change. The chine-wetted length of the sub-hull segments is zero most of 

the time, which implies that behind the steps the sub-hull segments remain fully chine-

unwetted, which is the desired characteristic by design. The main hull has a chine-wetted 

length that varies with the boat and wave motions. By Fig 9.3, the main hull runs 

increasingly chine unwetted length with time. This is due to the rise of the boat relative to 

the wave system associated with the acceleration nonlinearity (cited with respect to 

Figures 9.1 and 9.2).  
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Fig. 9.3 Wetted length and chine wetted length (2nd order model) 
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Fig. 9.3 clearly shows the important behavior that the boat completely lifts clear 

of the water at the trough region of the incoming waves (refer to the waves in Fig. 9.1); 

the wetted lengths (water lines) for all three hull segments are zero in Fig. 9.3 during 

these periods.  

The non-dimensional time T = 250 is the last step in our computation. The result 

of the flow field detail at T = 250 is shown here as an example. Fig. 9.4 shows the 

sectional lift distribution at the non-dimension time T = 250 . It shows that the main lift at 

this time is contributed by the main hull segment. Fig. 9.5 represents the flow geometry 

in the plan view (at T = 250). It can be seen from Fig. 9.5, the two stepped hull segments 

are all chine-unwetted, which improves the lift characteristic of the boat, as explained 

previously. Fig. 9.6 depicts the jet velocity distribution at T = 250, the velocity has large 

peaks at the beginning of the steps, which is the same characteristic as demonstrated in 

the steady planing case, Chapter 8. 
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Fig. 9.4 The sectional lift distribution at T = 250 
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 Fig. 9.5 Flow geometry in the plan view (at T = 250)  
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Fig. 9.6 Jet velocity distribution zoom view (at T = 250) 
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 From this computation example, it is demonstrated that the present second order 

nonlinear model has the ability to predict the planing catamaran behavior in regular 

waves.  

 

9.2 Comparisons For the  Regular Wave Case 

 

For comparison, the 1st order code CatSea2-4a has been applied to the same 

planning catamaran and the same regular waves. 

Fig. 9.7 - Fig. 9.9 are the time histories of the waves, motions, vertical 

accelerations, the wetted lengths, which are the counterparts of Fig. 9.1 - Fig. 9.3. 
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Fig. 9.7 Wave and motion histories from CatSea2-4a (1st order model) 
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Fig. 9.8 Vertical accelerations fromCatSea2-4a(1st order model) 
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Fig. 9.9  Wetted lengths from CatSea2-4a (1st order model) 
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 Comparing Fig. 9.7 – Fig. 9.9 in 1st order model with Fig. 9.1 – Fig. 9.3 in 2nd 

order model, it is evident that the two group figures are very similar, except for the local 

details. The local differences reflect the difference of the two different kind of theoretical 

models. The detail differences are shown in following figures. 

Fig. 9.10 shows the comparison of the transom draft and the trim angle for the 1st 

and the 2nd order theories. In Fig. 9.10, the transom drafts are not actually identical, with 

greater differences in the trim angles. The predicted trim angle of the boat increases faster 

in the wave system by the 1st order theory. This mirrors the difference in the acceleration 

distributions predicted (refer to Fig. 9.11).   
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Fig. 9.10 Comparisons of trim angle and transom draft; 1st and 2nd order models 

 

Fig. 9.11 – Fig. 9.13 shows the differences in the vertical accelerations. It is found 

that the 1st order model predicts much larger impact accelerations than the 2nd. Especially 



 

 

219
at the bow region, the acceleration of 1st order model has a larger peak, which results in a 

larger trim angle as shown in Fig. 9.10.  
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Fig. 9.11 Comparison of bow accelerations; 1st and 2nd order models 
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Fig. 9.12 Comparison of the vertical acceleration at CG; 1st and 2nd order models 
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Fig. 9.13 Comparison of the vertical acceleration at transom; 1st and 2nd order models 

 

 Fig. 9.14 shows the comparison of the wetted length and the chine-wetted length 

for the main hull segment. The solid lines are the predicted results of the 2nd order model 

for the wetted length )(τL  and the chine-wetted length )(τcwL , and the dash lines are the 

results of the 1st order model. Fig. 9.14 shows that the predicted )(τL  and )(τcwL  are 

very close for both cases. 

 



 

 

221
(2D)  05 Oct 2002 

0 50 100 150 200 250
Time

0

1

2

3

4

5

6

7

W
et

te
d

le
ng

th
an

d
ch

in
e-

w
et

te
d

le
ng

th

wetted length

chine-wetted length

(2D)  05 Oct 2002 

 

Fig. 9.14 Comparison of the wetted length and the chine-wetted length  

for 1st and 2nd order models 

 

Fig. 9.15 - Fig. 9.17 give the comparisons of the detail results of the two theories 

at the non-dimension time T = 250. Fig. 9.15 gives the comparison of the sectional lift 

distribution. The sectional lift by the 1st order model is larger than that predicted by the 

2nd order model. This is again fully consistent with the higher accelerations (and higher 

trim angle) predicted by the 1st order. Fig. 9.16 depicts the difference in the jet-head 

streamline offsets in the two predictions. Both models predicted the chine-wetted 

condition of the first segment at the time displayed. However the outer jet-head 

streamline offset of 1st order model is wider than the results in the 2nd order model, and 

the inner jet-head streamline offset of the 1st order model is narrow than the results from 

the 2nd order model. Fig. 9.17 graphs the differences of the jet velocity distributions for 
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the two theories in zoom view. The jet velocity distribution of the 1st order model is 

higher in the outer jet-head region, and lower than the 2nd order model in the inner jet-

head region, which is again completely consistent with the jet-head offset comparison in 

Fig. 9.16. 
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Fig. 9.15 Comparison of the sectional lift distribution at T = 250; 1st and 2nd order models 
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Fig. 9.16 Comparison of flow fields in a plan view at T = 250; 1st and 2nd order models 
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Fig. 9.17 Comparison of jet velocity distributions at T = 250 (zoom view)  

for 1st and 2nd order models 
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Fig. 9.18 is the pressure distribution comparison at the section 3 of the main hull 

segment for both models. Again as displayed in Chapter 8, the pressure distribution of the 

1st order model is higher than the pressure in the 2nd order model.  
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Fig. 9.18 Comparison of pressure distribution at hull segment 1, section 3 (from the entry 

099298.0=ix  in 2nd order model, 0098706.0=ix  in 1st order model) 

 

On the basis of these comparisons, it is easily seen that the prediction of the 2nd 

order model in regular waves is comparable to the results of the 1st order model, which 

supports that the both the 1st and 2nd order models should be reliable as design tools. 

 

9.3 Comparisons for the Random Wave Case 
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The 2nd order design tool NewCat (2-4a) has also been applied to the 30ft stepped 

planing catamaran for random wave cases. 

The incoming wave is in the head-sea direction. The significant wave height 

is 308.03/1 =H  m, and the natural wave peak period 188.42

0

==
ω
π

pT  real seconds. A 

JONSWAP wave spectrum has been used here.  

The computation parameters in this example are: the forward speed 70=U  knots, 

the time step number 000,10IALL = , the non-dimension time step increment 02.0=∆τ .  

The total non-dimensional time for the computation is thus 2001000002.0 =×=T . It is 

3.38 seconds of real time. The fractional artificial damping coefficient 1.0=∆×
m

C τ  

same as in the regular wave computation.   

Fig. 9.19 shows the time histories of the wave elevations, the bow displacement, 

the transom draft, the step drafts, and the trim angle. Fig. 9.20 shows the vertical 

accelerations predicted by the 2nd order model. There are large acceleration peaks in the 

bow region due to the high speed impaction. Fig. 9.21 is the variation of the wetted water 

line lengths (solid lines) and the chine-wetted lengths (dashed lines). It is readily 

observed from Fig. 9.21 that the wetted water line of the main hull segment changes 

significantly, but the wetted water line of the aft stepped hull segment 3 changes 

insignificantly during the same time. From Fig. 9.21, the chine-wetted length of the main 

hull segment changes based on the wave action and the boat movement, but the chine-

wetted length of the two stepped hull segments are zero at most time, which means that 

the main hull segment is often in chine-wetted flow phase and the two stepped hull 

segments are in chine-unwetted phase most of the time. 
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Fig. 9.19 Displacement histories predicted by the 2nd order model; irregular waves 
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Fig. 9.20 Vertical accelerations predicted by the 2nd order model; irregular waves 
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Fig. 21 Wetted water line lengths predicted by the 2nd order model; irregular waves 

 

 For comparison, the following figures (Fig. 9.22 – Fig. 9.24) depict the 

displacements, the vertical accelerations, the wetted water line lengths and the chine-

wetted lengths predicted by the 1st order model (CatSea2-4). Comparing these figures 

with Fig. 9.19 – Fig. 9.21, it gives us a clear impression that the results predicted by the 

1st and 2nd order models are close, although they are from very different theoretical 

formulations. 
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Fig. 9.22 Displacement histories predicted by the 1st order model; irregular waves 
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Fig. 9.23 Vertical accelerations predicted by the 1st order model; irregular waves 
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Fig. 24 Wetted water line lengths predicted by the 1st order model; irregular waves 
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Fig. 9.25 Comparison of the trim angles and the transom drafts 
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 Fig. 9.25 shows the difference of the trim angles and the transom drafts predicted 

by the 1st and 2nd order models. The differences are seen to be small.  

 Fig. 9.26 is the comparison of the sectional lift force distributions at T = 200. It 

demonstrates that the lift distributions are the same at this time. In Fig. 9.26, the main 

hull segment is out of water and therefore does not develop lift. 
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Fig. 9.26 Comparison of the sectional lift distributions 

 

 Fig. 9.27 – Fig. 9.29 demonstrates the differences between the vertical 

accelerations predicted by the different models for random waves. In 9.27, the bow 

acceleration predicted by the 1st order model is larger than the result predicted by the 2nd 

order model, which is consistent with the conclusion from the regular wave examples. 
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Fig. 9.27 Comparison of bow accelerations 
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Fig. 28 Comparison of the accelerations at CG 

 



 

 

232
(2D)  06 Oct 2002 

0 50 100 150 200
Time

-4

-2

0

2

4

6

8

V
er

tic
al

A
cc

el
er

at
io

n
(g

)

Random head wave
wave height: H1/3 = 0.308 m
wave peak period: Tp = 4.188 s

U = 70 Knots

Acceleration at transom

solid line: 2nd order model
dash line: 1st order model

(2D)  06 Oct 2002 

 

Fig. 9.29 Comparison of the accelerations at transom 

 

 Fig. 9.30 is the comparison of the jet-head streamline offsets in the two 

predictions. Fig. 9.31 shows the comparison of jet velocities. Fig. 9.32 shows the 

comparison of the wetted water line lengths and the chine-wetted lengths. The results 

predicted by the two theoretical models are relatively close, except for existing some 

differences at the inner jet head streamline offsets and at the inner jet velocities (refer to 

Fig. 9.31). 
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Fig. 9.30 Comparison of the jet-head streamline offsets 
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Fig. 9.31 Comparison of the jet velocities (zoom view) 

 



 

 

234
(2D)  06 Oct 2002 

0 50 100 150 200
Time

0

1

2

3

4

5

6

7

W
et

te
d

le
ng

th
an

d
ch

in
e-

w
et

te
d

le
ng

th wetted length

chine-wetted length

(2D)  06 Oct 2002 

 

Fig. 9.32 Comparison of the water line lengths and the chine-wetted lengths 

 

 In this chapter, we have given the numerical comparison for the results predicted 

by the 1st and 2nd order models. From this comparison, we conclude that the predictions 

by the two models, in general, are close, but minor differences exists in some of the 

details. The 2nd order model has modified (reduced) the extreme values of the bow 

vertical impact accelerations. 

 So far, all predicted results given in this chapter are the results without 

considering the effect of the temporal derivative term 
const=∂

∂

ξτ
, as discussed in Chapter 

4, 5 and 6 in connection with equations (4.75), (4.76), (4.78), (4.80), (4.81), (4.84) and 

(4.85).  As discussed in Chapter 1, the 
const=∂

∂

ξτ
 term calculation involves the 

differentiation across the different time step, which very easily results in a numerical 
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singularity problem. How to deal with the  
const=∂

∂

ξτ
term appearing in (4.75), (4.76), 

(4.78), (4.80), (4.81), (4.84) and (4.85)?  This is a complicated mathematical problem, 

which is the subject of the next (and last) chapter of this thesis.     
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CHAPTER 10 

DISCUSSION ON PLANING DYNAMICS:  

 INFLUENCE OF THE TEMPORAL DERIVATIVE  TERM 
const=∂

∂

ξτ
 

 

 

In the numerical model of the 2nd order theory, the pressure computation involves 

the calculation of the temporal ),( τξ
τ
φ

∂
∂  term. The formulation of ),( τξ

τ
φ

∂
∂  in the 

coordinate system of Fig. 3.5, and in the equations (3.66) and (3.67) has the following 

form: 

 

xL
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constconstconst ∂
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===

φ
τ
φ

τ
ξ

ξ
φ

τ
φττξ

τ
φ τ

ξτξ

]),([              (10.1)   

 

where the non-dimensional −x variable is 
)(

)(
τ

τξ
L

x=  , by (4.69), and )(τL  is the 

length of the instantaneous water line. 

The second term in Eq.(10.1) has been included in the dynamic boundary 

condition calculation and in the pressure formula without difficulty. However, as 

discussed in Chapter 3, the first term requires differentiation across the time step, which 

is fraught with numerical difficulties. This is due especially to the non-smoothness of the 
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flow geometry in time at the chine wetting point, in which case the numerical time 

gradients become very large and usually result in run-time overflow. 

