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ABSTRACT

A planing catamaran is a high-powered, twin-hull water craft that devel ops the lift
which supports its weight, primarily through hydrodynamic water pressure. Presently,
there is increasing demand to further develop the catamaran’s planing and seakeeping
characteristics so that it is more effectively applied in today’s modern military and
pleasure craft, and offshore industry supply vessels.

Over the course of the past ten years, Vorus (1994,1996,1998,2000) has
systematically conducted a series of research works on planing craft hydrodynamics.
Based on Vorus planing monohull theory, he has developed and implemented a first
order nonlinear model for planing catamarans, embodied in the computer code CatSea.
This modd is currently applied in planing catamaran design. However, due to the greater
complexity of the catamaran flow physics relative to the monohull, Voruss (first order)
catamaran model implemented some important approximations and simplifications
which were not considered necessary in the monohull work.

The research of this thesis is for reieving the initially implemented
approximations in Voruss first order planing catamaran theory, and further developing
and extending the theory and application beyond that currently in use in CatSea. This has
been achieved through a detailed theoretical analysis, algorithm development, and careful
coding.

Xi



The research result is a new, complete second order nonlinear hydrodynamic
theory for planing catamarans. A detailed numerical comparison of the Vorus'sfirst order
nonlinear theory and the second order nonlinear theory developed hereis carried out. The
second order nonlinear theory and algorithms have been incorporated into a new
catamaran design code (NewCat). A detailed mathematical formulation of the base first
order CatSea theory, followed by the extended second order theory, is completely

documented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Planing Craft

A planing boat, typically either a monohull or catamaran, is a high powered
water-craft that develops the necessary lifting forces which support its weight primarily
through hydrodynamic water pressure. This hydrodynamic lifting of a planing craft is
different from that of a displacement type of vessel, which is supported primarily by
hydrostatic pressure.

In order for the planing craft to develop the necessary dynamic lift, its speed must
be high, and the geometric shape of the wetted regions of the hull must be properly
configured. When properly configured the hull geometry has a declining deadrise angle
from bow to stern. A typical planing craft has a hard chine, and may have both
longitudinal and transverse steps at intermediate positions over the wetted region. The
planing craft is typically run with a small bow-up trim or attack angle. This attack angle,
along with the hull geometry, results in the development of high pressure on the bottom
surface, which lifts the hull, thereby reducing the wetted surface, and hence reducing the

vessal resistance.
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For a displacement-type vessel, there is no significant difference between the

drafts at the running state (U #0) and at the static state (U =0). However, there is a
large difference for planing craft. The change in the planing craft’s draft, trim angle, and
wetted length, are directly related to the craft’s forward velocity and hull geometry. This
relationship is highly nonlinear.

As the planing craft speed increases the hydrodynamic pressure on the bottom
increases. The high-pressured water in the displaced volume is forced from under the
boat in the form of a high-speed jet of water. The pressure differential at the water
boundary creates what is commonly known as a spray jet. The water in the jet-head

region, with its high pressure p, generates the spray when it meets the air at the nominal
atmospheric pressure p,. Associated with it is a loss of energy, and hence a drag or

resistance. The jet processes are specia processes associated with planing crafts. The
typical characteristics of a planing craft can be characterized as "small volume, light
displacement, and high speed”. Thus there are many application areas for planing craft.

Presently there is an increasing demand for planing monohulls and catamarans
within the offshore industry. They offer important commercia applications, such as high
speed and low cost support to the supply operations of the oil industry. This low cost but
high-speed support is becoming increasingly important as oil production moves into the
deep-sea area where the high cost of large-scae helicopter operations becomes
prohibitive.

The military’s need for high-speed craft is also increasing. In many cases, in spite
of bad sea conditions, military craft must run at maximum attainable speed to meet

mission requirements. Therefore, the quantification of seakeeping performance of a
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planing craft in a seaway is a new challenge that is being pressed on to the Naval

Architects of today.

1.2 Background on Theoretical Planing Research

Steady, calm water, planing and seakeeping dynamics are the primary
performance modes that planing craft designers need to consider. However, until very
recently, the development of the hydrodynamic theory that will support design studies
has been virtually nonexistent.

The planing hydrodynamics problem can be classified into three categories
according to the physics of interest as

(1) cylinder impact (asin adrop-test);

(2) steady forward speed in calm water;

(3) impact with forward speed in a seaway.

Each of these problems has its unique characteristics. In the cylinder impact
problem, there only exists a vertical downward impact velocity. In the steady planing
problem, there exists a forward speed without a downward impact velocity. In the
seakeeping case, there exists a forward ship speed and also a downward impact velocity.
Since in a non-dimensional form the spatial variable X and the time variable 7 are

identical (refer to Eq.(1.2)), the solution to the impact problem can be simply used to deal

with the steady planing problem via slender body theory.
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Planing hydrodynamic research can also be classified according to craft geometry

(1) Monohull planing hydrodynamics,

(2) Catamaran planing hydrodynamics.

The theoretical and numerical difficulties in solving planing hydrodynamics
problems are listed as the following:

(1) Physical flow complexity via the extreme nonlinearity makes the
hydrodynamic processes difficult to model. For example, the processes of impact into the
water, extraction from the water, and the jet head detachment as well as reattachment,
etc., are al complications for modeling;

(2) The high-speed jet, or water spray, generated in planing is alimiting difficulty.
For example, in a typica mono-hull steady planing problem, the jet head length may be

on the order of Ab =z, -z, =0.00063-0.0079 as fractions of half-beam (Vorus, 1996),

depending largely on section deadrise angle. The length is so small and the flow speed is
so high in thisregion that it requires small element lengths and extremely high numerical
accuracy. For instance, Zhao & Faltinsen (1993,1996), in an example of water impact

with a simple symmetrical semi-infinite wedge-cylinder section, used an element length

on the order of 10™ of half beam for their numerical computation.

(3) Another difficult issueisthat the location of the jet-head in the chine-unwetted
flow is not known in advance; the unknown flow boundary developing with time makes
the problem virtually impossible to compute using available CFD methods.

Theoretical research on steady planing dates back to the early of 1930's. The

pioneering work was von Karman's (1929) impact analysis of seaplane landing, and
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Wagner's (1932) flat-plate model for investigation of water-entry problems. Over the past

seventy years, there has been a large amount of published research, not al of which can
be cited herein due to the limitations of this thesis. Instead, only those papers that relate
directly to the focus of this research will be cited.

In the majority of the past research efforts, due to the inherent difficulties in flow
physics cited above, planing problems have been approximately solved by applying the
basic assumptions of zero-gravity, zero-viscosity and zero-compressibility. Some
examples of these approaches via 2-D impact solution and slender body theory are
Tulin(1957), Cointe (1989,1991), Zhao & Faltinsen (1993,1996), Vorus (1996), Kim,
Vorus, and Troesch (1996), Zhao et a (1997), Savander(1997), Royce and Vorus(1998),
Xu, Troesch, and Vorus (1998), Breslin (2000), Vorus & Royce (2000), Judge (2001),
and Royce (2001). Lai & Troesch (1995,1996), performed a 3-D lifting surface solution
for planing but it relied on 2-D/SBT predictions (Vorus(1996)) for the position of the jet-
head boundary.

The papers cited above all deal with the steady planing of monohulls. Theoretical
research on catamaran steady planing hydrodynamics, and on the seakeeping
performance of planing, in genera, is nearly blank, existing only a few rather crude
methods (Zarnick(1978), Payne(1990), Payne(1995), and Akers et a (2000)) which are
found not to be sensitive enough to geometric detail to provide reliable design guidance.

The first work leading to the modern approach to planing, beyond that of von
Karman(1929) and Wagner(1932), was Tulin (1957). Here "strip theory", in the context
of dender body theory, was applied to steady, cam-water mono-hull planing. Tulin's

success was due to the use of slender body theory to study three-dimensional planing in
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terms of two-dimensional (impact) flow in cross-flow planes. He gives the jet velocity

and spray area length ¢, the pattern of stream lines, dynamic lift, spray drag and induced
drag expressions. The drawback of this paper is that his model is too highly simplified to
use in practical design. Tulin's development is for a delta-plan form and the jet-head is
assumed to lie along its edges, or the chine. Thus, it isafully "chine-wetted" flow, which
ignores the very important "chine-unwetted" flow phase, where the jet-head is not known
in advance.

A fully non-linear two-dimensional water entry problem has been computed with
reasonable numerical accuracy for a special smplified ideal section by Zhao & Faltinsen

(1993, 1996). However, the requirement of the high resolution of element length up to

10" of half beam makes its use impractical. This method has not been applied in a
planing application, and if it was it could predict only calm-water planing of prismatic
hulls.

Savitsky (1964) presented a semi-empirical method for the hydrodynamic design
of planing monohulls. Savitsky's method allows designers to estimate hull resistance and
trim angle using the two equations of equilibrium with coefficients regressed from
empirical data from towing tank tests of prismatic planing hulls. Savitsky's method has
been very popular with planing boat designers over the years in providing the foundation
for the maority of the preliminary resistance predictions of planing mono-hulls.
However, Savitsky's method is clearly not sensitive enough to geometric detail to be of

use to designersin evaluating even today's planing monohull configurations.



1.3 Vorus(1996) Planing Monohull Model and Its Derivatives

Although many methods have been published in the last seventy years, most of
them are theoretically simplified to the point that they are not practical for usein adesign
environment. Presently, there is believed to be only one theoretical model with enough
potential resolution of the physical issues to be practically applied in planing monohull
hydrodynamic design studies. That is the Vorus(1996) monohull impact and planing
model .

For the prediction of impact loads and steady planing resistance, Vorus (1996)
introduced a "flat" cylinder theory for impact of cylinders with arbitrary sectional
contour, which was later generalized to temporal cylinder geometry variation for planing
anaysis of hulls with geometry variation longitudinaly (under the slender body
transformation x =Ut). Vorus method represents a physically consistent approximation
via ordering of the variables in the exact formulation to lowest order. His work has been
proved to provide a practical method and a useful tool (a mono-hull hydrodynamic design
code acronymed VsSea) for analysis of lift and resistance of planing monohulls of rather
general configuration. It is considered by this writer to be a milestone in planing craft
hydrodynamic research and development.

The Vorus (1996) monohull theory has provided the basis for the extended
catamaran work developed in this thesis. The monohull theory is explained with the aid
of Fig. 1.1, Fig. 1.2 and Fig. 1.3. In these figures, the body geometry is prescribed and

deadrise angle, 5(2), isassumed to be small.
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Assume a planing craft advancing in water with a constant forward speed U , in

the coordinate system of Figure 1.1, where O, —X,Y,Z, IS a space-fixed coordinate

system.

Yo

Fig. 1.1 A planing monohull

Defining x as a distance variable in the boat-fixed system (Refer to Chapter 2),

there is arelation between the spatia variable x and thetime variable t,

x=U (1.1)

Defining the non-dimensional variables X, r and using (1.1),

(1.2)



where z.,, isthe offset of the hard chine.

The non-dimension variables, X and 7, are therefore identical, such that the
velocity distribution in the hull section at X corresponds to an impacting cylinder
solution at time 7.

To this end there exists a velocity transformation between the 2-D impact velocity

V(t) and the forward speed U :

V(t) =U Oana(t) (13)

where a(t) isthe attack angle of the keel relative to the stream speed U.

By the above relations, a 2-D impact theory can be used as the theoretical basis
for both steady and unsteady planing. Thus, the impact problem is the theoretical basis

for the 3-D development.

1.3.1 Vorus 2-D impact theory

In Vorus 2-D impact theory, on impact, the free-surface is turned back under the

contour, forming an initially attached jet with velocity V,(t) (Figure 1.2). z(t) and
z (t) are caled the “jet spray-root,” or "jet-head" and "zero-pressure offset,” or
"separation point,” respectively. Initialy, the zero-pressure point z_(t) closely follows
the jet spray-root, z, (t), with both advancing rapidly together outward along the bottom

contour. The dynamic pressure distribution shows a sharp spike and large negative
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gradient into the point z.(t) . This process is referred to as the "chine-unwetted" (CUW)

flow phase, which is depicted in Fig. 1.2.

With advancing time, when the zero-pressure point z_ (t) reaches the chine, it
comes to an abrupt halt. The jet-head z (t) continues moving outward from under the
chine and across the free-surface. This is the "chine-wetted" flow phase depicted in Fig.
1.3. With the jet now separating at the physical hard chine Z_, (X), the pressure peak
near z.(t) isreduced.

In the Vorus (1996) model, the essential step of exploiting the flatness of the
cylinder and collapsing the cylinder and free-surface contours to the z-axis for the
purpose of satisfying (nonlinear) boundary conditions, was a dramatic simplification of
the mathematical model. In Fig. 1.2 and 1.3, the non-dimensional horizontal axis variable

isdefinedas { ={(7) = z/z.(t)..

A Chine
y
Cp
Vj

\ < >

B(2) z

V(T) Zc Zb

>

0 10 b* ¢

Fig. 1.2 Planing monohull sectional model for "chine un-wetted" phase
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A Chine
y
C
p Vj
///,ﬂ
<
— >
Y
B(2) "
V() o B
|
0 1.0 bt {

Fig. 1.3 Planing monohull sectional model for the "chine wetted" phase

A monohull planing in calm water has a symmetric jet of velocity V,(t), a jet

separation point z,(t), aswell as ajet head position z, (t), the same as in the symmetric
impact problem.

In the chine un-wetted problem (Figure 1.2), there are three unknowns:

. jet velocity: V(1) ;

. jet separation point or zero dynamic pressure point on contour: z.(7)

. jet head location or spray-root truncation point: z, (7);

Based on Vorus(1996), there are three equations from which to determine these

three unknowns:

. Velocity continuity (Kutta) condition;
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. Displacement continuity condition;

. Pressure continuity condition;

In the chine-wetted problem, depicted in Figure 1.3, the jet separation point z, is
known and fixed at the hard chine Z, (7), so that there are only two unknowns:

. jet velocity: V(1) ;

. jet head location or spray-root truncation point: z, (7);
Thisrequires,

. Velocity continuity condition;

. Pressure continuity condition;

Since z_ is fixed at the chine and z, lies outside the hull, the free-surface

displacement continuity condition is not needed in the chine-wetted (CW) phase.
The solution of the monohull planing problem is in terms of hyper-geometric

functions (refer to equation (47), (55) and (56) in Vorus(1996) for detail).

1.3.2 Development of Vorus 96 model

Vorus 96 mode was extended to a time-dependent hydro-elastic impact model by
Kim et a. (1996) to solve for the elastic response and coupled dynamics of a vessel at
impact environment. Savander(1997) applied the Vorus(1996) two-dimensional impact
model with a "correction” technique to develop a second iteration of the three-
dimensional solution for steady planing. As an extension to Vorus 96 symmetrical
impact theory, Xu et a (1998) modeled asymmetrical monohull impact. In Xu's work,

two possible types of flows with the asymmetric model are studied. Type A model
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simulates a small asymmetry impact, and Type B model simulates a large asymmetry

impact. In type A model, CUW and CW flows can be developed at the two sides of the
contour, but not symmetrically. In type B model, the CUW flow can only be developed
on one side, the other side always in CW flow phase, refer to Fig.1 in Xu et al (1998).
The symmetric monohull flow necessarily exhibits Type A flow where the jet heads are
attached symmetrically on both sides from keel to chine, and both separate together. The
symmetric catamaran treated here is assumed to exhibit Type B flow on each of the demi-
hulls because of the assumed large asymmetry of each; the jet-heads are both attached to
the outside, but separate immediately from the keels to the inside (refer to chapter 2).
The Type B flow characteristics are addressed further in the catamaran theoretical
development.

The experimental work for verifying the Vorus theory was via the full-scale
experiments reported in Royce and Vorus (1998), as well as the laboratory impact
experiments of Judge (2001). Royce (2001) has made efforts to extend Vorus 96 theory
to include the reattachment of separated flow for two-dimensional impact.

In the last ten years, Vorus has performed a series of research works on planing
hydrodynamics, structure impact reduction and sea-keeping prediction of planing craft,
including both planing mono-hulls and planing catamarans (Vorus 1992, Vorus 1996,
Kim, Vorus, Troesch, and Gollwitzer 1996, Royce 1996, Royce and Vorus 1998, Xu,
Troesch, Vorus 1998, Vorus 1999, Vorus and Royce 2000). The foundation of all of

aboveisthe Vorus 96 theory.
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1.4 Present Research and Objectives

A catamaran is a twin-hull planing craft composed of two demi-hulls connected
by a cross-over structure. The cross-over structure forms the celling of an interior air
tunnel which complicates the mathematical modeling of the catamaran. The planing

catamaran cross section isdepicted in Fig. 1.4.

Fig. 1.4 Cross section of a planing catamaran viewed from behind transom

Because of the difference in the structure with mono-hulls, there are differencesin
the mathematical modeling of a planing mono-hull verse a planing catamaran.

Based on the Vorus 96 theory described above, Vorus has developed and
implemented a first order nonlinear model for the catamaran hydrodynamic analysis,
embodied in the computer code CatSea. This model has been applied in planing

catamaran design. However, due to the greater complexity of the catamaran flow physics
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relative to the mono-hull, Voruss model has made some approximations and

simplifications which were not considered necessary in the monohull work.

The present research is for relieving the initially implemented approximations by
Vorus, and further developing and extending the planing catamaran hydrodynamics
theory and application beyond that currently in use in CatSea. The subject
approximations and the simplifications are specificaly:

1) A linearized form of the kinematic conditions which does not reflect the
orders of magnitude of the variables established in Vorus(1996), and

2) Discard of a part of the tempora derivatives appearing in the pressure
continuity conditions and in the pressure distribution formulation.

These two main approximations, particularly, in the simplified first order
nonlinear CatSea model will be relieved through careful analysis, development, and
coding.

In the present work, a new complete second order nonlinear hydrodynamic theory
for planing catamarans is developed. A detail numerical comparison of the first order
nonlinear theory and the second order nonlinear theory is carried out. The second order
nonlinear theory and algorithms have been incorporated into a new catamaran design
code (NewCat). A detail mathematical formulation of the base 1% order CatSea theory,

followed by the extended 2™ order theory, is completely documented in this thesis.
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CHAPTER 2

CATAMARAN FLOW PHY SICS

2.1 Problem Description

The problem addressed is a slender three-dimensional planing catamaran running
on the surface of water at a high constant forward speed U , with or without ambient head
or following waves (Fig. 2.1).

With ambient waves, this is a planing catamaran sea-keeping dynamics problem.
Without waves, the problem is a steady planing problem. Both cases are treated in this

thesis.

Si (1)

Figure 2.1 Definition of the problem



17
In Fig. 2.1, the X,y coordinate system is the boat-fixed bow coordinate system

which has been described more detail in the following section. U is the forward speed,

S, (t) is the wave surface, S;(t) is the wetted body surface, a(x) is the attack angle

measured from the baseline.

The following traditional assumptions are made:

Q) The flow is incompressible, irrotational and homogeneous over the whole
fluid region;

2 Gravity isignorable, because of the high speed (zero gravity);

3 The fluid behaves asideal (zero viscosity).

Therefore, the problem can be modeled as a potential flow problem described by a 3-D

Laplace equation:
2 . 2 . 2 .
0 ¢(x,¥,z,t)+a ¢(x,32/,z,t)+a qa(x,;z/,z,t)zo (xy,2)0Q 2.1)
0X oy 0z

where Q(X, Y, z) isthefluid domain.

2. 2 Coordinate Systems

Four coordinate systems are employed to describe the flow of a planing catamaran

in waves with general three-degree-of-freedom motion.

a) Earth-fixed Coordinate System O, — X,Y,Z,
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Coordinate system O, — X,Y,Z, is fixed in space. The (x,,z,) plane lies on the

calm water surface, with x, positive toward the stern. y, is positive upward, as depicted

inFig. 2.2.

Figure 2.2 Coordinate Systems

b) Boat-fixed Bow Coordinate System O — xyz

Let O-xyz be aright-handed coordinate system with the origin located on the
undisturbed free surface and vertical centerplane at the forward end of the waterline. The
(x,2) plane coincides with the undisturbed free surface, with y positive upwards, and x
from the forward keel intersection to the transom. This coordinate system translates with

the forward speed U , see Fig. 2.2. At theinitial time, the O — xyz system coincides with

the O, — X,Y,Z, system.
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C) Boat-fixed Transom Coordinate System O, - X,Y,Z,

Define a right-handed coordinate system O, - x_y,z, located a the transom on
the vertical centerplane in the undisturbed water surface, y, is positive upwards, but x

is directed from the transom forward against the x -axis direction. This coordinate

system trandlates with the boat with the forward speed U , but no rotation, see Fig. 2.2.

d) Boat-fixed Transom Coordinate System O; — X; Y; Z;

Define the vessel motion coordinate system O; —X;Y;Zz; to be a body-fixed
coordinate system, with the origin located at the transom section (refer to Figure 3.7).

This body-fixed O; — X; y;Z, System moves and rotates with the boat together. The x; -
axis is aong the longitudinal centerline, from stern to bow and the y; —axisis upwards.
The O; — X y;Z; system is initially superimposed on the translation coordinate system

Op =X, YpZ,-

2. 3 Method of Solution: Slender-body Theory, Solution Domain Transformation, and

Time Marching

In the O —xyz system, the motion of the cross sectional contour of the planing

catamaran at x, as viewed from transom, appears to be a 2-D "flat" cylinder contour

"impacting” through the free surface with velocity V(x) =U tana(x), just as with the
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description of the monohull case in Chapter 1. This is shown in Fig. 2.3a and 2.3b. In

these figures, [(x,2) is the deadrise angle, V(X) is the impact velocity. The relation

between the spatial variable x and the time variable t isdefined in Eq.(2.2) and (2.3).

L
et z

V(X) v

Fig. 2.3a 2-D cylinder impacting as section of planing monohull

4y
Chine
— =
ke | B2
v
V(¥

Fig. 2.3b 2-D cylinder impacting as section of planing catamaran
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Using the similar non-dimensional expression as in the mono-hull case in Eg.

(1.2), but with the normalizing variable being the keel offset z, (x) (instead of the chine

offset z., with the monohull), we have,

X:L:U[ﬂ, T:U[ﬂ (2.2)
ZK ZK ZK

Therefore,

X=T (2.3)

The non-dimensional variables X and 7 are again identical in the catamaran case. Thus
it again allows the use of the time dependent impact theory to predict the cross sectional
flow at any x — section along the catamaran length.

Assuming the wetted demi-hulls of the planing catamaran to be slender (Slender
body assumption), the cross sectiona geometry varies slowly in the longitudina

direction. Thus, the following relationships between the gradients may be assumed:

—<<— (2.4)

<< (2.5)
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Substituting the above approximation into Eq.(2.1), the 3-D flow problem can be

approximated using a slender body model:

2 . 2 .
0°@Ax y,zt) , 0°@AX Y, ZY) _ g (y,zx)0Q (2.6)
ay? 0z?

This transformation means that at any specified time t, the three dimensional
flow solution of the slender vessel can be obtained approximately by a slender body
theory as a series of two dimensional cross sectiona flow solutions. However, it is worth
to note that, the solution here is different from the traditional 2-D strip theory, for the
connection of the upstream solution to the downstream solution through the x-—
derivative terms in the system equations and in the initial conditions. In the traditional 2-
D strip theory, the solution of upstream section is independent of the downstream
solution.

This series of 2-D cross sectional flow along the boat length then can be obtained
using the identical transformation between the spatial domain and the time domain in
Eq.(2.3). Inthe y -2z plane of the O — xyz system, the cross-sectional flows would be a
series of different 2-D "flat" cylinder contours with local relative vertical velocity
"Impacting” into, or "extracting” from, the free surface continuously in time, from one
cylinder to the next based on the variation of geometry axially. The solution of the up-
stream station will be needed in the x — derivative term computation of the down-stream

station. The 2-D cylinders are changing shape with time and the temporal gradients in
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they — z plane are important. Thus, this sequential solution of 2-D cross sectional flows

will be found by solving different 2-D "flat" cylinder contours continuously impacting.

Let B(x,2) betheloca deadrise angle (Fig. 2.3b), and a(x) the local trim angle
(Fig. 2.1). With y.(x,z) denoting the hull surface, the above transformation of the 3-D

problem to the 2-D problem must satisfy the following geometrical constrains:

e (%2 _ 1on 5x.2) 2.7)
0z

and

o 9

= (2.8)

The sectional downward impact velocity V(X) in the steady planing case can be

found using Eq.(2.8):

V(x) =U tana(x) (2.9)

where a(x) is a smal angle of attack. This sectional impact velocity at x is for the
cam-water planing only. In the seakeeping case, the sectiona impact velocity will have
additional components. The detail expression may refer to (3.105).

With the sectional flow fields solved, the hydrodynamic forces and the moments
can be found by integration of the pressure distribution over each cross section. The

motion of a planing catamaran in waves can then be found by a forward integration of
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Newton's second law. Continuing time steps with the updated wave and ship motion

conditions gives the motion and load time history of the planing catamaran.

2.4 Sectiona Flow Physics

In catamaran case, the chine-unwetted phase may be depicted in Fig. 2.4a and the

chine-wetted phase may be depicted in Fig. 2.4b.

4y
Chine
- +
/V \/J
V- = 2
e | B
A P
Vb L
é i LargeVs  small Vg
v P o
] . .
L Ly —p
. 1 1 >
0 z, 7, 7 z 2

Figure 2.4a Chine unwetted phase of a conventional type catamaran
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Figure 2.4b Chine wetted phase of a conventional catamaran
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In Fig. 2.4, the body geometry of the catamaran consists of two symmetrical

single hulls with the assumption of small deadrise angle £(x,z). The bottom contour
starts from a knuckle, or the keel, denoted as z, (it is denoted as z_ in Fig. 2.4). A hard
chine exists on the outside, at Z,, . V(x) isthe downward impact velocity of the section.

z, and z; are the inner and outer jet spray-roots. V, and V| are the jet velocity

Analogous to Voruss description of the planing mono-hull (Vorus, 1996), for
conventional catamarans, in the CUW impact phase, the water surface is forced to turn

back under the bottom of the contour (Fig. 2.4a). Part of the flow near the keel forms an
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inner jet with a jet velocity V,", separated at the keel due to the sharp angle of the keel,

and part of the flow formsthe outer jet attached to the contour.

Point B, in Figure 2.4, with coordinate z, (t), is caled the outer jet-head offset,
where the jet is truncated. Point C, with the coordinate z; (t), caled the jet separation
point offset, is the zero dynamic pressure point on the body contour. The inner jet

separates at the keel z,, which denoted as z_, the inner jet-head is truncated at z (t).

Point D, Eand Z, . arereference points.

|age

The jet head point z; (t) separates the outer flow into branches. The upper branch
is bounded by lines C-D and B-E, and the lower branch is bounded by the line
B-Z,.0

Lage lOCAtEd ON the free-surface contour bounding the lower flow domain.

Let V,(zt) be the cylinder and free surface contour tangentia velocity. In the
chine-unwetted flow phase (Fig. 2.4a), the flow velocity V (zt) in the jet head region

(z; —z.) and on the upper branch is much higher than the impact velocity:

V (z,t) >>V(x,t) on the upper branch (2.10)

Conversdly, on the lower branch, the flow velocity is much lower than the impact

velocity, due to the large volume of the lower flow domain relative to the jet dimensions:

V, (zt) << V(x1) on the lower branch (2.11)
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In the chine-wetted flow phase (Fig. 2.4b), the separation point has reached the

hard chine, z; (t) = Z, . The line C-D is now on the water surface contour, and the

flow velocity in the upper branch drops to a lower order. The jet-head moves out across
the free surface.

The description of the outer flow in CW phase is applicable to the inner flow of
catamarans. However, there is a difference for the inner flow of the catamaran. The inner
flow does not exist as a chine-unwetted flow, only as a chine-wetted flow. The inner
separation point z_ (t) isthe keel point z, (x) .

The flow characteristic that, the CUW flow can only be developed on one side,
the other side always in CW flow phase, described above for catamarans is the same as
the "type B" flow in the asymmetric impact model for planing mono-hulls (Xu et al,
1998). For the catamaran, the outer jet flow is attached to the outside, but the inner flow
separates from the keel. The characteristic of large asymmetry, manifest in steep deadrise
to the inside, clearly make the catamaran flow a “type B” flow (refer to Fig. 1 in Xu et a,
1998).

Following Vorus(1996), the flatness of the bottom contour of the catamaran is
exploited by collapsing the bottom contour and the free surface to the z - axis for the
purpose of satisfying boundary conditions.

The z - axisof Figs. 2.4a and 2.4b shows the boundary segments where different
boundary conditions are satisfied (refer to Fig. 2.6). The boundary switches from the
upper branch at point B to the lower branch with a discontinuity in jet tangential velocity

V,(zt) (but with continuous potential) (Vorus 1996), which is depicted in Fig. 2.4a
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Fig. 2.4c shows a conventional catamaran with a transverse step. In modern

catamaran design, the downstream shoulder of the step will generaly return to
approximately the original hull lines, thereby separating the hull into different regions, as
depicted in Fig. 2.4c. The concept of the step is to eliminate the relatively ineffective
chine-wetted region of the hull. Since that part of the hull, aft of the chine wetting point,
has a very small contribution to the useful dynamic lift, but a substantial contribution to
unwanted frictional resistance, its operational efficiency is very low. In today's new
design concepts, a step produces a trip which changes the low-pressure chine-wetted
region to a high-pressure chine-unwetted region, thereby allowing the after part of the
craft to increase its operationa efficiency. In essence, the chine-wetted flow is interrupted
and detached by the step and then starts over on re-attachment as a chine-unwetted flow.

The step shown on Figure 2.4c is exaggerated in size for conceptual clarity.

K eel

Chine CW region CUW region

Fig.2.4c A transverse step and CUW , CW regions
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2.5 Vortex Distribution Model

A vortex distribution theory has been applied in modeling the catamaran sectional
hydrodynamics problem.

With every variable normalized on the keel offset z, (x) , we have:

;=% (2.12)
z.(%)
The normalized physical model is depicted in Fig. 2.5, where
b*=2z/z,0b =2 /2,2 =2 /2., 2 =2, /z. =1 (2.13)

A vortex distribution model with boundary conditions on the z - axis, based on
the normalized physical model of Fig. 2.5, isshown in Fig. 2.6. Since the scale of Fig. 2.6
isso small, it is very difficult to show the hull segment in the same figure, the reader may

refer to Fig. 2.5 when reading Fig. 2.6.
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Fig. 2.6 Vortex distribution model
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In Fig. 2.6, V_({,7) and V, (¢,1) are the tangential and normal velocities on the

boundary, which are normalized on the impact velocity V(x). Vortex sheets are arranged
along the contour to satisfy the boundary conditions.