As was said previously, the numerical results presented in Chapter 9 are the 

results excluding the 
const=∂

∂

ξτ
term in (10.1). In this chapter, we concentrate on 

understanding the effects of the subject 
const=∂

∂

ξτ
 terms that have not been included. 

 

10.1 The Temporal Derivative Terms 

 

The effect of the temporal derivatives of the potential ),,( τξφ s  has been 

introduced into the 2nd order numerical model by following terms: ),,( τξφ s , 
τ

τξφ
∂

∂ ),,( s  

and 
τ

τξφ
∂∂

∂
 

),,(2

s
s  (refer to Chapter 4 and Appendix D). The expressions of these 

derivatives are defined in Appendix D. We copy them here for clarity:  

 

∫
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where the subscript denoting const=ξ  is to be considered as implied. 

These temporal derivatives appeared in the pressure continuity equation (4.75), 

(4.76) and (4.78), in the pressure distribution computation formula (4.84) and (4.85) and 

in the Burger's equation of the free vortex distribution (4.80) and (4.81). 

 The final form of the temporal derivative terms in the pressure continuity 

conditions is as following (refer to (4.75), (4.76) and (4.78)): 

  

• In chine un-wetted phase at s+ 
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• In chine wetted phase at s+ and s- 
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 The final form of the temporal derivative terms in the pressure distribution 

formula is (refer to (4.84) and (4.85)), 

 

• In chine un-wetted case, the pressure distribution is, 
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• In chine wetted case,  
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 The temporal derivative terms in Euler's equation of the free vortex distribution 

(refer to (4.80) and (4.81)): 
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 From Eq.(10.5) - Eq.(10.11), the time derivative terms that need to be dealt with 

are: 
.

),(

const
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=∂
∂

ξτ
τξ

, 
.

),(

const
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=

+

∂
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ξτ
τξ , 

.

),(

const

b

=

−

∂
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ξτ
τξ  and 

.

),,(
const

s sV

=∂
∂

ξ

τξ
τ

. All of 

these terms represent the variations in the time domain while the space variable fixed.  
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10.2 The Computation of the Temporal Derivatives 

 

 To incorporate the above temporal derivative terms into the 2nd order numerical 

model, we first need to calculate these derivative terms. A simple Euler backward 

difference model was adopted here. 

 For the 
.
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terms, the following backward difference form has been used: 
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                                                                           (10.12) 

 

where n  stands for the current time step, 1−n  stands for the previous step, u  represents 

cz , −b  and +b , and i  is the grid position in −ξ  axis. 

 Representing the current time step as τ , the previous time step as ττ ∆− . 

Discretizing the nondimensional −ξ  axis as the sectional computation grid. Denote the 

computational grid at time τ  as )(τG , the computational grid at ττ ∆−  as )( ττ ∆−G . 

At every time step, before chine-wetted section, the computation grid is unchanged; after 

the chine-wetted section, the grid or section has to be adjusted.  In (10.12), 1−n
iu  is the 

variable value of )( ττ ∆−u  at the current time computation grid )(τG . The main 

difficulty to calculate Eq.(10.12) is that the variable )(τi
n
i uu =  itself is an unknown, 
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where n
iu  is the variable value of )(τu  at the current time computation grid )(τG , for 

example the )(τ−
ib  and )(τ+

ib , at time step τ .  

 An interpolation algorithm has been used to find the 1−n
iu . The value pair 

( )( ττ ∆−G , )( ττ ∆−u )  has been reserved at the time step ττ ∆−  for the next time step 

computation, where )( ττ ∆−G  is the computation grid  at time ττ ∆− . At the time step 

τ , the value of )( ττ ∆−u  at the current time computation grid )(τG  can be found by 

interpolation using the previous value pair ( )( ττ ∆−G , )( ττ ∆−u ) (refer to Fig. 10.1 and 

Fig. 10.2).  
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Fig. 10.1 −
bz  and +

bz  interpolation accuracy of the main hull 

 

 Fig. 10.1 shows an example of the interpolated value of )( ττ ∆−−
bz  and 

)( ττ ∆−+
bz  at the main hull segment grid )(τG  at time τ . Fig. 10.2 shows the 

interpolated value of )( ττ ∆−+
cz  at the main hull segment grid )(τG  at time τ . A high 

degree accuracy has been achieved in Fig. 10.1 and Fig. 10.2. 
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Fig. 10.2: +
cz  interpolation accuracy of the main hull 

 

 To find the unknown )(τi
n
i uu =  at time τ  in (10.12), an iteration procedure has 

been adopted. Considering that −b  and +b in the current time step are unknowns 

themselves, the algorithm in the present numerical model uses the iteration method to 

find 
τ

τξ
∂

∂ + ),(b , 
τ

τξ
∂

∂ − ),(b  in the form of Eq. (10.12). At the first loop of the iteration, an 

approximate value 
const

b

=

+

∂
∂

ξτ
, 

const

b

=

−

∂
∂

ξτ
 at the previous time step ττ ∆−  was used in 

the pressure continuity conditions ((10.5), (10.6) and (10.7)) to replace 
const

b

=

+

∂
∂

ξτ
, 

const

b

=

−

∂
∂

ξτ
 at the current time step τ .  When the stable )(τ−

ib  and )(τ+
ib  terms have been 
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achieved, the 
const

b

=

+

∂
∂

ξτ
, 

const

b

=

−

∂
∂

ξτ
terms in the pressure continuity condition (refer to 

(4.75), (4.76) and (4.78)) have been updated. For the 
.

),(

const

cz

=

+

∂
∂

ξ
τ

τξ
and 

.

),,(
const

s sV

=∂
∂

ξ

τξ
τ

terms in the pressure distribution formula in (4.84) and (4.85), the 

Euler difference, (10.12), can be executed directly without iteration, since the ),( τξ+
cz  

and ),,( τξ sVs  terms have been obtained from the flow field solution of the current time 

step before calculating the 
.

),(

const

cz

=

+

∂
∂

ξ
τ

τξ
and 

.

),,(
const

s sV

=∂
∂

ξ

τξ
τ

terms (refer to Fig. 6.1 

of Chapter 6). 

 Fig. 10.3 shows the difference of the 
const

cz

=

+

∂
∂

ξ
τ

 term with the 
x

zc

∂
∂ +

 term at the 

nondimensional time 6.57=τ . The computational results are picked from the time 

marching computation at time step 2880 ( 02.0=∆τ ).  For easily comparing the effect of 

the 
const=∂

∂

ξτ
term with the 

constx =∂
∂

τ

term in the pressure distribution equations ((4.84) and 

(4.85)), recall the transform in the nondimensional −ξ  variable space, 
ξτ ∂
∂⋅=

∂
∂

)(
1

Lx
, 

we use the 
ξ∂
∂  term to calculate the 

x∂
∂  term. For comparison, the ),( τξ+

cz  value and the 

),( ττξ ∆−+
cz  value at the current time step grid )(τG  also have been included in Fig. 

10.3. In Fig. 10.3, the value of 
x

zc

∂
∂ +

 term is larger than the value of 
const

cz

=

+

∂
∂

ξ
τ

 term, but 
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the 
const

cz

=

+

∂
∂

ξ
τ

term still can not be ignored (refer to (10.8) and (10.9)). There is a jump in 

the 
const

cz

=

+

∂
∂

ξ
τ

and the 
x

zc

∂
∂ +

 curves in Fig 10.3. This jump may result from the abrupt halt 

of ),( τξ+
cz  when the separation point ),( τξ+

cz  reaches the hard chine CHZ  (refer to the 

description of Chapter 2). 
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Fig. 10.3 The 
const

cz

=

+

∂
∂

ξ
τ

and the 
x

zc

∂
∂ +

 term at the time 6.57=τ    

 

 Fig. 10.4 shows the difference of the 
const

b

=

+

∂
∂

ξτ
term with the +− xb

L
Lx )1( τ  term at 

the time 6.57=τ .  For comparison, the ),( τξ+b  value and the ),( ττξ ∆−+b  value at the 
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current time step grid )(τG  have also been included. From Fig. 10.4, comparing with the 

const

b

=

+

∂
∂

ξτ
 term, it is readily seen that the +− xb

L
Lx )1( τ  term is a dominant term.  
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Fig. 10.4 The 
const

b

=

+

∂
∂

ξτ
and the +− xb

L
Lx )1( τ  term at time 6.57=τ  

 

 Fig. 10.5 shows the 
const

b

=

−

∂
∂

ξτ
term at the time 6.57=τ ; the ),( τξ−b  term and 

the ),( ττξ ∆−−b  term are also included here.   
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Fig. 10.5 The 
const

b

=

−

∂
∂

ξτ
term at the time 6.57=τ   

 

 Fig. 10.6 shows the difference of 
const

sV

=∂
∂

ξτ
τζξ ),,(

term and the ),,( τζξ
x

Vs

∂
∂

 

term at the time 6.57=τ , 12.1=ζ  (recall 
kz
z=ζ  in (3.65)).  The ),,( τζξsV  term and 

the ),,( ττζξ ∆−sV  term are also included on the Fig. 10.6. Comparing with the 

),,( τζξ
x

Vs

∂
∂

 term, the 
const

sV

=∂
∂

ξτ
τζξ ),,(

term is a dominant, which means the 

const

sV

=∂
∂

ξτ
τζξ ),,(

term can not be ignored in the computation of the pressure distribution 

in (4.84) and (4.85). 
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Fig. 10.6 The 
const

sV

=∂
∂

ξτ
τζξ ),,(

and the ),,( τζξ
x

Vs

∂
∂

 term at the time 6.57=τ   

 

 From Fig. 10.3 – Fig. 10.6, the following conclusion may be drawn: Comparing 

the values of the 
const

cz

=

+

∂
∂

ξ
τ

term and the 
const

sV

=∂
∂

ξτ
τζξ ),,(

 term with the values of the 

x
zc

∂
∂ +

 term and the ),,( τζξ
x

Vs

∂
∂

 term in the pressure distribution (4.84) and (4.85), it tells 

us that the 
const

cz

=

+

∂
∂

ξ
τ

and the 
const

sV

=∂
∂

ξτ
τζξ ),,(  terms can not be neglected in the pressure 

distribution computation (refer to (10.8) and (10.9)). Comparing the 
const

b

=

+

∂
∂

ξτ
term and 
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the +− xb
L
Lx )1( τ  term in Fig. 10.4, the 

const

b

=

+

∂
∂

ξτ
term may can be neglected in the 

pressure continuity condition (refer to (10.5) and (10.7)) to simplify the flow field 

computation iteration. 

 

10.3 Physical Explanation for Euler’s Equation of the Free Vortex Distribution 

 

 The location of the free jet-head sheet must satisfy the Euler's equation in 

Eq.(10.10) and (10.11) (refer to (4.80) and (4.81)). Euler’s equation (10.10) requires that 

when fluid particles flowing from the contour, onto the free vortex sheet, and out of the 

jet, the velocity of each particle stays constant at its separation value at )( 0τcz , for all 

time 0ττ >  thereafter. 

  Re-formatting Eq.(10.10) as, 
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s
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sV

s
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s
c

sc

const

c
s

τξ
τ

τξ

τ
τξ

τ

ξ

τ

ξ       +≤≤ ss1     (10.13) 

 

Recall the transform:
)(

)(
τ

τξ
L

x= , )(τ
ξ

L
x∂
∂=

∂
∂ , 

L
L

L
Lx ττ

τ ξξ −=−= 2  and (10.1), it 

follows that, 
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∂
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∂
⋅

∂
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sVsV
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s
V

s
x
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sV ss
c

scc
s

τξ
τ

τξ
τ

τξ +≤≤ ss1   (10.14) 
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In the monohull planing hydrodynamics theory (Vorus 1996), the inviscid 

Burger’s equation of the vortex distribution on the free jet-head sheet has the following 

form: 

 

0
),(

)),(( =+
∂
∂

⋅−
τ

τζ
ζ

ζ
τ

τζ
d

dV
z

V
d
dz

V s
c

sc
s                            )(1 τζ b≤≤             (10.15) 

 

Comparing with (10.15), it is easy to see that (10.14) is also a Burger’s equation 

of a time and spatially variable stream that the vortex distribution of the free jet-head 

sheet must satisfy.  

Eq. (10.14) states: 

 

0
),,(

=
τ

τξ
D

sDVs                                                                                                (10.16) 

 

Since in the vortex model, the effects of viscosity and gravity are neglected, the free 

vortices will continue advancing outward with the separation velocities. That is, 

 

constant),,( =τξ sVs                                                                                         (10.17) 

 

or,  

 

),1,(V),,( 00 τξτξ ss sV =                          on  1>s , or +> czζ  when 0ττ >     (10.18) 
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where ),1,( 00 τξsV is the jet velocity at the separation point +
cz ; 0τ  is the staring time that 

free vortex separated from the bound vortex sheet, onto the free jet-head vortex sheet, 0ξ  

is the −x  location of the separation on the vortex sheet, 1=s  is the −z  location of the 

separation point +
cz on the vortex sheet. 

 As we stated in Chapter 2, in seaway dynamics problem (seakeeping), the flow 

field and the boat motion varies with the time. It is much more complicated than steady 

planing problem. Comparing the Euler equation of the seaway dynamics problem in 

(10.14) with the Euler equation of the steady planing problem in (10.15), it is evident that 

the solution space is a three-dimensional space ( tzx ;, ) (in dimension expression) in 

seaway dynamics, and the solution space is a two-dimensional space ( zx, ) in steady 

planing. The solution of the free vortex distribution from (10.14) will be a 3-D space 

curve, and the solution from (10.15) is a 2-D planar curve (Vorus 1996). The most 

important character is that, in seaway dynamics, the free vortex location development not 

only changes spatially but also temporally. In next section, we are going to develop the 

solution of the free vortex distribution from (10.14).          

 

10.4 Free Vortex Location on the Sheet 

 

The free vortex location on the sheet can be determined from the solution of Eq. 

(10.13). The solution to the non-linear Eq. (10.13) can be written in terms of the Galaen 

transformation of its initial and boundary conditions (This section is based on the 

development of Vorus 1993) as, 
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)(),0,0()()0,,0()()0,0,()],(;,[ 332211 σσσσσστξτ HVHVHVxsV ssss ++=         (10.19) 

 

where H is the Heaviside step-function, 1−= ss , 0τττ −= , 0xxx −=  and 1σ , 2σ  and 

3σ  are three initially unknown functions of the form: 

 

] ; ),(,,[ sii Vxs τξτσσ =                          3,2,1=i                                                    (10.20) 

 

 In view of the fact that the 1σ , 2σ  and 3σ  are linearly independent, Eq.(10.19) 

may be simplified to: 

 

*
,

* )]),(;,[( isiss VxsVV == τξτσ               3,2,1=i                                                    (10.21) 

 

where, 

 

)0,0,( 1
*
1, σss VV = ,  )0,,0( 2

*
2, σss VV =  and ),0,0( 3

*
3, σss VV =                                   (10.22) 

 

and where 1=i  corresponds to the solution component in terms of the initial velocity 

distribution ( 0ττ = , 0xx = ); 2=i  corresponds to the solution component in terms of the 

time distribution of velocity at the free-sheet separation point ( cz=ζ , 0xx = ); 3=i  

corresponds to the solution component in terms of the initial velocity distribution along 

the boat length ( cz=ζ , 0ττ = ). 

 Eq. (10.21) can be expressed in a general function form: 



 

 

253

0)];,,([);,,( *
, =−= siisss VxsVVVxsF τστ                                                          (10.23) 

 

Differentiate Eq.(10.23) with respect to s , τ  and x  to give, 
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 Substituting the above equations into Eq.(10.12) produces three equations to be 

solved independently for the three σ : 
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In Eq.(10.27), sV  is treated as a parameter, so that Eq.(10.27) is linear, and can be solved 

for iσ .  

 Specifically, for 1=i , 

 

)0,0,()],(;,[ 1
*
1, στξτ sss VVxsV ==                                                                        (10.28) 

  

At 00 =−= τττ  and 00 =−= xxx , ])0,0([)0,0,( ssHVsV js −⋅= + , where +≤≤ ss1  

(for the s  coordinate, refer to Fig. 3.3 in Chapter 3), and jV , )0,0(+s  are the solution at 

0=τ , 0=x .   

Denote ss ='  in 10 −≤≤ +ss  and set up '1 s=σ , thus, 

 

jss VsVxsV == )0,0,'(];,[ τ                                                                                     (10.29) 

 

Since we are interested in finding the location s  corresponding to 's  for 0ττ > , in this 

interest, with 1σ  fixed at 's , we have 01 =∆σ . Therefore, 
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 At this stage, we have obtained two equations for 1σ  ((10.27) and (10.30)), but 

there are three 1σ  unknowns (
s∂

∂ 1σ ,
τ
σ
∂
∂ 1 ,

x∂
∂ 1σ ). To solve for s  which should satisfy the 

Euler’s equation in (10.27), we need to make an assumption to reduce the number of 

unknowns for an approximate solution. 

In following sections, we introduce three possible approximations that can be 

used to derive three different governing conditions to determine the free vortex locations. 

 

10.4.1 Second order condition for the free vortex location  

  

The first possible approximation: assuming 
xs ∂
∂

∂
∂<<

∂
∂ ,
τ

 in Eq.(10.30) and 

assuming 
.const=∂

∂

ξτ
 term is small in (10.27).  

(10.30) is simplified to: 
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Eq.(10.31) yields that: 
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 In Eq.(10.27), assuming 
.const=∂

∂

ξτ
 term is small, and  ignoring the 

.const=∂
∂

ξτ
term, 

the Euler’s equation becomes: 
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From Eq.(10.33), we have, 
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Substituting Eq.(10.34) back into Eq.(10.32), we get the following relation: 
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or, 
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Integration of above equation gives, 

 

C
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L
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L
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τ

                                                      (10.38) 

 

 Using the initial condition, at 00 =−= xxx , 00 =−= τττ , 'ss = , we find, 

 

]1),([' 00 −⋅= τxzsC c                                                                                            (10.39) 

 

 Expanding )1ln(
L
Lx τ−  term with regards to the small parameter )(

L
Lxo τε = , we 

have, 
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 Substituting the above equations back into Eq.(10.38), we have the following 

second order condition for determining the free vortex location: 
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10.4.2 First order condition for the free vortex location 

 

 The second possible approximation is: assuming 
xs ∂
∂

∂
∂<<

∂
∂ ,
τ

 in Eq.(10.30) and 

in Eq.(10.27).  

By ignoring the whole 
τ∂
∂  term in (10.27), the Euler’s equation becomes: 
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Taking 1=i as an example, we have, 
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Substituting Eq.(10.43) into Eq.(10.32), we get the following relation: 
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and, 

 

)0,0,'()]1([ sVzs
xd

d
sc =−⋅                                                                        (10.45) 

 

Integration of above equation, we get, 

 

CxsVzs sc +⋅=−⋅ )0,0,'()1(                                                                     (10.46) 

 

Using the initial condition, at 00 =−= xxx , 00 =−= τττ , 'ss = , we find, 

 

]1),([' 00 −⋅= τxzsC c                                                                                  (10.47) 

 

Substituting the above equations into Eq.(10.46), we have the following first order 

condition for the free vortex location: 
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which is similar to the condition in the planing monohull hydrodynamic problem (Vorus, 

1996). 

 

10.4.3 An alternative of the first order condition for the free vortex location  

  

The third possible approximation may be: assuming 
τ∂
∂

∂
∂<<

∂
∂ ,

sx
 in Eq.(10.30) 

and assuming 
x∂
∂ term is small in Eq.(10.27).  

By ignoring 
x∂
∂  term, (10.30) becomes: 
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(10.49) yields that: 
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 In the Euler’s equation of the (10.27), if we ignore the 
x∂
∂ term, not the term 

involving 
xL

Lx
∂
∂−=

∂
∂

∂
∂ τ

τ
ξ

ξ
, the Euler’s equation becomes: 
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       (10.51) 

 

Therefore, from Eq.(10.51),  
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Combining (10.52) with (10.50), we have the following relation: 
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and, 
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                                                                                  (10.54) 

 

Integration of the above equation gives, 

 

CsVzs sc +⋅=−⋅ τ)0,0,'()1(                                                                                (10.55) 
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Using the initial condition, at 00 =−= τττ , 00 =−= xxx , 'ss = , we find, 

 

]1),([' 00 −⋅= τxzsC c                                                                                             (10.56) 

 

 Substituting the initial conditions into Eq.(10.55), we have the third possible form 

in the first order condition for the free vortex location: 
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The solution of Eq. (10.27) for 3,2=i  can proceed similarly. The solution in the 

domain 0≤≤− ss  could proceed same as in the domain +≤≤ ss1 .  

So far, three possible solutions have been derived for the free vertex location 

under the three different possible approximations. The solution in (10.41) and (10.48) 

depend upon the relative distance between the current location and the separation point 

( 0xx − ), the solution in (10.57) depends upon the time interval between the current time 

and the initial separation time ( 0ττ − ). The conditions in (10.41) and (10.48) have given 

a reasonable free vortex distribution from the numerical examples, however the condition 

in (10.57) will give a divergent result as the time increasing. In the following numerical 

examples, the condition in (10.41) from the first approximation has been implemented in 

the numerical model. 
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10.5 Numerical Result Comparison 

 

 The temporal derivation terms: 
.
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in Eq.(10.5), (10.6), (10.7), (10.8),(10.9) (10.10), and (10.11) have 

been incorporated into the present second order numerical model by using the described 

interpolation and difference algorithms, and the second order condition in (10.41) for the 

vortex location on the free jet-head sheet has been implemented in the numerical model. 

The modified software is named as NewCat (2-5). 

The effect of these temporal derivation terms can be demonstrated by the 

comparison of the planing seakeeping results of the NewCat2-5 with the results of 

NewCat2-4, which is without these temporal derivation terms.  

In this comparison, the Vorus-DeCan stepped catamaran has been used again. The 

input wave is a random wave in head sea. The significant wave height 308.03/1 =H  m, 

the wave peak period 188.4=pT  second. Again a JONSWAP wave spectrum has been 

used here. The forward speed has been chosen as 70=U  knots, the non-dimension time 

step 02.0=∆τ , the artificial damping coefficient DEPS = 0.1, all same as in Chapter 9. 

The time duration in this example is 3050=IALL , the non-dimensional time length is 

61 . 

Fig. 10.7 – 10.9 are the results of waves, displacements, vertical accelerations, 

wetted lengths from NewCat2-5. Fig. 10.7 shows the time histories of wave elevations, 

the displacement, the transom drafts and the trim angle, comparable to Fig. 9.19 in 
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Chapter 9. Fig. 10.8 is the vertical accelerations with these temporal derivation terms 

taken into account. Fig. 10.9 shows the wetted water line lengths and the chine-wetted 

lengths.   
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Fig. 10.7 Wave and motion histories from NewCat2-5 
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Fig. 10.8 Vertical accelerations from NewCat2-5 
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Fig. 10.9  Wetted lengths from NewCat2-5  
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Fig. 10.10 is the comparison of the vertical accelerations. The dashed line 

represents the result of the 2nd order model without considering the 
const=∂

∂

ξτ
terms (the 

software version is NewCat 2-4), marked as “the 2nd order kinematics model” for 

distinguishing from NewCat2-5. The solid line represents the results of the full 2nd order 

model with all the 
const=∂

∂

ξτ
terms implemented (the software version is NewCat 2-5), it 

marked as “the 2nd order dynamics model” based on the physical explanation. The free 

vortex location of (10.41) from the first approximation has been used in this example.  It 

is easily seen that the results from the two models are close, however the dynamics model 

(NewCat 2-5) has produced much more spikes. Numerical tests show that these spikes 

may come from insufficient accuracy, since with these temporal derivation terms the 

numerical computation needs much higher numerical accuracy. Therefore a finer 

computation grids and more CPU time are required, which is difficult for present-PC type 

computer.  

Fig. 10.11 shows the comparison of the trim angles. There is almost no difference 

for the two models.  
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Fig. 10.10 Comparison of the vertical accelerations 
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Fig. 10.11 Comparisons of trim angles 
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Fig. 10.12 is the comparison of the sectional lift distribution at the non-

dimensional time T = 42. Fig. 10.13 is the comparison of the jet-head stream lines at 

T=42. Fig. 10.14 is the zoom view of the comparison of jet velocity distributions at T = 

42. In Fig. 10.14, a local difference for the jet-head stream lines has been found. In 

general, these figures tell us that the solutions of the flow field and the lift are close, and 

that these temporal derivation terms do not have a large impact on the solutions. However 

it does increase the numerical complexity greatly. 
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Fig. 10.12 Comparison of the sectional lift distribution at T = 42 
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Fig. 10.13 Comparison of flow fields at T = 42 
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Fig. 10.14 Comparison of jet velocity distributions at T = 42 (zoom view) 
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Fig. 10.15 shows the comparison of pressure distribution at T = 42, at the section 

22 of the main hull, the location of the section is from the entry ix   = 1.031. There are 

some differences for the pressure distribution, since the 
const=∂

∂

ξτ
 terms have been 

implemented in the pressure formula (refer to (10.8) and (10.9)). 
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Fig. 10.15 Comparison of pressure distribution at main hull, section 22  

( from the entry ix  = 1.031, T=42) 

 

 From these comparisons, it is found that it is doable for numerically 

implementing all these temporal derivation terms in (10.5) – (10.11) into the program, 

and the effect of these temporal derivation terms on the final results is not large, however 

it will increase a great amount of the numerical complexity, especially for the iteration 
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loop of the jet-head ),( τξ+b , ),( τξ−b . At the −x location of the chine-wetted section, 

the jet-head ),( τξ+b  solution often has a numerical jump, since the chine-unwetted phase 

and the chine-wetted phase have difference iteration algorithms (refer to Fig. 6.2 and Fig. 

6.3 in Chapter 6), this numerical jump will results in an larger 
.

),(

const

b

=

+

∂
∂

ξτ
τξ value 

which may cause the iteration to diverge.  

 Up till now, we have completed the introductions of the 2nd order model. 

Comparing the results of 2nd order kinematic model in Chapter 8 and 9 which without 

considering the effect of 
const=∂

∂

ξτ
terms, with the results from the 2nd order dynamic 

model in this chapter (with 
const=∂

∂

ξτ
terms), it seems that the impact of these 

const=∂
∂

ξτ
terms on the final boat motions and on the accelerations may not be large, but 

the 
const=∂

∂

ξτ
terms do make the problem behavior more complicated and difficult to 

solve. From the view of the practical engineering application, discarding the 

const=∂
∂

ξτ
terms in the 2nd order model, it may be an acceptable approximation as the 1st 

order model did. 
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CHAPTER 11 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

 

 

11.1 Summary and Conclusions  

 

The present research is for relieving the initially implemented approximations on 

the catamaran planing hydrodynamics by the first order model, and further developing 

and extending the theory and application beyond that currently in use in CatSea.  This has 

been achieved through a detail theoretical analysis, algorithm development, and careful 

coding. 