The bound vortex y.({,7) is located on the body contour, the free vortex
¥ ({,7) islocated on the outer jet head region, and the free vortex y;({,7) is located

on theinner jet head region.

V(<. 1) =y.({.1) 1<z, (219
(¢, 1) =y (1) z.<{<b'(r) (215
V(<. 1) =y, ({,1) b-<{<1 (216

2.6 Sectional Boundary Value Problem

Based on the physical model in Fig. 2.6, the sectional boundary value problem
can be solved by using the proper boundary conditions and a group of constraint

conditions as follows:

(1) Governing Equation:

2 . 2 .
ay? 0z
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(2) Kinematic boundary condition:

On the body wetted surface, the flow must satisfy the zero normal velocity

kinematic boundary condition (refer to Fig. 2.6):

a_‘”‘ =V, Z=4(1) (2.18)
on

{=¢(1)

In the body-fixed coordinate system O — xyz, the kinematic boundary condition

can be expressed as (Fig. 2.6):

V. =0 1< <b®* Cuw (219

CW  (2.20)

(3) The pressure condition (dynamic boundary condition)

The pressure on the free surface and the body surface beyond the wetted pointsis

equal to atmospheric pressure, which is appropriately defined as zero (Fig. 2.6):

IN

C.({,7)=0 b-<{<land z <{<b" (221)

C.(,1)=0 onthe FSsheet: 0< ¢ <b” and ¢ >b" (2.22)
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(4) The Kutta constraint condition

The Kutta condition should be satisfied at the separation points, i.e. { =1 and

¢ =z, which requires the vortex strength to be continuous across these points (Fig. 2.6).

V(& 1) <o a {=lad =z (2.23)

(5) Displacement continuity constraint condition (mass conservation condition)

This constraint requires a continuous body-free-surface contour at the jet-head

point b in CUW flow.

y.(b",1) =y, (b",7) when ¢ =b" (2.24)

Here, y, isthe elevation of free surface.
Let . represent the time-integrated displacement vortex strength (refer to
Chapter 3 for ). definition), the Kutta condition on the displacement vortex strength

requires:

Ve )| <o when ¢ - b’ (2.25)
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The above formulation states the mathematical foundation to solve the boundary value

problem in thisthesis.

2.7 Steady Planing Problem

The first problem to be studied in this thesis is the steady planing of a catamaran
in cam water.

In the steady planing problem, there are two essential variables. (z,x), where z

variable is the transverse coordinate and x is the coordinate along the vessel length (refer

to Fig. 2.2). The equivalent nondimensional formis ({,X) for convenience. Since X is
identical with 7 according to Eq.(2.3), thus variable pair ({,7) will be used in the steady

planing model.

In the steady planing problem, refer to Fig. 2.5, there are two symmetrical jet
velocities V(1) and V, (), two jet heads z; (7) and z, (7), two jet separation points,
z!(r) and z_(r) for a catamaran. Since the inner flow separates at the keel z, at any
time, z (1) = z,, thisleaves one unknown jet separation point z_(7) = z, (7).

In the chine un-wetted flow phase, there are therefore five unknowns:

. Two jet velocities V," (1) and V[ (1) ;

. Two jet head locations z, (7) and z, (7);

. One jet separation point or zero dynamic pressure point on contour, z.(7)

And there are five equations according to the description in Section 2.6:
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. Two velocity continuity conditions (Kutta conditions) when z - z, and
z-7;

. Two pressure continuity conditionsat z=z, (1), z=z, (7);

. One free-surface displacement continuity condition when z - z, (7);

In the chine-wetted flow phase, on the other hand, since the jet separation point

z; isknown and fixed at the chine Z,, , there are four unknowns:
. Two jet velocities V," (1) and V[ (1) ;
. Two jet head locations z, () and z, (7);
Asin the case of the mono-hull, since z_ is known, the free-surface displacement

condition is not needed in this case. This leaves the four equations for the CW phase:

. Two velocity continuity conditions (Kutta condition) a z — z, and

. Two pressure continuity conditions;

2.8 Seakeegping Problem of a Planing Catamaran

The second problem to be studied in this thesis will be the sea-keeping problem,
or an unsteady planing problem, of a planing catamaran in waves.
In the sea-keeping problem, there are three essential independent coordinates:

(z,x,t), the equivalent nondimensiona formis (¢,¢&,7) . But by using the time marching

method, the seakeeping problem can be transformed into a series of two dimensional
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cross-section cylinder impact problems at each time step, but with a complete x-flow

problem solved for each time.

In seakeeping, at each time step, for the complete x— flow problem, there are
same number of unknowns and same number of equations as in the mathematical model
of the steady planing. Comparing with the steady planing, the difference is that, the
solution process in the steady planing is only one-time-step process, but it is a multi-time-
step process in seakeeping. The wetted surface and the water line of the catamaran vary at
each time step in seakeeping.

The velocity continuity condition and the displacement continuity condition in
seakeeping at each time step are the same as those in the steady planing. However, the
pressure continuity condition in seakeeping is different from the pressure condition in the
steady planing since the pressure p(x,zt) involvesthetimevariable t.

In seakeeping, an unsteady planing model, wave model, and the vessel motion

model will each need to be devel oped.
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CHAPTER 3

FIRST ORDER NONLINEAR CATAMARAN HYDRODYNAMIC THEORY

William Vorus has developed a first order nonlinear hydrodynamic theory to
support his research and engineering activities for catamaran craft design. CatSea is a
catamaran design code based on the first order theory developed by Vorus. The basis of
the first order theory is a non-linear slender-body theory, with the near-field being the
nonlinear sectional impact flow adapted from the theory of VVorus (1996) for the twin hull
case. In the time domain, the near-field section cylinders effectively change shape in time
according to the variation of geometry axially as they impact with the local relative
vertical velocity between the water surface and the keel. The effects of the jet formed by
the large transversely squeeze-flow (both out and in) under the relatively flat hull sections
is rationally included in the first order nonlinear theory (refer to Fig. 2.3b and Fig. 2.4).
CatSea has been successfully applied in planing catamaran design. However, due to the
complexity of the problem itself, Vorus first order model has made some significant
approximations and simplifications. This chapter briefly reviews Vorus first order
nonlinear theory as the basis of the second order nonlinear extension developed as the
central contribution of thisthesis.

We first review Vorus first order model for steady planing in calm water, and

then hisfirst order model for dynamicsin a seaway.
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3.1 Steady Planing in Calm Water

3.1.1 First order kinematic boundary condition

As discussed in Chapter 2, in the chine un-wetted flow phase of both the first and
second order models, there are five unknowns, thus we need five equations for a unique

solution. Let usfirst review the velocity continuity equations.

A downward moving coordinate system ¢ —o,, —# on the body boundary is
depicted in Fig. 3.1. InFig. 3.1, V,({) and V, ({) are the total tangential and normal flow

velocities on the bottom contour, and v({), w({) are the respective perturbations. S isa

small deadrise angle, and V isthe section impact velocity.

Fig. 3.1 Kinematic boundary condition

In Fig. 3.1, the kinematic boundary condition requires a solid wall non-

penetration condition (refer to Fig. 2.5 and Fig. 2.6),
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V,(¢,7)=0 fori<s{ <z (3.1)

By applying the above condition, we can find the following equation on the hull, the

detailed derivation of which can be found in Appendix A:
v({,1) =-V(7) forl<{<z, (3.2

By the Biot-Savart law, an integral equation can be derived from the kinematic

boundary condition in (3.2) (refer to the derivation of (21) in Vorus (1996)).

b

.
) ML

b

1 1
+
O_Z Z0+

Z]dZO =-V(7) on 1s{ <z (3.3

The vortex strength y is distributed on the axis as described in Fig. 2.6. The
unknown bound vortex y,.({,7) in (3.3) over the hull segment can be expressed in terms
of the free vortex y:({,r) and y_({,7) over the free surface segments; refer to Figure
2.6. Considering the fact that on -1< ¢, <1, y.({,,7) =0, theintegral equation in (3.3)

can be expressed as (refer to Appendix A):

i b yc(ZO'Z—)

on) g,-¢ T HED 1s¢<z, (34

where,
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¢,
s 52

<o

f(¢, r)-—V(r)——j Vs(loD) 52 e

j Vi(loD) 55 25d0, (35

with the integration region as defined in Fig. 2.5.
(3.4) is a standard Hilbert type integral equation to be solved for the vortex

distribution y.({,7). It can be inverted semi-anaytically using the Hilbert integral
transform at time 7 for the contour vortex strength y.({,7) .

The solution to the above singular integral equation applied in CatSeais:

-2 () _dd,
v.(¢,1) = ”EW)—[C AT, onls{<z (3.6)

where x({) isthe kernel function.

The integral kernel function introduced in (3.6) has the following form, the detail

derivation of which isin the Appendix F.

1

X(Q) =
@2 -)(Z2-¢?)

(3.7)

Expand equation (3.6) considering the symmetry of x(¢) and f({,7). After
substituting the kernel function x(¢), and the right-hand-side f(¢) of (3.5) into (3.6),

the bound vortex strength y,({,7) isthefollowing:
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az dg,
= V(r)Qd
V(§) = —XEHV (D) Qj_ NrataTe

dz,
_ S 0 0 2 2 2 d 0 38
' jy Co ) J.lx(zl)(zl oo™ 59
+_jys(zo O, 0] 9 dZ,)

4=l X(Zl)(zl ZZ)(ZOZ _512)

To smplify (3.8), introduce a useful partia fraction reduction identity (\Vorus

1996):

2 21 2 N 21 2{ 21 2+ 21 2} (3.9)
(Zl - )(Zo _Zl) Zo -4 Zo _Z1 Z1 -4

The bound vortex strength y.({,7) becomes:

V(0.7 = £)((Z){V(r) T-AQ)]

Z

+—j Vo) 7z 272 ZZ

d7IA(C,)-A()]  onls{ <z, (3.10)

+—f Vil T) Z 7 ddo[A({o) = A}

where A({), N ({,) and A"({,) in(3.10) are the parameter integral terms defined as:

AQ) = j d¢, 1<l <z, (3.11)

i XC)(&*=47)
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N((,)= T dil 5 b-<{,<1 (3.12)
=1 X(Zl)(ZO _Zl)

N () = T di} : z.<{,<b" (3.13)
=1 X(Zl)(Zo _Zl)

(3.10) has singularity pointsin its solution domainwhen { - 1and { — z.. The

Kutta condition in (2.23) requires the vortex strength to be continuous across these
points. By non-singularization in (3.10), two velocity continuity conditions could be
derived from (3.10) (refer to Appendix A), which will provide the two of five equations

for solving the five unknownsin CUW phase:

P Jo ip-c7y_
0={-A@M)+- j Y5 (Con) 75 1N (Co) = NI

when ¢ - 1" (3.14)

[/\ (o) ~AD]dS o}

1%
+ =\ yi({,,1)
;[ys( 0 ZZ

0={-A\(z)+= jys(zo.r) 7N (€o) Az )1de,

when { - z, (3.15)
+—I e ORCNLS,

Therefore, with the first order KBC (3.4), the solutions of (3.10), (3.14) and
(3.15) obtained by Vorus consist of the Elliptic integrals of the first kind, second kind and

third kind. For example, the singular integral termin (3.11) will be in the following form,

NQ) = 1,+1,(0) +15() 1<( <z, (3.16)
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where,

-

fa (7 —1)<z -¢2)

4, = 2B 1-1/2) (317)

Z
LO)=@?-Z-D0f ———_d¢
o (2 -D(Z2 - ¢2)

(3.18)
=(¢* -2 -)E FO-YZ)
() = @2~z -72)0] 3 - S
=1 (¢? Zl) ¢ )(Z —¢r) (3.19)

= m Az o 2 _\e(r -1/,
e {H[E Ay YR G ]/Z°)}

where F(g,,ll—l/zf), E(%,,/l—l/zf) and |'|(7—T ¢z - 1-1/Z?) are the

z2({*-))
Elliptic integrals of the first, second and third kind respectively (refer to Gradshteyn and
Ryzhik, 1965).

After mathematical reduction, the semi-analytical expression of the integral terms

in (3.14) have the form,

A = 2—12{ z[E(k) - F(K)]} (3.20)

N () -ND = —{—J(Z —{)A-CO-No(&\KT} b <{<1 (321)



N ()-ND = iz{ % _1F(k) —iJ(Z2 —D(¢* - Z)[1- N, (&5 \ K]}
.z, 2{
z.<{<b" (322
where,
Ny (e\K) = ]—ZT{F(k)E(g\ k') —[F (k) - E(K)]F (g \k')} (3.23)
K= l1- iz (3.24)
ZC
=1 (3.25)
ZC
£, = arcsin(z, 12_522) (3.26)
z:-¢
£, = arcsin ZZZ__E (3.27)

In above expressions, F (k) = F(g,k), E(k) = E(g,k) are the first kind, second

kind elliptic integrals respectively.
With the integral terms A({), A ({,) and A"({,) in terms of the Elliptic

integral functions, the reduced form of the velocity continuity condition in Eq.(3.14)

becomes:
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0= (-2 [E0~ F091 =3 [ Va6 TS5 - Aol K1,

2_1 b*
O PO B
Z

3.28
190 (3.28)

t— 2
m 7 Zo—

Zoz _Zc2
1-A \k)]d
7 B ol \ KOG}

1%,
_EE[VS(ZO’T)

Similarly, the semi-analytical form of the integral terms in (3.15) is obtained by

the similar evaluationsin terms of eliptic integrals:

Az,) = Z—lz{ 2.E(K) —Zi F ()} (329)
N@Q)-Az) = S E k) + (7 - 2DA-7D) - Ao(e, \ K]}
.z, 2{

b-<¢ <1 (3.30)

N (0)-A(z.) = Z—lz{—%wz S - )= Ag(g; \ K}

C

z.<{<b" (331

Substituting the above integrals into (3.15), the semi-analytical form of the velocity

continuity equationat { — z, Is:



0=-zE(K) +Zi F (k)

C

11-2 to Z,
= F(k)!ys(zo,r)—zzo_zzdzo

C C

1 N (3.32)
-2 [Vaon) | 5o 1Ay e N,
d z

C 0

b* 2 _4
-3 Vo S A
z 07 %

(3.28) and (3.32) are two of the five equations needed for a unique solution.

3.1.2 First order displacement continuity condition

Ye

“b* -z -10 —p b 1.0 z, b

Fig. 3.2 Displacement continuity condition model

46
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Revert temporarily back into the time domain of the equivalent impact problem,

[0,t] . In the chine-unwetted phase, the dimensional body bottom contour y,(z,t) can be

expressed from Fig. 3.2 as:
y.(zt) =h.(zt) -\t z, <252z (3.33)

where h_(z ) isthe water surface elevation above the keel.

h.(z,t) =

{(z— z,)tan B(2) Zszsz( (3.3
0 z,(t)<z<z,

The second branch of h, is an approximation, assuming that the fluid surface is

first order undeflected as the fluid separates at the keel.

Define the net vertical fluid velocity of the contour, from (3.2) as.

ayca(tz,t) =-V(t) =Vv(zt) onz <z<z (3.39)

Integration of the above equation in time and nondimensionalization of the results

yield the following equation (refer to Appendix B):

vV (¢,1)=f,({,7) 17 <b’ (3.36)
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where, the "asterisk" superscript denotes the time integrated variables:

vV (zt) = jv(z, r)dr (3.37)
and,

_[-Y+h(¢.n) 1=¢<b(n)
f,({,7) _{‘VWI b < <1 (3.38)

where VW, is the nondimensionalized water-line transient draft and,

R = {(ZO— Dtanp)  1<{<b’() (339

b ()<’ <1

The vertical velocity time integral, v (£, 7) in Eq. (3.36), is expressible in terms
of the time-integrated displacement vortex strength, . ({,7), by the Biot-Savart law. By

replacing v’ ({,7) in terms of the integral of . (Z,r) in (3.36), Vorus has derived an

integral equation for the displacement continuity condition (refer to Appendix B) as:

1
ZO_Z

177 . 1% .
| Vildo D) dl [ VidoD)

1 ~ ~
ZO _ Z dZO = _YWI + hc (Z! T) (340)
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t
where yc* ({,) = j v.({,,7)dr isthetime-integral of the vortex strength.

7=0
Using the standard Hilbert type singular integral equation transform as in (3.6),

the solutionto y. (¢, 7) of (3.40) is,

j f({o.7) dd, +bj* (o) _d& (3.41)

2
y.({,1)= ITX (Z)[Z:_w X*(Zo) (o -2) . X*(ZO) (o —4)

The corresponding kernel function x* (¢) (refer to Appendix G) in (3.41) is:

Z): 2 - 21 +32 2
@2 =(0)2)((b")? - 7?)

X (

(3.42)

The difference of x () from the kernel function x(¢) in (3.7) is that its
solution domain isnow onthearcsof —b* < <-b” and b™ < <b", versus x({) in
B7on-z <{<landl<{<z.

Substituting (3.42) into (3.41) and grouping the singular terms together, the vortex

strength y. (¢, 1) will have the following form:
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V0D = -2 O R, AT |
n X ()07 ~C4)

0

+(b+2—52)j . b+2_1 2\ 72 _ 72 ddo]

b+50=1)( (§o)( o NS —¢7) (343
+tan B . Z02 2 dg

o X ()0 -4,)
£ =09 | v ool

Ha X (C)0 =42 - 47)

When ¢ - b", acontinuous displacement from the section contour onto the free-surface

contour at ¢ =b" requires that the y.(¢,7) be bounded (refer to (2.25) when in the

chine-unwetted flow phase, this requirement results in the displacement continuity

condition:

0=(Y, +tanB) 0, —tan B0, (3.44)

where,

bt

=] — ———dd, (3.45)
Ga X ({)O™ =¢F)
L= ¢ (3.46)

2~ x 2 dd
aax ()b -4y)
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The numerical model for evaluating the integral (3.45) and (3.46) will be givenin

chapter 5.

3.1.3 First order pressure continuity condition

The pressure continuity condition is the dynamic boundary condition of
atmospheric pressure on the jet and free-surface. Referring to Fig. 2.6, zero pressure is

required on the free contour and the free surface beyond ¢ = z, ((2.21) and (2.22)).

The pressure coefficient can be obtained from the unsteady Bernoulli equation as:

p_poo 2 2 aw - +
C.(¢,7) = =1-v2-v2-2%% ¢ b <l<b 3.47
p({.7) V2V 5. &0 { (3.47)

Define the following coordinate transformations (refer to Fig. 3.3):

-1, _b-1 . b-l
G TG R e (3:48)

s(r) =

In this coordinate transform, z,(7)—1 is the wetted contour length in the { -

coordinate, (b* —1) and (b™ —1) are the distances to the ends of the outer and inner jet

heads relative to the kedl.
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In terms of these transformations, the solution domain has a new coordinate

system, shown in Fig. 3.3; and the body wetted contour is normalized into the [0]]

region at all times.

<]

Fig. 3.3 s coordinate system

In the new coordinate system, the pressure distribution in the outer-jet region of

0<s<s’ is(refer to Appendix C):

Co(s,7) =1-VZ3(s,1) -VZ(S,T)
S*(1)
2% [Vi(sy,1)ds, +V, (s,7) (8] O<ss<s' (349

S(7)

+2(z, ~DV,(5",7)

ds*  S{av
C v [ T (s 0)ds)

+
dr or

S(7)
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Similarly, in theinner-jet regionof s <s<0,

Co(s,7) =1-VZ3(s,1) -VZ(S,T)
S™(1)
62; [ [Vi(so,7)ds, +V,(s7) 8] s <s<0 (350

S(7)

+2

_ ds- *{av
2(z. -1 = s
+2(z, —D[V,(s",7) gl (Sp,7)dsy]

S(7)

At the jet head z , apply the dynamic boundary condition: Cp(s+,r) =0. Eq.

(3.49) gives (refer to Appendix C),

1-V2(s*,1)-VZ(s",1)

0 (3.51)
-/ (s", 1) —[s"(1-2)]=0

or
Using the coordinate transform relation in (3.48),
1-V2(s",r)-VZ(s",1)

0 (3.52)
~V,(s",71)—[1-b"(1)] =0

or
Expansion of (3.52) gives the spray root velocity:

2 (at 2t _

b* (1) = Vo(s', r)+V, (s',1)-1 (353)

2/ (s",T)
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Recall that in the chine un-wetted flow V, (s",7) =0 on the attached free sheet segment,

and in the chine wetted flow V, (s",7) =1 (Fig. 2.6). Therefore, the pressure continuity

conditionat s=s" developed in first order model is, from (3.53), asfollows:

* |nthe chine un-wetted flow

V(s 1)-1

b (r ats=s" 3.54
- (7) N.(s.7) (3.54)
* |nthe chine wetted flow
+ 1 + +
b, (7) =§Vs(s ,T) as=s (3.55)

At the jet head z , the kedl a z,  is aways chine-wetted (Fig. 2.6). By the

dynamic boundary condition, similarly the pressure continuity condition at s=s is

therefore:
_ 1 _ _
b (r) = EVS(S ,T) as=s (3.56)

The two pressure continuity conditions, in addition to the two velocity continuity
and one displacement continuity conditions, sum to the five equations needed to match

the five unknowns (four in the chine-wetted case). However, the vortex sheet
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distributions on the free sheets in the CUW and CW cases need to be specified. On the

free jet-head sheetsof s™ <s<0 and 1< s<s" (Fig. 3.3), aconstant pressure is required
(Fig. 2.6). To solve for the vortex sheet distribution, differentiation of the pressure

distribution on the free sheets,

aC,(s,7) _o

3 in s"<s<0andl<s<s’ (3.57)

gives the following Euler equation (Appendix C):

0z

VACRIRRE® N _

0S

Vv,
or

(1-2,)—=(s,7) =0 1<s<s'  (358)

This is a one-dimensional inviscid Burger's differential equation (Vorus, 1996) that the

vortex distribution on the free jet-head sheet must satisfy.

Similarly, intheregion of s~ <s<0, the Burger's equation is of the same form,

ov,
0S

Vv,
or

[V.(s7)- %s] a-z,) (s,7)=0 s <s<0 (359

These two equations ssimply state that there is no particle acceleration once the
particles separate at the jet heads. The correspondent numerical analysisis covered in

Chapter 5.
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The pressure distribution on the contour can be obtained from Eq.(3.49). After the

mathematical reduction (details refer to Appendix C), the pressure distribution has the

following form:

0z

Co(8.7) = Vi =V (s,1) + 2 <[ [ V(. 7)dlsy + SV, (5,7)]

‘?’T (8, 7)ds, +V2(LT) -2

%ZTC V.1 1) 0<s<1 (3.60)

+2(1- zc)J%

+V2 (s, 7)
* Inchinewetted case, V, (s",7) =1:

Co(s,7) =1-V2(s,7) +VZ(LT)

‘ZZ; [Tvs(so, r)ds, +V.(L7) - SV, (s,7)] 0<s<1 (361)

-2

oV,
or

+2(1-2,)[—= (5, 7)0ls,

* Inchineun-wetted case, V, (s",7) =0:

CP (S’ T) = V52 (:L T) _V52 (S’ T)

0z, [JS'VS (s, 7)ds, +V (L, 7) - sV (s,7)] 0<s<1 (3.62

-2
or

oV,

*(s,,7)d
57 (S0 7)dS

+2(1- zc)'T
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3.2 Planing Dynamics in Seaway

As described in Chapter 2, in steady planing (the cam water case), the
nondimensional variables x and 7 are identical, thus the steady planing solution (or the
X — problem solution) can be predicted by using the time dependent impact solution.
However in the seakeeping case, the time variable 7 and the distance variable x are now
no longer dependent. In seakeeping, at each time step, given the specified position and
velocity of the hull at this time step, we solve a complete x — problem. Then the motion
equations are applied to update the position and motion of the boat at the beginning of the
next time step. Continuing the time marching, step by step, with the updated wave and
hull position at each step, the time histories of the coupled boat motions and forces are
evaluated by Newton'sLaw. In the seakeeping computation, the first run is a steady
planing (calm water) case, to determine the cam-water equilibrium transom draft and
trim angle. This prediction is used as the initial condition in the seakeeping computation.

In this section, we first review the eguations for a unique solution in the

seakeeping case, then review the vessel motion model and the impact velocity model.

3.2.1 Pressure continuity condition in seakeeping

The velocity continuity condition and the displacement continuity condition in
seakeeping at each time step are the same as those in the steady planing. However, the
pressure continuity condition in seakeeping is different from the condition in steady

planing.
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Vorus gives the pressure continuity conditions based on the unsteady Bernoulli

equation in the seakeeping case:

Co(X%,ST)=V*(X,T) -V2(X,5T) —VZ(X,ST)
00X, ST) 00X, ST),  0@XST),,
4 or * 0x I=( 0Xx )

0<x<L(r),0<s<s'(x,71) ors <s<0 (3.63)

As discussed in Section 2.8, in the seakeeping case there are three independent

coordinates (X, z,t) (refer to Chapter 2). The correspondent nondimensional variables are

(¢,¢,1), where the nondimensional longitudinal variable & isdefined as,

&) :% (3.64)

where L(7) is the transient wetted length of the vessel in waves. The correspondent

transverse variables in seakeeping case are:

(=—2_ b =b"(&7), b =b (&,1), 2, =2 (6,7) (3.65)
z,(%)

The real-time solution domain is shown in Fig. 3.4. By the catamaran variable
transformations in Eq. (3.48), the solution domain in Fig. 3.4 can be transformed into a

regular computation domain depicted in Fig. 3.5.
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z, ¥

Fig. 3.4 Real solution domain in chine wetted and chine un-wetted phases

Fig. 3.5 Transformed solution domain

Following the same procedure as in Section 3.1.3, the pressure distribution can be

obtained as following; the details are developed in Appendix D:
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Co(X,S7)=V?(X,7) -V (X,57T) —VZ(X,S,T)
S*(&.7) GV

+27(z, -0 | [* (s +(A-x )
S(¢.1)

0V, (£,S,,7)
0X

1ds,

Las

S'(&7)
+22,7,[ [V (& 5,7)ds, +SIV,(&,57)]
S(£.1)
L S*(&1)
+22(8)2,[0-x1) [Vi(& 5, 1)dsy +(1- x—)sw (& s7)]
S(&7)
S"(&.7)

+22,, (2. =) [Vi(&,5,7)dls,]

S(¢:7)

0<x<L(r),0<s<s’(x,7) (3.66)

Similarly, intheregionof s <s<O0orb <{<1,

Co(X,S7)=V?(X,7) =V (X,57) =VZ(XS,T)
S (¢1) 6V

+27(z, -0 | [SE(Es D)+ (=X f)
S($.7)

V. (£,s,,7)
o0X

1ds,

AAGER CRCEP R
ST (&)
+22,7,[ [V (& 5.7)ds, +SIV,(&,57)]
S(¢.1)
L S (&)
+22(8)2,[0-x1) [V, (&5, 1)dsy + (1= x—)sw (&,s.7)]
S(¢:7)
ST (&)
+22,, (2. =) [Vi(&,5,7)dlsy]

S(&57)



61
In the numerical model of the unsteady hydrodynamics, pressure via the Bernoulli

equation requires computation of the g—¢(x, r) termin (3.63). The formulation involves
r

computation in a moving coordinate system in the time domain. Therefore, the g—¢ (x,7)
r

term will be:

a—w[f(f)i] =00 +000¢ _0¢ _x L 09 (3.68)
or OT sy 06 0T OT|qyg L oOx

where &(7) isdefinedin (3.64), L = L(7).

The second term in (3.68) is readily incorporated in the dynamic boundary
conditions and in the pressure calculation. However, the first term requires differentiation
across the time step, which is implied to be numerical. And there are problems in
differentiating in time on the fixed ¢ — grid. Thisis most notably at the position of chine
wetting, which changes with time such that the time gradients can become very large.
Vorus simplified Eq.(3.68) in the 1% order model by assuming that the time derivatives

were dominated by temporal wetted length and that the 1% term in Eq. (3.68) was higher

order. That is, Vorus used the xi 09

—— term in (3.68), ignoring the 99 term. This
L ox &=const

made the numerical computation of the 1% order seakeeping model well behaved.

With the one-term reduction of (3.68), two pressure continuity conditions can be

derived from (3.66) and (3.67). At the jet head z;, C (x,s",7) =0 (see Fig. 2.6). Apply

this condition and recall that in the chine un-wetted case V,(s",7) =0, and in the chine
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wetted case V,(s",7) =V (refer to Fig. 2.6), and assuming constant z, (x) = z, aong the

ship length thus z () =1 in the { —n system. Therefore the pressure continuity

condition (ignoring the time variation 9 term) in the 1% order seakeeping model at
r &=fixed

s=s"is,

» Atthejet head 7z , in the chine un-wetted phase

VA(EST,D) -VA(ED)

@a- xi)bx+ = - as=s (3.69)
L 2/ (¢é,s7,1)
» Atthejet head z , in the chine wetted phase
L + 1 + +
(1- fo)bx :Evs(f,s ,T) as=s (3.70)
* Atthejethead z, , inthe chine wetted phase
Loy.-_1 _ ,
1- xf)bX =§VS(E,S ,T) as=s (3.71)

The Euler differential equation similar to (3.58) and (3.59) implemented in the

first order seakeeping model, again dropping the time variation 9 term, is:
T = fixed
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0% g b Y -y y by V€T

{[Vi(<$ s 1) [ax s(1 XL)]} 5e 1-z)@ XL) o 0
1<s<s’ (3.72)

0z LoV _ Ly OV(€sT) _

{[Vi($ s 1) [ax s(1 XL)]} 3 1-z)@a XL)iﬁx 0
s <s<0 (3.73)

On the hull contour, the pressure distribution can be derived directly from

Bernoulli’s equation (refer to (3.63)); the mathematical reduction process is found in

Appendix D, with the time variation 9 term discarded, the contour pressure
T &= fixed

distribution is,
¢ |nthechinewetted case:

Co(6:57) =V (£ 1) -V (£, 1) +VI(ELT)
+2(z, ~1§ j 1-xtny Nl
s(¢.1) L 0

# 202, (0N [Vo(€,%,1)08, + SV, (6,5.7) =V, (£17)
s(¢,7)

dsy}

0<x<L(r),0ss<1l (379

¢ |nthechineun-wetted case:
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Co(&,57) =V (ELT) -V (E,57)

w2z, -1 | @-xin NS gg)
s(¢.1)

# 202, (=X [Vo(€,5,1)08, + SV, (6,5.7) =V, (£17)
s(é,1)

0<x<L(r),0ss<l1l (3.75)

Therefore the pressure continuity condition (3.69) - (3.71) together with the
previous velocity continuity condition (3.14) - (3.15) and the displacement continuity
condition (3.44) provide enough equations to solve for the unknowns in sea-keeping
problem. However, since the solution proceeds in the time domain, the vessel motion

equilibrium model is needed, as discussed at the beginning of this section.

3.2.2 Water wave model

s - Yo
S~

Fig. 3.6 Definition of wave system
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The incoming water wave is defined in the transom coordinate system

O, —X,Y,Z,, but the input parameters of the wave system are defined in the bow

coordinate system O — xyz. Fig. 3.6 depicts the definition of the wave system. In Fig. 3.6,
L(7) is the transient wetted length, measured from the transom section forward to the
instantaneous intersection of the keel and the surface of the wave;

X, the distance of x section, measured from the transom section forward:;

x: measured from the bow coordinate system xoy which is located on the cam water
surface, from the entry point to the stern, with origin right under the intersection point;

X on: Lpp, thetotal boat length.

Assuming the wave length A is much longer than the boat length,

A>> L, (3.76)

Thus, the disturbance (diffraction) of the incoming waves by the hull can be ignored. The

non-dimensional regular wave expression is:

¢(x1)=¢,SN[Q. 7 +k(L(7) - x) +6,] (3.77)

Where ¢(x,7) is the wave elevation non-dimensionalized on the maximum keel

offset z, the non-dimensional wave number k=27/4, A is the wave length, and

¢, = ¢,(1-e”) isatransent wave front where a : 0 — o, ¢, isnon-dimensiona wave
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amplitude, 8, is the initial phase. The non-dimensional encounter frequency Q. is

defined as,

Q, =Q, -kcosa,, (3.78)

. . . w, [ .
where Q, is the non-dimensional wave natural frequency Q, =°T", a, is the

w

incoming wave angle. In the present code, wave angle is set to be either head sea or

following waves (a,, = zero or 180 deg).

The random waves are defined as,

C(x1) = Y6 SN0, 7 +k (LD - ) + ] (379

i=1
where the non-dimensional wave amplitudeis:

G = ;hi (1-¢e)/z, (3.80)

with the wave height h defined according to the specified wave spectrum. For example,

for the JONSWAP spectrum (Chakrabarti, 1994), characteristic of littoral-zone seas:

h (@) =2.00/2.008 (w) Dw (3.81)
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(w-ap)?

S, (@) = a9’w” expl-125(w/w,) 1 7 (3.82)

The parameter in (3.81) and (3.82) may refer to Chakrabarti (1994).

3.2.3 Vessal motion model

The vessel motion model is defined with the help of the boat-fixed coordinate

system O; — X; Y; Z, (refer to section 2.2) (see Figure 3.7).
Let 77, and 77, be the heave and pitch angle, respectively, defined at the transom

section relative to the translation coordinate system O, =Xy, Z,.

Fig. 3.7 Vessel motion definition

Assume that the boat’ s non-dimensional weight, denoted by C,, , islocated at X
measured from the transom section. The total lift acting on the boat is C -, located at

X_r » measured from the transom section (Fig. 3.7). Define the Froude number,
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F = (3.83)

where z, isthetransom keel offset, U isthe forward speed of the boat.
The hydrodynamic lift is represented by C, integrated from the sectional lift

coefficient C, ; (refer to Vorus, 1996),

C, = 1# =2(z, —1)}ACp (s)ds (3.84)

| EIOUZZK

where the nondimensional pressure coefficient AC,(s) is defined as:

(3.843)

where Apisthe dynamic pressure.
The static buoyancy (relative to the calm water planing waterline) is represented

by Cg,

(3.85)

where V isthe static nondimensional displacement volume of the boat.

Then the total lift is defined as,
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C, =C_+C,+C (3.86)

L,air

whereC, . isthe aerodynamic lift. The lift moment relative to the transom originiis:

L,air

Cur =Clr XX¢ (3.87)

Thetotal lift center is defined as:

x _ CL X XL + CLB X XB + CL,air X Xair (3 88)
LF C_+Cj,+C |

L,air

where x_ is the hydrodynamic lift center, x; is the buoyancy center, and X, is the

aerodynamic lift center.
Based on the Newton's second law, taking the mass coupling effect into account,

the boat heave and pitch accelerations are the solution to:

{ m mxce} %’73} :{ Cr—-Cu } (3.89)
MXcg J 1]s Cur =Gy X Xce

where X, is the longitudinal center of gravity defined in Fig. 3.7, m is the non-

dimensional mass of the boat, and the inertiamoment J isdefined as:

J=mr? (3.90)
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where 1 is the non-dimensional radius of gyration from the transom. The non-

dimensional boat weight C,, in (3.89) isdefined as,

w
C, = (3.91)
1/2pU%z*
Denote the determinant of the coefficientsin (3.89) as:
A=ml -m’xg, =m’[F?-x%] (3.92)
The solution gives the boat’ s accelerations at thetime 7 as:
N _J(C,; -C,)- (Cyr —Cy X Xss)
,73 (T) - LT CW mxzs MT CW CG (393)
N mM(C,;; —Cy X Xos) —MX (C . —Cy)
/75(T) - MT CW CGA CG LT CW (394)

Thus, the time trace of the heave and pitch of the catamaran can be readily obtained by

the numerical integration of above equations numerically in time, step by step.

3.2.4 Wetted length and the transient draft

The vertical transient draft of the catamaran can be described by using Fig. 3.8.
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wave surface

Fig. 3.8 Definition of transient draft

The vertical transient draft Y, , measured from keel to the transient wave surface,

isdefined as:

Y (1) = Hyg + 4, (L=X1) =775(t) = (@ +775 (1) LL = X) — ¥, (X) (3.95)

where H,, isthe initia draft at the transom, ¢, (L —X,t) is wave elevation defined at
transom coordinate system, a,(X) istheinitial local keel camber trim angle, andy, (X) is

the keel upset.

To find the transient wetted length L(t) in the transom coordinate system

x,0,Y,, we define the draft Y, (0) as zero at the entry point x = 0:

0=Hq, +{, (L) =75(t) — (ap +775(1) L~ v, (0) (3.96)

Solve Eq.(3.96) for the wetted length L(t) (refer to Fig. 3.8):
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Hoo =175(t) = (ap +775 (1)) CL(Y) + v, (0) - £, (L,1) (3.97)

This eguation serves as the condition to iterate to find the wetted length L(t) at each time

step. Substitute Eq.(3.97) back into EQ.(3.95), the new expression of the transient draft at

any time step is given by:

Y. (Xt)=(a,+n;) X+y, (0 -y, (x)+{,(L=-x1t)-,(L,1) (3.98)

3.2.5 Impact velocity in waves

The sectional impact velocity in waves will be needed for solving the x-—
problem in each time step. The vertical impact velocity in the seakeeping problem can be
determined from the transient draft equation in Eq.(3.95).

Defined the transient wetted surface as,
F(x,t)=y-Y. (xt)=0 (3.99)
From the material derivative,

%—T+\7 MF =0 on F=0 (3.100)
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where V =Ui +v, ], DF:%—FT+%—FI, v, (x,t) is the impact velocity. Since
X y

oF __ 0% g—F =1, oF = —ai, U =1(the non-dimension form), from Eq.(3.100),
y

o0x ()4

ot ot

the impact velocity is:

v, (x,1) :%+aal): (3.102)

Recall the normalized variable & = % (refer to (3.64)), then the derivatives of Y, (x.t)

implemented in CatSea are,

N _ 5o L - ~&)i(t) -
o= Cull =X+ (L= =N (1) =775 (1) (3.102)

= (@, +15(0) = OI(M) =15 T-EI(M) — ' (& (D)

M _

F ¢ (=X + (@, +775(1)) — Y (X) (3.103)

Thus the impact velocity is:

Vi (xt) =a, - y|'<0
= (Y« () = Yio) #1775 (1) = 175(t) =17 - E)I (1)
— (@, +7,(0) @-EI(t) - y', ()& Ti(t)
+, (=%t =", (1 =x1) +{, (1 = xt) QL= &)I(t)

(3.104)
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Since in CatSea, the input parameters of the wave system are defined in the trandating

bow system, considering the sign of x— derivatives of {, (I —x,t) taken in the bow

coordinate system, the impact velocity has following form:

Vi (Xt)=a, - y|'<0
= (Y« () = Yio) + 775 (1) = 175(t) =175 - E)I (1)
— (@, +n, () @-EI(t) - y', ()& Ti(t)
+Z,(1=xt)+", (I =xD)[1- A= &)I(t)]

(3.105)

In this chapter, we have systematically reviewed the first order theory developed
by Vorus. In the next chapter, the second order extension to the first order theory is

developed.
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CHAPTER 4

SECOND ORDER NONLINEAR CATAMARAN HYDRODYNAMIC THEORY

The first order catamaran theory outlined in the preceding chapter is useful in
catamaran design and analysis as it stands. However, due to the complexity of the
problem itself, some significant approximations and simplifications have been made in
the first order theory. This chapter presents a complete nonlinear catamaran
hydrodynamic theory which relieves the magjor approximations and simplifications in the
first order theory. This extended theory is referred to as the “second order nonlinear
theory”.

Keeping the same order as in Chapter 3, we first introduce the second order
theory on steady planning in calm water, followed by the second order seakeeping theory

of catamarans.

4.1 2" Order Calm Water Steady Planing Theory

In the second order model, we have same number of unknowns (five in the chine
un-wetted flow phase and four in the chine wetted phase) asin the 1% order model. In this
section, we follow the solution procedure in Chapter 3, where it differs, to develop the

same number of equations for the unique solution.
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4.1.1 Second order velocity continuity equations

4.1.1.1 Kinematic boundary condition and its integral equation

Use the same downward moving coordinate system ¢ — o, —/#7 as depicted in
the Fig. 3.1 to construct the kinematic boundary condition.
The normal and tangential velocities on the hull contour, in terms of the

perturbation velocities v and w in Fig. 3.1, are derived in Vorus (1996), and can be

expressed as,
V, =(@+v)cosf-wsnpS (4.2
Vg = (1+Vv)sin S +wcos S (4.2

where V,({) and V, ({) are the total tangential and normal flow velocities on the bottom
contour, £ isasmall deadrise angle.
According to the physical model in Fig. 3.1, the tangential velocity V,({)

associated with the vortex strength distribution y({,7) , can be written:

V.(¢.7) =—%V(Z,r)+v(r)sinﬂ(5,r) 4.3)

where V is the section impact velocity , V(7)sin 5({,7) is the stream component along

the contour.
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In the downward moving coordinate system ¢ -0, —/ on the hull boundary,

the kinematic boundary condition requires (refer to Fig. 2.6 and (3.1)):
V.({,T)=0 forl<s{ <z (4.4)

By applying the above condition with (4.1) - (4.4), the following kinematic
condition on the hull results. This condition is the same as developed by (Vorus, 1996)
for the monohull case, refer to (3.2) for comparison with the first order case. The detailed

derivation isin Appendix A:
v({,T) +%y((, rsin B(¢,r) =-V(r)cos® B({,T) forl<s{<z, (45)

Assuming the deadrise angle (¢, 1) of the section contour to be small for order-
of-magnitude argument, that is B({,7) =0(¢), the relative orders of magnitude of the

variables in (4.5) are assigned in Table 4.1 on the basis of the impact physics (refer to

Vorus 1996).



Table 4.1 Order-of-magnitude of variables
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Variables| 0<¢<b™ | b <¢<1 1<s{ <z z.<{<b’ {>Db"
(CW) (CW) | (Cuw) | (CW) | (Cuw) | (CW) | (CUW&

CW)

V(<. 7) (L) () o) | O | o1 | &B) | O(B)

Vo(¢.7) O(5) o) | O¥B)|oWp) | oyp) | o) | o)

y({.1) O(B) o1 |OWp) | oyp)| owyp) | o1 | ofB)
Vo(¢,7) | V+O(B) | V+O(5) 0 0 o(B) | V+ |V+O(B)

(L)
V(1) O(1)

Based on the orders-of-magnitude in Table 4.1, it is easy to see that all terms in

Eq. (4.5) are O(2).

Comparing Eq. (4.5) to the Eq. (3.2) in the first order model, an additional leading

term %y((, r)sin5({,r) has arisen. For simplification of the analysis in the case of the

1% order mode!, Vorus used a simplified relation in Eq. (3.2) for the KBC by considering

this leading term in EQ.(4.5) as a product of perturbations and higher order: o( 5). Inthe

present second order theory, the deadrise angle £({,7) is still the small parameter, of

order £. But the order of the vortex strength y({,r) is assigned as order of O(%),

consistent with the increasing "squeeze" flow transversely from under the hull as S
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decreases. Therefore, the product term % (¢, 1)sinB({,7) in(4.5) isO(1) and therefore

retained in the boundary condition. This is a basis for the name “second order nonlinear
theory.” Although the theory in this regard is actually only a consistent first order theory.
It isaso still alinear boundary condition in the unknowns since S on the hull contour in
(4.5) isknown. (The solution is, however, nonlinear in the dynamic boundary condition,
just asit wasin Chapter 3.)

Comparing Eqg. (4.5) to the Eq. (3.2), it is clear that the deadrise angle £({, 1)
appears explicitly in the KBC of the 2™ order model, but not in the 1% order.

Express the perturbation velocity v({,7) in (4.5) in terms of vortex strength
distribution y(¢,7) (Fig. 2.6) by the Biot-Savart law, just as with the 1% order theory in

Chapter 3, Eq. (3.3):

V(o T)
v({,1) = (4.6)
( :J-_b (ZO

Therefore a singular integral equation representing the kinematic boundary condition

45 is

b*

—y(z r)sin A<, ”*%be HoDly z ZO 7100 =V (D) cos* 1)

onl<{<z  (47)
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In (4.7), comparing with (3.3) of the first order model, the added leading term appears.

Eq.(4.7) again can be expressed in terms of the free -sheet vortex strengths

y:({,r) and y;({,r) asfollows (refer to Eq. (3.4)); refer to Appendix A for the details.

L@nsnpenr L[ Do e 1s¢sz @9
s, §o=¢

where:

Ve({o,7) =0 on -1<{, <1 (4.9)

With non-dimensionalization on the keel offset, z, , theregion —1<{, <1 in (4.8) isthe

free space between the demi-hulls (refer to Fig. 2.5). The right hand side of (4.8) is

(compareto Eq. (3.5)):

f(¢,7)=~cos ﬂW(T)-—f Vello) gr2zr j Vo) o 7r 4o

ZZ ZZ

(4.10)

Note the new termsin (4.8) and (4.10) due to the reordering discussed at (4.5).
Eq.(4.8) is the Carleman-type singular integration equation (Muskhelishvili 1958,
Vorus 1996), instead of the Hilbert-type of Chapter 3. Solution of (4.8) is the first

theoretical extension of the 1% order theory. Following the same procedure as with Eq.
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(3.4), an inversion procedure exists for developing a semi-analytic solution to (4.8).

Muskhelishvili(1958) and Tricomi(1957) give the genera solution of the Carleman
singular integral equation. Following the derivation of Vorus (1996), which was adapted
from Muskhelishvili(1958), a solution for (4.8) is developed in Appendix A as (refer to

(3.6)),

~ ~ ) Z =
y.(¢.1) = 2sin B eos £ (¢,1) - 2P XD f cos f(s) ds
n 5 X(s1) s-¢

onls{ <z (411)

where x({,1) isthe kernel function defined below, and,

B =[B(¢,1)=tan[sin B({,7)] (4.12)

The function y,({,r) satisfies the HOlder conditionli':I (Muskhelishvili 1958) on

-z, <{<-1 and 1<{ <z, as required for the solution procedure outlined by

Muskhelishvili.
Comparing with the 1% order solution in Eq. (3.6), an additional term has

appeared in the 2" order solution, (4.11).

! Holder condition: A function ¢(S) issaid to satisfy a H6lder condition on L , if for any two points,
sUlL, s, 0L,

As,) —@s)| < Alds, —s)”
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4.1.1.2 Kernel function x({,7)

The kernel function for the Carleman integral equation (4.11) is developed in
Appendix F. It has been expressed in following (4.13) and (4.16). It is different from the
kernel function in the monohull case (Vorus, 1996). It has two singular points, one

located at the keel and the other at the z, point for the catamaran, versus one for the
monohull, a z, only. It is also different from the kernel function of the 1% order model in

Eq.(3.7), with an additional singular product function term k(¢,7) (see (4.13) to reflect

the effect of the variation of the deadrise angle (¢, 7).

(2) the case of ageneral B({,7) in(4.11):

k({.1)

X(¢.1) = —— —
J(@2-0(Z2-¢?)

(4.13)

where the function k({,7) is defined as a product function involves the J-element
piecewise linear discretization of the contour in 1< { <z ( the contour discretization

detail refer to Fig. 5in Vorus(1996)).

B,(1) B,(1)
V4 _tj+1

14
¢ -t

J

t,+{

j+1
t +¢

J

k(1) =M (4.14)

where A and 4 are positive constants. A is called the HOlder constant and ¢ isthe HOlder index.
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In (4.14) the t; and ,Ej (r) arethe end offsets and angles of the jth element.

In general, the deadrise angle 5 = (¢, 1) variesin both ¢ andtime 7 asthe jet-

head advances. For simplifying the computation, the contour will be specialized to be

constant deadrise, without transverse camber, so that S = £(r) . However, this theory

appliesto the general case aswell.

(2) thecase of B({,r) constant in {:

For deadrise contours A({,7)=£(r) is constant in ¢ direction, defining

k({,T) =k, ({,T) inthis case, then:

A1) B() A1) A1) B(1)

_|zc+Z|n Z—zc|ﬂ _|zc+Z|ﬂ zc—Z|ﬂ (ZZ=¢7) 7
Ko(Z.T)—|1+Z| Z_1| _|Z+1| Z_1| = = (4.15)

Such that (4.13) becomes:

=

()

K (Z’T) 1 Z—ZZ T
A0 = : - Eﬁ = ] (4.16)
N0z -¢7 @ -nz-¢) L ¢t




84
4.1.1.3 Bound vortex y.({,T)

Expanding the equation (4.11) and considering the symmetry of x({,7) and

f({,1), the bound vortex strength y,({,r) isthe following:

y.(¢.1)=2sinBcosf3 f({,7)
f(Zl,r)cos,E 1 1

- o0sBON¢ T)ZL XD @-0) @

= Zsinﬂcosﬂ f({,1)

f(Zl,r)cos,E 1
dd,
cos,BD((Z T)ZL @D (@E-79) 4

17 <z, (4.17)

Substitution of f({,t) from (4.10) into (4.17) yields:

Vo (Z,7) = —2sin Bcos B cos? BIV(T)

-2 s\6o> 2 d 0
sm,[:’cos[a’ I Vs ({o, T) Z {
—Zsm,[z’cos[a’ I Vs (<o, T) 52 d¢,
47 dd,
+—cos,8D((Z r)[cos? ﬂW(Z’)@OSﬂDI @D Zz)]
47 - 1 L cos[a’mli1
+7COS'BD((Z’T)[]_TZO'L) ys(Zo T) |170 ZI'-_]_ X(Zl )(Zl ZZ)(ZZO_Z:LZ) IjjZO]
Y b cosf3 M,
. ) s\5o0» 0 2 2 2 Cal 0
+=00sf (.1l Zj Vi(loD @ J D T o o]

1< <z, (4.18)
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Introduce the same partial fraction reduction identity as in Chapter 3 (refer to

(3.9)):

2 21 2 N 21 2{ 21 >t 21 2} (4.19)
(Zl -¢ )(Zo _Zl) Zo -¢ Zo _Zl Zl -7

Substitute the (4.19) into the solution (4.18). Manipulation of that result yields the same

convenient form for the bound vortex y,(¢,7) as with the 1% order solution (3.10); refer

to Appendix E for details. The solution is conveniently written, via (4.19), as the

superposition of groups singular and non-singular terms:
yc(ZaT) = ynorma] (Z,T) +ysingular (Z’T) (420)

Here the normal component is the non-singular part of the solution,

Verorma ({T) = —2s1nﬁcos/?cos2 BIV(1)

-ZSm,BCOSﬂ j VsCon) 72t s

4.21
| ZZ dd, (4.21)

- 2sin foosf= j VoloT) =2 02,
.=, {Fo-

The singular component, from the singular part of the kernel function (refer to (3.10)), is:
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Vesnguar ({1T) = %X(Z ,7)cosB{V (7) cos? fcos B I-A({)]
+L00sB [ yal@o )2 s dEoIN (€)= A (4.22)
T {o=b" ZO _Z
1 ~ b + Zo +
— O s (<o, 5 2d oIN ({)— N
+=cosf3 Z(Ly(z 0z 7 0N (€o) A

where ¢ is the independent variable ; {,,{,; are the dummy integration variables, with

(refer to (3.11) ~ (3.13)) :

A(C) = T 9y 1<(<z (4.23)
=1 X(Zlir)(Z _Zl)
) % d¢ )
INCOE — b <(, <1 4.24
€= | yane=a 6o (424
N ()= T dd; z.<{,<b’ (4.25)

A

Comparing (4.20), (4.21) and (4.22) with the hull contour bound vortex
expression of the 1% order model in (3.10), it is seen that the simplification of the 1% order
model has led to the existence of only the similar term of (4.22) in y,, without the term
of (4.21). Eq. (4.20) represents the second significant difference from 1% order theory.

The numerical analysis for the bound vortex distribution y.({,7) in Eq.(4.21)
and Eq.(4.22) can be found in Chapter 5 and Appendix E .

The velocity continuity condition, which is from the singular component of the

vortex distribution, (4.22), is now derived.
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4.1.1.4 Ve ocity continuity condition

Equation (4.22) has two singular points in its solution domain, at ¢ =1 and
{=2z,. Thisiswhen { -1 or { - z,, wherex({,7) - . However, in real (high
Reynold's number) flow, the velocities at these points must be finite and continuous.

Following the 1% order development, when ¢ — 1", the requirement that y. be

bounded results in the following velocity continuity equation (or Kutta condition). Thisis

same as Eq. (3.14) of 1% order model. ( For detailed derivations refer to Appendix A):

Co iniry
72N (€ =A@,

0={-cos’ V(1) m(1)+ijy;(zo,r)
+= j Y (€ot) 72 TN (€0) ~ADIAC,)

7 -1 (4.26)

When { - z_, the requirement for boundedness similarly results in the second velocity

continuity equation; thisis the parallel of (3.15):

Z

0={cos’ BV(1)[-A(z,)] + jys(zo 1) 7z, N o) =A@

j Vo) g 2 N (€) - Az NIAE)

(- (z) @27
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The two velocity continuity equations have the same form as the velocity

continuity equations in Eq. (3.14) and Eq. (3.15) of 1% order model. But the integrations
of Eq. (4.26) and EqQ. (4.27) are in terms of the hyper-geometric functions and Beta
functions, which are different than the eliptic integral functions of the 1% order model.

For example, the singular integral in Eq. (4.23) has the following form (refer to Eq. (3.16)

- EqQ. (3.19)):
NS =1, +1,(0) +15(0) 1< <z, (4.28)
where,
|, = Z.f le d¢
i Ko(C) QST -D(2 - ¢F) 429)
L, gl B By 11 Bzl
S n BTt Rt zf)
% 1
()= (¢* -z -)0] ¢
dm Ko(C) QST -2 = ¢F) (4:30)
Lot gLt B BypdAl Bz
_E(Z % 1)ZCEB(Z n’2+77EF(2’2 ﬂ’l zczl)
Z 1 1,8 ;é
13(0:((2—1)(42—(2)&[tZ(ZZ—trl(t ~1) 2 n(z2-1) % 7
(4.31)

1 .,
5 D(z -¢%)x Z\/— 5, ({)
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In (4.31) since the integra 1,({) inthe 2" order model can not be expressed in a

semi-analytical form as |, and 1,({) did, this author thus has modeled the [,({)
integral as a piecewise constant function discretization integral. The whole integral

domain z; -1 has been discretized into N elements, f; is mean value of the discretized

integral element (t;,t;,;). The detail derivations can be found in Chapter 7 and in

Appendix H. When, in (4.31),

« Casel: (>t

AISJ(Z)=I3:J-+1—I;]- (4.32)
where,
1,8
i 1 (-D270 1 1 .3 B t -1 72-72?
|3’j((2):— 2 ] — % _[F(—+£,1_+£; ‘2 < Z) (4.33)
{* -1, 1LE ) 2 m 2 m{°-1 z;-t
(Zc _tj)277

« Case2: {*<t,

AIs,j(Z)ZI;j_I;jﬂ (4.34)

where,
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+ 1 Zcz_t‘) 1 + + Zs_ 2 1
ey dE T L ra e B e
¢ (t,- -p2 c i
« Case3: t; <{*<t,
Al (§) =130 =155 = l3jm (4.36)
where,
1B
2_1 2 -
15007 = T xten B (437
(z2-¢%)2r

In (4.29) to (4.35), F(a,pB;y;z)is Gauss hypergeometric function, and B(X,Y)
isthe Betafunction (refer to Gradshteyn and Ryzhik, 1965).

The semi-analytical forms of the velocity continuity equations in Eqg. (4.26) and
Eq. (4.27), which are comparable to the 1% order equations (3.28) and (3.32), are
expressed in Chapter 5.

As covered in Chapter 3, the catamaran cam water steady planing case has five
unknowns (in CUW case): V" (1), V[ (1), z,(1), 7, (1), and z,(7) . The Kutta (velocity
continuity) conditions of the kinematic boundary condition provide two out of the five
equations (Eg.(4.26) and Eq. (4.27)) needed for the uniqueness. In the following sections,

the remaining three required conditions are devel oped.



91

4.1.2 Displacement continuity condition

4.1.2.1 Water surface el evation

Again, likein the 1% order case, revert back into the time domain of the equivalent

impact problem, [0,t]. In the chine-unwetted phase, the dimensiona body bottom

contour Y, (z,t) can be expressed as (refer to Fig. 3.2):

y.(zt) =h.(zt)-W z <2<z (4.38)

where again h,(z,t) isthe water elevation above the keel:

h.(zt) = (z-z)tenp Zs255,0 .39
0 Zb (t) <z< Zk
Define the net vertical fluid velocity of the contour, from (4.5) as:
0y, a(tz.t) =-V(t) =v(zt) +%y(z,t)sin B(2) onz <z<z (4.40)
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It is clear that EqQ. (4.40) is just another form of the expression of the KBC with

V(t) = -dy, /ot. Comparing with the definition in (3.35) of the 1% order model, an

addition term has been added in (4.40).
Following the same process as in Chapter 3, integration of the above equation in
time domain and nondimensionalization of the results yield the following equation (refer

to Appendix B):
V@D Y (€ DS AQ) = D) 1< <b’ (4.41)

where, again, the "asterisk" superscript denotes the time integrated variables:

vV (zt) = jv(z, r)dr and y (z,t) = jy(z, r)dr (4.42)
and, in (4.41):

_[Yuth(@.n 1s¢<b(@)
fl(Z,r)—{_\-fwI b <o <1 (4.43)

where Y,, is the non-dimensional water-line transient draft, Flc ({,7) may be a general

contour or may be a deadrise contour, of the form:
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(( -Dtan B 1< <b" (1)

) (4.44)
0 b (1)<l <1

ﬁc(z.r)={

For ssmplifying the analysis, a simple deadrise contour form is again adapted here.
The vertical velocity time integral, v’ ({,7) in Eq. (4.41), is again expressible in
terms of the time-integrated displacement vortex strength, y.({,7), by the Biot-Savart

law. Thus the integral equation resulting from the displacement condition is essentially

the same form as the KBC velocity condition in (4.7), (also refer to the DC condition in

(3.40):
1, . 17, 1 1% 1
Eyc(z,r)sn/s(szL y°(Z°'T)ZO——ZdZ°+§TbJ Velot) 77 4o
= f,({,7)

1< <b" (4.45)
where
v.({,, 1) =0 on-1<{,<1  (4.46)

by the definition of (4.44).
Comparing Eq. (4.45) with Eq. (3.40), it is shown that the integral equation of the
displacement condition in the 2" order model has an additional leading term. Again,

Eq.(4.45) is of the Carleman-type singular integral equation. Using the same solution
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approach as in Eq.(4.11), the solution of EQ.(4.45) is found to be the following (refer to

(3.41)); for details refer to Appendix B:

vy, (¢,7) = 2sinBcosfB f({,1)

_2cos/?:b(*(z,r)[‘f cosf f(Z,) ddg Icos/a’f(zo) dZ, .
s b X o) {o=¢ 5 X ({0) &o-

onl<s{ <b" (4.47)

where x"(¢,7) isthekernel function.

Note again in (4.47) the additional leading term in the 2" order solution.

4.1.2.2 Kernel function x” (¢,7)

The kernel function x'(Z,7) for the integral in Eq.(4.47) is developed in
Appendix G. The difference of x (¢, 7) from the kernel function x(Z,7) in (4.13) and
(4.16) is that its solution domain is now onthearcsof —b* < <-b” and b < <b",
the ends of which are where the free vortex sheets separate. Thisisthe same asin thefirst
order solution at (3.42).

(1) The same discussion as for the kernel function x({,7) before, in general

B =pL({,1) case thekernel function in (4.47) is of the form (refer to (3.42)):

X (0= K(¢.7) (4.48)
V(€2 =(0)2)((b")? - ¢?)
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where the function k({,7) hasthe same definition asin (4.14),

Bi (1) Bi(1)

T Z_tj+1 Vs
Z—t]-

where the t; and Ei (r) in above formula are the end offsets and angles the same as

t,+d

j+1
t +¢

J

k(1) =4 (4.49)

defined in (4.14).