The main achievements in this thesis, through the present research, are 

summarized as follows: 

• This research has systematically introduced the current planing hydrodynamics 

theories (refer to Chapter 1), especially the Vorus’ planing theory and analysis. 

• The detail analysis and assumptions for the catamaran flow physics, and the boundary 

value problem definition, are given in Chapter 2. 

• The first order nonlinear planing hydrodynamics theory for catamarans has been, for 

the first time, systematically reviewed and documented in this thesis (refer to Chapter 

3). The material of the first order theory is from the unpublished manuscripts by 

William Vorus, and his planing catamaran design code CatSea. 
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• Through the present research, a new, complete nonlinear hydrodynamics theory for 

planing catamarans is developed, which relieves the major approximations and 

simplifications of the first order theory. This extended theory is referred to as the 

“second order nonlinear theory” (refer to Chapter 4). 

• The detail numerical models and the correspondent solution procedures for the first 

order and the second order theory, for steady planing and for seakeeping, have been 

outlined in Chapter 5 and Chapter 6. 

• The main numerical models (the fundamental integrals and the bound vortex 

distribution) in the second order theory have been validated in Chapter 7. 

• A comparison of the numerical predictions by the second order theory and the 

predictions by the first order theory, in the steady planing example, is given in 

Chapter 8.  

• A comparison of the numerical results, in both the regular and random wave cases, 

for both the first and second order theories, has been carried out. The details are in 

Chapter 9.  

• A theoretical and numerical investigation on the effect of the temporal derivative 

terms 
const=∂

∂

ξτ
has been conducted in Chapter 10. The computation algorithm and the 

numerical comparison for the 
const=∂

∂

ξτ
effect have been presented.  

The following conclusions are drawn with respect to the purpose of the present 

research: 

• The new second order theory has relieved the major approximations and 

simplifications of the first order theory.  
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• The numerical comparison demonstrates that the first order theory has made a 

reasonable simplification for the kinematic boundary condition, which neglecting the 

higher order nonlinearity, make the problem easier to solve. This research finds that 

the software “CatSea” based on the first order theory is a practical design tool of the 

catamaran design for its fast computation speed, the robust run-time performance, and 

good accuracy. 

• The research on the effect of the temporal derivative terms 
const=∂

∂

ξτ
indicate that it is 

possible to numerically implement all the temporal derivation terms into the code to 

run a full planing dynamics problem, however it will increase the numerical 

complexity extensively. It has been found that the effect of these temporal derivation 

terms on the final results is not large, thus the approximation made in the first order 

theory that, discarding all the 
const=∂

∂

ξτ
terms in CatSea, may be an acceptable 

algorithm for most engineering problems at present computer capability. 

• The second order theory is a complete nonlinear theory, and it has the ability (like the 

first order) to include the detail hull geometry. For example, deadrise angle variation 

over craft length is fully considered; the software NewCat2-4 or NewCat2-5 based on 

the second order theory has the potential for a powerful design tool. The comparison 

of results demonstrate that the present second order nonlinear model has high 

accuracy and can be reliable for work with planing catamaran design on a high speed 

computer. 



 

 

275

• The first order theory and the second order theory of the planing catamaran 

hydrodynamics have been fully and systematically documented in this thesis, which 

has provided a reliable foundation and very useful information for future research. 

 

11.2 Suggestions to Further Works           

 

• To provide a reliable design tool for planing catamaran design, further work should 

be undertaken to validate the accuracy of the present software. An experimental 

program is strongly recommended. A careful and detailed flow field measurement, 

including the vertical acceleration measurements, the measurements of the trim angle 

and the transom draft, the pressure distribution, and the jet-head streamlines and the 

jet velocities at different cross sections, should be carried out. With an available 

experimental data comparison, the present codes (CatSea and NewCat) can be 

validated and modified to become an important, valuable design tool, which will 

guide the planing craft designer to design good performing planing catamarans, free 

of empiricism. 

• Further theoretical research on the solution of the exact Burger’s equation (refer to 

(10.27)) in the dynamic boundary condition is recommended. A proper condition 

should be developed for constructing a three-equation system, including (10.27) and 

(10.30), to find a unique solution for the three unknowns (
s∂

∂ 1σ ,
τ
σ
∂
∂ 1 ,

x∂
∂ 1σ ) in (10.27) 

and (10.30). In this way, a solution in a form similar to (10.41) will be achieved to 

accurately define the instantaneous free vortex sheet location in the seaway dynamics 

problem.           
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APPENDIX A 

KINEMATIC BOUNDARY CONDITION  

AND VELOCITY CONTINUITY CONDITION  

 

 

A.1 Kinematic Boundary Condition On Body Contour 

 

At the zy −  plane of the body-fixed system xyzO − , uses a 2-D coordinate 

system ηζ −− keelo  moving downward with the cross section as depicted in Fig. A.1. In 

Fig. A.1, )(ζsV  and )(ζnV  are the tangential and normal flow velocities on the body 

bottom contour, and )(ζv , )(ζw  are the perturbation velocities in the y and z directions, 

respectively.  
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Fig. A.1 Kinematic boundary condition 
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The normal and tangential velocities, in terms of the perturbation velocities 

derived in Vorus (1996), can be expressed as (refer to Fig. A.1), 

 

),(sin),(cos)( τζβτζβ wvVVn −+=                                                    (A.1) 

),(cos),(sin)( τζβτζβ wvVVS ++=                                                    (A.2) 

 

According to the physical model in Fig. 3.1, the jet velocity )(ζsV  associated 

with a vortex strength ),( τζγ  distribution can be described by the following relation: 

 

),(sin)(),(
2
1),( τζβττζγτζ VVs +−=                                                   (A.3) 

 

where ),(sin)( τζβτV  is the stream component.  

In the downward moving coordinate system ηζ −− keelo  on the body boundary, 

 

0),( =τζnV      for cz≤≤ ζ1                                                                   (A.4) 

 

To eliminate w  from (A.1) and (A.2), multiply (A.1) by ),(cos τζβ  and (A.2) by 

),(sin τζβ , then adding the two together with respect to (A.3) and (A.4), this process 

will give the following kinematic boundary condition on the hull contour (Vorus, 1996): 

  

),(cos)(),(sin),(
2
1),( 2 τζβττζβτζγτζ Vv −=+    for cz≤≤ ζ1        (A.5) 
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A.2 Integral Equation From the Kinematic Boundary Condition 

 

Expressing the perturbation velocity ),( τζv  in terms of ),( τζγ  by the Biot-

Savart law: 

 

∫
+

+−= −
=

b

b

dv
0

0
0

0

)(
),(

 
2
1),(

ζ

ζ
ζζ
τζγ

π
τζ                                                     (A.6) 

 

Eliminating v  in Eq.(A.5) using Eq.(A.6), we get the integral equation representing the 

kinematic boundary condition (KBC): 
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   for cz≤≤ ζ1      (A.7) 

 

The integral on the whole computation domain can be separated as : 
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      (A.8) 

 

Using the symmetry condition in ζ - axis:  

 

),(),( τζγτζγ −=−                                                                         (A.9) 
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The first term in Eq.(A.8) becomes: 
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Substituting Eq. (A.10) into Eq. (A.7),  

 

),(cos)(]11)[,( 
2
1),(sin),(

2
1 2

0
00

0 τζβτζ
ζζζζ

τζγ
π

τζβτζγ Vd
b

b

−=
+

+
−

+ ∫
+

−

               

on cz≤≤ ζ1       (A.11) 

 

The vortex is distributed on the axis is depicted in Fig. 2.6. The bounded vortex 

),(),( τζγτζγ c=  is over the hull segment cz≤≤ ζ1 . The free vortex ),(),( τζγτζγ += s  

and ),( τζγ −
s  are over the free surface regions )(τζ +≤≤ bzc , 1≤≤− ζb  respectively. 

Eq. (A.11) can be expressed in terms of the free-vortex sheet variable ),( τζγ s  as 

follows (Vorus, 1996): 

 

),(
),( 

2
1),(sin),(
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ζζ
τζγ

π
τζβτζγ fd

c

c

z

z

C
c =

−
+ ∫

−

           cz≤≤ ζ1           (A.12) 

 

and, the region 11 0 ≤≤− ζ  in (A.12) is the free space between the demi-hulls (refer to 

Fig. 2.5). 
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0),( 0 =τζγ c                                           on 11 0 ≤≤− ζ                                   (A.13) 

 

where: 
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b

z
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π
τβτζ             

(A.14) 

 

A.3 Solution to KBC Singular Integral Equation 

 

Eq.(A.12) is the Carleman singular integration equation (Muskhelishvili 1958, 

Vorus 1996) , 

 

)(
)(

)()(
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1

ζ
ζ

γλζγζ fds
s

sa c
c =

−
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−

                          )(on   ζζ L                           (A.15) 

 

The solution domain L here includes two arcs of 1−≤≤− ζcz  and cz≤≤ ζ1 . 

Comparing Eq. (A.12), )(ζa  and λ  are given respectively as: 

 

),(sin
2
1)( τζβζ =a                                                                                       (A.16) 

π
λ

2
1−=                                                                                                        (A.17) 
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and )(ζf  is in Eq.(A.14). 

Muskhelishvili(1958) or Tricomi(1957) give the general solution for the 

Carleman type singular integral equation. It takes the following form, 

 

∫
− −++

⋅+
+

=
1*

1
222222

)()()(
)(

)()(
)(

)()(
)()()(

ζλπχλπζ
ζχλ
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s
ds

sas
sf

aa
fa

c       (A.18) 

 

Following the derivation of Vorus (1996), substituting Eq.(A.16) and (A.17) into 

Eq.(A.18), we have: 

 

∫
− −++

⋅−
+

=
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c

z

z
c s

ds
s

sff
ζβχβπ

ζχ
β
ζβτζγ

222
sin1)(
)(

sin1
)(2
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)( sin2),(                (A.19) 

 

For convenience, define, 

 

ββ ~tansin =                                                                                                  (A.20) 

 

thus, 

 

β
ββ ~cos

1~tan1sin1
2

22 =+=+                                                                    (A.21) 

 

Substituting above relations into Eq.(A.19) yields the solution of the line vortex strength 

distribution: 
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∫
− −
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c
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z

z
c s

ds
s

sff
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β
π

ζχβτζββτζγ
)(

)( ~cos)(~cos2),( ~cos~sin2),(                

on cz≤≤ ζ1   (A.22) 

 

where  

 

)],([sintan~ 1 τζββ −=                                                                                    (A.23) 

 

A.4 Kernel Function )(ζχ  

 

The kernel function solution development here closely follows for the mono-hull 

craft. From Muskhelishvili(1958) and Vorus (1996); the kernel function )(ζχ  in 

Eq.(A.22) is: 

 

)()()( ζζζχ Γ⋅= eP                                                                                         (A.24) 

 

where, 
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p  in (A.25) and (A.26) is the number of arcs, with the end points at coordinates 

of mC . The mλ  are integers which will be selected according to character of the )(ζχ  

function in each arc kL , i.e., 1−≤≤− ζcz  and cz≤≤ ζ1  for present problem. Here 

2=p , the respective ccm zzC ,0.1,0.1,−−= . We may select the parameter m λ  to match 

the solution for the catamaran hull contour.  

A kernel function for the type of integral in Eq.(A.22) is developed in Appendix 

F. It is different from the kernel function for the mono-hull (Vorus, 1996) for two 

singularity points located at the keel and cz  two points for the catamaran.   
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The jt  and )(~ τβ j  are the end offsets and angles of the jth element (refer to Fig. 5 of 

Vorus(1996)). For deadrise contours )(),( τβτζβ =  is constant in ζ , defining 

),(),( 0 τζκτζκ =  in this case: 
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The kernel function then will be: 
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A.5 Bounded Vortex ),( τζγ c  

 

Expanding the equation (A.22) with respect to Eq.(A.13),  

 

]
)(),(

~cos),(
)(),(

~cos),(
)[,(~cos2

),( ~cos~sin2),(

1 1

1

1

1
1

1

1

1

1

11

∫∫
=

−

−= −
+

−
⋅

⋅−

=
c

c

z

z

c

dfdf

f

ζζ ζζ
ζ

τζχ
βτζ

ζζ
ζ

τζχ
βτζτζχβ

π

τζββτζγ
      

(A.31) 

 

Due to the symmetry of ),( τζχ  and ),( τζf : 

 

),(),( τζχτζχ =−                                                                                          (A.32)   

 

and 

 

),(),( τζτζ ff =−                                                                                       (A.33) 

 

Thus the integral of first term in Eq.(A.31) will be, 
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Substituting the above equation into Eq.(A.31) yields, 
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Substituting ),( τζf  into Eq.(A.35): 
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According to the partial fraction reduction identity given by Vorus (1996): 
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Thus, the inner integration in Eq.(A.36) becomes, 
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where, 
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Substituting Eq.(A.38) back into Eq.(A.36), we have the following expression for the 

bounded vortex )(ζγ c : 



 

 

291

),(),(),( sin τζγτζγτζγ gularnormalc +=                                                                  (A.41) 

 

where the normal component is the non-singular part of the solution: 
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The singular term is the part with the singular kernel function )(ζχ : 
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where ζ  is independent variable, 01,ζζ  are integration variables, and 
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The numerical model for the bound vortex distribution ),( τζγ c  in Eq.(A.42) and 

Eq.(A.43) can be found in the Appendix E. Next we derive the velocity continuity 

condition based on the bound vortex distribution in Eq. (A.43). 

   

A.6 Velocity Continuity or Vorticity Conservation Conditions 

 

Equation (A.43) has singularity points in its solution domain at 1=ζ  and cz=ζ . 

When 1→ζ  and cz→ζ , ∞→)(ζχ . 