(2) Inthecaseof = £(r) independent of ¢, the kernel functionis

B(1)
: _ Ko({,T) _ 1 [E(b+)2_(2] -
X (Z,T)— - 2 -\2
J@Z-0))(B)2-¢3) Y- )2)(b)2-¢23) ({*-b)
(4.50)
where,
B(1) B(1) B(1) B(1) B(1)
=2t gﬁtf—zl LT [Fb*—fl " :(_@*)2-52] " sy
R R { E FE N N Vo 7*=(b7)°

The kernel function x*(¢,7) in (4.48) or (4.50) in the 2™ order theory is different

than the kernel function " ({,7) of the 1% order model in (3.42), with additional product
term «({,7) to represent the variation of the deadrise angle, 5({,7) . See (4.13) to (4.16)

for the similar formin x(¢,7) of the 2" order velocity boundary condition.
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4.1.2.3 Displacement continuity equation

Substituting f,(,7) in (4.43) into the solution of (4.47), and applying the

symmetriesof f,({,7) and x ({,7), the solution (4.47) is:

yo(¢,1)=2sin BeosB[-Y,, +(¢ —1tan ]

& 2 B(~ - i 1 -
4 70 t 0 - 2 2 dZo
nX( r) [eos” S{ (-1 —tan ) ZOLX ({0.1){s" =¢7)

.
o
+tan S0 .
ZJ X (o)

dZ,
-{?) }

When ¢ - b", there is a singularity in the kernel x"({,7). To separate the
singularity, a partia fraction reduction identity from (Vorus 1996) is again used:
2

! . ! o™ ~¢ 2) (4.53)

Substituting Eq.(4.53) into Eq.(4.52):



y.(¢,7) = 2sin BeosB[-Y,, +({ D tan f]
a7

1
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—— X (¢.1) 008’ fA-(r +ten ) - j

e X (G0, 1B

+(b =07 CE .
oo X €™ =806 =0
+tan B[- j <o dZ,
Zo=b" )( (o T)(b )
f07 -7 | L )

i X (o D)0 =82)(&" - 42)

dd,
o)

(4.54)

As described in Chapter 3, the real flow physics requires a continuous body-free-

surface contour at b* in CUW flow. Thuswhen ¢ - b*, the vortex strength y. (¢, 7) in

Eqg.(4.54) must be bounded (refer to (2.25)). This requirement results in the following

displacement continuity condition:

dZ 4

= (Y, +tan B) 0 j ~tan B j dZ (4.55)
o X (€007 =) o X (€007 =)
Define the followings relative to (4.55):
j (4.56)
X (¢, r)(b 7%
bj dd (4.57)

X (¢, r)(b*2 7%
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The displacement continuity condition is then expressed intermsof |, and I, as (refer to

(3.44)),

0=(Y, +tanB) 0, - tan B0, (4.58)

(4.58) provides one additiona condition for solving the five unknowns in steady planing.
Two additiona conditions are now required.

Comparing the displacement continuity condition of (4.58) in the 2™ order model
with the same condition in the 1% order model, (3.44), both have the same form, but the
integrals |, and 1, are functionally different. In the 1% order model, the 1, and I, of
(4.58) are in the Elliptic integral form; in the 2" order model, the results are in Gauss

Hyper-geometric functions and Beta functions (refer to the numerical model in Chapter 5

for details).

4.1.3 Pressure continuity condition for steady planing

The pressure continuity condition of the 2" order theory for steady planing is the
same equation as in the 1% order theory. Therefore, we only list the main equations for

solving the unknowns. The derivation process may refer to chapter 3.
At the outer jet-head z, , the pressure continuity condition is (refer to Eq. (3.54),

(3.55) and Eq. (3.56)),

* Inthe chine un-wetted flow phase:
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VZ(s*,1)-1

b'(r) = as=s" 4.59
- (7) N.(s.7) (4.59)
* Inthe chine-wetted phase:
+ 1 + +
b, (7) =§Vs(s ,T) as=s (4.60)

where s* is the nondimensional outer jet-head defined in the catamaran coordinate
transform in (3.48).

At the inner jet head z, , since the flow at the keel z, is aways chine-wetted

(Fig. 2.6), the pressure continuity condition thusis:
_ 1 _ _
b (r) = EVS(S ,T) as=s (4.61)

where s is the nondimensional inner jet-head defined in the catamaran coordinate
transform in (3.48).

These are the same pressure continuity conditions as with the 1% order model.

On the free jet-head sheets of s"<s<0 and 1<s<s’ (refer to Fig. 3.3), a
constant pressure is required (refer to Fig. 2.6). To find the vortex sheet distributions
required for applying (4.59) to (4.61), as in the 1% order model (refer to (3.57)),
differentiate the pressure distribution (refer to Appendix C), on the free sheets. This gives

the following Euler equation (same as (3.58)):
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Vsn)-229%Y: —a-2)%Y (s =0 l<s<s'  (4.62)
or = 0s or

Intheregion of s <s<0, the Euler's (Burger's) equation is (refer to (3.59)),

ov,
0S

Vv,
or

Vyen =229 - 1-2) 25 (s1) =0 :

(2]
IA
(2]
IA
o
~
&
o)
@

Again, the two Euler equations in Eq. (4.62) and Eq. (4.63) required for the free vortex
sheet distributions are the same form as those in 1% order model, refer to Eq. (3.58) and
Eqg. (3.59), and simply imply a constant particle velocity post-separation. The required
numerical analysisis covered in Chapter 5.

In the 2" order model, the pressure distribution formulation is the same as that in
the 1% order model, refer to (3.61) and (3.62). In the 2™ order model, the pressure

distribution computation on the contour is (details refer to Appendix C):
* chine-wetted case

Co(s,7) =1-V2(s,1) +VZ(LT)

‘ZZ; [Tvs(so, r)ds, +V.(L7) - SV, (s,7)] 0O<s<1  (464)

-2

oV,
or

+2(1-2,)[—= (5, 7)0ls,
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* chineun-wetted case

Co(s,7) =V2(L 1) -VE(s,7)

0

-2 62; [Tvs(so, r)ds, +V.(L7) - sV, (s,7)] O<s<1 (465)

cov
+21-2)[ > (s, 1)ds,
1

At this point five equations are available for solving for the five unknowns in the
CUW case: V| (1), V[ (1), 7, (1), z, (1) and z. (7). They are:

» Two velocity continuity conditions when z - z, and z - z, in Eq. (4.26) and Eq.
(4.27);

» Two pressure continuity conditions at z=z (1), z=z (7) in Eq. (4.59) and Eq.
(4.61);

 One free-surface displacement continuity condition when z - z, () in Eq. (4.58);

In the chine wetted CW case, since the jet separation point z; is known and fixed
at the hard chine Z,, , the displacement continuity condition is not needed. In this case,
we have four equations and four unknowns:

« Two velocity continuity conditions a z - z, and z -~ z, in Eqg. (4.26) and Eq.
(4.27);
» Two pressure continuity conditionsin Eg. (4.60) and Eq. (4.61)

to solve for the four unknowns: V;" (1), V(1) , z,(r) and z, (7).

Therefore, the steady planing problem has a unique solution.
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Next we will develop the 2™ order theory for catamaran seakeeping.

4.2 Second Order Nonlinear Sea-keeping Theory

In this chapter, we also develop the 2™ order seakeeping theory for the planing
catamaran. As discussed in Chapter 3, the time variable t and the longitudinal variable x
are independent in the seakeeping analysis. In the 2" order seakeeping theory, at each
time step, a complete x — flow problem is solved, just asit is in the 1% order case of the
last chapter.

In the seakeeping model, at each time step, we have the same number of
unknowns in the x— flow problem as in the steady planing problem. Thus we need the
same number equations as in steady planing for a unique solution at each time step, as
described in the section 3.2. The velocity continuity condition and the displacement
continuity condition are the same as those in the steady planing problem. However, the
pressure continuity condition in seakeeping is different from the condition in the steady

planing since the pressure involves independent x and time variables.

4.2.1 Pressure distribution model

Following the derivation procedure in the 1% order model, we develop the
pressure continuity conditions based on the unsteady Bernoulli equation in the

seakeeping case.
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4.2.1.1 Pressure continuity condition

In the seaway dynamics problem defined in Chapter 2, assuming the boat is

advancing in waves with a constant forward speed U , Bernoulli's equation gives:
1 2 2 1 2 —_ 1 2 1 2
|O+§p(\/n +Vs)+§pVx +pP, = pw+§pU +§pV +pP,, (4.66)

Define the streamwise flow perturbation velocity u=g—¢. Thus the
X

x —component of the relative velocity in the boat-fixed bow system O — xyz will be:
Vx:U +u=U + @, (467)

In the catamaran coordinate system of Fig. 3.3 (refer to Fig. 3.4 for the
longitudinal variable x definition), the pressure coefficient is of the following from (see

(4.66)):

Co(X%,ST)=V*(X,T) -V2(X,5,T) —VZ(X,S,T)
00X, ST)  0p(X,ST),  0@X,ST),,
A or * 0Xx I=( 0Xx )

0<x<L(r),0<s<s"(x,7) or s(x,7)<s<0 (4.68)

where L = L(7) isthe wetted water line length at each time step.
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Define the non-dimensional longitudinal variable &(7) same as in the 1% order

theory (refer to (3.64) and Fig. 3.5):

&) :ﬁ (4.69)

and the transverse non-dimensional variables ¢ , b* (&,7), b™(&,1), z'(&,7) sameas1®

order model in Eqg. (3.65), furthermore in seakeeping the s coordinate will be (refer to

(3.48)),

7-1 b -1 b* -1

0 e T O en 1 SO T

(4.70)

The pressure continuity conditions can be obtained in the same way as in the first
order model. For the pressure continuity condition at the jet-head z, , staring from
Eq.(3.66).

Atthejet head z;, C (x,s",7) =0 (seeFig. 2.6). (3.66) gives,

V?(&,1)-VZ?(&,s",1)-VZ(é,s",T)

0s +- xi) 0s
or L

L
+z,, +7,(1- XTT)]S+ W, (&,s",7)
=0

+2(z, -V, (&,s",7)] ]

0X (4.72)
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+

Since S+(E’T):Z(E—Z_')l—l

in (4.70), (4.71) becomes:

VA(ET) -V2(ES' 1) -V2(E,S' )

. 0 L, 0 . (4.72)
“A ({5, T{—+(1-x—")}1-b (1)) =0
or L~ ox
The jet head velocity can therefore be found from (4.72),
2 + 2 + _\/2
b? + (- xr)b = Vs (£,s7.0) +V, (5’S+ DVED 4s=s  (473)
L 2V, (&,57,1)

where, according to the total time derivative definition in (3.68) and the axia variable

transform (4.69), the total time derivative of the jet-head b* (1) is (see Fig. 3.5):

" ey =
37 [$(7), 7] = 37

+0b+ g: ob*
0§ or Ot

L, ab*
—_ X_

4.74
L ox ( )

&=const &=const

+

In the above, b = ob
T

Is the temporal derivative term while the x — axial variable
&=fixed

¢ isfixed. b’ isthe first term of the total time derivative in (4.74), which has not been

considered in the 1% order mode.



106
Recall that in the chine un-wetted case V, (&,s",7) =0 and in the chine wetted

case V. (&,8",1) =V(&,1) (refer to Fig. 2.6) and z () =1 in the { —n system. Thus

from (4.73) the pressure continuity condition in 2" order seakeeping model at s=s" is,

* Inthe chine un-wetted phase

b’ +(1—xi)b; _Ve(6sh) '+V2(‘( ) as=s" (4.75)
L 2 (¢é,s,1)

* Inthe chine wetted phase
+ L + 1 + +
b’ +(1- xTT)bX =§VS(E,S ,T) as=s (4.76)

At the jet head z,, applying the dynamic boundary condition C (x,s ,7) =0,

and using the coordinate transformation relation s™(&,7) = in (4.70), the jet

_b -1
z(£.1)-1
head velocity found at s=s" is,

_VZ(E s D) +Vi (€5 1) VA D)

. L, - -
b +(1 XT)bX = N.(Es D) as=s (4.77)
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Since at the keel z, the flow is aways in the chine-wetted phase (Fig. 2.6),

V. (é,57,1) =V(&,1), thus we obtain the inner jet head pressure continuity condition at

S=s:
i} L,,,-_ 1 _ -
b, +(1—xTr)bX =§VS(£,S ,T) as=s (4.78)

Thus, as in the steady planing case, we have two pressure continuity conditions in either
the chine un-wetted or chine-wetted flow phase.

Comparing Eq. (4.75), (4.76) and (4.78) with the pressure continuity condition of
the 1% order model in Eq. (3.69) - Eq. (3.71), it is seen that the temporal derivative terms

have been taken into account in the pressure continuity condition of the 2™ order theory.

4.2.1.2 Burger's equation and location of free vortices

For applying the pressure continuity conditions Eq. (4.75), (4.76) and (4.78) on
the vortex sheets, the vortex sheet distribution must be specified. Differentiation of the

pressure distribution in Eq.(4.68) gives:

2 2 2
9Ce (X%,8,7) = -2V, (X,S,T) Vs -2 0’9 (x,s,r)—ZM(x,s,r)—20—¢[—la—¢)(x,s,r) =0
0s 0s 07 0S 0X 0s 0X 0x0s

0<x<L(r),1<s<s'(x,r)or s"<s<0 (4.79
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Substituting all derivative terms of (4.79), developed in Appendix D, back into

(4.79), an Euler differential equation of the vortex sheet distribution is then derived that
contains the tempora derivitive terms discarded in the 1% order model; see (3.72) for

comparison:

+62c s(1-
X

1<s<s’ (4.80)
6V (E S7T) _

-(- Z) S(fsf) (1-z)@A-x T)

Just as in the steady planing problem, this is an inviscid Euler's (Burger's) differential
equation that governs the free vortex distribution, comparable with the Burger's equation
in Eq.(4.62) for steady planing.

Comparison (4.80) with the Euler equation (3.72) of the 1% order model, confirms

that the temporal derivative term 9 has been included in the 2™ order model.
T s=fixed

Similarly, in the region of s™ <s<0, starting with the differentiation of the

pressure distribution in Eq.(4.68) , gives the inside Burger's equation for the inside free

vortex sheet (refer to (3.73)),

N 0z,

L s <s<0 (4.81)
~-2)° s(Esr) 1-2.)1- x'-r)m

IN
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Physically that the equations (4.80) and (4.81) are equivalent to the Euler

eguation:

DV, _dV, , dV, dx , 4V, ds _
Dr or oOx dr o0s dr

(4.82)

Jet flows during impact are formed when free vortices are shed at the separation
points z. and z . Since the effects of viscosity and gravity are neglected, the free
vortices continue advancing outward with the separation velocities. As discussed in
Chapter 3, Eg. (4.80) and (4.81) state that there is no particle acceleration on the free
vortex sheets separated at z; and z, .

The solutions to (4.80), (4.81) can be developed in terms of the Galaen
transformation of the initial and boundary conditions (refer to Chapter 10 and Vorus 1993
for details) These solutions gives the particle positions at current time based on the
previous time step information. Thus, the discretized motion of the free vortices can be

calculated as time progresses, i.e., the location at time 7 for the particle deposited at z,

onto the vortex sheet at timer,, can be derived by using an approximate second order
algorithm of 9 , (see Chapter 10 for details) as,

&=const

vs(xo,s',ro)tu(x—xow;Ef'L—fEax—xoV]+s'[zc(xo:ro>—1]
[z.(x7)-1]

s(s,x 1) =

1<s'<s", x= x, (4.83)
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The detailed mathematical model treating the free vortices movement can be

found in Chapter 10.

4.2.1.3 Pressure distribution formulae

On the contour of the hull, the pressure distribution can be found from (4.68)

(refer to Appendix D),
* |nthechinewetted case:

Co(x,87) =V (X,T) =V (x,57) +V(EL7)

+aa—n{j[ Ve (6,5,0) + - xf)

sEn 97

+2z,, +z,,(1- XL—LT)][ IVS(E, S, T)ds, + SV (€,5,7) =V (§4,7)]

S(¢.1)

OV, (£,5,,7)
T

0<x<L(r),0<ss<1l (489
¢ |Inthechineun-wetted case:

Co(X,87) =VZ(XLT) -V(X,S,T)

OV, (€,5,.7)

2z, -3 | 2 WE%THﬂ-XT) >

sn 9T

+ 2[Zc,r + Zc,x (1_ XL_LT)][ _[Vs (f! So» T)dSO + SWS (Eu S, T) _Vs (5)11 T)]

S(¢.7)

1ds;}

0<x<L(r),0<ss<l1l (4.85)
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Comparing with (3.74) and (3.75), Eq. (4.84) and (4.85) have taken the

i term into account

0T |- iyeq

Therefore the pressure continuity conditions in (4.75), (4.76) and (4.78) together
with the previous velocity continuity conditionsin (4.26) and (4.27) and the displacement
continuity condition (4.58) provide the necessary equations to solve for the unknowns in
the sea-keeping case.

To proceed to obtain the time history of the solution, we need the wave model, the
vessel motion model and the transient sectional impact velocity mode, just as in the 1%

order case.

4.2.2 Water wave model

The wave model in the 2" order theory is the same as described in Chapter 3. For
reducing the redundancy, we just cite the wave expressions here:
The non-dimensional regular waveis:

¢(x7) = ¢, sin[Q 7 +k(I(7) —X) + 6] (4.86)

For the random wave, according to the Jonswap spectrum given in (3.81) and

(3.82),

(67 = Y6, SNQ,T +k (1) - ) + 6] (4.87)
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For the definition of variablesin (4.86) and (4.87) refer to Chapter 3.

4.2.3 Vessael motion model

Based on the Newton's second law, the boat motion (heave and pitch) in wavesis

described as:

> R =mij, (4.88)
k

D> Mg, =i (4.89)
k

where m is the mass of boat, F, and M, are the external forces and moments. The

inertiamoment J isdefined in (3.90).

Taking the coupling effect into account, the non-dimensional motion equations

are
m’73 = CLT - CW - mxce’?s (4-90)
J’75 = CMT - va XXee ~ mxce’73 (4.91)

where the force and moment C,,, C,; ,C,,; and X, refer to the definitions in Chapter
3.

Solving the above equations in the time domain, the heave and pitch time-history

of the boat in seaway can be predicted by the numerical integration.



113
4.2.4 Boat impact velocity in waves

The wetted length L(7) at any time can be found using the same condition (3.97)

asin Chapter 3:

Hoo =175(t) = (ap +775 (1)) CL(Y) + Y, (0) = £, (L,1) (4.92)

The transient draft at any section can be solved by the same equation (3.98):

Y. (Xt)=(a,+n;) X+y,0) -y, (x)+{,(L=-x1t)-,(L,1) (4.93)

In seakeeping, at each time step a complete x— problem will be solved. The
sectional impact velocity at each time will be needed to find the solution of the x-—
problem by using the slender body impact theory, refer to Fig. 6.1 of chapter 6 for the
solution procedure. The section impact velocity in waves of the 2" order theory is (refer

to (3.105):

Ve (X,1) = @ = Yy
= (Y (X) = Yyo) +775(t) =135 (t) =175 A= &)L ()
—(a, +1s®) QL= E)L(t) - y', ()& OL(L)
+{, (L=xt)+", (L-xt)[1-A-&)L)]

(4.94)
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This chapter has systematically introduced the second order extension to the

Vorus first order nonlinear theory. The numerical models and the solution procedures for

both theories will be given in following chapters.
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CHAPTER 5

NUMERICAL MODELS

The first and second order theoretical models for planing catamarans have been
described in previous chapters. These two formulations are solved by numerically
executing the semi-analytic solutions developed. In this chapter, we concentrate on the
descriptions of the numerical discretization models for both methods in the steady calm-
water planing case. In next chapter, the time marching solution procedures for seakeeping
are covered.

As shown in section 2.7 of Chapter 2 on steady planing, the non-dimensional
variables X and 7 areidentical (refer to (2.3)), so that the steady planing solution can be
constructed directly from the time dependent impact solution. Thus the solution of steady
planing must be numerically stepped forward in the impact time space from the initial
condition at 7, in discrete steps to 7; (i =1---,n) in satisfying the three genera
continuity conditions on velocity, pressure, and the displacement (see Chapter 3 and 4).

We first review the numerical model of the 1% order theory, and then proceed to

the 2" order theory.
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5.1 First Order Numerical Model

The system solution equations of the 1% order theory consist of the velocity Kutta
conditions (3.14) and (3.15) (or equivalently (3.28) and (3.32)), the displacement
continuity condition (3.44), and the pressure continuity conditions (3.54) to (3.56). The
discrete formulations of these system equations for use in the numerical forward time

integration in the impact-time space are as follows.

5.1.1 Numerical analysis of 1% order velocity continuity equations

Discretize the segment of the keel free vortex y_ ({,7) sheet (refer to Fig. 2.6) in
theregion b™ <{ <1 into N, () elements at each impact-time step 7, , and the segment
of the Zz -side hull free vortex y.({,7) sheet z; <{ <b" into N/(7)elements.
Subscript i represents the impact-time step 7, here.

In discrete notation, the velocity continuity conditions of (3.28) and (3.32) can be

written as:

= —z[E(k) - F(K)]
( +£ 12

: F(k)zysj(r) j

c —5 /2

e 12 2,2 h 1 (51
ZVS](T)[]- A\ (gzj,k)] I Z Zg dZO w enZ ( )

{i-€j12 _Zo
(+£ 12 2 _
¢,

Zys,m[l Aoles, K | °dZo

( 8/2 ZO
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Vid

Z




where F(K),

~2,[E(K) ‘?12F(k)]

C
Z,+€,/2

Z; F(k)ZyS](T) j Z
{j-€gjl27¢ Z
{j+ej12
Zys,(r)[l (e \K] [ ZZO
{i-€l2

( +£ 12 Z 2 _
zys,(r)[l A (es\k)] j e

_11-
T

— %04z,
0

dZ,
0

dZO

when { - z,

(5.2)
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E(k) are the complete elliptic integrals of the first and second kind

respectively (refer to Gradshteyn and Ryzhik, 1965), k, &,, &, A\, are al defined in

Chapter 3 (refer to (3.23) - (3.27)).

In the above equations, ¢; and ¢ (=1,

N or N.") represent the discrete node

positions on the keel and the side hull free vortex sheets, respectively. &; and £j+ stand

for the numerical grid length on the keel and the side-hull sheet, respectively.

The semi-analytical form of the discrete integrals in the above equations can be

found by the mathematical reduction (refer to Vorus 1996). The final semi-analytical

forms are given below:

13]

1j —

{f+efi2

<o

((; +e12)?-1

dd, ——|n(52 D

{i+efl2
=In
{i-€12

'[/252 B

+£ /12 u2_22
=4qu < -z E(ut
j ZO { u2 -1 C (/’1 )}

{r-€i2 Zo _1

({5

ut

u

+ 2
—&£/12)°-1

(5.3)

(5.4)
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et -z E(,u,t)+u1/u} (5.5)
zC u- -1

u"

Z] +£]/2
231 - j 0 =

Zj—e /12

2 _ 2
In the above expressions, u =arcsin uu2_21° , u susu', u"={;+¢/2,
- . s 1
u =d4; -¢ /2,t:Z—. And,
(J+sj‘/2 22 —Z
Loy = [ [ =—%-dd, = Z[E@] ) -~ E@; )] (5.6)
¢7-€712 1_50
{T+E 12 > - — 5
b 1 {j+eTi2 z.-({; +& 12)
Iy = J' o —dd, = Eln(z -2 ) o =- In\/ 5 R > (5.7)
5 s/zzc Z Zc_(Zj _‘9,'/2)
jrejl2 2 -1 A
|2 = .[ dZo :{Z E@®, t)_ F(ﬂ,t)} (5.8)
-£;12 c A

g &
In the above expressions, 7] =arcsin({; +7’), n; =acsn({; —7’), n =arcsin(A),

ASASA, A=+ 12, X =( -¢/12, t:i. Again F(n,t), E(@/.1),
z

J
C

E@; 1), E(u,t) and E(7,t) in above formula are the Elliptic integrals of the first kind
and the second kind, respectively.
Substituting (5.3) - (5.8) into (5.1) and (5.2) to simplify the numerical expression

of the velocity continuity equations, there results:



0=-z[E(k)- F(k)]

112
T oz

C

c F(k)ZysJ (1) Oy
_%Z y;] (T)[l_/\o(gzl ’k)] l:|12j

18,
_EZ Ve (DI1=No (&5, K] Oy
e

0= -2 [EK) - F (K]

2
C

_11- z?
m

Hmzmxnum

C

_%Zy;'j (1= No (e, \ K)o

18 .
_Ezy&j (D= Ao (£5\K)] O
j=1

Represent (5.9) and (5.10) in a compacted-matrix form,

ZIER) = F(KT = 215, (DXCyy + 313, (DXC

2 [E0) -2 )= X 1%, ()C,

C

where the matrix coefficients are,

1
Cin= _5[1_/\0(‘92,]‘ K] % |12j

.11

- _%[1—/\0(52,]. KX Z[E@; 1) - E@7; )]

N
+Zyg,j (1) xC, »
=

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Cj,lz = -_

- _ C
Cj,21 -

C

i

11-2

m Z

C

1
F (k) x lllj _5[1_/\0(53,1 k)] % |131

( +e 12?7 -1

C

2
__11-% F(k)XIn\/
T Z

_%[1_/\0(‘93,1' k)] x{u

11-272

m Z

C

(( -e12?%-1

u+
2 2

u Z
¥ : -ZCE(ﬂ,t)}

u

1
F (k) x |21j _E[l_/\o(‘gz \k)] = |22j

11-27

m Z

C

—%H—AJ%\MV{A

F (0 xIn zc2 —(Zj: +£i/2)2
22~ ~£12)

E(7.1) -

z? -1 v
~—F (n,t)}
z, .

1
2= _5[1_/\0(53 \ k)] X |231

_ 1. §
= JlAA%wn{z

72 -1

C

F(ut) - 2, E(u,t) +

2 _ 2
C

u’-1

i

ut

u

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

In the above expressions, 77, 77;, g, u",u ,n, A", A~ aredefined as before.
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The unknowns in (5.11) and (5.12) at any time step | are Ven- (r,) and ye (7)),

which are the first separated elements at 7, at the keel and at the side-hull jet separation

points, respectively. Therefore we may separate the unknowns, and group the known

terms together. The known terms are:

R = 2[E() = F(K)] = 45, (1) [Ty =24, (T, (519)
R, = Z[E0) = F (1= XV ()T, = X1 (0C, (520)

The system equations are now reduced to the following:

Vsn: (T)CN; at Veu(N €, =R, (5.21)

Vsn: (T)CN;,21 Ve = R, (5.22)

Define the determinant,

A=C, [T, -C, ,, Ty, (5.23)

Ny ,21

The solutions for the unknown y’s are then:

Rl [Cl,zz - Rz ECl,lz
A

Vo (1) = (5.24)
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CN;,11 R, - CN;,zl R
A

(5.25)

y;,l(z-i )=

Therefore, based on the vortex distribution of the previous time steps, the vortex strength

of the element shed at a new time step is solved by Eq.(5.24) and Eq.(5.25), which can be
viewed as eliminating the unknown jet separation velocity V."(r), V,"(7) (or V.(L7),
V,(0,7) inthe s coordinate system of Fig. 3.3. It is based on the following relation of the

line vortex strength y({,7) and the contour tangentia velocity V,({,7) (refer to (4.3)):

VL(¢.1) = =2 ¢ +V(@)sin ) (5.26)

5.1.2 Numerical model of 1% order displacement continuity condition

In the numerical model of the 1% order displacement continuity condition, CatSea
has used a new coordinate transformation as shown in Fig. 5.1. In this R coordinate

system, the transverse ¢ — coordinate has been normalized by the keel side jet head
coordinate b~ . The hull side jet head coordinate now is defined as e=b*/b™ , the kedl jet
head now isa R =1, the keel isat 1/b~, and the jet-head separation location is z_ /b~ .

This R coordinate system is used specialy for the derivation of the semi-analytic form of
the integral transformation in the displacement continuity equation.

Fig. 5.1 shows the reationship of the (-, s— and R- coordinate

transformations.
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s
|1 L,
s O 1 s
R

|1 || >

1 Z
0 1 — < e

b~ b~

Fig. 5.1 R coordinate system

In this R — coordinate system, the displacement continuity condition will become

(refer to (3.44)):

(Y, ttanp)d,-b OQanpd, =0 (5.27)

where theintegralsin (5.27) are as following,

e 1
|, = . ———-d{, 5.28
ZOJ%)( (O CRITY &%)

e ZO
I, = ; ———-4¢, 5.29
ZOJ%)( (O CRITY &2

In another form, the displacement continuity condition in (5.27) can be written as:
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Y, =tan 3 a(w (5.30)

To calculate Eq. (5.30), the semi-analytical form of the integral terms |, and 1,

need to be developed. The kernel functionin |, and 1, is(refer to (3.42)):

1

X Q) =ee———— (5.31)
J@2-))(0)*-7?)

In the coordinate system of Fig. 5.1, the kernel function becomes,

. 1

X (o) =——= a (5:32)
V@ -DE -4)

Substituting (5.32) into theintegral I, in (5.28),

l, = j Lo L, (5.33)

(o:}/- € _ZO

After careful integral transform and mathematical reduction, the easily calculated semi-
analytical form of the integral 1, can be found in an éliptic function form (refer to

Gradshteyn and Ryzhik, 1965, p277.12):
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|1=eEE(A,q>—§EF(A,q> (5.3

2 _ -\2 [@2 —
€ 2(]/b )_, q= € 1, E(A,q) is the dliptic integra of the
e

where A =arcsin
e -1

second kind, F(A,q) isthedliptic integral of the first kind.

Similarly substituting the kernel function in (5.32) into 1,

L= [ ¢ ef‘)_;lzdzo (5.35)
zoz%, 0

In 1,, make a variable transformation, t:ZOZ, then make the following variable

transformationsin order: s=€e”*-t, s, =(b")*[8, s, :ﬁzl, and s, =sin® 4. After

these step transformations, 1, will have the following form:

72
l, =2aj J1-Bsin? 6 [tos6 [H6 (5.36)
0

+2

1 1 2 2 2 b -1
where, g ==3—— b* -D(b™ -b , B=—.
38 q/(b*” -1)( ) =

Then follows the integral in Gradshteyn and Ryzhik (1965, p158.3), an easy-

calculated semi-analytical form of |, isfound as:



126

o
ey X ()€ =45")

o
1
—o

d¢,
(5.37)

+2

_1 1 +2_ _ -2 +2_ -2 i —_1
_Eg(b‘—)zm\/(b D@A-b" ) +(b" —b )arcsin b+2_b_2]

5.1.3 Numerical model of 1% order pressure continuity condition

The relations that must be satisfied for zero pressure on the jet-head and free-
surface are in (3.54), (3.55) and (3.56), with the vortex sheet distribution in (3.58) and
(3.59).

With zero gravity, Euler’s equations (3.58) and (3.59) require that for fluid
particles flowing from the sectional contour, onto the free vortex sheet, and out the jet,
the velocity of each particle stays constant at its separation values at z, (') or z.(7') for
al time 7 > 1" thereafter. The solution to (3.58) and (3.59) can be developed in terms of
the Galaen transformation of the initial and boundary conditions (refer to Chapter 10 and
Vorus 1996 for details).

In the s coordinate system in Fig. 3.3, at the hull jet-head region 1< s<s*(7),
this solution gives the particle position on the free vortex sheet motion as S, whose

velocity isV,(5,7), as:

Vs(sla TO)(T B Z-0) + S'[Zc (To) =
z.(1)-1

§(s,7) = 1<s'<s'(r,), 727, (5.38)

§(r,1') = Vs (@ T')(TZ_ (TT; tgzc (') -1 T271271, (5.39)
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where 7 is current time stamp, §(s',7) and $(r,7") stand for the current particle position.

T, isthetime at which the particle was shed, where V (s',7,) in 1< s'< s™(r,) isknown
from the initial condition. 7' is areferencetime at separation. For any 7'<7, V(L 7") (jet
velocity at the separation point z.) in (5.39), is always known from previous time step

computations.

There are two important points to keep in mind. One is that at the current time
step, with 7'=7, §(r,7') =1, the jet velocity V (L,7) is an unknown (refer to the
discussion for the velocity continuity conditions in section 5.1.1). Another is that from
the pressure continuity conditionsin (3.54), (3.55) and (3.56), it is easy to see that the jet-
head velocity is always less than the jet velocity of the particle at the jet-head position.
That is, s"(r) < §s'(z,),7] for dl 7=1,. Thisimplies that the outward motion of the
jet-head lags behind that of all the particles in the jet which have been overlaid with it at
previous times.

Similarly, at the keel jet-head s” <s<O0 in Fig. 3.3, the free vortex particle

positions are:

8(s,1) = Vs(S,70)(T = 10) s (r,)<s<0,7r>7, (5.40)
Z, (T) -1

(r,r') = Vo)~ 7) T=271'27, (5.41)
z(r)-1

where V,(0,7") isthejet velocity at the keel z, .
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At each current discrete time 7, the free vortex strength distribution has to be

constructed as depicted in Fig. 5.2 (here, for example, is shown only the outboard jet-
head region of 1< s<s'(r), refer to Vorus, 1996). This distribution is first constructed

for al particle positions at 7; =01,---,i —=1. The jet velocities V (L,7;), j <iare known

for al previous times. The particle position §(z;,7,), j <i can be found from (5.39).

Vi(s,Ti) A
V (s'(1;). 1)) V. (L 7,) =V (s"(7,),7p)

var) i
V.(L72,) ///i’// E E
Vs (:L Z-i ) Vs (:L Z-i —1) —————— ’ i i i
- — 1 ! ! !

! i i | L,

S(r;, 1) =1 §;,1,) S(1,,7,,) S(ri,r,)  S(1,7,)  8(s'(7,),7))

s'()

Fig. 5.2 Free vortex distribution

The jet-head free vortex sheet is then overlaid on the particle velocity distribution

in Fig. 5.2 to determine the distribution of the sheet vortex strength at current time 7, ,
exclusive of that at the separation point §=1. However, the jet-head offset s™(7;) itself
is an unknown at current time 7, , and it must be determined by the iteration in satisfying

the condition of Figure 5.2. The other unknown in Fig. 5.2 is the jet velocity V. (L,7,); it
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must be determined in conjunction with satisfying the velocity continuity condition in

(5.25).

So=1 S .
! ! ! 1N -1 S. N - SI
Ve (Ti) ys+,i1 y;i,Nr—l i y:,i,Ni+
— S — P —
As, ASi,N-*—l ASI Ny

Fig. 5.3 Free vortex sheet discretization

The discretizing structure of the free vortex sheet can be conceptually constructed

asin Fig. 5.3. In Fig. 5.3, for example, y;, j =1---,N;" are the piecewise constant free

vortex strengths at the segments of length As ., evaluated at the s . and averaged to

g Ny

apply at the segment midpoints. The s ; coordinate are distributed along the free-sheet
segment of Fig. 5.2 from s, =1to S\ = s*(r;) . A new segment is added to the front

of sheet in each time step (refer to Vorus 1996).
The pressure continuity condition in (3.54) and (3.55) then can be applied to the
above free vortex sheet structure. For example, in the chine-unwetted phase, at the hull

side, the jet head offset from,

Vsz(5+ (Ti)lz-i) -1

b/ (r,) = N (s*(1,),1)

at s=s'(r,) (5.42)
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The essentia unknowns in this case can be considered to be V,(1,7;) and As,

from Fig. 5.2 and Fig. 5.3, As , isthe segment length added at { =z, (s=1) at the step

7.

In any case, the pressure continuity numerical model, in conjunction with satisfying
the velocity continuity conditions (and the displacement condition in the chine un-wetted

flow phase) will be sufficient to determine these five unknowns V,(0,7;), V,(4,7,), As’;.
As - and z_,

At the keel free vortex sheet in region s” <s<0, the numerical model

description is the same as above, except at the keel z, , the flow is always chine wetted,

and the displacement continuity condition is not required.

5.1.4 Numerical model of the 1* order bounded vortex strength distribution

Ve(d.7)

The contour tangential velocity distribution V ({,7), 1< { < z.(7) is determined
by the associated contour bound vortex distribution y.({,7) (refer to Fig. 2.6, and Eq.
(5.26)). The numerical analysis of the bound vortex distribution y,({,7) is as follows.
The y.({,7) isgiven as(3.10):

V(0.1 = £)((Z){vm[—/\(m

o j Vs€oD) 7ot z LN ORING) on1<¢ <z, (3.10)



131
where A({), N ({,) and A"({,) are the parameter integral terms defined in (3.11) to

(3.13). These integral terms can be transformed into the semi-analytical forms as follows:

JZ-73)(2 -
{

z
L F(k
72 (k) +

N(¢) = z.E(k) - {[E(K)F (&, \ k) - F(K)E(&, \ K)I}

1<{<z (5.43)

71

20,

N (Z5) = Z[E(K) = F(R)] + = (22 = £, ) A= 45" )[1= Ao, V K)]

b <{, <1 (5.44)

N (Zy) = 2E(K) —Zi F(k) -

C 7 Vo2 =D(Z? — 2L N (&5 \K)]

z.<{,<b" (5.45)
where F(k), E(k) are the complete dliptic integrals of the first and second kinds,

respectively, F(¢\k) and E(e\k) are the incomplete dliptic integral of the first and

second kinds, and,

Ny (e\K) = ]—ZT{F(k)E(g\ k') —[F (k) - E(K)]F (g \k')} (5.46)

: 1 1 .z, |2°-1
k=sina = |[1-—, k'=cosa =—, & =acsin— | —5—,
Z; Z, z\z -1

. 1-¢,° . 2-7°

£, = acsin(z, [ ZOZ),e‘S:arcsm ZOZ c .

C_ZO Zo -1
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With these integrals of A({), AN ({,) ad A"({,) expressed in the semi-analytica

forms of (5.43) to (5.46), the bounded vortex strength y.({,7) can be numericaly

computed at each impact-time step.
At this point, we have outlined the numerical model of the 1% order solution. Next
we move to the numerical model of the second order solution, with the same order of

presentation.

5.2 Second Order Numerical Model

The numerical model for the 2" order theory is very similar to that of the 1% order
theory. However, the semi-anaytic solutions are different, resulting in very different
numerical analysis. In the 1% order theory, the solution formulation is expressed in terms
of elliptic integrals. In the 2™ order theory the solution is in terms of hypergeometric

function and Beta functions (see examplesin (4.29) to (4.31)).

5.2.1 Numerical analysis of 2™ order velocity continuity equations

The Kutta conditions, via the kinematic boundary condition, provide two velocity

continuity equations (Eq. (4.26) and Eq. (4.27)):

0={-c08" BIV(D)IND + [ Va(¢0, D) o2 2N ({o) ~ADIHC,
lTb_ Z 0o—1

N Z 7 -1 (4.20)
Pl G g @
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zzi 22 [N ({,) =N (z)]d¢,

7 -z (427)

C

0={cos’ BVD-AZ)]+= [ V(o)
. {

+_ij(ZO z’) [/\ (Zo) /\(Z )]dZo}

The fundamental integral terms A({), A ({,) —A({) and A" ({,) —A({) in Eq.

(4.26) and Eq. (4.27) are derived in an analytical form developed in Appendix H, which

consists of Beta functions and hypergeometric functions. The main results are listed here:

N @) -N)= 2@ ¢ LB BE-8 LBy 1By =

2 T2 Z

C C

N | =

——(Zo —Dx Z\/fiﬂ/\sj(fo) N'34({)]
+§(Z —1)(z2 -{%)x Z\/, (Al ()
1s{<z,b <{,<1,1<t, <z (547)

) IF(

1_F
T

SHESY

_——
ﬁ;l'z° 1)
T

Z2

C

N

N (Z3)-AN(Q) = %(zoz —ZZ) B(; %+ %—

L2 sz— 3,j41 AN
_E(ZC ZO) Z\/?EBA e (ZO) A J(ZO)]

ISRV

1,,,
5K« D(zg -¢%)x Z\/— (A5 (<)

1s{<z,2,s{,<b", 1<t, <z} (548)
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no-us-2 3 By - B
1 o opt 1_21 Bypll B,21
+2(Z Z; 1)Z EB(2 > 77) (2,2 ”’1, = )

@ E Y

1<{<z

C

(5.49)

where B(u,v) and F(a, B;y; z) are the Beta and Hypergeometric functions (refer to the
section 8.38 and 9.10 of Gradshteyn and Ryzhik (1965)).

The domain of the integral Al ({) in the above equations has different values
according to the variation of the variable ¢ (refer to (4.32) to (4.37)). To simplify the

expression of the above equations define:

1 81 B
B,=B=-2,=+2 5.50
0 =BG o) (5.50)
11 B, z2-1
F,=F(-=,=-2;1%= 5.51
11 ( 2 2 77_1' 23 ) ( )
11 B, 72-1
F,=F(=,=-£1= 5.52
12 (2 2 n_l' Zs ) ( )
L1
F21=Z—t_ QA5 = N'ajs) (5.53)
j=1

L
1
Fy, = Z—t QA s = Asj) (5.54)
Vi



135
Based on these notations, Eq.(5.47) to EQ.(5.49) can be expressed in the following

form:

1
N = Z (B, [k, +— (Zz _1)_D311 (F,

C

_E(Z —D(z2 -{%)x Z\/, (A5 (<)

1< <z (5.55)

A (Z)-NQ) = %(ioz —ZZ)Zi B, [F,,
—%(502 1) xFyy(Z,)

1 2_
+§(Z D(z2 -4%)x Z\/— [Al,; (<)
1s{<z,b <{,<1,1<t, <z (556)
" 1 2 2\ 1
A (Zo)_A(Z)ZE(Zo -{ )Z_EBllEFlZ

_%(Zc2 _Zoz)x Fzz((o)

1 .,
5K« D(z -¢%)x z\/, (Al (<)

1s{<z, 2z s{,sb", 1<t, <z (557)

Recall in Chapter 4, we have introduced that the solution domain for the kinematic
boundary condition is 1< { <z, (refer to Fig. 2.5), and there are two singular points at
{=1and { =z,.When { =1 or { =z, wherex({) — . Therefore, in the derivation
of the velocity continuity conditions (refer to Eqg. (4.26) and EqQ. (4.27)), we set that

{ -1, { - (z.) and require that the unbounded terms disappear.
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For { - 1", in the numerical formula of the integral Al 5 ({) 72 <t,, thusthe

case 2 formulation applies (refer to (4.34), (4.35) and (5.55)):

1 1 1
AD = EZC By, [Fy, +§(_Zc2)z_ (B, [F,
L ¢ (5.58)
= EZC |:Bn [ﬂFn - I:12]

For ¢ - (z.), in the numerical formula of the integral Al,;({), ’? >t,,,, the

case 1 formulation applies (refer to (5.55), (4.32) and (4.33)):

1 1 1
N(z.) = EZC (B, [Fy +§(_1)Z_EB11 (Fy,
¢ 5.59
B 1 (5.59)
_E 11(Zc EI:11 _Z_EFlz)

C

Therefore, from (5.56) and (5.57),

NG AD =20 - By (07 -DxFul@) b7 4,51 (560)

C

N (o) -Az.) = %(502 —zf)zi B, [F, —%(502 “DxF,({;) b <<l (561)

C

NG =AD =2 (" =D~ By Py =5 (2 0% Fully) 254, 5D (562

C

N (Zo)-Nz.) = %(zoz - zf)zi

C

1 +
EBll [FlZ _E(Zs _Zoz)x Fzz(Zo) Z, SZO <b (5-63)
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Substituting the above integral expressions into the velocity continuity equations in

Eq.(4.26) and Eq.(4.27), the following system of equations is obtained:

0= -cos’ BIV(7) B];Zc [B,, F;, — Fpl

1 1
tS B EFIZEI Vs ($o:7)¢ 00,

= ﬁm 12010, TFa(€0) 1C, (-1 (564)

2|

B, F, Dj Vs(6.1)¢0d,

+
=||H N

noH-=

‘“'—'U ONFH

% (zo.n ()P0,

1
0= -cos® BV(7) G]‘- By, Oz, [Fy T, [Fp, ]

C

11
772

1#Dj ot 55 Lo (€ DR (C)ed,

|:Bll |:':12 DJ. yS (ZO’ Z—)ZOdZO

¢ - z.(5.65)

1 1

57 B Dj V5({0,1)¢odd,

21

+ —= D.[ Vs ({0, 1) F({0)dd,

Discretization Eq.(5.64) and Eq. (5.65), the following two equations for satisfying

the velocity continuity conditions results:
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cos’ LV(r) % [z, (B, F, - F,] =

1 1 N 1.1 . _
_%G_Fu[BllEE:VS,I'(T)Dll__D]:EEys,j(T)D:zl(Zj)Dn
Zc i1 m 2 j=1

T

111 v 1155 . .
+_B]_- F12[BllEE:ys,j(T)Dzl+_B]‘-EE‘,VS,](T)D:22(Z1)[D21_(Z§_1)|22]
7T 2 ZC j:]_ 7T 2 j:l

(5.66)
1
cos® BIV(r) G;‘ B[z, [Fy _Z_EFlZ] =
1 1 A 1185 }
_D];B_Flz EBll @ys,j (T) Dll __B]:@ys,j (T) X F21(Zj ) [ﬂln + (Zf _1) DlZ]
T2z = m 23
111 . 11 .
+7_TD;_EIZ_CEBM EF12 %y&j (T) EI21 +]_T%%ys,j (T) X FZZ(ZJ’ )m21
(5.67)
where (referring to (5.3) to (5.8) for 1% order theory),
i L Eiye e _Eiy
j zodzo = [(Z,» +) = =) (5.68)
i~
P &
it L 22— ({7 +21)?
= %d(ozlm(z -7 )|' 2 =In L2 (5.69)
et S0 _Zc 2 S 2 - ‘gj 2
G- 2 z; = (¢; -7)
(r+7 gj+ 2 + €i+ 2
= | $0d¢, = [(Z +) = =) (5.70)
o
+ £+
ZI+? Zo 2 Zf"i (ZJ +7l)2 -t
= | 7000 = In(zo -n[" 2 =In - (5.71)
7=

i T + 2y
2 (ZJ _?])2 -1

.71
)
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Define the following coefficients in the above equations to simplify the

expressions (refer to (5.13) to (5.16) for 1% order theory):

ct :%D;—E—Izltﬁz [Bnun—]—1T%EF21(Z;)E|11 (5.72)
C? :%B;—GZ%FR B,0, +71T%[F22((;)[|21 —(Z2 =Dl ,] (5.73)
c* =717 b le—cFlz B, 0, —%B;—EFH(Z;)[QIH +(z2-10,,] (5.74)
cz =7—17%921—CEBH F, u21+%%522(z;)[121 (5.75)

Comparing the coefficients in (5.72) to (5.75) with the corresponding coefficients
of (5.13) to (5.16) in 1% order numerical models, it is shown that these coefficients play
the same roles in the numerical models, but with different numerical evaluations.

The two coupled equations are then expressed as follows (refer to (5.11) and
(5.12)),

NS N
cos? BIV(7) % 2, (B, IF, - F,] = Y ys (DT + Y 2 (1) [C2 (5.76)
=1 =1

j=

cos’ BIV(7) G;‘ [By[z, [Fy _Zi

C

N Ny
[F,] :Zyg,j(r) [CjZl"'zy;j(T[ICjzz (5.77)
j=1 j=1
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The unknowns at any time step i will be Ven- (r;) and yg,(7;) as described in

the 1% order solution. Separating the unknowns, and grouping the known terms together

gives the corresponding equations of the 1% order solution ((5.19) and (5.20)):

N1 N
R, = cos’ V(1) %ch By, IF, —Fpl- Y p5, (T -3y ()T (578)
j=1 j=2

1 N N .
R, = cos’ BIV(7) % Bulz, Fu = Rl = X ye, (OCF -2 05,07 (679
]= 1=

C

The system equations in the compact form for the 1% order solution are (refer to (5.21),

(5.22)):
Vo (DC +ra:(D " =R (5.80)
Von- (DCY 16, (D =R, (5.81)

Proceeding as in the 1% order case, define the determinant from (5.80) and (5.81):

A=Cyl [T -Cl [T (5.82)

The solutions of the unknowns are therefore again (refer to (5.24), (5.25)):

2 _ 12
Vo ()=t (589)
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Cl R, -CE R
A

y;,l (r,)= (5.84)

Therefore, based on the velocity continuity conditions and the vortex distribution of the
previous time step, the vortex element strengths shed at a new time are from Eq.(5.83)
and Eq.(5.84).

Comparing the above numerical model of the velocity continuity conditions with
the numerical model in the 1% order theory, it is seen that equations are of the identical

final form, but the coefficients of the equations are different in detail.

5.2.2 Numerical model of displacement continuity equations

The displacement continuity equation derived in Eq. (4.58) is:

0=(Y, +tanB) 0, —tan B0, (4.58)

The displacement continuity condition is readily computed numerically when the integral

terms |, and 1, are known. The semi-analytic form of the integrals 1, and I, can be
derived mathematically. For the variable transformation of the integral 1, in (4.56), we
first set the variable transformation t = ¢'2, then define the new variable transformation
x=t—-(b7)?, and finally use the integral formulain Gradshteyn and Ryzhik (1965, p287,

83.197.8). The integral |1, has the following analytical form; refer to Appendix B for

details;
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L«
o X (O =7?) (5.85)
1O =) gl B3, B e 13,8, 0=
2 b 2 m'2 w22 o (b™)?
where B(E _k § + ﬁ) isthe Beta function, and,
2 m2 o
2|:l(1;§+£;2;_—(b+)2 j(f)_)z) = F(E;§+£;2;——(b+)2 j(zb_)z) is Gauss
2'2 7 (b)) 22 (b”)

hypergeometric function.
Gradshteyn and Ryzhik (1965) provides an integral transformation for the

hypergeometric function:
_,, z
Fla.B8.y,2)=(1-2) F(a,y—ﬂ,%z) (5.86)

Applying Eq. (5.86) to (5.85), the integration |, has the following easily computable

semi-analytical form:

) (5.87)

Similarly theintegral |, hasthe semi-analytical form (refer to Appendix B):
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4 m(
& X (b -¢?) . (5.88)
+£)
T

L_.U'

——(b+2 = (b7)*) B(

I\Jll—‘
tll‘m
I\Jloo

Again, comparing the displacement conditions in the 2" order model with that in
the 1% order, it is shown that the displacement continuity equations are of the same form,
but the expressions of the integrals I, and |, (refer to (5.34), (5.37) and (5.87), (5.88))

are functionally different.

5.2.3 Numerical model of pressure continuity eguations

The pressure continuity equations are derived in Eq. (4.59), Eq. (4.60) and Eq.
(4.61) for the steady planning problem. In steady planing, the numerical model of the
pressure continuity conditions for the 2™ order theory is the same as that for the 1% order
theory. To avoid redundancy, we just refer to the numerical model in the 1% order theory

in the Section 5.1.3.

5.2.4 Numerical model of bound vortex distribution y, ({,7)

The bound vortex distribution y_({,7) representation in Eq.(4.20) has two terms:

the normal component in Eqg. (4.21) and the singular component in Eg. (4.22). Since the

singularity has been removed from the singular component in Eq. (4.22) by the velocity
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continuity requirements, we call the component in Eq. (4.22) the de-singular term from

now on.

5.2.4.1 Computation of the y, .., ({,7) term

Discretizing the integrals of the normal term in (4.21), the segment of the free jet
region b™ < {, <1 isdivided into N, (7) elements at different times 7, as described in
the Section 5.1.3. Similarly, the segment of the region of z, <{, <b" is divided into
N."(7) elements.

Therefore, the normal term of the bound vortex will be:

Ve roma (¢27) = —28in B cos B cos? BV (1)

+29‘nEcosE}T Dzzv (i,1)3,(7.0) (5.89)

+Zsinﬁcos,E%DiZ\/;(i,T)Jzz(Zf,Z)

where V. ({,7) and V. ({,7) are the jet velocities, distributed on the free sheets

according to Fig. 5.2 and Fig. 5.3, andthe J;; (i, ] =12) coefficients are defined as the

integrals appearing in (4.21):

5 I 2 _ -2

r ZO ¢ ZO _ Z _Zjﬂ_
J,= [ 22 d¢, = - [ s2—d¢, =In [—L (5.90)

KR R N
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(i + 2 2
. ZO 1 ZJ +1 Zj+1 - Z
J, = d¢, = 2In@s =<7 =In 15— (5.91)
ZJ; ZOZ _ZZ 2 ZJ+2 _Zz
5.2.4.2 Computation of the V. ¢, g (¢ 7) term

It is convenient to represent the de-singular term in (4.22) as the sum of three

individual terms.

yc,dis—singular (Z’ T) = y((:) (Zi T) + yc_ (Za T) + yc+ (Za T) (592)

where

YE1) =2 (&) cos® Beos® IV (DI-A)] (5.99)
(@0 =2 08 FX(0) Ej oo N 72 0N () ~AQ) (59
yi(¢.1)= —cos BX(Q) Dj Vo) 7z 27 Zz dZ[A"({)=A)]  (5.95)

where the integral terms A({), A ({,) —A({) and A" ({,) —-A({) aregivenin (5.47),

(5.48) and (5.49).
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The above integrals in (5.93), (5.94) and (5.95) can be analytically transformed to

the following easily-computed forms in terms of standard special functions. The details

arein Appendix E.

The y2(Z,1) hasfollowing form:

2

V(¢.1) = == x({) cos® f3 (tos® BV (1) [z, [By, [F,
- % X({)cos? B kos? BIV(r) (% - 22 —1)2i B, [F, (5.96)

C

+ 2 Y(¢yc0s* Boos? fIV() G712 ~¢7)x ii D, ()

j=1

where B, , F,, Fy,, Al;; definedin Section 5.2.1.
Substituting the definite integrals in Eq. (5.56) into the equation of y_ ({,7),

(5.94), yields the numerical formulaof y_ ({,7):

Z N (1)

y. ({,1) = _77'2 cos’ IBD((Z) G_EBll [k, DZZW (1,7) LDy, (1)
N (1)
+ 2 cos? B (€)Y 03, 2196 (1) X Fa(€) 1,0 + (2 =D, 0)
2 Ni (1)

2 008 BIX(O) UC? - 1)(2

- Bl (§) Y2095 (1) D)

mz(

1< <z, (5.97)
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where B,;, Fj,, F, and Al,; definedin Section 5.2.1, theintegral J,, defined in (5.90)

and theintegral J,;, termis,
i 1

Jll(Zi_) - I ZOdZo =§[(Zi11)2 - (Zi_)z] (5.98)
o

Similarly, numerically discretizing the equation of y.({,7) in Eq. (5.95) yields

the numerica formulaof y; ({,7):

]272( cos? ﬁ x({) EI— EB11 [F, DNZ(‘?ZW/ (i,7) 00, (1)

2 N ()

+ 2% cos BN D, 2005 (.0) % P (€1) 19,00 + (22 =€) 0]

2( 2 _ N + /; H
n2003 B -2 - %)% Z\/f |3,j(Z)DiZ:1:2Ws(I,T)DJ22(I)

ve({,r)=-

1< <z, (5.99)

where B, F,, F and Al,; are defined in Section 5.2.1, the integral J,, defined in

(5.91), and theintegral J,, termis,

on
1€ = [ 4oy =51¢0) - (€)1) (5,100
I
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To this point, the most important formulations for the 1% and 2™ order in the

steady planing have been given. The numerical model for dynamics in waves
(seakeeping) uses the basic elements of the steady planing solution as an inner loop in the
time integration (refer to discussion in section 3.2 of Chapter 3). The algorithm for the
multi-step time marching for both the 1% and 2" order seakeeping dynamics models is

covered in the next chapter.
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CHAPTER 6

TIME DOMAIN NUMERICAL SOLUTION

6.1 Solution Procedures

The time domain solution leading to a steady planning is also included as the case
of zero wave height in the solution procedure for seaway dynamics. The dynamics
solution has only the additional multi-time marching loops. Therefore, instead of
explaining both, we concentrate on the solution procedure for seakeeping dynamics in
this chapter, which uses the numerical procedures of the last chapter in x— problem in
the time marching steps. The solution procedure is the same for both the 1¥ and the 2™
order models, other than in details.

The data flow of the solution procedure is listed in the following "NewCat2-4"
flow chart (see Fig. 6.1), which is the same as in the original 1% order CatSea2-4a code.
The system solution is carried-out numerically in a time-marching, multiple-nested
iteration of the semi-analytic solution formulae (see Chapter 5). Generally, the following
steps are executed (refer to Fig. 6.1):

Step 1: Start at the time step loop 7 =17,, where 7 is the non-dimensional time,

the time step index IALL=0,12,---,N,, N; isthe tota time step number. At each time

step, repeat the following steps (refer to the box 5in Fig. 6.1).
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Step 2: Start the vessel loop (the main body and the transverse steps); index

MHUL =1,23,---,N,,,,. - For each hull/segment between any transverse steps, repeat the
following steps and then go to Step 9 (refer to the box 7 in Fig. 6.1).

Step 3: Find the transient wetted length L(7) or, X, (7) a each time step (refer
to the box 10 in Fig. 6.1). The numerical algorithm may refer to (3.97), (4.92) and

Appendix |. This step is searching for the point where the sectional draft Y, (x,,7) =0

(refer to Fig. 3.8); the correspondent vessel water line length will then be the wetted
length L(7) = X,,.

Step 4. Set up the initial parameters or the initia condition of the entry section
(see Vorus (1996) and refer to box 11 and 12 in Fig. 6.1).

Step 5: Set the x-— section discretization along the length in the index
i=12,---,M (refer to the box 13 in Fig. 6.1). As described in Chapter 3 and Chapter 4,
the x— problem is computed at each time step as in steady planing, but with the
additional velocities and displacements associated with the craft motion and the sea
waves. This uses the same time dependent impact solution; the numerical formulae have
been given in Chapter 5.

Step 6: At each x —section, iterate to solve the system equations, (refer to Chapter
5 and the box 14 to box 18in Fig. 6.1).

* Interpolate to get the geometry function values; for example, keel camber vy, (X),

average deadrise angle 5,(X), etc., for the specified section x = x; ;
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» Compute the incoming wave field in the seakeeping case (refer to (3.77), (3.79)

and (4.86), (4.87) for details); for the dynamic evolution to steady planing from an
arbitrary initial state the wave elevation will be set to zero;

» Caculate the sectional impact velocity V(x,t) (refer to (3.105) and (4.94));

* Find the solutions for the chine-unwetted flow or the chine-wetted flow. In the
chine-unwetted flow phase, iterate at each x; to find the solution for V| (x),
Vi (X¥), z,(X), z,(X) and z](x), (refer to (5.24), (5.25), (5.27), (3.54), (3.56) for
the 1% order model and (5.83), (5.84), (4.58), (4.59), (4.61) for the 2" order
model). In the chine-wetted flow phase, iterate to find the solution for V,"(x),
Vi (X), z(X), z,(x) (refer to (5.24), (5.25), (3.55), (3.56) for the 1% order

model and (5.83), (5.84), (4.60), (4.61) for the 2" order model);

» Solve for the bound vortex distribution y,({), 1< { < z_, refer to (3.10), (5.43),

(5.44), (5.45) for the 1 order model and (5.89), (5.92) for the 2™ order model;

» Solvefor the tangential velocity on the side-hull:
1 .
V(% {,1) = -EVC(Z,T) +V(x,1)sinB(x,{) (6.1)

 Solve for the pressure distribution C,({) 1<{ <z.. For the 1% order model,
refer to (3.74), (3.75). For the 2" order model, refer to (4.84), (4.85).
» Compute the sectional hydrodynamic lift and drag C, (X) and C, (X) coefficients,

(refer to (3.86)).
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Step 7: At each x —section, repeat Step 6. Then integrate total hydrodynamic lift

force and drag forces along the vessel length appropriately to produce the x-y plane
hydrodynamic forces and moments (refer to the box 19 in Fig. 6.1).

Step 8: Add the aerodynamic force and moment components and the hydrostatic
force and moment components to the hydrodynamic components from step 7 (refer to the
box 20, 21 in Fig. 6.1). The aero-dynamic forces have been predicted from a low-aspect-
ratio wing model representing the cross-over structure connecting the catamaran demi-
hulls.

Step 9: Add the forces and moment components contributed by each hull segment
separated by the transverse steps (refer to the box 20, 21 in Fig. 6.1).

Step 10: Solve the two coupled motion equations (Newton's Law) to find the

heave and the pitch accelerations 7j,(7), 7-(r) (seethe box 22 in Fig. 6.1 and refer to

(3.93) and (3.94) for details).