For non-singularization in Eq. (A.43) we use the following identities (Vorus, 

1996): 
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When +→1ζ , use the identity in Eq.(A.47): 
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(A.49) 

 

The requirement that cγ  be bounded results in the following velocity continuity 

equation (Kutta condition): 
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When −→ czζ , use the identity in Eq.(A.48), 
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The requirement that cγ  is bounded results in the following velocity continuity 

equation (Kutta condition), from (A.51): 

})]()([),(1

)]()([),(1)]()[({cos0

002
0

2
0

0

1

002
0

2
0

0
2

∫

∫
+

−

Λ−Λ
−

+

Λ−Λ
−

+Λ−⋅=

++

−−

b

z
c

c
S

b
c

c
Sc

c

dz
z

dz
z

zV

ζζ
ζ

ζτζγ
π

ζζ
ζ

ζτζγ
π

τβ

                         

−→ czζ    (A.52) 

 

As was noted in Chapter 2, in the chine-unwetted flow phase, there are five 

unknowns: )(τ+
jV , )(τ−

jV , )(τ+
bz , )(τ−

bz , )(τcz .  The Kutta conditions of the kinematic 

boundary integral provide us with two velocity continuity equations  (Eq.(A.50) and Eq. 

(A.52)).  
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APPENDIX B 

DISPLACEMENT CONTINUITY CONDITION 

 

 

 In the chine un-wetted flow phase, the velocity continuity condition provides two 

equations of the five for solving five unknowns, the pressure continuity conditions 

provide another two equations. In this section, we develop the last necessary equation of 

the five based on the physics of a continuous body-free-surface contour at the jet-head 

+b  in the chine unwetted flow phase.   

 

 

 

Fig. B.1 Displacement continuity condition model 
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B.1 Water Surface Elevation 

 

In the time coordinate system ],0[ t , in the chine-unwetted flow phase, the 

dimensional bottom contour ),( tzyc  can be expressed as: 

 

ttVtzhtzy cc ⋅−= )(),(),(                                                              +≤≤ bk zzz        (B.1) 

 

where V  is the section impact velocity, the tV ⋅  term is, in fact, a transient draft,  , and 

the water elevation above the keel is: 
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The second branch of ch  is an approximation, assuming that the fluid surface is first 

order un-deflected, or the fluid separates at the keel.  

Define the net vertical fluid velocity on the contour: 

 

)(sin),(
2
1),()(

),( ztztzvtV
t

tzyc βγ+=−=
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∂
                          on +≤≤ bk zzz       (B.3) 

 

Integration of the above equation gives the body contour: 
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)(sin),(
2
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)](sin),(
2
1),([),(

**

0

ztztzv
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t
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where: 

 

∫
=

=
t
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* ),(),(
τ

ττ  and ∫
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=
t
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0

* ),(),(
τ

ττγγ                                            (B.5) 

 

Non-dimensionalize the transient draft variable 
kZ

Vt=τ  and the spatial variables 

kz
z=ζ  and 

k

c

z
y

. Substitute Eq.(B.4) into Eq.(B.1). The non-dimensional Eq.(B.1) now 

becomes, 

 

),()(sin),(
2
1),( ** τζζβτζγτζ fv =+                       +≤≤ bζ1                  (B.6) 

 

According to the above assumptions ),( τζf  can be expanded into the domain: 

+− ≤≤ bb ζ  as: 
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where,  
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+
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),(~
ζτ

τζβζτζch                                                     (B.8) 

 

The vertical velocity time integral, ),(* τζv , is again expressible in terms of the 

time-integrated displacement vortex strength, ),(* τζγ c , by the Biot-Savart law as in 

Eq.(A.6). Thus from (B.6), 
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1)(sin),(
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b
cc =

−
+ ∫

+

+−

       +≤≤ bζ1      (B.9) 

 

where, 

 

0),(* =τζγ c                                                                       on 11 ≤≤− ζ            (B.10) 

 

Again Eq.(B.9) is the Carleman type of singular integration equation. Using the 

same transformation of Carleman type singular integral equation as in Appendix A, the 

solution to Eq.(B.9) is found in the following form (Vorus, 1996): 

 

∫
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where 

  

)]([sintan~ 1 ζββ −=                                                                                                  (B.12) 

 

B.2 Kernel Function ),(* τζχ   

 

The kernel function for the integral in Eq.(B.11) is developed in Appendix G. The 

difference from the kernel function ),( τζχ  is that the solution domain is now on the arcs 

of −+ −≤≤− bb ζ  and +− ≤≤ bb ζ . The respective +−−+ −−= bbbbCm ,,, . 

 

(1) In a general case, the kernel function will be in the form: 
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where 
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The jt  and )(~ τβ j  are the end offsets and angles of the jth element.  
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(2) In the case of constant )(),( τβτζβ = , the kernel function will be: 
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where 
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B.3 Displacement Continuity Equation 

 

Expanding Eq.(B.11) with respect to Eq.(B.10) gives, 
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where ζ  is independent non-dimensional variable. 

Considering the following symmetries, 
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),(),( τζτζ ff =−                                                                                                 (B.18) 

),(),( ** τζχτζχ =−                                                                                              (B.19)         

 

First term of the integral in Eq.(B.17) can be transformed into: 
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Substituting the above equation into Eq.(B.17) yields: 
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Substituting ),( τζf  into above equation, (B.21): 
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When +→ bζ , there is a singularity in the kernel ),(* τζχ . To eliminate the 

singularity, we express the term: 

 

)1(11
22

1

22

2
1

222
1 ζζ

ζ
ζζζ −

−−
−

−=
−

+

+

b
b

                                                                      (B.23) 

 

Substituting Eq.(B.23) into Eq.(B.22): 
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When +→ bζ , the vortex strength ),(* τζγ c  must be bounded. This requirement 

results in the displacement continuity condition: 
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Define the following notations: 
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The displacement continuity condition then can be expressed in terms of 1I  and 

2I  as: 

 

21 tan)tan(0 II ⋅−⋅+= ββτ                                                                    (B.28) 

 

(B.28) could be re-written in a transient draft form as in following (B.29), which provides 

an additional condition solving for the unknowns in the steady planing problem defined 

in Chapter 2.7 and a necessary equation for solving the seaway dynamics problem 

(seakeeping) at each time step.  

 

]1[tan
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2 −⋅=
I
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B.4 Integrals In Displacement Continuity Condition 

 

 The integrals in (B.29) can be transformed into an easy-calculated semi-analytical 

form. 
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B.4.1 Integral 1I  

 

Substituting the kernel function in Eq.(B.15) into 1I , 
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Defining variable transform 2
1ζ=t  in Eq.(B.30), 

t
dtd

2
1

1 =ζ , 
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Define the transformation 2)( −−= btx , dtdx = . Then Eq.(B.31) becomes: 
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From Gradshteyn and Ryzhik (1965), p287, §3.197, Eq.(8): 
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where π
α

<)arg( u , 0Re >µ , 0Re >ν . Compare with Eq.(B.32) where, 
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where ),( νµB  is the Beta function, and );;,();;,(12 zFzF γβαγβα =  is Gauss' 

hypergeometric function. 

Gradshteyn and Ryzhik (1965), P1043, §9.131, Eq.(1) provides an integral 

transform for the hypergeometric function: 
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Compare with Eq.(B.34), the correspondent parameters are:  
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Therefore,  
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Thus the integration 1I  will be, 
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B.4.2 Integral 2I  

 

Substituting the expression of ),(* τζχ  into 2I , 
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Defining variable transformation 2
1ζ=t , 

t
dtd

2
1

1 =ζ  in Eq.(B.38): 
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Again define the transformation 2−−= btx , dtdx = . Then Eq.(B.39) becomes, 
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From Gradshteyn and Ryzhik (1965), p284, §3.191, Eq.(1) : 
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where 0Re >µ , 0Re >ν . Compare with Eq.(B.40), where, 
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where ),( νµB  is the Beta function. 
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 In this appendix, a necessary condition: displacement continuity condition in 

(B.29) has been derived for solving the five unknowns in the chine-wetted flow phase. 
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APPENDIX C 

PRESSURE CONTINUITY CONDITION FOR STEADY PLANING 

 

 

C.1 Surface Pressure Distribution  

 

As described in Chapter 2, the solution of the time-dependent impact problem can 

be used for the solution of steady planing ( −x problem). This appendix develops the 

correspondent pressure distribution in steady planing in the impact (time) space.  

Assuming the boat is advancing in with a constant forward speed U , the impact 

velocity V can be obtained from Eq. (2.19). Bernoulli's equation gives the dynamic 

boundary condition of the impact problem: 

  

222  
2
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2
1 VpVVp tsn ρϕρρ +=+++ ∞                                    +− ≤≤ bb zzz          (C.1) 

 

where the definition of nV , sV  are given in Appendix A. With τ  representing non-

dimensional time and ζ  representing non-dimensional z-distance, the non-dimensional 

pressure is, 
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The relation of velocity potential ),( τζφ  with the velocity ),( sn VV  is defined as, 

 










=
∂
∂

=
∂
∂

),(),(

),(),(

τζτζ
ζ
φ

τζτζφ

s

n

V

V
n                                                                                             (C.3) 

 

Define 0),( =+ τφ b  at the jet-head. Thus the potential is therefore defined in the region 

of +≤≤ bζ1  as, 
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Define the following catamaran transform variables: 
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By using these transforms, the solution domain will have a new coordinate system shown 

in Fig. 3.3. In this new coordinate system the potential is: 
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In the region of +≤≤ ss0 , the τφ ∂∂  term will be, 
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Using the new variables, the pressure coefficient, (C.2), is, 
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Substituting the τφ ∂∂  term in Eq.(C.7) into the Eq.(C.9), we have the pressure 

distribution in the region of +≤≤ ss0 , 
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Similarly, in the region 0≤≤− ss ,  
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C.2 Pressure Continuity Condition  

 

At the jet head +
bz , the dynamic condition is 0),( =+ τsC p  (refer to Fig. 2.6). 

Eq.(C.10) gives, 

 

),(2
1),(),(

)(
22

τ
ττττ +

++
+ −+

=
sV

sVsVb
s

ns                                                      at += ss      (C.12) 

 



 

 

313

Recall that in the chine un-wetted case 0),( =+ τsVn  and in the chine wetted case 

1),( =+ τsVn  (Fig. 2.6), thus the pressure continuity condition at += ss  is, 

 

• In the chine un-wetted phase 
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• In the chine wetted phase 
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Similarly, at the jet head −
bz , 0),( =− τsC p , Eq.(C.11) gives, 
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Recall that in Fig. 2.6 the keel at kz  is always in the chine-wetted phase, and 

1),( =− τsVn , thus the pressure continuity condition at −= ss  will be, 
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Therefore we have two pressure continuity conditions in both the chine unwetted and 

chine wetted phases. 

 

C.3 Euler's Equation 

 

In the dynamic condition, 0),( =τsC p  in the regions of 0≤≤− ss  and 

+≤≤ ss1 , differentiation of Eq. (C.9) gives, 
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Differentiation of Eq. (C.7) gives, 
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Substituting (C.18) back into Eq.(C.17), an Euler equation results (refer to Vorus 1996): 
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This is the one-dimensional inviscid Burger's differential equation that the free vortex 

distribution on the jet-head sheet must satisfy.  
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Similarly, in the region of 0≤≤− ss , the Burger's equation is , 
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C.4 Pressure Distribution Formulae 

 

The pressure distribution on the hull contour 10 ≤≤ s  can be obtained from 

Eq.(C.10). To find the pressure expression, first we need to deal with the 
τ∂

∂ sV
 term in 

(C.10). The expression of the velocity time derivative term can be found from Eq.(C.20), 
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Re-formatting Eq.(C.10) yields,  
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Defining terms associated with the jet head as T,  
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The pressure in (C.22) then can be written: 
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On the jet head +≤≤ ss1 , we substitute the 
τ∂

∂ sV
 term expression of Eq.(C.21) into 

Eq.(C.23) to simplify the expression in T: 
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Therefore, the T term in Eq.(C.23) can be expressed as: 
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To find the pressure distribution on the hull contour 10 ≤≤ s , substituting Eq.(C.26) 

back into the pressure expression in Eq.(C.24), 
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The jet head terms in (C.27) can be simplified. Considering Eq.(C.10), in the regions of 

+≤≤ ss1 , with 0),( =+ τsC p  (Fig. 2.6) gives, 
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Substituting above equation into the pressure expression in Eq.(C.27) gives the pressure 

distribution: 
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• In chine wetted case, 1),( =+ τsVn  
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• In chine un-wetted case, 0),( =+ τsVn , pressure distribution is, 
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(C.30) and (C.31) are used to compute the pressure on the hull. 
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APPENDIX D 

PRESSURE DISTRIBUTION AND EULER’S EQUATION IN SEAKEEPING 

 

 

 The pressure distribution in seakeeping is in the following form: 
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 The Euler’s equation and the hull contour pressure distribution in seakeeping can 

be derived from (D.1). 

 

D.1 Euler's Equation and Location of Free Vortices 

 

The Euler’s equation governing the free vortex distribution in seakeeping can be 

obtained from the differentiation of the pressure distribution equation (D.1). Considering 

the requirement of the dynamic boundary condition, 0=pC  in the region of  

),(1 τxss +≤≤  and 0≤≤− ss  (Fig. 2.6), differentiation of the pressure distribution in 

Eq.(D.1) will give: 
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The derivative terms in (D.2) can be found from the differentiation of potential. 

Recall the potential definition in seakeeping: 
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where ξ  is the non-dimensional −x  coordinate, s  is the non-dimensional 

−z coordinate, τ  is the non-dimensional time. 