Step 11: Then perform double time integrations of the accelerations over the Ar,

interval (refer to the box 6 in Fig. 6.1). The first time integral gives the new hull heave

and pitch velocities 77,(7 + Ar;), 1) (7 +Ar,), which become components of the relative
onset velocity distribution for the next time step (refer to (3.105), (4.94) and Appendix 1).
The second time integral gives the displacement 77,(r +Ar;) and n.(r +Ar,) of the
vessel in the wave system at 7 =7, for re-solving the x— problem at the new time,
r =1 +Ar,; refer to (3.95), (4.93) and Appendix I. The artificial damping coefficient

DEPS is involved in the two time integrals. The detail definition of the damping

coefficient and its use in the time integralsis covered in Appendix I.
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Step 12: Marching the time variable one step forward: 7 =7 +Ar, (refer to the

box 5in Fig. 6.1), update the vessel to the new position. Go to Step 2.
Repeatedly executing these steps in a looping procedure gives the time history
record of the motions of a planing catamaran in waves. The first step is always the calm

water at 7, = 0. The waves are then ramped-in according to (3.77) or (3.79).
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6.2 Non-Null and Null Hydrodynamics in the Impact or Extraction Phase

When a planing boat is running at sea, it undergoes relative motions with the
wave system such that any section is either in an impact or extraction state. During the
impact state, the sectiona relative velocity V(x,t) =0 (refer to (3.105)) is directed
downward; the boat experiences positive hull surface pressure and upward lift. During
the extraction phase, the sectional velocity gradient dV/dr <0, and the hull section will
at times be subjected to a downward suction force, such that the flow may detach
depending on the magnitude of the negative gradient, and the direction and magnitude of
V(x,t).

As demonstrated in Vorus(1996), the fluid detachment process under extraction
velocity gradients involves a very rapid "unzipping" on the hull contour from the outside

in corresponding to z.(7r) moving inward toward the keel and ajet velocity of zero. Asa

result, the surface pressure is reduced to zero very soon after the unzipping commences.
The unzipping may commence at a positive impact velocity with a large enough negative
gradient, but the threshold V (x,t) will be near zero and decreasing if still positive. In the
present theory, it is assumed that the unloading of the hull at any x — section occurs
immediately as V(x,t) passes through zero, and not before. Thus we assume that the
extraction phase is a null hydrodynamic process; the sectional hydrodynamic pressure is
taken as zero during extraction.

A numerical example of the null hydrodynamic process and the case where the jet

velocity V" (1) =V,(z.,7) =0 is given in Fig. 15 and Fig. 16 of Vorus (1996) and its
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discussion. There the flow field and the contour pressure distribution in a specified

decreasing impact velocity case are plotted.

Based on Vorus (1996) research results, a non-null hydrodynamics condition has
been posted in the present seakeeping model as follows:

There are three conditions for non-null hydrodynamics at a section:

1) Section must be moving downward (V (x,t) = 0);

2) The zero pressure point, z.(7), must lie above the level of the instantaneous
undisturbed free surface;

3) The jet velocity must be greater than zero, V" (1) =V (z,,7) > 0.

2) and 3) above are both evaluated by satisfying the velocity continuity condition

(KC). Previous impact theory (Vorus 1996) showed that a z.(r) below the surface

occurs when the jet velocity goes to zero; thisis the unzipping case. There, the position of

the inward advancing unzipping point z.(7) is the zero Cp point for the hydrodynamic

pressure, which migrates to the keel very quickly, leaving zero dynamic pressure over the
section, as discussed above. In consideration of hydrostatics, it is assumed, as a
simplification, that the section pressure drops to zero immediately when conditions 1), 2),
and 3) are not met, and gravity fills immediately to the level of the free surface (FS).

Hydrostatic pressure is therefore assumed to still act.

6.3 Solution Procedures for CUW and CW Phases

The non-null solution for the x-section hydrodynamics is now addressed.
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In the 2" order algorithm, there are temporal derivative terms in the pressure

continuity condition (refer to (4.75), (4.76) and (4.78), the pressure distribution (refer to
(4.84) and (4.85)) and Euler’s equation ((4.80) and (4.81)), which make the algorithms
are complicate. For simplicity in the description of the algorithms in this section, only the

1% order agorithm and the 2™ order agorithm without considering the temporal

derivative 9 terms, will be described here. The fully conditions will be treated
r &=const

later in chapter 10.

6.3.1 Solution procedure for CUW phase (1 <M, )

In the chine un-wetted (CUW) case, as developed in Chapter 5, there are five
unknowns: z;,z,,z;,V,",V,, and there are five equations: one displacement continuity
equation (1-DC); two pressure conditions (2-PC); and two velocity continuity conditions
(2-vC).

The data flow of the solution procedure for CUW is depicted in Fig. 6.2, which

occurs when the contour section in the chine un-wetted flow (refer to the box 15 in Fig.

6.1 for the system solution procedure).
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Fig. 6.2 Iteration procedure for the solution of CUW phase

The solution procedure follows as:

Step 1: Assume z, and iterate to solve for z, (refer to the box 1 in Fig. 6.2) by

requiring:

<& (6.2

where the section draft Y,, =Y, (7;) (refer to (3.98)) corresponds with the waterline at

time r, =r,_, +Ar, ,and VM is an iteration of the local section draft from displacement

continuity condition (refer to (3.44) and (4.58)). . In the 2" order model,
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Y, =tanf ('I—2 ~1) (6.3)

where |, |, aredefined in (5.87) and (5.88) which involvethe z, iterate sought.

Step 2: Using the z, obtained from the step 1, calculate V (b",7) by the pressure

continuity (PC) condition (refer to the box 2 in Fig. 6.2). From Eg. (4.75), in the chine

un-wetted case the PC conditioniis;

oy +a-xtop; = V=GR TVED 64)
L 2V (¢,b7,7)

Ignoring the term of b,” for now, as discussed, Eq.(6.4) becomes:

@ xoypy = Ve DD VI 69
L 20V (&,b",7)

Denote B, =(1- xL—LT)b,*, VS =V, (&,b*,7) and solve for the jet velocity from

the above equation (also refer to (3.69)):

V) =B, +,B? +V? (6.6)

Add the stream component to the jet velocity:
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V. =[B, +4/B? +V2]+Vsin A7) (6.7)

Step 3: Assume V, and solve for z, by PC condition in Eq. (3.71), (4.78) (refer

to the box 2 in Fig. 6.2), then return to step 1 for updating z, . Iterate step 1 to step 3 to
convergence.
Step 4: Assume z, , and with theresults of z,, z , and calculatethe V., V. by

the velocity continuity (VC) condition (refer to the box 3 in Fig. 6.2 and (5.24), (5.25),

(5.83), (5.84)). Theiteration error criteriafor the VC condition is:

V
s s <0001 (6.8)
vV

S
+1

where V"' isthetrid iterate value.
Then iterate z; for equality with V" from the step 2.

Step 5: Iterate V. with the guessed value of V, in step 3.

6.3.2 Solution procedure for CW phase (1 > M, )

In Chine Wetted (CW) case, as discussed in Chapter 2, the jet separation point z;

is known and fixed at the chine z.,, therefore there are four unknowns left:
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z,,z, ,Vf ,V; , and correspondently there are four equations: two pressure conditions (2-

PC); and two velocity continuity conditions (2-VC).

The data flow of the solution procedure for CW is depicted in Fig. 6.3.

VS_ Z_
‘ - p ‘b
1. PC condition
> > b —
A
L Vs
| Lo —>
E 2. VC condition
b P \/+
VS
‘ Vo -vof<e
‘ ’\/S+ _VS+| < g

Fig. 6.3 Iteration procedure for the solution of CW phase

The solution procedure is:

Step 1: Assume V., V. and solve for z;, z, by PC conditions (refer to the box
1in Fig. 6.3 and (3.70), (3.71)).

Step 2: With the results of z,, z from step 1, calculate V,", V, by VC

conditions (refer to the box 2 in Fig. 6.3 and (5.83), (584)).
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Step 3: Iterate V., V, obtained from the step 2 for equality with V", V. from

the step 1. Theiteration error criteriaforV," is:

+ +1
VS _VS
+1
S

<0.001 (6.10)

Iterate z, for equality with V, from the step 1, the iteration error criteriafor z,

z, —27,'

Z,

< 0.0001 (6.11)

We have outlined the system solution procedure, the null hydrodynamics and the
non-null hydrodynamics algorithm in this chapter. Till now, we have completed the
instructions of the theoretical and numerical models of the catamaran hydrodynamics for
the 1% order model and the 2™ order model. In next following chapters, we will give the
numerical comparison of calculated results from the 1% order model and the 2™ order

models.
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CHAPTER 7

VALIDATION OF THE NUMERICAL ANALYSISIN THE 2"° ORDER THEORY

Starting from this chapter, we begin to vaidate the numerical model for the 2™
order theory, and to compare the numerical prediction results of the 2™ order theory
(refer to Chapter 4) with the results of the 1% order theory (refer to Chapter 3). The
fundamental parameter integral terms A({), A ({,) and A"({,) (in (3.11), (3.12) and
(3.13) for 1% order model, in (4.23), (4.24) and (4.25) for 2™ order model) have played
an important role in the derivation of the velocity continuity conditions (refer to Chapter
3 and 4). The numerical accuracy of the bound vortex distribution y_({,7) has a key
effect in the flow velocity field computation (refer to (4.3), (5.89), (5.92), (5.96), (5.97)
and (5.99)). In this chapter, we give the results for the numerical models of the
fundamental integrals and the bound vortex strength y.({,7) of the 2" order theory,
relative to the 1% order. In the succeeding closing chapters, the comparisons of the

numerical prediction results for the 1¥ and the 2™ order theories, in steady planing, in

regular waves, and in random waves, are presented.
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7.1 Three Fundamental Integrals

The three fundamental parameter integral terms A({), A" ({,) and A" ({,) (refer
to (3.11), (3.12), (3.13), (4.23), (4.24) and (4.25)) are in the same form, but defined in the
different value domains. Each of them can be separated into three elemental integrals |, ,
1,({) and 1,({) (refer to (3.16) and (4.28)). In following, the comparative study for the

l,, 1,(¢) and 1,(¢) integralsin 1% order model with the 2" order model is given.

7.1.1 Validation of the elemental integral |, and I,

According to (4.29) and (4.30) (refer to the derivation in Appendix H), as

presented in Chapter 5 by (5.49), |, and |, in the 2" order model have the following

semi-analytical forms:

_1 1. B1 By 11 B, 2"
ll_ZZCEB(Z 77'2+7T)EF( 2'2 ﬂ’l zfl) (7.3)
1o o 101 Bl B 11 B Z-
|2(Z)—2(Z z 1)ZCEB(2 7T'2+77)EF(2'2 ﬂ,l zczl) (7.2

where the angle E(Z ,T7) is defined in (4.12); the B(x,y) is the Beta function, and

F(a,pB,y;z) isGauss single variable hypergeometric function.

In the 1% order model, the integral |, and |, have different forms (refer to (3.17)
and (3.18)).
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|, = zcE(g,q/l—]/zf) (7.3)

|2(Z)=(Zz-Zf-l)GZLF(g,\/l-l/Zf) (7.4)

where F(g,k), E(g,k) are the Elliptical integrals of the first kind and second kind

respectively.

The kernel function x({) as well as the elemental integral |,, 1,({) in the 1%
order model (refer to (3.17), (3.18) and (3.7)) is a specia case of the kernel function and
the elemental integrals in the 2™ order model (refer to (4.29), (4.30) and (4.16)). It is
correspondent to the deadrise angle £(z) =0 (and therefore, E(z) =0) in the 2" order
model.

Therefore to verify the numerical accuracy of the formulae (7.1) and (7.2), a code
has been developed to compute the numerical resultsin (7.3), (7.4) and theresult in (7.1),
(7.2) for the test case of deadrise angle £(z) =0.

Fig. 7.1 shows the comparison of 1,1, ({) for the 1¥ and the 2" order model for
this specia case ([(z) =0). Asis necessary, the results are numerically identical (refer
to (7.1), (7.2), (7.3) and (7.4)). The deadrise angle was then increased to [ =38 degree.

In this case, the results with the 1% order model stay the same since they are independent

of . However the results of the 2™ order model change since they are functions of 2.

Fig. 7.2 shows this comparison.



170

P,

o
o

P P
A A

Py

X—— X 2nd Model: 12 integral
v - —v 2nd Model: I1 integral

EB—=a 1st Model: 12 integral
0] e—o 1st Model: 11 integral

sfesfajul g| pue T|

Z<=Zc

1<=

:00

Fig. 7.1: Comparison of I11 & 12 integrals,

sfeibajul | pue |

\\\\\\ 1\\\\\\\ \\\\\\x
, e
| 7
! e
” e
| an
I ,&M
\\\\\\\\\\\\\\\\ e Y]
) SES® i
D> D055 I ne
QO PP [
L2299
H EEEE | Te
Nano ” ne
ErT he
H 8888 e
\\\\\\ e -l L
H .m.m&ﬁ " ” _J
AN AN @ | B_._
SENGIERER:
__" ﬂ. ” _.._u
7 étmd |8 9
Q : L O
< ~ =) o

-4

15

14

13

1.2

11

1.0

=38°

Fig. 7.2: Comparison of 11 & 12 integrals,



171

7.1.2 Numerical comparison and numerical accuracy of the |,({) _integral

In the 1% order model, 8 =0, therefore, the elemental integral 1,({) of 1% order
model in (3.19) has different formulations from the integral 1,({) of 2" order model in

(4.31). For example, in 1% order mode!,

(@)= zi {n[— 1l \/1—J/zf]+(52—1)F(%T,\/1—J/zf)}

(-

1<{ <z (7.5)

where the parameter definitions in above formula may refer to chapter 3 and Appendix J.

In 2" order model, since the 1,({) integral can not be expressed in a direct semi-

analytical form as it is in the 1¥ order model, it has been expressed in a discretized

numerical integral form:
14(0) = =27 -0(z =) % szlg,(O 1<{ <z, (76)

where the parameter definition in (7.6) refer to chapter 4.
In different value domains of the variable ¢ , theintegra 1,({) has different computable

semi-analytical forms (refer to (J.28), (J.42) and (J.52) in Appendix J for 1% order model,

refer to (4.31), (4.32), (4.34), (4.36) and Appendix H for 2" order model).
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In the computation of the 1,({) integral in (4.31), (4.32), (4.34) and (4.36) of the

2" order model, there is an important parameter that needs to be determined. That is the

number of the elements N used in the computation. Recall in the discretized 1,({)

integral in (4.31), (5.47), (548) and (5.49), the integral domain z>-1 has been
discretized into N elements. More elements, means higher accuracy, but also need more
computer CPU time. Recall that in the seakeeping solution procedure (refer to Chapter 6),
at every time step, a completex — problem needs to be solved. Therefore the hull will be
discretized into many segments (in our example, the main body is discretized into 80
segments, and 2 steps, with the sections after the steps discretized into 50 segments).
Each segment must then be discretized into the transverse computation grids (above 60

¢ —axis sub-elements in our examples). At each computation grid ¢, it is necessary to
calculate 1,(¢;) for the bound vortex strength y.({;,7), and also necessary to calculate
1,(¢;) when ¢, ison the free vortex sheets for the velocity continuity conditions and for
the vortex distributions. However, a large number of segments N for the 1,({;)
computation would greatly slow down the computation speed, where N is the integra
element number for the integral 1,({;) (refer to (7.6)). For the 1,({) integra
computation in the 1% order model, it does not need to discretize into N elements. It can
calculate the 1,({) integral value directly by the semi-analytical forms in (J.28), (J.42)
and (J.52).

Comparing with the 1% order model, if assuming the CPU time needed by the 1%
order model for 1,({;) computation as O(1) (refer to (J.28), (J.42) and (J.52)) since it

can calculate the integral value directly, then the CPU time for the 2™ order model would
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be O(N) (refer to (7.6)), with N being the number of segments. This 1,({;) computation

is the main reason why the computation speed in 2™ order model appear to be so much
slower than that in the 1% order model.
The following example demonstrates the relation of the accuracy and the

computation speed for 1,({;) computation.

7.1.2.1 Deadrise angle 5 =0 _case

In the case of the deadrise angle =0, the formula in Eqg. (J.28), (J.42) and
(3.52) in the 1% order model are the established analytical evaluation of the integral 1,({)
in different value domains of the variable ¢ . Thus to estimate the accuracy of the
integral 1,({) formula (4.31), (4.32), (4.34) and (4.36) in the 2" order case, in the
interest of debugging the code, the numerical results of the 1,({) inthe 2" order model

in =0 case have been compared with the results in the 1% order model. A code based

on the mathematical models in (4.31), (4.32), (4.34) and (4.36) has been developed for

the purpose of comparison.
Fig. 7.3 shows the comparison of 1,({) in the region of 1<{ <z, In this
example, the non-dimensional z_ is set to be 1.5. The segment number N in (7.6) is

chosen to be N =3000; the sensitivity to N is considered later. A good agreement is
shown for the two different models. The difference in the two curves on Fig 7.3

represents numerical error, sine both formulations analytically produce the 1% order

() & B=0.
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Fig. 7.3: I3integral in thedomain: 1<{ <z, =0, N =3000

Fig. 7.4 shows the comparison of 1,({) in the region of z, <{ <b". In this
example, z, =1.5, b" =1.8. These parameters were chosen from the computation result

of CatSea2-4a. The element number in (7.6) is chosen to be N =3000. A nearly perfect

agreement for the two different theoretic models has been achieved. Similarly, Fig. 7.5
shows a very good agreement for the 1,(¢) in the domain of b™ < ¢ <1. Again, in (7.6)

N is set to be 3000.
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Fig. 7.3, Fig. 7.4 and Fig. 7.5 confirm that the algorithm for 1,({) in 2" order

model is correct and that the new code for the [,({) computation is free of error.

However, this accuracy is the accuracy when N =3000.

Practically, if N =3000 is chosen in the seakeeping computation, our PC-type
computer may need to continually run several months to get results. For balancing the
CPU time and with the necessary accuracy, at present examples, N =300 is proposed in
the seakeeping computation. However, with N =300, the accuracy is much lower.

Fig. 7.6 shows the comparison of 1,({) computation in the region of 1< ¢ < z,

with N =300. Comparing with Fig. 7.3, it is seen that the numerical results for the 2™

order model are off the analytical 1% order results, again at S =0. Fig. 7.7 and Fig. 7.8
show the differences of numerical results in the region of z, <{ <b” and b™ <{ <1

respectively with N =300. However, these differences may be acceptable at the present

PC-type computer ability.
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7.1.2.2 Deadriseangle 5 # 0 case

The formulae of 1,({) computation in the 2" order model can take the B # 0
effect into account, but the 1% order model can not. Fig. 7.9 shows the comparison of the
1,(¢) computation results for f=0 and S =38 case. It has a completely different
trend for the results in the 8 =38° case from the results at 8 =0. Fig. 7.10 shows the
family curves for the 1,({) computation results for 2" order model when the deadrise

angle S changes, where N = 300.
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From the above research, the following conclusions may be drawn:

* Theformulae of the I,({) computation in (4.31), (4.32), (4.34) and (4.36) in the 2"
order model are correct, so it can be used as an approximate numerical model;

* 1,({) integral needs more segments, N, to achieve a high numerical accuracy. Small
N, i.e., severa hundreds, in the 1,({) integra results in crude accuracy. However,

more segments will greatly increase the computation time. A combination method for
the segment numbers could be used. A numerical test shows that N =500 could be
used in the critical area (the area of stegpest slope of the function), and a cell number

N =300 could be used for other areas to effectively speed up the computation.

7.2 Comparison of The Numerical Results For y, (¢, 7) Computation

The computation of the vortex strength y,.({,7) is a key issue for the craft
computation. A run-time error problem in the y.(z) computation was caused by the
crude extrapolation in 1,({) to the end of the interval where a small numerical error in

removing the singular terms in satisfying the velocity continuity condition existed. When

the numerical accuracy in the I,({) agorithm was refined, the run-time error problemin
the y,(z) computation was resolved.

The numerical model of y_(¢,r) in the 1% order model is given in Chapter 5
(refer to (3.10), (5.43), (5.44) and (5.45)). The numerical model of y.({,7) in the 2"

order isgivenin (5.89), (5.92), (5.96), (5.97) and (5.99).
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A numerical comparison has been conducted for the y,({,r) computation. The

necessary input parameters are obtained from the output results of CatSea2-4a for the
seakeeping case. Fig. 7.11 shows the comparison of the bounded vortex strength y,.({,7)
computations in =0 case. At the end point, the vortex strengths for two methods are

identical. At the other points, there exist some differences which may result from the
difference in the mathematical models between the 1% order model and the second order

model. Fig. 7.12 shows the effect of the variation of S in the 2™ order model. The
bounded vortex strength y.({,7) model in the 2" order model can take the S variation

effect into account.

E——-=& 1st order model
G——=o 2nd order model

0.05

Vortex distribution yc(z)

-0.05

-0.10
1.0

Fig. 7.11 Comparison of the vortex strength distribution y_(¢) (8 =0°)
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Fig. 7.12 Effect of the variation of S

From the above numerical comparison, the y.({,7) computation accuracy in the

2" order model is considered acceptable
In this chapter we have validated some important parts of the numerical model in
the 2" order theory. In next chapter, the numerical predictions for steady planing and

comparisons between the 1% and 2™ order models are presented.
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CHAPTER 8

NUMERICAL COMPARISONS FOR STEADY PLANING

8.1 30ft High-Speed Planing Catamaran With Steps

A tool for catamaran performance prediction has been developed according to the
second order nonlinear theory of hydrodynamics for planning catamarans. The name of
the software is NewCat (version 2-4a), the program flow charts for which are shown in
Chapter 6.

We have applied this software to a planing catamaran that was developed by
William Vorus and Larry DeCan. This high-speed catamaran has two transverse steps in
the planning region of the hull.

Figs. 8.1 - 8.3 show the views of the Vorus-DeCan planning catamaran (the steps

are not shown). Fig. 8.4 isthe section view.
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Figure 8.1 Stepped planing catamaran

Figure 8.2 Stepped planing catamaran: bow end view
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Figure 8.3 Stepped planing catamaran: top view
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Figure 8.4 Cross section view at station #4 (12 ft forward of transom)
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Fig. 8.5 to 8.7 are the longitudinal distributions, respectively, of deadrise angle

B(X) (in degrees), chine offset Z, (X ), and keel upset with the two steps. The Xl -

coordinate in these figures is the coordinate of the initial wetted lengthx___ , it starts from

bow to stern (0 - x., ). Because NewCat needs a high degree of accuracy in the

computation, all geometric parameters used here are in the form of higher order
continuous polynomials. Fig. 8.5 through Fig. 8.7 has shown the smooth geometric
distributions. The geometry distributions plotted in Fig. 8.5 - Fig. 8.7 are the results of the
first main hull and the subsequent two stepped hulls together. Fig. 8.7 also shows a ten-

time amplified kedl upset curve for zoom view.
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Fig. 8.5 Deadrise angle S(X) distribution over the boat length (in degree)
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The main geometric parameters of the Vorus-DeCan planing catamaran are listed

inthe Table 8.1, where,

Z,: Thedimensiona keel offset measured from the center line, in FT;

Z, : The dimensionless chine offset;

W : The boat displacement, in lbs;

X o' The non-dimensional mass, X, .. =W/(1/209Z2);

r, : The dimensionless gyration radius;

X - The center of gravity measured from transom;

Xgep - The non-dimensiona distance from transom to step (refer to Fig. 8.7);

As an example, the input values to the codes for the main hull segment are listed

in Table 8.2. The datafor the two aft hull segments can be found in Appendix K.
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Table 8.1 Geometric parameters of the Vorus-DeCan high speed stepped catamaran

Denomination Symbol Formulation Units Vaue
Ked offset Z, Z, Ft 2.0
Chine offset Z, Z., - 15
Weight W W LBS 6000
Mass XMASS X, :W/(l/ngzlf) - 24.04
Radius gyration | GYRAD r=r2 +x2 /Zk - 6.33
from transom

Center of gravity | XCG Xeg / Z, - 5.0
from transom

Overall fitting XLOA X.on = L/Z, - 135
lengthin

computation

Max half-keel ZKM Zu Meter/Ft 0.61/2.0
offset

Fwd step location | XLSTEP(L) | Xyo; = Lygs/Z, - 4.58
from transom

Aftsteplocation | XLSTER(2) | X0, = Lygr/Z, - 2.29
from transom

Deadriseangleat | BET1 B, Degree 17.00

transom
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Table 8.2: Input geometry parameters of the main hull segment

Denomination Symbol Formulation Units Value
Ked upset at YKO Yoo/ Zi - 0.675
entry

Keel dope at YKOP Yk‘,o - -0.30
entry

Kee curvatureat | YKOPP Yk",O - 0.09
entry

Keel upset at YK1 Y1/ Z, - -0.00
transom

Keel slope at YK1P Y., - -0.00
transom

Tria water line XMAX Xoa / Zc - 8.92
length

Forward keel XLA Xia/Zy - 0.17
tangent point

from transom

Aft kedl tangent | XLC X/ Z, - 0.00
point from

transom

Entry deadrise BETAO B, Degree 38.00
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Slope of deadrise | BETAOP 083, /0x Deg. Per non- | -3.33
angle at entry dim. distance
Deadrisesangleat | BETAL B, Degree 17.00
transom

Slope of deadrise | BETA1P 013,/ 0x Deg. Per non- | -0.00
angle at transom dim. distance

Forward deadrise | XLAB Xias/Zy - 0.00
angle tangent

point from

transom

Deadriseangleat | BET11 B Degree 38.00
keel at entry

Deadriseangleat | BET12 B Degree 38.00
chine at entry

section

Deadriseangleat | BET21 B Degree 17.00
keel at transom

Deadriseangleat | BET22 By Degree 17.00
chine at transom

Keel offset at ZKO Zvo/Zs - 1.0
entry

Slope of ked at ZKOP Z|'<,0 =0Z, /0x - 0.0

entry
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Ked offset at ZK1 Z1/Z, 10
transom

Slope of kedl at ZK1P zl'(‘l =0Z, /0x 0.0
transom

Chine offset at ZClo Zeyo/Z, 1.10
entry

Slope of chine ZCIOP z'CH‘0 = 0Z, /OX 0.20
offset at entry

Max. chine offset | ZCIM Zewwm | Zi 1.50
Chine offset at ZCl1 Zey1/Z, 1.50
transom

Slope of chine ZCI1P Z L =0Z, /ox 0.00
offset at transom

Fwdtangent PT | XLAC Xiac [ Zy 2.17
to ZCIM from

transom

Afttangent PT to | XLCC Xice [/ Zy 0.00

ZCIM from

transom
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8.2 Steady Planing Computations

The case of steady planing corresponds to the 7 = 0 time step computation of the
general seaway dynamics codes, NewCat or CatSea. However, the multi-time stepping
computation is used to obtain the equilibrium trim and transom draft in steady planing.
Integrating forward in time from an initial guessed trim and draft, the transient dies in
time as the boat reaches an equilibrium steady planing. Once an equilibrium steady
planing is established the seaway dynamics can commence. Thus, the multi-time step
dynamic computation of NewCat and CatSea has been applied to find the equilibrium
draft and trim angle. During this preliminary computation, the time step number was set
a IALL =2000, the non-dimension Ar = 0.3, so that the non-dimensional time length

T :%= IALL x A7 =600 was used.

k
In this steady planing computation, the forward speed isset as U =70 knots. The
fractional artificial damping coefficient used in this computation is set to be

CxAT

=0.5. (Thisvalue, along with the A7 = 0.3, are significantly larger than used for

the wave computations because of the slowly varying non-equilibrium calm-water case,
and the fact that only the final equilibrium state is of interest). The initial draft and trim
angle of the each hull segment for the equilibrium computation are shown in Table 8.3.
In Table 8.3, the intermediate draft values are related to the transom draft by the rigid
body trim rotation. The two principal unknowns are the transom draft of hull segment 3

and the trim angle.
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Table 8.3: Initial transom draft and trim angle for the comparison computation

Denomination | Symbol Formula Initial Value

Transom draft HT H./Z, 0.1176
at hull segment

1

Transom draft HT H, / Z, 0.1609
at hull segment

2

Transom draft HT H, / Z, 0.2043
at hull segment

3

Trim angle TRIM a, 1.088
(deg) at hull

segment 1

Trim angle TRIM a, 1.088
(deg) at hull

segment 2

Trim angle TRIM a, 1.088
(deg) at hull

segment 3
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Define T as the maximum time of the computation. The computation reached

steady state at thetime T = 300. Fig. 8.8 shows the time histories of the transom draft and
trim angle for 1% order model and 2™ order model. The transient state due to the non-
equilibrium value assumed and its decay to achievement of steady planing state at around

T = 300 is clearly shown. The computed value are unchanged to the time limit of T =

600.

2.0
E——=& Trim angle (2nd order model)
&o—— Draft H; (2nd order model)
G- — —© Trim angle (1st order model)
»¥—— X Draft H; (1st order model)

15

U =70 Knots

Draft HT and Trim Angle ng

0.5

0 100 200 300 400 500 600

Nondimensional Time T

Fig. 8.8 Comparison of histories of draft and trim angle at transom

Table 8.4 lists the comparison values of the transom draft and trim angle at the
steady planning state. The level of differences shown on Figure 8.8 and in Table 8.4

reflects the level of theoretical difference between the 1% and 2" order models.



Table 8.4: Comparison of the transom draft and trim angle in steady planing
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Denomination Symbol Formula 1% Order 2" Order
Method Method
Transom draft HT H:/Z, 0.1214 0.1232
at hull 1
Transom draft HT H:/Z, 0.1652 0.1672
at hull 2
Transom draft HT H:/Z, 0.2091 0.2112
at hull 3
Trim angle TRIM a, 1.101 1.104
(deg) at hull 1
Trimangle TRIM a, 1.101 1.104
(deg) at hull 2
Trimangle TRIM a, 1.101 1.104
(deg) at hull 3

Table 8.5 shows the comparison of numerical results obtained from the two

methods. The predicted lift and the center of lift are in a good agreement with the

required design values. The lift produced by the planing hydrodynamics is in balance

with the boat weight, and the lift force center is same as the gravity center, therefore the

boat is running at a steady planing equilibrium. Then lift/drag ratios predicted by the two

models are essentially the same, and are high values for a boat speed of 70 knots.




Table 8.5 Numerical comparison of two models in steady planing
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Denomination | Symbol Formula 1% Order 2" Order
Method Method

Required lift CLTO W/(0.5pU ?z?) | 0.11085820 0.11085820
Total lift CL L/(0.5pU2Z2) | 011091274 0.11123141
Total drag CD D/(0.5pU2z2) |0.02384798 0.02393888
Center of XCG Xog / Z, 5.00000000 5.00000000
gravity required

Center of lift | XBT Xa | Zy 5.00001578 | 5.00093329
from transom

Lift-drag-ratio | XLOD C./Co 4.65082233 4.64647336

The following comparison and discussion are based on the results at the steady

planning state. Figures 8.9 to 8.12 are computation results from the 2nd order nonlinear

model. Again, the x— coordinate in these figures is the coordinate of the initial wetted

length, it is from bow to stern. Fig. 8.9 is the sectional lift distribution over the hull

length. In Fig. 8.9, each hull segment has its own contribution to the total lift distribution.

The transverse steps restart a chine-unwetted flow, as evidenced by the large lift

distributions off the steps. From Fig. 8.11, it is clearly shown that the jet velocity has a

large jJump across the steps. This large jet velocity results in the large sectional force peak
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developed downstream of the steps (Fig. 8.9); refer to the V2 (L, 7) term in the pressure

formulae of (4.84) and (4.85) in Chapter 4.
Thereisasingularity in the sectional force distribution at the chine-wetting point.

This is due to the slope discontinuity of the hard-chine geometry. The sudden stop in z,

advancement when the chine is reached, results in an infinite velocity gradient, which is
the reason for the negative suction pressure indicated on Figure 8.9. The forces are, of
course, integrable.

Fig. 8.10 gives the plan view of the flow field geometry. It shows the jet-head

offsets z, (x) and z, (x). Within this plot it is clearly evident that in the flow fields the

aft two step hull segments are chine-unwetted. Without the steps, the flow of the first hull
segment would develop into a chine-wetted flow, and the hull would continue to be
chine-wetted from that point aft. As we expected, the steps are therefore seen to maintain
the flow as chine-unwetted, which is desirable.

Fig. 8.12 is the running half-body plan. It shows the wetted and non-wetted hull
contours, for al three hull segments, from the transom up to the forward end of the

waterline.
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Fig. 8.9 Lift distribution over the boat length (Steady planning, 70 Knots)
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Fig. 8.10 Flow geometry in the plan view (70 knots)
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Fig. 8.11 Jet velocity distribution (Steady planning, 70 knots) (zoom view)
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Fig. 8.12 Body plan (Steady planning, 70 Knots)
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Fig. 8.13 to Fig. 8.15 show the comparison of the computation results of the 2™

order nonlinear model (NewCat 2-4a) with the 1% order nonlinear model (CatSea 2-4a) at
the same steady planing. In general, the results of 2™ order model are in good agreement
with the results of 1% order, excepting some local differences. Fig. 8.13 shows the
comparison of the sectional lift distributions. The total lift results predicted by the two
models, of course, have to be the same since the same boat weight was specified in the
two equilibrium computations (ref. to Table 8.5). However, there are local differences
when the details of the two computations are compared. Fig. 8.14 is the comparison of
the jet head offsets in the plan view. The horizontal projection of the jet heads z; and z,
predicted by the 2" order model are wider than that predicted by the 1% order model. Fig.
8.15 shows a longitudinal comparison of the jet velocity distributions. Again, the jet
velocities predicted by the 2™ order model are larger than that by the 1% order model at

theinside jet.

0.05—

| Steady planing
U =70 Knots

CF

Solid line: 2nd order model
| Dash line: 1st order model

-0.05

01pF

\\I\\I\\I\\I\\I\\I\\I\\I\\I\\I
0 1.5 3 4.5 6 7.5 9 105 12 135 15

Fig. 8.13 Comparison of the sectional lift distributions in steady planning
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Fig. 8.14 Comparison of the horizontal projection of the jet heads (zoom view)
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Fig. 8.15 Comparison of the jet velocity distribution along the boat |ength
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Fig. 8.16 and Fig. 8.17 show a comparison of the pressure distribution in the main

hull segments, CP is the pressure coefficient defined by (3.61), (3.62), (4.64) and (4.65).
Fig. 8.18 and Fig. 8.19 show the comparison of the pressure distribution in the second
hull segment, Fig. 8.20 and Fig. 8.21 show the comparison of the pressure distribution in
the third hull segment. In these figures, the pressure distributions at the bow are much
higher than that at the transom. Again, from these figures, it is found that the pressure at
the two steps are much higher than at the main hull. The shape of the pressure
distribution for the planing catamaran is, unlike the monohull (Vorus, 1996), close to a
constant distribution, this appears to stem from the requirement for atmospheric pressure
at the two jets. The pressure distributions appear to be almost discontinuous at each of the
jets, but in fact they are not.

Generally speaking, the shape and the amplitude of resulting curves in the 2™
order model (NewCat) are very similar to the results in the 1% order model (CatSea),
however, on the local details of the flow field and on the pressure distribution, there are
some differences. The comparisons of results have established that the results of the 2™
order nonlinear model, for calm water planing, are compatible with the 1% order model,

although the formulations have very clear differences.
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Fig. 8.16 Comparison of pressure distribution at hull segment 1, section 3

(from the entry X = 0.0681in 2" order model, X, =0.067 in 1% order model)
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Fig. 8.17 Comparison of pressure distribution at hull segment 1, section 81

(from the entry X = 4.5552in 2™ order model, X, = 4.4786 in 1% order model)
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Fig. 8.18 Comparison of pressure distribution at hull segment 2, section 3

(from the forward step X, = 0.034236)
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Fig. 8.19 Comparison of pressure distribution at hull segment 2, section 51

(from the forward step X, =2.29)
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Fig. 8.20 Comparison of pressure distribution at hull segment 3, section 3

(from the aft step downstream X, = 0.068242)
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Fig. 8.21 Comparison of pressure distribution at hull segment 3, section 51

(from the aft step downstream X, = 2.29)
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CHAPTER 9

HIGH SPEED CATAMARAN PLANING IN WAVES

At present, modern, high speed craft are usually not limited so much by structural
strength requirements, but instead by the ability of the crew to survive the sometimes
large impact accelerations associated with craft operation in the seaway. It has been noted
that impact accelerations are sensitive to minor variations in the hull geometry. This is
especially true where small changes in the deadrise angle can significantly reduce impact
accelerations (Garner 2000). Therefore, the ability of the nonlinear model to correctly
predict the high speed planing catamaran performance in a seaway is a focus of the
present research.

As was described in Chapters 2 through 4, we solve the planing catamaran
hydrodynanics problem in the time domain. The present nonlinear models (1% and 2™
order) predict the spatially varying pressure in time on the instantaneous wetted surface
of the hull. This pressure is used to predict the nonlinear hydrodynamic force and
moment on the planing hull. The impact accelerations are then computed from Newton's
law in two degrees of freedoms. These accelerations are then integrated to compute the
heave and pitch velocities and displacements. The new heave and pitch velocities and
displacements, along with the ambient wave velocities and displacements along the hull,

are used in the next time step as the initial conditions for that time step. This process is
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repeated as time progresses. The histories of the heave and pitch motions, including

accelerations at the bow, center of gravity, and stern, are thereby obtained.

9.1 Numerical Results of 2" Order Model

The 2" order design tool NewCat (2-4a) has been applied to the 30ft high speed
stepped catamaran described in Chapter 8 for the regular wave cases.

In this computation example, we set up the forward speed U =70 knots, same as
that in the steady planing case. Time step number was set at |ALL =12,500, with an
initial non-dimension time step increment A7 =0.02. The non-dimensional time for the
computation is therefore T =0.02x12500 = 250. It is 4.24 seconds in real dimensional

xAT
m

time. The fractional artificial damping coefficient ¢ =0.1. Thisisreduced from the

Chapter 8 calm-water equilibrium calculation since the details of the time response is of
interest here.

The programs (NewCat or CatSea) have arestart capability. The computation can
be stopped after a specified number of time steps and a data DUMP file created at the
stop. The DUMP file becomes the RESTART file on resumption of the computation with
some possible adjustments in the input data such as the time step size or the convergence

criteria, if necessary.

In this example, a non-dimensional regular, head wave of height Hs =0.50 is
Zk

used; this corresponds to a dimensional wave height of 1.0 ft. The wave length A =60,
Zy
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and the initia wave phase angle 6, =0°, corresponding to placement of a zero-wave

amplitude at theat 7 =0.

For the computation, the instantaneous wetted main hull segment was divided into
80 x —elements aong its length, and the two instantaneous wetted sub-segment lengths
were divided into 50 x — elements each.

Fig. 9.1 — Fig. 9.6 are the computation results of the 2" order model. The 1% order
model results will be listed in next section. Fig. 9.1 depicts the time histories of the
regular sinusoidal wave elevations at the bow and at the transom, the bow displacement,
the transom draft, the step drafts, and the pitch angle. From Fig. 9.1, it is evident that the
pitch curve is not a simple harmonic response curve, and its phase shifted relative to the
wave elevation at the bow. The drafts at the transom and steps are decreasing slightly
over the time span of the computation. It can be noted from Figure 9.1 that the boat is
rising in the regular wave system (decreasing draft and increasing bow elevation). As will

be shown, thisis due to the DC shift in the accel eration response (more up than down).
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Fig. 9.1 Displacement histories (2™ order mode)

Fig. 9.2 shows the predicted vertical acceleration, in g's, at the bow (solid line), at
the center of gravity (dash line), and at the transom (dash-dot line). It is remarkable to
observe the asymmetry of these curves. The positive upward acceleration peaks are much
larger than the downward. Although the exciting wave is smple harmonic, the
acceleration response is not, showing a strong non-linear, irregular characteristic. This
non-linear behavior of the planing catamaran acceleration response demonstrates that the
frequency response amplitude operator (RAQO's) method is not valid for the computation
of acceleration response, as in the typical small amplitude displacement-type ship case.
Furthermore, the linear response superposition method is not applicable for predicting the
acceleration response in the irregular seaway, i.e., a frequency domain solution method is

not acceptable for predicting the response of the planing catamaran in waves.
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Fig. 9.2 also shows that the boat is out of water at the wave trough region (refer to

Fig. 9.3), the correspondent vertical acceleration at the transom is close to —1.0 g, which
is the downward gravity acceleration. Therefore, when the boat re-contacts the wave

surface, it experiences alarge impact.

10 [~ Regular wave Vertical accelerations:
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Fig. 9.2 Vertical accelerations (2" order model)

Fig. 9.3 depicts the time histories of the wetted length (solid lines) and the chine-
wetted length (dashed lines) for each of the three boat segments. Recall that the wetted
water line length L(7) = x,,,./Z, , is the distance from the each hull segment transom to
its forward waterline-end (entry point) (refer to Fig. 3.8). The chine-wetted length

L., (7) =%, /Z, isthe distance to the point of chine-wetting from the each hull segment



213
transom. From these curves it is easy to see that the waterline length of the main hull

changes with the period of the incoming waves; the waterlines of the sub-hull segments
experience less change. The chine-wetted length of the sub-hull segmentsis zero most of
the time, which implies that behind the steps the sub-hull segments remain fully chine-
unwetted, which is the desired characteristic by design. The main hull has a chine-wetted
length that varies with the boat and wave motions. By Fig 9.3, the main hull runs
increasingly chine unwetted length with time. Thisis due to the rise of the boat relative to

the wave system associated with the acceleration nonlinearity (cited with respect to

Figures 9.1 and 9.2).
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Fig. 9.3 Wetted length and chine wetted length (2™ order model)
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Fig. 9.3 clearly shows the important behavior that the boat completely lifts clear

of the water at the trough region of the incoming waves (refer to the waves in Fig. 9.1);
the wetted lengths (water lines) for all three hull segments are zero in Fig. 9.3 during
these periods.

The non-dimensional time T = 250 is the last step in our computation. The result
of the flow field detail at T = 250 is shown here as an example. Fig. 9.4 shows the
sectional lift distribution at the non-dimension time T = 250 . It shows that the main lift at
this time is contributed by the main hull segment. Fig. 9.5 represents the flow geometry
in the plan view (at T = 250). It can be seen from Fig. 9.5, the two stepped hull segments
are al chine-unwetted, which improves the lift characteristic of the boat, as explained
previously. Fig. 9.6 depicts the jet velocity distribution at T = 250, the velocity has large
peaks at the beginning of the steps, which is the same characteristic as demonstrated in

the steady planing case, Chapter 8.
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Fig. 9.4 The sectional lift distribution at T = 250
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From this computation example, it is demonstrated that the present second order

nonlinear model has the ability to predict the planing catamaran behavior in regular

9.2 Comparisons For the Reqular Wave Case

For comparison, the 1% order code CatSea?-4a has been applied to the same

planning catamaran and the same regular waves.

Fig. 9.7 - Fig. 9.9 are the time histories of the waves, motions, vertica

accelerations, the wetted lengths, which are the counterparts of Fig. 9.1 - Fig. 9.3.
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Fig. 9.7 Wave and motion histories from CatSea2-4a (1% order model)
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Fig. 9.8 Vertical accelerations fromCatSea2-4a(1% order model)
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Fig. 9.9 Wetted lengths from CatSea2-4a (1% order model)
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Comparing Fig. 9.7 — Fig. 9.9 in 1% order model with Fig. 9.1 — Fig. 9.3 in 2™

order model, it is evident that the two group figures are very similar, except for the local
details. The local differences reflect the difference of the two different kind of theoretical
models. The detail differences are shown in following figures.

Fig. 9.10 shows the comparison of the transom draft and the trim angle for the 1%
and the 2" order theories. In Fig. 9.10, the transom drafts are not actually identical, with
greater differences in the trim angles. The predicted trim angle of the boat increases faster
in the wave system by the 1st order theory. This mirrors the difference in the acceleration

distributions predicted (refer to Fig. 9.11).
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Fig. 9.10 Comparisons of trim angle and transom draft; 1% and 2™ order models

Fig. 9.11 — Fig. 9.13 shows the differences in the vertical accelerations. It is found

that the 1st order model predicts much larger impact accelerations than the 2", Especially
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at the bow region, the acceleration of 1% order model has a larger peak, which resultsin a

larger trim angle as shown in Fig. 9.10.

Bow acceleration (28.5 ft from transom)

solid line: 2nd order model
dash line: 1st order model
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Fig. 9.11 Comparison of bow accelerations; 1% and 2™ order models
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Fig. 9.12 Comparison of the vertical acceleration at CG; 1% and 2™ order models
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Fig. 9.13 Comparison of the vertical acceleration at transom; 1% and 2™ order models

Fig. 9.14 shows the comparison of the wetted length and the chine-wetted length
for the main hull segment. The solid lines are the predicted results of the 2" order model

for the wetted length L(7) and the chine-wetted length L, (7), and the dash lines are the
results of the 1% order model. Fig. 9.14 shows that the predicted L(r) and L, (7) are

very close for both cases.
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chine-wetted\length

Wetted length and chine-wetted length
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Fig. 9.14 Comparison of the wetted length and the chine-wetted length

for 1% and 2" order models

Fig. 9.15 - Fig. 9.17 give the comparisons of the detail results of the two theories
at the non-dimension time T = 250. Fig. 9.15 gives the comparison of the sectional lift
distribution. The sectional lift by the 1st order model is larger than that predicted by the
2nd order model. Thisis again fully consistent with the higher accelerations (and higher
trim angle) predicted by the 1st order. Fig. 9.16 depicts the difference in the jet-head
streamline offsets in the two predictions. Both models predicted the chine-wetted
condition of the first segment at the time displayed. However the outer jet-head
streamline offset of 1% order model is wider than the results in the 2™ order model, and
the inner jet-head streamline offset of the 1st order model is narrow than the results from

the 2" order model. Fig. 9.17 graphs the differences of the jet velocity distributions for
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the two theories in zoom view. The jet velocity distribution of the 1st order model is

higher in the outer jet-head region, and lower than the 2nd order model in the inner jet-
head region, which is again completely consistent with the jet-head offset comparison in

Fig. 9.16.

0.15
i Regular wave
B solid line: 2nd order model
- dash line: 1st order model
0lr T=250
- |
i |
005 \

-0.05
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o

Fig. 9.15 Comparison of the sectional lift distribution at T = 250; 1% and 2" order models
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Fig. 9.16 Comparison

of flow fieldsin aplan view at T = 250; 1% and 2™ order models
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Fig. 9.17 Comparison of jet velocity distributions at T = 250 (zoom view)

for 1% and 2" order models
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Fig. 9.18 is the pressure distribution comparison at the section 3 of the main hull

segment for both models. Again as displayed in Chapter 8, the pressure distribution of the

1% order model is higher than the pressure in the 2™ order model.

- Regular wave case

0.45 :_ Pressure at the main hull segment, section 3

N solid line: 2nd order model
0.4~ dashline: 1st order model

0.05 |

0’\\\'\\\\'\\\\'\\'\'

L L L l
1 1.01 1.02 1.03 1.04
Z

L
1.05

Fig. 9.18 Comparison of pressure distribution at hull segment 1, section 3 (from the entry

X, =0.099298 in 2™ order model, X =0.0098706 in 1% order model)

On the basis of these comparisons, it is easily seen that the prediction of the 2™
order model in regular waves is comparable to the results of the 1% order model, which

supports that the both the 1% and 2" order models should be reliable as design tools.

9.3 Comparisons for the Random Wave Case
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The 2™ order design tool NewCat (2-4a) has also been applied to the 30ft stepped

planing catamaran for random wave cases.

The incoming wave is in the head-sea direction. The significant wave height

isH,,; =0.308 m, and the natural wave peak period T, =i)—n =4.188 real seconds. A
0

JONSWAP wave spectrum has been used here.

The computation parameters in this example are: the forward speed U =70 knots,
the time step number 1ALL =10,000, the non-dimension time step increment A7 =0.02.
The total non-dimensional time for the computation is thus T =0.02x10000 = 200. It is

CxAr
m

3.38 seconds of real time. The fractional artificia damping coefficient =0.1

same as in the regular wave computation.

Fig. 9.19 shows the time histories of the wave elevations, the bow displacement,
the transom draft, the step drafts, and the trim angle. Fig. 9.20 shows the vertical
accel erations predicted by the 2™ order model. There are large acceleration peaks in the
bow region due to the high speed impaction. Fig. 9.21 is the variation of the wetted water
line lengths (solid lines) and the chine-wetted lengths (dashed lines). It is readily
observed from Fig. 9.21 that the wetted water line of the main hull segment changes
significantly, but the wetted water line of the aft stepped hull segment 3 changes
insignificantly during the same time. From Fig. 9.21, the chine-wetted length of the main
hull segment changes based on the wave action and the boat movement, but the chine-
wetted length of the two stepped hull segments are zero at most time, which means that
the main hull segment is often in chine-wetted flow phase and the two stepped hull

segments are in chine-unwetted phase most of the time.
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Fig. 9.19 Displacement histories predicted by the 2™ order model; irregular waves
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Fig. 9.20 Vertical accelerations predicted by the 2™ order model; irregular waves
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solid lines: wetted length L(t) = Xmax/zk
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Fig. 21 Wetted water line lengths predicted by the 2™ order model; irregular waves

For comparison, the following figures (Fig. 9.22 — Fig. 9.24) depict the
displacements, the vertical accelerations, the wetted water line lengths and the chine-
wetted lengths predicted by the 1% order model (CatSea2-4). Comparing these figures
with Fig. 9.19 — Fig. 9.21, it gives us a clear impression that the results predicted by the
1% and 2" order models are close, although they are from very different theoretical

formulations.
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Fig. 9.22 Displacement histories predicted by the 1st order model; irregular waves
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Fig. 9.23 Vertical accelerations predicted by the 1st order model; irregular waves
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Fig. 24 Wetted water line lengths predicted by the 1st order model; irregular waves
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Fig. 9.25 Comparison of the trim angles and the transom drafts
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Fig. 9.25 shows the difference of the trim angles and the transom drafts predicted

by the 1% and 2" order models. The differences are seen to be small.
Fig. 9.26 is the comparison of the sectional lift force distributions at T = 200. It
demonstrates that the lift distributions are the same at this time. In Fig. 9.26, the main

hull segment is out of water and therefore does not develop lift.
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Fig. 9.26 Comparison of the sectional lift distributions

Fig. 9.27 — Fig. 9.29 demonstrates the differences between the vertical
accelerations predicted by the different models for random waves. In 9.27, the bow
acceleration predicted by the 1% order model is larger than the result predicted by the 2™

order model, which is consistent with the conclusion from the regular wave examples.
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Fig. 28 Comparison of the accelerations at CG
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Fig. 9.29 Comparison of the accelerations at transom

Fig. 9.30 is the comparison of the jet-head streamline offsets in the two
predictions. Fig. 9.31 shows the comparison of jet velocities. Fig. 9.32 shows the
comparison of the wetted water line lengths and the chine-wetted lengths. The results
predicted by the two theoretical models are relatively close, except for existing some
differences at the inner jet head streamline offsets and at the inner jet velocities (refer to

Fig. 9.31).
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Fig. 9.30 Comparison of the jet-head streamline offsets
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Fig. 9.32 Comparison of the water line lengths and the chine-wetted lengths

In this chapter, we have given the numerical comparison for the results predicted
by the 1% and 2" order models. From this comparison, we conclude that the predictions
by the two models, in general, are close, but minor differences exists in some of the
details. The 2™ order model has modified (reduced) the extreme values of the bow
vertical impact accelerations.

So far, al predicted results given in this chapter are the results without

, as discussed in Chapter

&=const

considering the effect of the temporal derivative term ai
T

4, 5 and 6 in connection with equations (4.75), (4.76), (4.78), (4.80), (4.81), (4.84) and

(4.85). As discussed in Chapter 1, the 9 term calculation involves the

or

&=const

differentiation across the different time step, which very easily results in a numerical
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singularity problem. How to deal with the 9 term appearing in (4.75), (4.76),

&=const
(4.78), (4.80), (4.81), (4.84) and (4.85)? This is a complicated mathematical problem,

which isthe subject of the next (and last) chapter of thisthesis.
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CHAPTER 10

DISCUSSION ON PLANING DYNAMICS:

INFLUENCE OF THE TEMPORAL DERIVATIVE TERM 9

r &=const

In the numerical model of the 2™ order theory, the pressure computation involves
, ¢ . ¢ :
the calculation of the temporal a—(f, r) term. The formulation of a—(f, ) in the
T T

coordinate system of Fig. 3.5, and in the equations (3.66) and (3.67) has the following

form:

0 L, dp

o 0 o0pdé
—[¢(r),7] = —‘1 +—L— =—‘”‘ -x— - (10.1)
o7 ¢=const r=congt or &=const L ox

or o0& or

where the non-dimensional x - variable is &(r) =—— , by (4.69), and L(z) is the

L(7)
length of the instantaneous water line.
The second term in Eq.(10.1) has been included in the dynamic boundary
condition calculation and in the pressure formula without difficulty. However, as
discussed in Chapter 3, the first term requires differentiation across the time step, which

is fraught with numerical difficulties. This is due especialy to the non-smoothness of the
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flow geometry in time at the chine wetting point, in which case the numerica time

gradients become very large and usually result in run-time overflow.

As was said previously, the numerical results presented in Chapter 9 are the

results excluding the 9 term in (10.1). In this chapter, we concentrate on

&=const

terms that have not been included.
&=congt

understanding the effects of the subject 9

10.1 The Tempora Derivative Terms

The effect of the temporal derivatives of the potentia ¢(¢,s,7) has been

0¢(¢,s.7)

introduced into the 2" order numerical model by following terms: ¢(¢,s,7), 3
T

0°¢(&,s,1) , .
and “acar (refer to Chapter 4 and Appendix D). The expressions of these
SOT

derivatives are defined in Appendix D. We copy them here for clarity:

s'(&7)

A& s7)=~(2,-1) [V,(£.5,7)ds, (10.2)

s(&1)
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s (£1) ST
_M = (Zc _1)[ j aVS (El SOlr)dSO _Xi j aVS
or S(E.7) b sen %

0s D(i]
0X L

(%8, 7)ds,

LSSV, (E5D)

s"(¢r)

+z,,[ [Vi(é,8,,1)ds, + SV, (6,5,7)]
s(§.7)

s(£1)

2, B V(65 1)05, +SIV,(6,5.7)]
s(¢,7)

O<s<s' (10.3)

(1- zc)[% (€50 -xr Veyy g Y
T

oV,

0s

_azqa(rf,s,r) _
00T

L
-z [k—L[s
o D 5]

where the subscript denoting & = const isto be considered as implied.

These temporal derivatives appeared in the pressure continuity equation (4.75),
(4.76) and (4.78), in the pressure distribution computation formula (4.84) and (4.85) and
in the Burger's equation of the free vortex distribution (4.80) and (4.81).

The final form of the temporal derivative terms in the pressure continuity

conditionsis as following (refer to (4.75), (4.76) and (4.78)):

 In chine un-wetted phase at s’

V(S0 -VAED)
2, (£,5.7)

b’ +(1—x%)bx+ = as=s (10.5)
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« Inchinewetted phaseat s" and s

oY +(1- x%)b; - %vs (&.s°.7) as=s  (106)
] Lo 1. ]
b; +(1—fo)bX =§VS(E,S ,T) as=s (10.7)

The final form of the temporal derivative terms in the pressure distribution

formulais (refer to (4.84) and (4.85)),
* Inchine un-wetted case, the pressure distribution is,

Co(%,57) =V3(x,1) -VZ(x,57) +V2(ELT)
A

+2z,-D{ | [2

S(:[r) o7

VAN
(¢,8,7) +(1-X I_) ™

]ds,}

+2z,, +7,,01- xL—Lf)][ [Va(€.50,)ds, + SV, (€,5.7) -V, (§17)]
s(¢.1)

-V?(x,7)

0<x<L(r),0<ss<1 (10.8)

* |n chine wetted case,
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Co(X,S7)=V?(X,1) -V (X,57) +VZ(ELT)
+2(2, -0 | 15

s(é.7)

+ 2[Zc,r + Zc,x (1_ XL_LT)][ jvs (El So» T)dSO + SWS (Eu S, T) _Vs (f)l T)]
s(§.7)

1ds;}

>(65,7)+ (- x=n) Pl Dyg
T 0x

0<x<L(r),0<ss<1l (109

The temporal derivative terms in Euler's equation of the free vortex distribution

(refer to (4.80) and (4.81)):
+ e st 2 - - 2) 05 (6,57 - (- 2)a- x50 8D <
1<s<s’ (10.10)
+ e sa-x ) 2 - 0-2) S5 (65 ) - (- 2)a- x5 P8 <
s<0 (10.11)

From Eq.(10.5) - Eq.(10.11), the time derivative terms that need to be dealt with

are 92(6,7)
or

ob*(&,1)
or

ob(¢,7)

ov
d —2(&,s,7 . All of
or or (€.87)

£=const. &=const.

é=congt. &=const.

these terms represent the variations in the time domain while the space variable fixed.
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10.2 The Computation of the Temporal Derivatives

To incorporate the above tempora derivative terms into the 2™ order numerical
model, we first need to calculate these derivative terms. A simple Euler backward

difference model was adopted here.

for  the (92ED| dED W) and
a r &=const. a r &=const. a r &=const.
oV . .
a; (¢é,s,7) terms, the following backward difference form has been used:
&=const.

ou)" _u"-u"! )

_— =1 7 +0o(AT 10.12

(6 rji AT (A7) ( )

where n stands for the current time step, n—1 stands for the previous step, u represents
z.,b” and b",and i isthegrid positionin & — axis.

Representing the current time step as 7, the previous time step as 7 -Ar.
Discretizing the nondimensional ¢ — axis as the sectional computation grid. Denote the
computationa grid at time 7 as G(r), the computational grid at 7 —A7 as G(r —Ar1).
At every time step, before chine-wetted section, the computation grid is unchanged; after
the chine-wetted section, the grid or section has to be adjusted. In (10.12), y; N1isthe

variable value of u(r —Ar) at the current time computation grid G(r). The main

difficulty to caculate Eq.(10.12) is that the variable u =u,(7) itself is an unknown,
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where u is the variable value of u(7r) at the current time computation grid G(7), for

examplethe b™(7) and b" (7), at timestep 7 .

An interpolation algorithm has been used to find the u"™*. The value pair
(G(r —AT1),u(r —Ar)) has been reserved at the time step 7 — A7 for the next time step
computation, where G(7 —Ar) isthe computation grid at time 7 — A7 . At the time step
7, the value of u(r —Ar) at the current time computation grid G(r) can be found by

interpolation using the previous value pair (G(r —Ar),u(r —Ar)) (refer to Fig. 10.1 and

Fig. 10.2).
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Fig. 10.1 z, and z interpolation accuracy of the main hull

Fig. 10.1 shows an example of the interpolated value of z (r—-Ar) and
z,(r-Ar) a the man hull segment grid G(r) a time 7. Fig. 10.2 shows the

interpolated value of z; (r —Ar) at the main hull segment grid G(7) at time 7. A high

degree accuracy has been achieved in Fig. 10.1 and Fig. 10.2.
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Fig. 10.2: z; interpolation accuracy of the main hull

To find the unknown u" =u,(7) at time 7 in (10.12), an iteration procedure has

been adopted. Considering that b~ and b"in the current time step are unknowns

themselves, the algorithm in the present numerical model uses the iteration method to

find ob (s, T), b (¢.7) in the form of EQ. (10.12). At the first loop of the iteration, an

or or
: ob* ob~ : . :
approximate value , —— at the previous time step 7 — A7 was used in
a r &=const a r &=congt

+

the pressure continuity conditions ((10.5), (10.6) and (10.7)) to replace aab ,

&=const

a

3 at the current time step 7. When the stable b™(7) and b (7) terms have been
r

&=const



244
ob”*
or

ob™

achieved, the —
or

&=const

terms in the pressure continuity condition (refer to

&=const

oz (ED|
or

&=const.

(4.75), (4.76) and (4.78)) have been updated. For the

terms in the pressure distribution formula in (4.84) and (4.85), the

&=const.

oV,
37 (¢.s7)

Euler difference, (10.12), can be executed directly without iteration, since the z; (&,7)

and V,(¢,s,7) terms have been obtained from the flow field solution of the current time

ZED| gy Naes)
or

&=const.

terms (refer to Fig. 6.1

&=const.

step before calculating the

of Chapter 6).

+

Fig. 10.3 shows the difference of the 9z, term with the aaZC term at the
r X

£=const
nondimensiona time 7 =57.6. The computational results are picked from the time

marching computation at time step 2880 (A7 =0.02). For easily comparing the effect of

the 9 term with the 9 term in the pressure distribution equations ((4.84) and
r &=const X 7=const
. . . . o_ 1 0
(4.85)), recall the transform in the nondimensional & — variable space, — =—— ,
ox L(r) o0&

we use the aif term to calculate the ai term. For comparison, the z; (£,7) vaue and the
X

z! (£, —Ar) value at the current time step grid G(r) also have been included in Fig.