Based on the potential definition in Eq.(D.3), the 
x∂

∂φ  term in (D.1) has the 

following form: 
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Following the variable transformation in (4.70), 
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Substituting (D.5) back into (D.4) yields the xφ   term: 

 

)];,(),,([)(

]),,()1)[((

]),,(
),,(

)[1)(();,(

),(

);(
00,

),(

);(
00,

),(

),(
0

0

τξτξξ

τξξ

τξτξξτξφ

τξ

τξ

τξ

τξ

τξ

τξ

sVsdssVzz

dssVzz

ssVds
x
sV

zzs

s

s

s
sxck

s

s
scxk

xs

s

s

s
ckx

⋅++

−+

+
∂

∂
−=−

∫

∫

∫

+

+

+

++

                (D.6) 

 

Similar to the derivation of the 
x∂

∂φ  term, the 
τ
φ

∂
∂  term in (D.1) is: 
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Following the definition of ξ  in (4.69), )(τ
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and, 
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Substituting (D.8) and (D.9) into Eq.(D.7) yields the τφ   term: 
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Second time differentiation of the xφ  term in (D.6) with respect to s  gives, 
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and differentiation of the τφ   term in (D.10) with respect to s , 
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summing up (D.11) and (D.12) terms yields, 
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Substituting above equation into Eq.(D.2), and recall that 1)( =ξkz  in ζ  plane, therefore 

the (D.2) becomes: 
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Simplifying, (D.14) takes the following form, 
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where ),,( τξ sg  is the right-hand-side terms in (D.15). 
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If we ignore the higher order ),,( τξ sg  term in (D.15), and assuming the keel 

offset is constant in axial direction, thus 1)( =ξkz  and 0)(, =ξxkz , the Euler's equation 

in (D.15) is, 
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This is an inviscid Burger's differential equation that the free vortex distribution at the 

free jet-head sheet must satisfy.  

Similarly, in the region of 0≤≤− ss  the Burger's equation is, 
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D.2 Pressure Distribution Formulae 

 

The hull contour pressure distribution in seakeeping can be found from (D.1). 

Substituting the τφ ∂∂  and x∂∂φ  terms into the Eq.(D.1), we have the pressure 

distribution in the region of +≤≤ ss0 , 
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On the contour of the ship hull 10 ≤≤ s , the pressure distribution can be found by 

grouping terms in (D.18). As in Appendix C, collecting the relevant terms associated with 

the jet head in the region of +≤≤ ss1  in Eq.(D.18) as T : 
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the pressure thus can be written: 
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To simplify the expression of T term in (D.20), first we need to solve for the 

velocity time derivative term in T term of (D.19) from Eq.(D.16): 
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On the jet head +≤≤ ss1 , substitute the Burger's equation in Eq.(D.21) into Eq.(D.19) to 

simplify the integral expression in T term: 
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Substituting (D.22) back into T term in Eq.(D.19): 
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Substituting (D.23) into Eq.(D.20) and ignoring the higher order 2)( x∂∂φ  term give a 

computable pressure distribution formula: 



 

 

329

])1()[,,()1(2

)],,()][1([2),,(

)],1,(),,( ),,()][1([2

}]
),,(

)1(),,([){1(2

),1,(),,(),,(),(

])1()[,,()1(2

)],1,(),,()][1([2

),1,(),,(

)],,( ),,()][1([2

}]
),,(

)1(),,([){1(2

),,(),,(),();,(

2

1

),(
00,,

1

),(
0

0
0

2222

22

1

),(
00,,

1

),(
0

0
0

222

x
s

L
L

xssVz

sVs
L
L

x
x
zz

sV

VsVsdssV
L
L

xzz

ds
x
sV

L
LxsVz

VsxVsxVxV
x
s

L
L

xssVz

VsVs
L
Lx

x
zz

VsV

sVsdssV
L
Lxzz

ds
x
sV

L
LxsVz

sVsVVsC

sc

s
cc

s

ss
S

sxcc

S

ss
c

ssn

sc

ss
cc

ss

s
S

sxcc

S

ss
c

snP

∂
∂−+

∂
∂−+

−
∂
∂

+
∂
∂

+−

−⋅+−++

∂
∂

−+
∂
∂

−+

+−−=
∂
∂−+

∂
∂−−

−−
∂
∂

+
∂
∂

+

+−

⋅+−++

∂
∂

−+
∂
∂

−+

−−=

++
+

+++

++
+

++

+

∫

∫

∫

∫

τ

τ

τξ

τ
τ

τξ

τ

τ

τ

τξ

τ
τ

τξ

τ

τ
τξ

τξ
τ

τξ

τξτξτξ

τξτξ
τ

τξτττ
τ

τξ

τξτξ
τ

τξτξ

τξτξ

τξτξ
τ

τξτξτξτξ

 

(D.24)                

 

Consider the fact that, at the jet head +
bz , 0),,( =+ τξ sC p , which results in: 
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 Substituting (D.25) into (D24), we have the following hull pressure expression: 
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• In the chine wetted case where ),(),,( τξτξ VsVn =+ : 
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where on the contour, 0),,( =τξ sVn  in 10 ≤≤ S . 

 

• In the chine un-wetted case where 0),( =+ τsVn : 
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 (D.27) and (D.28) are the final forms for the pressure distribution on the surface 

contour. 
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APPENDIX E 

COMPUTATION OF BOUND VORTEX DISTRIBUTION ),( τζγ c   

 

 

The singular bounded vortex distribution representation derived in Eq.(4.20) has 

two terms: 

 

),(),(),( sin τζγτζγτζγ gularnormalc +=                                                                  (E.1) 

 

The normal component is derived at (5.89) and the singular term (refer to (4.22)) can be 

expressed as the sum of three individual terms as in (5.92). 

 

),(),(),(),( 0
sin, τζγτζγτζγτζγ +− ++= cccgularc                                                    (E.2) 

 

The following section gives the details of the derivations of the computational forms of 

the three terms in (E.2). 

 

E.1 Computation of ),(0 τζγ c   
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Substitute the integral )(ζΛ  in (5.49) into the formula of ),(0 τζγ c  in (5.93): 
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where 11B , 11F  and 12F  defined in (5.50), (5.51) and (5.52) respectively, the numerical 

integral )(,3 ζjI∆  in the above equation defined in (4.32), (4.34) and (4.36) according to 

the variation of the variable ζ  . 

 

E.2 Computation of ),( τζγ −
c   

 

 Substitute the integral (5.47) into the expression of ),( τζγ −
c  in (5.94): 
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where 21F  is defined in (5.53). Again, discretizing the above integrals: 
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The integral in the second term in the above equation can be written in as follows: 

 

)()1()(

 )1( 

)1( )1( 

12
2

11

02
0

2
02

00

0
222

02
0

2
0

0
2

02
0

2
0

11

11

−− ⋅−+=

−
−+=

−+−
−

=−
−

∫∫

∫∫
−
+

−

−
+

−

−
+

−

−
+

−

ii JJ

dd

dd

i

i

i

i

i

i

i

i

ζζζ

ζ
ζζ

ζζζζ

ζζζζ
ζζ

ζζζ
ζζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

                        (E.6) 

 

where the integral )(12 iJ ζ  defined in (5.90) and, 
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Substituting the above integral, (E.6), and the relation of the free vortex strength )(, τγ −
is  

with the induced velocity ),( τiVs
−  ( ),(2)(, ττγ iVsis

−− −= ) into (E.5) yields the numerical 

formula of ),( τζγ −
c : 
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E.3 Computation of ),( τζγ +
c   

 

Substitute the integral, Eq.(5.48), into the expression of ),( τζγ +
c  in (5.95): 
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where 22F  is defined in (5.54). Again, discretizing the above integrals: 
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The integral of the second term in the above equation can be written as: 
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where the integral )(22 iJ ζ  defined in (5.91) and the integral )(21 iJ ζ  is: 
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Again, substitute (E.12) and the relation of the free vortex strength )(, τγ +
is  with the 

induced velocity ),( τiVs
+ ( ),(2)(, ττγ iVsis

++ −= ) into ),( τζγ +
c , Eq.(E.10). This yields the 

numerical formula of ),( τζγ +
c : 
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APPENDIX F 

KERNEL FUNCTION )(ζχ  

 

 

 The solution procedure of the kernel function )(ζχ  for the Carleman singular 

integral equation (refer to (4.8)) for the catamaran is similar to that for the monohull 

(Vorus 1996). The solution is developed here in slightly expanded detail over that 

presented by Vorus (1996). 

The singular integral equation representing the kinematic boundary condition is: 
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where the parameters in (4.8) defined in Chapter 4. 

 From the definition of Muskhelishvili (1958), the kernel function for the solution 

of (4.8) has the following expression,  

 

)()()( ζζζχ Γ⋅= eP                                                                                         (F.1) 

 

where, 
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The unknown function )(tG  and the definitions of the parameters in the above can be 

found from the solution procedure developed for the Carleman singular integral equation 

by Muskhelishvili(1958). The following derivation mainly follows Muskhelishvili(1958) 

and Tricomi(1957). 

 In a more general form than (4.8), the Carleman-type singular integral equation 

can be expressed as, 
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where 0),(),( 22 ≠+ τζτζ BA  everywhere on the integration path L . Introduce a 

sectionally analytic function, 
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This function ),( tζΦ  vanishes at infinity. Following Tricomi’s (1957) derivation, it can 

be proved that the analytic function ),( tζΦ  satisfies the following relations: 
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Substituting (F.6) and (F.7) into (F.4) gives,  
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Group the coefficients together: 
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Solve for the boundary function ),( τζ+Φ  from the above equation to get:  
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Comparing (F.10) with the boundary condition in following equation of the non-

homogeneous Hilbert problem in Muskhelishvili (1958), 
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where )(tG and )(tg  are the functions of the class H (the functions satisfy the Hölder 

condition, refer to Tricomi’s (1957) and Muskhelishvili (1958)), given on L , and 

0)( ≠tG  everywhere on L .  Thus the unknown functions )(tG , )(tg  are of the following 

form: 
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 The coefficients ),( τζA  and ),( τζB  then can be found by comparing (F.4) with 

the Carleman equation (4.8): 
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Substitute ),( τζA  and ),( τζB  into (F.12),  
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Substitute the following complex identity into (F.15),  

 

θββ iei ⋅+=− 2sin1sin                                                                             (F.16) 



 

 

341
Therefore, 
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where the angle θ   is, 
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Using the transform defined in (A.20), 
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At the X-Y axis intersection of Fig. F1, the θ -angles depicted in Fig. F.1 are, 
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where the sign of ),(sin τζβ± comes from the two symmetric angles at the catamaran 

two sides respectively.  
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Fig. F.1: Phase angle definition 

 

By Fig. F.1, the phase angle can be calculated as, 
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Thus, the angle relation is: 
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Substitute the )(tG term in (F.17) into (F.3) to get, 
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where p is the number of arcs, with the end points at coordinates of mC . The mλ  are 

integers which will be selected according to character of the )(ζχ  function in each arc 

kL . For present problem, the arc are 1−≤≤− ζcz  and cz≤≤ ζ1 . Thus the number of 

arcs is 2, thereby 2=p . According to the correspondent end coordinates of the arcs, the 

respective mC  parameter in (F.2) may be chosen as ccm zzC ,0.1,0.1,−−= . Then from 

(F.2), 
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where the parameter set m λ is selected to match the solution to the catamaran hull.  

 

Expanding (F.23) according to (F.22), 
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The integral in the third term of the above equation is changed into the following form, 
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Substituting (F.26) into (F.25) produces, 
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To simplify the form of (F.27), we further reduce the last two integrals in (F.27). 

Assuming )(ζβ  is a piecewise constant, 
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The first term of (F.28) is, 
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Fig. F.2: Singular Integration 

 

According to Fig. F.2, the second integral term in Eq.(F.28) can be divided into two parts 

according to the parameter ζ , 
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Substituting above equations into (F.27), we get, 
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Now, according the definition of the kernel function in (F.1), it is expressed as, 
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where, 
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jβ  is the average value of )(~ ζβ over the j element. For the constant deadrise wedge 

contours, )(ζβ  is constant. Denote )()( 0 ζκζκ =  in this case, which is, 
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The choice of m λ in (F.32) is for matching the solution of catamaran-type hull. 

This is accomplished by choosing 0 1=λ , 1 2 −=λ , 0 3=λ , 1 4 −=λ . Thus, the kernel 

function for the catamaran planing problem can be expressed as, 
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(2) In the case of )(τββ =  constant in ζ  (refer to (4.16)), 
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APPENDIX G 

KERNEL FUNCTION )(* ζχ  

 

 

The construction procedure for the kernel function )(* ζχ  in the solution of the 

Carleman equation for the displacement vortex strength, (4.47), is, in general, the same as 

the procedure of )(ζχ  in Appendix F. The difference of )(* ζχ  from )(ζχ  in (4.13) is 

that its solution domain is now on the arcs of −+ −≤≤− bb ζ  and +− ≤≤ bb ζ . 

 The definition of the kernel function )(* ζχ  is same as in (F.1), (F.2) and (F.23): 
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where 2=p  and the respective +−−+ −−= bbbbCm ,,, . Then, 
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4321     )()()()()( λλλλ ζζζζζ +−−+ −−++= bbbbP                                       (G.4) 

 

The angle relation in (F.22) now is: 
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Substituting (G.5) into (G.3) yields, 
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Following the same derivation procedure as in Appendix F, we get the kernel function 

)(* ζχ , 
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and jβ  is the average value of )(~ ζβ over the j element. For the straight-bottom wedge 

contours, )(ζβ  is constant. Denote )()( 0 ζκζκ =  in this case, giving, 
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The choice of m λ in Eq.(G.7) is to match the solution for the catamaran hull. It is 

1 1 −=λ , 0 2=λ , 1 3 −=λ , 0 4=λ . Thus the kernel function is, 
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(2) In the case of constant )(τββ =  (refer to (4.50)), 
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APPENDIX H 

FUNDAMENTAL INTEGRALS IN VELOCITY CONTINUITY FORMULATION 

 

 

 To develop a numerical model for the velocity continuity condition and the bound 

vortex distribution ),( τζγ c  computation, the fundamental singular integral terms in 

Eq.(4.23), (4.24) and (4.25) must be evaluated numerically. In this appendix, these 

integrals will be transformed into an easy numerical computation form by an analytic 

method. 

 

H.1 Three Elemental Integrals 

 

The three singular integrals in (4.23) – (4.25) are in the same form, but defined in 

different value domains. Therefore, it is convenient to derive the semi-analytical 

formulation according to the integral in (4.23), then to apply this derived formulae to the 

integrals in (4.24) and (4.25).    

By (4.23), 
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where the kernel function is (refer to (4.16)), 
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Thus, 
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Introduce the identity: 
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Substitute (H.5) into (H.4) to produce the result: 
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Substituting Eq.(H.6) into Eq.(H.4) yields three elemental integrals, 
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(H.7) 

The three elemental integrals are defined as (refer to (4.29), (4.30) and (4.31)), 
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In following sections, we derive semi-analytical forms for the three elemental integrals. 
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Again transform as 1−= tx , 1+= xt , dtdx = . Then Eq.(H.11) becomes,  
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From Gradshteyn and  Ryzhik (1965), p287, §3.197.8: 
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The parameter 21 cz−  in (H.14) may be grater than 1, which results in a divergent 

hypergeometric series for );;,( zF γβα . To obtain a convergent solution, use the 

transformation formulas in Gradshteyn and Ryzhik (1965), p1043, §9.131.1: 
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Comparing with (H.14), 
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The elemental integral 1I therefore has the following semi-analytical form (see (7.1)): 
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H.3 Elemental Integral )(2 ζI  

 

Define again the variable transformation 2
1ζ=t  in (H.9), with 

t
dtd

2
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1 =ζ , 
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Again define the second transform 1−= tx , with dtdx = . Then (H.18) becomes, 
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From Gradshteyn and  Ryzhik (1965), p287, §3.197.8 : 
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where ),( νµB  is the Beta function, and );;,();;,(12 zFzF γβαγβα =  is Gauss' 

hypergeometric function, just as in the case of 1I . 

Again using the transformation formula (H.15), comparison with the parameters in (H.21) 

gives: 
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The elemental integral )(2 ζI  therefore has the following semi-analytical form (see 

(7.2)): 
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H.3 Elemental Integral )(3 ζI  
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For the elemental integral in (H.10), use the same variable transformation again: 

2
1ζ=t  with 

t
dtd

2
1

1 =ζ . The elemental integral 3I  becomes: 
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A convergent semi-analytical solution for the elemental integral )(3 ζI  in (H.24) 

can not be found analytically as for 1I  and )(2 ζI , but we can develop an approximate 

solution for )(3 ζI  in a numerical form. Because the function 
t

tf 1)( =  in the integral 

(H.24) is a slowly-variation function in the region of 21 czt ≤≤ , let us assume that 

t
tf 1)( =  is a piecewise constant function in this region. With this approximation, the 

integral in (H.24) can be written in the following form (see Fig. H.1), 
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Fig. H.1: Integration elements 

 

In Fig. H.1, 2
1 ζ=t  is the parameter variable of the integral. Define the integral term in 

(H.25) to be: 
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The integral term )(,3 ζjI∆  can be computed in different domains of the variable ζ  as 

follows. 
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Case 2:  when jt<2ζ  (see 4.34) 

 

Define: 

∫ −
−−

=
−−+−

+

2

2

~

2
1

2

~

2
1

2
,3

)()1(
)(

c

j

z

t

c
j dt

t
tztI

ζ
ζ

π
β

π
β

                                                                   (H.29) 

 

Therefore, 

+
+

+ −=∆ 1,3,3,3 jjj III                                                                                                    (H.30) 

 

Case 3:  when 1
2

+<< jj tt ζ   

 

Define : 

∫ −
−−

=
−−+−2

1
2

~

2
1

2

~

2
1

2
0,3

)()1(
)(

cz
c dt

t
tztI

ζ
ζ

π
β

π
β

                                                                    (H.31) 

 

Therefore, 
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 At this point, we have a solution form for the integral 3I . However, to calculate 

the terms in (H.27), (H.29) and (H.31), further development is needed to express the 

integrals in (H.27), (H.29) and (H.31) in terms of semi-analytical functions. The 

following sections: H3.1 – H3.3 present this development. 
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H.3.1 Integral )( 2
0,3 ζI  

 

For the integral in (H.31), use the definite integral formulas in Gradshteyn and 

Ryzhik (1965),  p290, §3.228. (2): 
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H.3.2 Integral )( 2
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For the integral term in (H.27), defining the variable transformation 1−= tx , 
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Define a second transformation: 
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From Gradshteyn and Ryzhik (1965), p287, §3.211: 
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where ),( νµB  is again the Beta function, and ),;,';,(1 yxF γββα  is Hypergeometric 

function of two variables. 
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From Gradshteyn and Ryzhik (1965), p1054, §9.182.1, the transformation of the 

Hypergeometric function of two variables to Gauss's hypergeometric function (of one 

variable) is the following formula, 
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Substituting the above equations into (H.39): 
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H.3.3 Integral )( 2
,3 ζ+
jI  

 

For the integral in (H.29), define the variable transformation tzx c −= 2 , 

xzt c −= 2 , with dtdx −= . Then (H.29) becomes, 
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Define another transformation, 
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(H.47) 

From Gradshteyn and I. M. Ryzhik (1965), p287, §3.211: 
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where 0Re >µ , 0Re >λ . 

Compare with (H.47) with (H.48):  
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                                  (H.49) 

 

where ),( νµB  is the Beta function, and ),;,';,(1 yxF γββα  is Hypergeometric function 

of two variables.  Again: 
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Using the same integral transform as in (H.41), the parameters now are: 
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and, 
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2
1 −=+ . Thus the hypergeometric function in (H.49) is,  
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Substituting the above equations into (H.49), the integral )( 2
,3 ζ+
jI  is as follows: 
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At this point, all derivations required in the 3I  term computation, (H.10), have 

been completed. In next section, the final form of the fundamental integral )(ζΛ  will be 

given based on the above derivations. 
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with the )(,3 ζjI∆  term as: 
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• Case 2: jt<2ζ  
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 As discussed at the beginning of this Appendix, the formulation in this section for 

)(ζΛ  can be applied to the formulation of the fundamental integrals in (4.24) and (4.25). 

The next sections are the applications. 
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H.5 Fundamental Integral )( 0ζ−Λ in the region of 10 ≤≤− ζb  
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In the region of 10 ≤≤− ζb ,  the integral is, 
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where jt<≤ 12
0ζ . Apply the case 2 formulation, 
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Re-grouping,  
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Therefore, the )()( 0 ζζ Λ−Λ−  term in (4.26) and (4.27) of Chapter 4 will be, 
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H.6 Fundamental integral )( 0ζ+Λ  in the region of +≤≤ bzc 0ζ  

 

Define, 
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In the region of +≤≤ bzc 0ζ , the integral is, 
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where 1
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0 +>≥ jc tzζ . Apply the case 1 formulation, 
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where, 
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Therefore, the )()( 0 ζζ Λ−Λ+  term in (4.26) and (4.27) of Chapter 4 will be, 
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The above formulae are used in the numerical computation of the velocity continuity 

condition and the bound vortex distribution ),( τζγ c . 
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APPENDIX I 

TIME MARCHING ALGORITHM 

 

 

I.1 Artificial Damping And Velocity Marching 

 

For the purpose of developing the artificial damping concept, assume a simple 

mass-spring system, as depicted in Fig. I.1, 

 

 

c
k

mg

)(τF
)(τx

 

Fig. I.1  Artificial damping 

 

The system equilibrium equation is, 

 

)(τFxcxm =+ &&&                                                                       (I.1) 
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At the time iτ , the system equation is, 

 

)( iii Fxcxm τ=+ &&&                                                                   (I.2) 

 

Thus, representing the acceleration in (I.2) by a backward difference in terms of the 

velocities at two successive times: 

 

ii
ii Fxcxxm =+

∆
− − &
&&

τ
1                                                             (I.3) 

or, 

m
Fx

m
cxx i

iii
ττ ∆

=∆+− − &&& 1                                                     (I.4) 

 

Therefore, 

 

damp

iiii
i C

mFx

m
c

mFx
x

+
∆+

=
∆+

∆+
= −−

11

11 τ
τ
τ &&

&                                   (I.5) 

 

where 
m

cCdamp
τ∆=  is the effective damping coefficient, which set by the user input. In 

steady planning case, a larger damping coefficient dampC  makes the computation more 

rapidly settle to the stable time-independent state desired.  The
m
Fi  term is determined 

from the average acceleration as follows: 
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)(
2
1

1−+== iii
i xxx

m
F

&&&&&&                                                           (I.6) 

 

Therefore, the velocity results at time iτ  can be obtained by integrating the acceleration 

results ix&&  which were directly from the coupled equations of motion. 

 

I.2 Displacement Marching 

 

Time marching of the vessel velocity and displacement is carried out according to 

following algorithms.  

For the increments of the heave )(3 τη  and the pitch angle )(5 τη , 
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where, 
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with dampC  developed in Eq. (I.5), and 
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Thus, the displacements will be: 

 

)()1()( 333 iii τητητη ∆+−=                                                 (I.11) 

 

)()1()( 555 iii τητητη ∆+−=                                                 (I.12) 

 

I.3  Algorithm to Determine The Transient Wetted Length  
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Fig. I.2 Determining wetted length 

 

This algorithm is for the wetted length search outlined in (3.97) and (4.92) of 

Chapters 3 and 4,  
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In the transom coordinate system, the keel upsets (include the upsets due to trim 

angle and waves) are represented as niyx ii ,,2,1  , L= . The transient wetted length can 

be found by comparing the transom draft TH  with the sectional transient keel upset 

)(τky  (see Fig. I.2). 

Assuming Ti Hy > , Ti Hy <−1 , it is desired to find the coordinate mx  which 

corresponds to the transient transom draft TH , starting from the slope: 
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From (I.13): 
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1)(
−

−

−
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−=−
ii

ii
Timi yy

xx
Hyxx                                                               (I.14) 

 

Thus, the entry position mx  is the required wetted length, from (I.14): 
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1)(
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−−=
ii
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xx
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This algorithm is used in the following steps in the Subroutine ENTRY. 
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Step 1: Based on the last time step maxx , discretize the vessel length maxx into N  

sections. Interpolate the keel upset at every section, then modify by the displacement 

from trim angle and the wave elevation (refer to (3.97) and (4.92)).  

Step 2: In the transom coordinate system, start from the transom section and move 

forward toward the bow, comparing with the transom draft TH , to search for the entry 

intersection point (refer to (I.13)). This step mainly is for searching for the point where 

the transient draft 0),( =τpk xY  (refer to Fig. 3.8). The correspondent vessel length will 

be the wetted length pxL =)(τ .     
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APPENDIX J 

FUNDAMENTAL INTEGRALS IN THE FIRST ORDER MODEL 

 

 

The fundamental integrals in the vortex strength of the first order model are 

(3.11), (3.12) and (3.13).  As in the 2nd order model, these three singular integrals are in 

the same form, but defined in different value domains. Each of the three integrals can be 

separated into three elemental integrals. In this Appendix, a more detail derivation for 

these semi-analytical evaluations is outlined.  

 

J.1 Three Elemental Integrals 

 

Define (refer to (3.11)), 
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where the kernel function is (refer to (3.7)), 
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Following the same procedure as in Appendix H, the integral in (J.1) can be separated 

into three simple elemental integrals as (refer to (3.16) and (H.7)): 

 

)()()( 321 ζζζ III ++=Λ                                                              cz≤≤ ζ1       (J.3) 

 

where (refer to (3.17), (3.18) and (3.19)), 
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In following sections, semi-analytical forms for these three elemental integrals are 

developed. 

 

J.2 Elemental Integral 1I  

 

For the elemental integral 1I  of (J.4), transform the variable as 2
1ζ=t ; the 

integral 1I  becomes: 
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From  Gradshteyn and  Ryzhik (1965, p233, ß3.141.16): 
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Comparing (J.8) with (J.7), the parameters are: 2
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form: 
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where )11,
2

( 2
czE −π  is the complete elliptic integral of the second kind. 
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J.3 Elemental Integral )(2 ζI  

 

For the integral )(2 ζI  in (J.5), defining variable transformation 2
1ζ=t , 
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From Gradshteyn and  Ryzhik (1965, p219, ß3.131.5): 
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where ),
2

( kF π  is the complete elliptic integral of the first kind. 

 

J.4 Elemental Integral 3I ( cz<< ζ1 ) 

 

For the integral )(3 ζI , from  Gradshteyn and  Ryzhik (1965, p251, ß3.157. 9) : 
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where ),,( knφ∏  is the elliptic integral of the third kind. 
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 The form elliptic integral of the third kind, ),,( knφ∏  in (J.14), is not in a semi-

analytical form ready for the numerical computation. In the this section, further 

reductions of ),,( knφ∏  are accomplished. 

Use the following identity (refer to (L.8)): 
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According to the elliptic integral notation in Appendix L, and comparing with (J.14), the 

parameters in (J.15) are, 
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In (J.17), when +→1ζ , +∞→n ; −→ czζ , 1→n , which  implies that, 
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According to the Case(ii) in Appendix L, when 1>n , the transformation in (L.13) can be 

applied: 
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Since 1>ζ  →  2
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−=N , and 1>n  → αα 2
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sinsin <=
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N , the value domain for N  

is: 
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In this condition of (J.20), (L.14) in Appendix L will apply to the transform in (J.15): 
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where α  is defined in (J.16). 

From (L.12) in Appendix L, in (J.21): 
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Since, 
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Thus, the parameter 1δ   is, 

 

22

2

22

22
2

21
1)1(

sin
1

1 ζ
ζζ

ζ
ζζ

α
δ

−
−=

−
⋅−=

−
⋅

−
=

c
c

c

c

z
z

z
z

NN
N                        (J.24) 

 

From (L.9) in Appendix L, 1ε  in (J.22) is: 
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From (L.11) in Appendix L,  
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Substituting all of the above into (J.21) yields the final form of the elliptic integral of the 

third kind, ),,( knφ∏ , in (J.15): 
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Substitute (J.27) back into (J.14) The final form of )(3 ζI   is then: 
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where )(αF  and )(αE are the complete elliptic integrals of the first kind and the second 

kind respectively, )\( 1 αεF  and  )\( 1 αεE  are the incomplete elliptic integrals of the 

first kind and the second kind respectively,  with the angles 2
1 11sin

cz
−= −α ,  and 

1
1arcsin 2

2

1 −
−⋅=

c

c

z
z ζ
ζ

ε .During the derivation process,  it is required that 1≠ζ  (refer to 

(J.13)).  

 The above derivation process for (3.11) is also applicable to the evaluation 

procedure for the integrals in (3.12) and (3.13). The semi-analytical form in (J.9) and 

(J.12) for the integral 1I  and 2I  are the same for the elemental integrals in (3.12) and 

(3.13), the only difference is for the elemental integral )(3 ζI   where the value domain is 

different. In next section, the semi-analytical form of )(3 ζI  in the different value domain  

is given. 

  



 

 

392

 

J.5 Elemental Integral 3I ( 1<≤− ζb ) 

 

In the value domain 1<≤− ζb , the elemental integral )(3 ζI  derived from (3.12)  

has the following form: 
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where the elliptic integral of the third kind, )\( αnΠ , is defined as, 
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In (J.30), 2

11sin
cz

k −== α , 
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22

22

−
−

=
ζ

ζ
c

c

z
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c , which  implies the parameter n  in (J.30)  to be: 
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With 0<n , the transform parameter N in (L.19) of Appendix L is: 

n
nN

−
−=

1
sin 2 α                                                                                                      (J.32) 
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and, when −→1ζ , 1
)1(

1
22

2

<
−

−
=

−
c

c

z
z

N ; when −→ bζ , 

α2
2

2

22

2

sin
1

)(
1

=
−

>
−

−
=

−
c

c

c

c

z
z

bz
z

N .  The value domain for the parameter N thus is: 

 

1sin 2 << Nα                                                                                                       (J.34) 

 

In this condition, (L.40) in Appendix L applies to the transform for the elliptic integral of 

the third kind in (J.30): 
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where )(αF  is the complete elliptic function of the first kind, and  

222 )1(sin1cos
cz

=−= αα .  

From (L.18) of Appendix L, the third kind Elliptic function )\( αNΠ  is, 
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where, 
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and, 
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Substitute (J.38) and (J.39) into (J.36) to get the expression for )\( αNΠ : 
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Substitute (J.40) back into (J.35): 
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Substituting (J.41) into (J.29), the final form of )(3 ζI  is: 
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where from (L.17) of appendix L, 
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The parameter 2ε  is defined in (J.39) and the parameter 'α  is: 

 

αα −= 090'                                                                                                        (J.44) 

 

J.6 Elemental Integral 3I ( +≤≤ bzc ζ ) 

 

In the value domain +≤≤ bzc ζ , the elemental integral )(3 ζI  derived from 

(3.13) has the following form: 
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where the elliptic integral of the third kind, )\( αnΠ , is defined as, 
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which  means the parameter n  in (J.46)  to be: 
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In this condition of (J.47), (L.18) in Appendix L can be applied to the elliptic integral of 

the third kind in (J.46): 
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where )(αF  is the complete elliptic integral of the first kind, 0Λ  is defined in (J.43), 

and, 
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and, 
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Substitute (J.49) and (J.50) into (J.48) to give )\( αnΠ : 
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 This gives the final semi-analytical form for the integral )(3 ζI : 
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 In this appendix, the semi-analytical forms for the fundamental integrals of (3.11), 

(3.12) and (3.13) in the first order model have been given.   
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APPENDIX K 

INPUT FILES FOR THE REGULAR WAVE EXAMPLE 

 

 

 The input data for the CATSEA(2-4a) and NewCat(2-4a) of the design tools in 

the regular wave numerical computation have been listed in this appendix as an example. 

The physical explanation of the input data can be found in Chapter 8. 

 There are four input files for the catamaran with two transverse steps. The first 

input file “CATSEA.IN” is a control file which provides the global control data for the 

computation. The other three files are the local geometry data files which provide the 

detailed geometry parameters for three hulls, one for the main body hull, other two for 

each individual step hull.  

       

K.1 Input File: CATSEA.IN 

 

 CATSEA.IN is the mater file which gives the global control data. 

 

 K.1.1 Input Data 

 

1 1 
Example-1: catamaran. ZK = 2 FT, 6000 LBS, 2 STEPS, 3 FT CHINE 
60 .005 .03 2. 
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.001 .0001 .8 0 0 
.02 24.04 6.33 5. 14.25 .0187 7.27 .01 .1 1 1 10001 
1 
10000 
70. .61 
2 
2.29 2.29 
.25 60. 0. 1 
 

 K.1.2 Read Statement in Fortran Code (CatSea2-4a or NewCat2-4a) 

 

 The following is the read statement in the code of CatSea2-4a and in NewCat2-4a. 

 

OPEN(16,FILE='CATSEA.IN',STATUS='OLD') 
READ (16,*) RESTART,DUMP 
READ (16,2) (PROB(I),I=1,15) 
READ (16,*) MMZ,DSPZ,SBARZ,RATZ 
READ (16,*) CRIT(1),CRIT(2),FAC,KPRNT,KPLOT 
READ (16,*) DTOS,XMASS,GYRAD,XCG,XLOA,CLA,XCA,CDA,DEPS,KODE, 
KSTEP,MALL 
READ (16,*) NPRNT 
IF (NPRNT .NE. 0) READ (16,*) (IPRNT(I),I=1,NPRNT) 
READ (16,*) UK,ZKM 
IF (KSTEP .EQ. 0) GO TO 5998 
READ (16,*) NSTEPS 
READ (16,*) (XLSTEP(I),I=1,NSTEPS) 
C  DATA READ AND CONVERTED IN WAVE: 
C 
C  KODE = 1:  REGULAR WAVE;  
C  READ (16,*) AHTA,WAVL,PHASE,WAVES  
C 
C  KODE = 2: IRREGULAR WAVE (JONSWAP Spectrum) 
C  READ (16,*) WMIN,W0,WMAX,GAM,NEW,WAVES 
 

K.2 Input File: CATs1.IN 

 

 The CATs1.IN file is the local geometry data file for the first (main) hull segment. 



 

 

400
 K.2.1 Input Data 

 

COBRA evaluations - 2 STEPs 
.1176 1.088 
1 1 
1.001 80 .005 .02 .015 .015 2 1 
.675 -.3 .09 -.0 -.0 8.92 .17 0. 
38. -3.33 17. 0. 0. 
38. 38. 17. 17. 
1. 0. 1.  0. 
1.1 0.2 1.5 1.5 0. 2.17 0. 
 

 

 K.2.2 Read Statement in Fortran Code (CatSea2-4a or NewCat2-4a) 

 

 The following is the read statement in the code of CatSea2-4a and in NewCat2-4a. 

9000  IF (KSTEP .EQ. 0) OPEN(15,FILE='CATs.IN',STATUS='OLD')         
          IF (KSTEP .NE. 0 .AND. MHUL .EQ. 1) OPEN(15,FILE='CATs1.IN', 
          ,STATUS='OLD')   
          IF (KSTEP .NE. 0 .AND. MHUL .EQ. 2) OPEN(15,FILE='CATs2.IN', 
          ,STATUS='OLD') 
          IF (KSTEP .NE. 0 .AND. MHUL .EQ. 3) OPEN(15,FILE='CATs3.IN', 
          ,STATUS='OLD') 
C  
          READ(15,2) (PROB(I),I=1,15)      
          READ (15,*) HT,TRIMD 
          READ (15,*) NGAM,NSEC 
          READ (15,*) ZC1,MM,DZMIN1,DELZ1,DZMIN2,DELZ2,KIT,NELE 
          READ (15,*) YK0,YK0P,YK0PP,YK1,YK1P,XMAX,XLA,XLC 
          READ (15,*) BETA0,BETA0P,BETA1,BETA1P,XLAB 
          READ (15,*) BET11,BET12,BET21,BET22 
          READ (15,*) ZK0,ZK0P,ZK1,ZK1P 
          READ (15,*) ZCI0,ZCI0P,ZCIM,ZCI1,ZCI1P,XLAC,XLCC 
          CLOSE(15) 
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K.3 Input File: CATs2.IN 

 

 The CATs2.IN file is the local geometry data file for the second hull segment (the 

hull segment after first step). 

 
COBRA evaluations - 2 STEPs  (segment 2) 
.1609 1.088 
1 1 
1.001 50 .005 .04 .02 .02 2 1 
.03 -.05 0. 0. 0. 2.29 .79 0. 
17. 0. 17. 0. 0. 
17. 17. 17. 17. 
1. 0. 1.  0. 
1.5 0. 1.5 1.5 0. 0. 0. 
 

 

K.4 Input File: CATs3.IN 

 

 The CATs2.IN file is the local geometry data file for the third hull segment (the 

hull segment after the transverse second step). 

 
COBRA evaluations - 2 STEPs  (Segment 3) 
.2043 1.088 
1 1 
1.002 50 .01 .04 .02 .02 2 1 
.03 -.05 0. 0. 0. 2.29 .79 0. 
17. 0. 17. 0. 0. 
17. 17. 17. 17. 
1. 0. 1.  0. 
1.5 0. 1.5 1.5 0. 0. 0. 
 



 

 

402

APPENDIX L 

ELLIPTIC INTEGRALS 

 

 

The following sections of this appendix are from Abramowitz and Stegun (1964) 

(Handbook of Mathematical Functions, National Bureau of Standards, U. S. Government 

Printing Office, Washington, D. C.). The material has been included here in the interest 

of independence of the presentation.  

Defining α2sin=m , where m  is the parameter, α  is the modular angle, and, 

ux sn sin == φ , ucn cos =φ , the delta amplitude: )(dn )sin1( 2
1

2 φφ ∆==− um , 

the amplitude: usnux  am)arcsin()arcsin( ===φ . 

 

• Elliptical Integral of the First Kind 
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• Elliptical Integral of the Second Kind 
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• Elliptical Integral of the Third Kind 
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Referred to above canonical forms of the elliptic integrals, they are said to be 

complete when the amplitude 
2
πφ =  and so that 1=x . These complete integrals are 

designated as follows, 

 

• Complete Elliptical Integral of the First Kind 

 

Usually K  and F  are used to express the complete elliptic integral of the first 

kind. 
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• Complete Elliptical Integral of the Second Kind 

 

E  is used to express the complete elliptic integral of the second kind. 
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• Complete Elliptical Integral of the Third Kind 

 

)\( αnΠ  is used to express the complete elliptic integral of the third kind. 
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)\()\
2
1;( ααπ nn Π=Π                                                                           (L.8) 

 

The following sections list the frequently referred cases for the complete integrals of the 

third kind. 

 

• Cases of the Complete Elliptic Integrals of the Third Kind 

 

Case ( i ): Hyperbolic Case  α2sin0 << n  

 

Define:  

2
1

2 )sin/arcsin( αε n=                                       πε
2
10 ≤≤                    (L.9) 

21121
1 ])(sin)1([ −− −−= nnn αδ                                                               (L.10) 

)\()/()\()\( αφαφαφ FKEEZ −=                                                     (L.11) 

 

In this case, the elliptic integral of the third kind is, 

 

)\()()()\( 1 αεαδαα ZKKn +=Π                                                         (L.12) 

 

Case ( ii ): Hyperbolic Case  1>n  

 

The 1>n  case can be reduced to the case α2sin0 << N  by defining,  
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n
N α2sin=                                                                                              (L.13) 

 

In this case, the elliptic integral of the third kind is, 

 

)\()()\( ααα NKn Π−=Π                                                                     (L.14) 

 

Case ( iii ): Circular Case  1sin 2 << nα  

 

Define:  
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In this case, the elliptic integral of the third kind is, 
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Case ( iv ): Circular Case  0<n  
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The 0<n  case can be reduced to the case 1sin 2 << nα  by writing, 

 

12 )1)((sin −−−= nnN α                                                                                             (L.19) 

 

In this case, the transform of the elliptic integral of the third kind is, 

 

)()(sinsin)\()(sin)1)(cos()\( 1221212 ααααααα KnNnnnn −−− −+Π−−−=Π   (L.20) 

 

The above sections have listed the most useful elliptic integrals in the numerical 

computation for the 1st order model. In the numerical model, the third kind elliptic 

integrals, at most time, can not be calculated directly. In this case, it is very useful to use 

the above integral formulae based on the value domain of the integral parameters.      
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