+

10.3. In Fig. 10.3, the value of aazc term is larger than the value of 0z, term, but
X

r &=const
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the %ZC term still can not be ignored (refer to (10.8) and (10.9)). Thereisajump in
r
&=const
0z; 0z, N .
the 3 £ and the 3 ¢ curvesin Fig 10.3. This jump may result from the abrupt halt
T X
&=const

of z;(£,7) when the separation point z; (&,7) reaches the hard chine Z, (refer to the

description of Chapter 2).

2.0
—— Z_ . (xT)
27 (%)
v ZC(X,T—AT)
Z_(x,1)
15
- 1=57.6 Mﬁﬁl W
5 10 M f
S
N_d 0.5
5 > o~
NU I R \\_,__,,-\ \—M
I \
0
_wvxv ]
05
3.0 45 6.0 75 9.0 10.5 12.0 135
Nondimensional length X (t)
+ az+
Fig. 10.3 The —= and the — term at thetime 7 =57.6
or £=const oX

+

Fig. 10.4 shows the difference of the aab
T

. L
term with the (1- xTT)bX+ term at

&=const

the time 7 =57.6. For comparison, the b* (£,7) value and the b* (&,7 — A7) value at the
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current time step grid G(7) have aso been included. From Fig. 10.4, comparing with the

o'
or

&=const

term, it isreadily seen that the (1- x%)bx+ term is a dominant term.

2.0 r :
————— (1-x (L(/ L)) b2x term
b21 (1) term
X—— X b2 (X,1-A1)
b2 (x,1)

15 N B G B i
< 1.0
=)
g
a© 05
.- " M
RS > ~ N N

o= —
0 R URAAAX l/—/
-0.5
3.0 45 6.0 7.5 9.0 10.5 12.0 135
Nondimensional length X (1)
. ob* L. . _
Fig. 10.4 The — and the (1- XT)bX term at time 7 = 57.6
&=const

Fig. 10.5 shows the %
r

term at the time 7 =57.6; the b™ (&,7) term and

&=const

the b™(&,7 —Ar) term are also included here.
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Fig. 10.5 The — term at thetime 7 =57.6
GT &=const

Fig. 10.6 shows the difference of

0V,(¢,{,1)

or

term and the

&=const

oV,
()4
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(&,¢,1)

term at thetime 7 =57.6, { =1.12 (recal ¢ =z in (3.65)). The V,(¢,{,r) term and
z

k

the V,(&,{,r—Ar) term are aso included on the Fig. 10.6. Comparing with the

awﬁjﬂ term, the
o0X

oV, (&,¢,7)
or

&=const

in (4.84) and (4.85).

oV, (&,¢,7)
or

&=const

term is a dominant, which means the

term can not be ignored in the computation of the pressure distribution
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0.2
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Y— X VS' (X,Z,T-AT)
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Nondimensional vessel length X (1)
, ov.(&,{,1 oV .
Fig. 10.6 The WV(6.4.7) and the —=(&,Z, 1) term at thetime 7 = 57.6
or F-const 0x

From Fig. 10.3 — Fig. 10.6, the following conclusion may be drawn: Comparing

+

the values of the 0z,

oV, (£,4,7)

or

term and the

&=const

term with the values of the

&=const

0z"

° term and the Ve
1)

o0x

(¢,¢,1) term in the pressure distribution (4.84) and (4.85), it tells

+

usthat the 2% V,(¢.¢.7)

or

and the

&=const

terms can not be neglected in the pressure
&=const

+

distribution computation (refer to (10.8) and (10.9)). Comparing the ob term and

&=const
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aab term may can be neglected in the
r

&=const

L
the (1-x—5)b;
A-x);

pressure continuity condition (refer to (10.5) and (10.7)) to simplify the flow field

computation iteration.

10.3 Physical Explanation for Euler’'s Equation of the Free Vortex Distribution

The location of the free jet-head sheet must satisfy the Euler's eguation in
Eqg.(10.10) and (10.11) (refer to (4.80) and (4.81)). Euler’s equation (10.10) requires that
when fluid particles flowing from the contour, onto the free vortex sheet, and out of the

jet, the velocity of each particle stays constant at its separation value at z_(7,), for all
time r > 1, thereafter.

Re-formatting Eq.(10.10) as,

(V.(EsD) +
feeona. X 1<s<s" (10.13)
(2 _1)[6Vs(a$,s, T) +- L,)aV (&, s, r)]
r &=const. X
X 0 _ L, L,
Recall the transform:&(r) =—— o) 65 6 L(7), ¢, = x?— ET and (10.1), it
follows that,

oV (¢,s,1) N oV, (¢,s,1)

]=0l<s<s" (10.14)
or 0x

S+( -l
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In the monohull planing hydrodynamics theory (Vorus 1996), the inviscid

Burger's equation of the vortex distribution on the free jet-head sheet has the following

form:

dz, .V, _ dV.((.7)
+
dr =l ild % dr

V(¢ 1) - -0 1< ¢ <b(7) (10.15)

Comparing with (10.15), it is easy to see that (10.14) is also a Burger’s equation
of atime and spatially variable stream that the vortex distribution of the free jet-head
sheet must satisfy.

Eq. (10.14) states:

DV,(£.5.7) _

10.16
Y (10.16)

Since in the vortex model, the effects of viscosity and gravity are neglected, the free

vortices will continue advancing outward with the separation velocities. That is,

V. (&,s,T) = constant (10.17)

or,

V.(¢é,s,1) =V ({4 T,) on s>1,0or { >z, when7>71, (10.18)
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where V(&,.1,7,) isthe jet velocity at the separation point z; ; 7, isthe staring time that

free vortex separated from the bound vortex sheet, onto the free jet-head vortex sheet, &,
isthe x— location of the separation on the vortex sheet, s=1 isthe z- location of the
separation point z, on the vortex sheet.

As we stated in Chapter 2, in seaway dynamics problem (seakeeping), the flow
field and the boat motion varies with the time. It is much more complicated than steady
planing problem. Comparing the Euler equation of the seaway dynamics problem in
(10.14) with the Euler equation of the steady planing problem in (10.15), it is evident that
the solution space is a three-dimensional space (x,z;t) (in dimension expression) in
seaway dynamics, and the solution space is a two-dimensional space (x,z) in steady
planing. The solution of the free vortex distribution from (10.14) will be a 3-D space
curve, and the solution from (10.15) is a 2-D planar curve (Vorus 1996). The most
important character is that, in seaway dynamics, the free vortex location development not

only changes spatially but also temporally. In next section, we are going to develop the

solution of the free vortex distribution from (10.14).

10.4 Free Vortex Location on the Sheet

The free vortex location on the sheet can be determined from the solution of Eq.
(10.13). The solution to the non-linear Eq. (10.13) can be written in terms of the Galaen
transformation of its initial and boundary conditions (This section is based on the

development of Vorus 1993) as,
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V([8,7;¢ (X,7)] =V,(0,,00)H (0,) +V,(0,0,,0)H(0,) +V(00,05)H(0;)  (10.19)

where H is the Heaviside step-function, S=s-1, 7 =7r-71,, X=Xx-X%, and 0, 0, and

o, arethreeinitially unknown functions of the form:

o, =0,[5T,6(XT);V,] i =123 (10.20)

In view of the fact that the o,, g, and o, are linearly independent, Eq.(10.19)

may be simplified to:

V, =V, (0,[5,T;E (X, T)]) = V., i=123 (10.21)
where,
V., =V,(0,,00), V., =V,(0,0,,0) and V., =V,(0,0,05) (10.22)

and where i =1 corresponds to the solution component in terms of the initial velocity
distribution (7 =7,, X=X,); i =2 corresponds to the solution component in terms of the
time distribution of velocity at the free-sheet separation point ({ =z,, X=X,); 1 =3
corresponds to the solution component in terms of the initial velocity distribution aong
the boat length ({ =z, T =1,).

Eq. (10.21) can be expressed in ageneral function form:
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F(5,7,%V,) =V, -V, [0, (57T,%X;V,)] =0 (10.23)

Differentiate Eq.(10.23) with respectto S, 7 and X to give,

oV 05 do, 05
s — _ —_ N 10.24
a§ ai aVs,i Ji ( )

1 —
oV, 00, 0V,

oF  _ MV g0

)Y o7 do, or
s =-2 =- L 10.25
T oF oV, 9o, ( )

1 —
vV, 0o, 0V,

oF  _OVa o

oF Ve g0

oV, __ox ___ 00 & (10.26)
ox oF V.. f . '
R 1_ S, J|
oV, 0o, 0V,

Substituting the above equations into Eq.(10.12) produces three equations to be

solved independently for the three o :

Ve 1% se ";° S(L- xLLf)]} "a"i
r &=const. X S | ::L2’3 (1027)
P acdl N 2 LR
L® ox

& =const.
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In Eq.(10.27), V, istreated as a parameter, so that Eq.(10.27) is linear, and can be solved

for o,.

Specificaly, for i =1,
V,[5,7;& (X, T)] =V., =V,(0,,0,0) (10.28)

At T=71-17,=0 and X=x-X, =0, V,(500) =V, [H[s"(0,0) - 5], where 1<s<s’
(for the s coordinate, refer to Fig. 3.3 in Chapter 3), and V,, s7(0,0) are the solution at
r=0,x=0.

Denote §'=5in 0<S<s'-1andsetup g, =§', thus,
V[S,T;X] =V,(5',0,0) =V, (10.29)

Since we are interested in finding the location § corresponding to S' for 7 >17,, in this

interest, with o, fixedat s', we have Ao, = 0. Therefore,

Ao, = %UE 99, [AT +—2 90, [AX

S or )4
“9% ps o 0% gL 99007, 99 g (10.30)
68 6T &=const. L a 6X

=0
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At this stage, we have obtained two equations for o, ((10.27) and (10.30)), but

0o, 00,
0s ‘ot

there are three g, unknowns ( 660_'1 ). To solve for S which should satisfy the
X

Euler's equation in (10.27), we need to make an assumption to reduce the number of
unknowns for an approximate solution.
In following sections, we introduce three possible approximations that can be

used to derive three different governing conditions to determine the free vortex locations.

10.4.1 Second order condition for the free vortex location

The first possible approximation: assuming aa_—«:_a’% in EQ.(10.30) and
T S OX

assuming i_ term issmall in (10.27).

&=const.

(20.30) issimplified to:

ro, 19% s+ 9% mx=0 (10.31)
S 0X
Eq.(10.31) yields that:
d0,
AS 5%
—=-0% 10.32
X a0, ( )

0%
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In EQ.(10.27), assuming i_ term is small, and ignoring the i_ term,

£=const. r &=const.

the Euler’ s equation becomes:

{V.(5',0,0) - [azf s(- Xi)]} acfl +(z, -D@- ii) Ba@ =0 (10.33)
o0x L 0s L° ox
From Eq.(10.33), we have,
2% v, 5,00-2sa-xt)
K = x L (10.34)
! z,-D@A-x-+-
= (z, —1)( 3 )

Substituting Eq.(10.34) back into Eq.(10.32), we get the following relation:

ns Va(5.00)- 9% sq-x Ly
= OX - L (10.35)
X (z.-D@A-%X-7)
L
or,
V.(5',0,0)

L 0z
¢ a-xy s
as L~ __oX (10.36)
X Z-) (2D
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stz -m) =200 (1037)
X o
1-x—+
( L )
Integration of above equation gives,
_ _ L _L
Sz -1 =-V,(5',00) E—IL—In(l— XTT) +C (10.38)

Using theinitial condition, at X =x-%X,=0,T=7-7,=0, 5=5', wefind,

C =51z, (%) -1 (10.39)

Expanding In(1- X%) term with regards to the small parameter ¢ = o(>‘<L—LT) , we

have,

L L 1, L
In1-X—-L) OX—L+=(Xx—2%)? 10.40
( I_) [ L 2( I_)] ( )

Substituting the above equations back into Eq.(10.38), we have the following

second order condition for determining the free vortex location:
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vs(s',ro,xo)tu(x—xow;Ef'L—fEax—xoV]+s'[zc(xo,ro>—1]
[z.(x7) 1]

s(s,x 1) =

1<ss<s’, x=2x,, 127, (10.41)

10.4.2 First order condition for the free vortex location

The second possible approximation is; assuming aa—_ <<:—_,% in EQ.(10.30) and
T S 0OX

in EQ.(10.27).

By ignoring the whole (;i_ termin (10.27), the Euler’ s equation becomes:
T

{V.(5,7:%) -

0% 499 4z —1%% -9 i=123 (10.42)
0X 0% ox

Taking i =1asan example, we have,

99 v,500-%5

X = - Ox (10.43)
99, (z-1)

o5

Substituting Eq.(10.43) into Eqg.(10.32), we get the following relation:



259
0z, _

- V(5,00 -—=5

as (10.44)

DX (z. -1

and,

d —_ —

F[S [z, -D] =V,(5',00) (10.45)
X

Integration of above equation, we get,

SHz. -)=V,(5,00Xx+C (10.46)

Using theinitial condition, at X =x-%X,=0,7T=7-7,=0, 5=5', wefind,

C =5Tz. (%, 7,) —1] (10.47)

Substituting the above equations into Eqg.(10.46), we have the following first order

condition for the free vortex location:

Vs(sla Z-o’xo) [{x- Xo) + SI[Zc(XO’To) -1
[z.(x,7)-1]

S(s,X;7) = 1<s<s’, x=x,, 1271, (10.48)
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which is similar to the condition in the planing monohull hydrodynamic problem (Vorus,

1996).

10.4.3 An dternative of the first order condition for the free vortex location

The third possible approximation may be: assuming x <<6_E'F in Eq.(10.30)
X S 0T

and assuming :—_term issmall in Eq.(10.27).
X

By ignoring aa—_ term, (10.30) becomes:
X

ro, 09% s+ 9% ar = 0 (10.49)
0s or
(10.49) yields that:
9| L oo
AS 0T | secons L oX
= =- : 10.50
AT do, ( )
05

In the Euler's equation of the (10.27), if we ignore the a—_term, not the term
X

involving g—{ =-X-—-+t i_ , the Euler’ s equation becomes:
T

9
o0&
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02 L, 00, 00, d0.
V(5.7 X < = 1 Y\ et XL “11=0 10.51
{V,(5,7;%) R e o W (10.51)
Therefore, from Eq.(10.51),
00| _ L 00 2z, 2% L g
or |,. L ox ° oT|,. Tox L
&=const. - _ &=const. (1052)
a0-1 (Zc _1)
0s
Combining (10.52) with (10.50), we have the following relation:
_ az L, S
S . a— L
25 £=const. (10.53)
AT (z. -1
and,
d —_— —u
F[S [z, -D]I =V,(5'.0,0) (10.54)
T

Integration of the above equation gives,

sz -1) =V.(5,00)F+C

(10.55)
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Using theinitial condition,at 7 =7-7,=0, X=X-X, =0, 5=5', wefind,

C =51z, (%, 7o) -1 (10.56)

Substituting the initial conditions into Eq.(10.55), we have the third possible form

in thefirst order condition for the free vortex location:

Vs(sl' TO'XO) QT B To) + SI[Zc(To) _1]
[z.(7) -1

s(s',x 1) = 1<ss<s',r2r1, 127, (10.57)

The solution of Eqg. (10.27) for i = 2,3 can proceed similarly. The solution in the

domain s~ < s<0 could proceed same asinthedomain 1< s<s’.

So far, three possible solutions have been derived for the free vertex location
under the three different possible approximations. The solution in (10.41) and (10.48)
depend upon the relative distance between the current location and the separation point

(X=X,), the solution in (10.57) depends upon the time interval between the current time
and the initial separation time (7 —7,). The conditions in (10.41) and (10.48) have given

areasonable free vortex distribution from the numerical examples, however the condition
in (10.57) will give a divergent result as the time increasing. In the following numerical
examples, the condition in (10.41) from the first approximation has been implemented in

the numerical mode!.
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10.5 Numerical Result Comparison

The temporal derivation terms: LA ' ob™(4.7) ob™(¢,7)
o7 &=const. or F=const. or F=const.
and %V; (&,s7)  inEq(105), (10.6), (10.7), (10.8),(10.9) (10.10), and (10.11) have

£=cont.
been incorporated into the present second order numerical model by using the described
interpolation and difference algorithms, and the second order condition in (10.41) for the
vortex location on the free jet-head sheet has been implemented in the numerical model.
The modified software is named as NewCat (2-5).

The effect of these temporal derivation terms can be demonstrated by the
comparison of the planing seakeeping results of the NewCat2-5 with the results of
NewCat2-4, which is without these temporal derivation terms.

In this comparison, the Vorus-DeCan stepped catamaran has been used again. The

input wave is a random wave in head sea. The significant wave height H,,, =0.308 m,
the wave peak period T, =4.188 second. Again a JONSWAP wave spectrum has been

used here. The forward speed has been chosen as U =70 knots, the non-dimension time
step Ar =0.02, the artificial damping coefficient DEPS = 0.1, al same as in Chapter 9.
The time duration in this example is IALL = 3050, the non-dimensional time length is
61.

Fig. 10.7 — 10.9 are the results of waves, displacements, vertical accelerations,
wetted lengths from NewCat2-5. Fig. 10.7 shows the time histories of wave elevations,

the displacement, the transom drafts and the trim angle, comparable to Fig. 9.19 in
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Chapter 9. Fig. 10.8 is the vertical accelerations with these temporal derivation terms

taken into account. Fig. 10.9 shows the wetted water line lengths and the chine-wetted

lengths.

14
12F
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1F Displacement Histories:
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(@] B
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Time

Fig. 10.7 Wave and motion histories from NewCat2-5
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Fig. 10.10 is the comparison of the vertical accelerations. The dashed line

represents the result of the 2" order model without considering the i terms (the

&=const
software version is NewCat 2-4), marked as “the 2™ order kinematics model” for

distinguishing from NewCat2-5. The solid line represents the results of the full 2™ order

model with all the 9 terms implemented (the software version is NewCat 2-5), it
r &=congt

marked as “the 2" order dynamics model” based on the physical explanation. The free
vortex location of (10.41) from the first approximation has been used in this example. It
is easily seen that the results from the two models are close, however the dynamics model
(NewCat 2-5) has produced much more spikes. Numerical tests show that these spikes
may come from insufficient accuracy, since with these tempora derivation terms the
numerical computation needs much higher numerical accuracy. Therefore a finer
computation grids and more CPU time are required, which is difficult for present-PC type
computer.

Fig. 10.11 shows the comparison of the trim angles. There is amost no difference

for the two models.
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Fig. 10.12 is the comparison of the sectiona lift distribution at the non-

dimensional time T = 42. Fig. 10.13 is the comparison of the jet-head stream lines at
T=42. Fig. 10.14 is the zoom view of the comparison of jet velocity distributionsat T =
42. In Fig. 10.14, a loca difference for the jet-head stream lines has been found. In
general, these figures tell us that the solutions of the flow field and the lift are close, and
that these temporal derivation terms do not have alarge impact on the solutions. However

it does increase the numerical complexity greatly.
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Fig. 10.12 Comparison of the sectional lift distribution at T = 42
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Fig. 10.13 Comparison of flow fieldsat T =42
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Fig. 10.15 shows the comparison of pressure distribution at T = 42, at the section

22 of the main hull, the location of the section is from the entry X, = 1.031. There are

some differences for the pressure distribution, since the ai terms have been
T|s.
&=const

implemented in the pressure formula (refer to (10.8) and (10.9)).

05 :_ Random head wave
0.45 :_ Pressure at the main hull segment, section 22
E solid line: 2nd order dynamics model
04 - dash line: 2nd order kinematics model
035
0.3 :—
dpask
02 -
B —
0.15F
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1 1.1 1.2 1.3 1.4 1.5
Z

Fig. 10.15 Comparison of pressure distribution at main hull, section 22

(fromtheentry X, = 1.031, T=42)

From these comparisons, it is found that it is doable for numerically
implementing all these temporal derivation terms in (10.5) — (10.11) into the program,
and the effect of these temporal derivation terms on the final resultsis not large, however

it will increase a great amount of the numerical complexity, especially for the iteration
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loop of the jet-head b*(&,7), b™(&,7). At the x —location of the chine-wetted section,

the jet-head b* (&, 1) solution often has a numerical jump, since the chine-unwetted phase

and the chine-wetted phase have difference iteration algorithms (refer to Fig. 6.2 and Fig.

ob* (&,1)
or

value

&=const.

6.3 in Chapter 6), this numerical jump will results in an larger

which may cause the iteration to diverge.
Up till now, we have completed the introductions of the 2™ order model.

Comparing the results of 2" order kinematic model in Chapter 8 and 9 which without

terms, with the results from the 2™ order dynamic

&=const

considering the effect of %

model in this chapter (with 9 terms), it seems that the impact of these

&=const

3 terms on the final boat motions and on the accelerations may not be large, but
T

&=const

the i

3 terms do make the problem behavior more complicated and difficult to
T

&=const

solve. From the view of the practical engineering application, discarding the

% terms in the 2™ order model, it may be an acceptable approximation as the 1%
&=const

order model did.
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CHAPTER 11

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

11.1 Summary and Conclusions

The present research is for relieving the initially implemented approximations on
the catamaran planing hydrodynamics by the first order model, and further developing
and extending the theory and application beyond that currently in usein CatSea. This has
been achieved through a detail theoretical analysis, algorithm development, and careful
coding.

The main achievements in this thesis, through the present research, are
summarized as follows:

e This research has systematically introduced the current planing hydrodynamics
theories (refer to Chapter 1), especially the Vorus' planing theory and analysis.

* Thedetal analysis and assumptions for the catamaran flow physics, and the boundary
value problem definition, are given in Chapter 2.

* The first order nonlinear planing hydrodynamics theory for catamarans has been, for
the first time, systematically reviewed and documented in this thesis (refer to Chapter
3). The material of the first order theory is from the unpublished manuscripts by

William Vorus, and his planing catamaran design code CatSea.
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» Through the present research, a new, complete nonlinear hydrodynamics theory for
planing catamarans is developed, which relieves the major approximations and
simplifications of the first order theory. This extended theory is referred to as the
“second order nonlinear theory” (refer to Chapter 4).

* The detaill numerical models and the correspondent solution procedures for the first
order and the second order theory, for steady planing and for seakeeping, have been
outlined in Chapter 5 and Chapter 6.

* The man numerical models (the fundamental integras and the bound vortex
distribution) in the second order theory have been validated in Chapter 7.

* A comparison of the numerical predictions by the second order theory and the
predictions by the first order theory, in the steady planing example, is given in
Chapter 8.

* A comparison of the numerical results, in both the regular and random wave cases,
for both the first and second order theories, has been carried out. The details are in
Chapter 9.

* A theoretical and numerical investigation on the effect of the tempora derivative

terms 9 has been conducted in Chapter 10. The computation algorithm and the

r &=const

numerical comparison for the 9 effect have been presented.
r &=const

The following conclusions are drawn with respect to the purpose of the present
research:
* The new second order theory has relieved the major approximations and

simplifications of thefirst order theory.
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The numerical comparison demonstrates that the first order theory has made a
reasonable ssmplification for the kinematic boundary condition, which neglecting the
higher order nonlinearity, make the problem easier to solve. This research finds that
the software “CatSea’ based on the first order theory is a practical design tool of the
catamaran design for its fast computation speed, the robust run-time performance, and

good accuracy.

The research on the effect of the temporal derivative terms 9 indicate that it is
r &=const

possible to numericaly implement all the temporal derivation terms into the code to
run a full planing dynamics problem, however it will increase the numerical
complexity extensively. It has been found that the effect of these temporal derivation

terms on the fina results is not large, thus the approximation made in the first order

theory that, discarding al the 9 terms in CatSea, may be an acceptable

&=const
algorithm for most engineering problems at present computer capability.

The second order theory is a complete nonlinear theory, and it has the ability (like the
first order) to include the detail hull geometry. For example, deadrise angle variation
over craft length is fully considered; the software NewCat2-4 or NewCat2-5 based on
the second order theory has the potential for a powerful design tool. The comparison
of results demonstrate that the present second order nonlinear model has high
accuracy and can be reliable for work with planing catamaran design on a high speed

computer.
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The first order theory and the second order theory of the planing catamaran
hydrodynamics have been fully and systematically documented in this thesis, which

has provided areliable foundation and very useful information for future research.

11.2 Suggestions to Further Works

To provide a reliable design tool for planing catamaran design, further work should
be undertaken to validate the accuracy of the present software. An experimental
program is strongly recommended. A careful and detailed flow field measurement,
including the vertical acceleration measurements, the measurements of the trim angle
and the transom draft, the pressure distribution, and the jet-head streamlines and the
jet velocities at different cross sections, should be carried out. With an available
experimental data comparison, the present codes (CatSea and NewCat) can be
validated and modified to become an important, valuable design tool, which will
guide the planing craft designer to design good performing planing catamarans, free
of empiricism.

Further theoretical research on the solution of the exact Burger’s equation (refer to
(10.27)) in the dynamic boundary condition is recommended. A proper condition

should be developed for constructing a three-equation system, including (10.27) and

do, 00,
0s ' or '

(10.30), to find a unique solution for the three unknowns ( aaql ) in (10.27)
X

and (10.30). In this way, a solution in a form similar to (10.41) will be achieved to
accurately define the instantaneous free vortex sheet location in the seaway dynamics

problem.
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APPENDIX A
KINEMATIC BOUNDARY CONDITION

AND VELOCITY CONTINUITY CONDITION

A.1 Kinematic Boundary Condition On Body Contour

At the y-2z plane of the body-fixed system O-xyz, uses a 2-D coordinate
system { —0,., —#7 moving downward with the cross section as depicted in Fig. A.1. In
Fig. A1, V,({) and V,({) are the tangential and normal flow velocities on the body

bottom contour, and v({'), w({) are the perturbation velocities in the y and z directions,

respectively.

Fig. A.1 Kinematic boundary condition
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The normal and tangential velocities, in terms of the perturbation velocities

derived in Vorus (1996), can be expressed as (refer to Fig. A.1),

V, =(V +v)cosS({, 1) —wsin 5({, 1) (A.D)

Vs =(V +Vv)sin5({,7) +weos5({,7) (A.2)

According to the physical model in Fig. 3.1, the jet velocity V ({) associated

with avortex strength y(¢,7) distribution can be described by the following relation:

VL(¢.1) = =S /ET) +V(@)sin A1) (A3

where V(7)sin 5({,1) isthe stream component.

In the downward moving coordinate system ¢ —o,., —# on the body boundary,
V.({,1)=0 forls{<z (A4
To eliminate w from (A.1) and (A.2), multiply (A.1) by cosf({,r) and (A.2) by

sin({,1), then adding the two together with respect to (A.3) and (A.4), this process

will give the following kinematic boundary condition on the hull contour (Vorus, 1996):

v({,T) +%y((,r)sin,[>’((,r) =-V(r)cos® B({,1) forlsl <z (A.5)
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A.2 Integral Equation From the Kinematic Boundary Condition

Expressing the perturbation velocity v({,7) intermsof y({,r) by the Biot-

Savart law:

D=2 [ WDy, (A6)

Z —_b (ZO Z)

Eliminating v in EQ.(A.5) using Eq.(A.6), we get the integral equation representing the

kinematic boundary condition (KBC):

%y((,r)sin,é’((,r) J' (yZ(ZO 1) dl, =-V(r)cos’ B forl<s{<z, (A.7)
v o

The integral on the whole computation domain can be separated as :

b* @, ) -z, -b" o, ) 10 z b @, )
s 2, 0% {“f*f}(yzo T *{!*I*Z{}(VZO ~dd, (A9

-b* -z, -10 1.0
Using the symmetry conditionin { - axis:

y(=¢,r)=-y({,1) (A.9)
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The first term in EQ.(A.8) becomes:

V(o r) __jy(—Zo r)( 4= IWO 7) a7

j . (A.10)
2 (o - (~{o—¢) ot{

Substituting Eg. (A.10) into Eq. (A.7),

b*

1
—y(Z r)sin B¢, r)+57bj oDl z Zo

F10¢ =V (D)oo’ B¢ 1)

onls{<z,  (Al1ll

The vortex is distributed on the axis is depicted in Fig. 2.6. The bounded vortex

v({,1)=y.({,1) isover the hull segment 1< ¢ < z_. Thefreevortex y({,7) =y ({,T)

and y; ({,r) areover thefree surfaceregions z, < { <b™(r), b~ < { <1 respectively.
Eq. (A.11) can be expressed in terms of the free-vortex sheet variable y,({,7) as

follows (Vorus, 1996):

%yc(z,r)s'nﬂ(z,mizcmdzo:f(&r) 1<7<z

A.12
T . . (A1)

and, theregion -1<{, <1 in (A.12) is the free space between the demi-hulls (refer to

Fig. 2.5).
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v.({,,7)=0 on -1<{,<1 (A.13)

where:

f(¢,7) =~cos’ ﬁW(r)——j Vs€oD 77t jys(zo.r) d¢,

Zz Zz

(A.14)

A.3 Solution to KBC Singular Integral Equation

Eqg.(A.12) is the Carleman singular integration equation (Muskhelishvili 1958,

Vorus 1996) ,
(). (0)-A[ 2 as= 10) ¢ o) (A15)

The solution domain L here includes two arcs of -z, <{<-1 and 1<{<z.

Comparing Eq. (A.12), a({) and A are given respectively as:.

a(() =§sinﬁ(z, r) (A.16)

P (A.17)
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and f({) isinEq.(A.14).

Muskhelishvili(1958) or Tricomi(1957) give the general solution for the

Carleman type singular integral equation. It takes the following form,

af@) , A T f(s) ds

a’({)+(Am?*  Ja2(¢) + (Am)? A x(s)ya’(s) + (Am)? S—¢

v.({)= (A.18)

Following the derivation of Vorus (1996), substituting EQ.(A.16) and (A.17) into

Eqg.(A.18), we have:

2snB () _ 20k(&) ¢ f(s) ds

v.({,r) = : (A.19)
1+sin® B jfi+sin? B 5 x(s)1+sin? g ¢
For convenience, define,
sng=tan f3 (A.20)
thus,
) 2 = 1
1+sn” f=1+tan" B =———= (A.21)
cos” B

Substituting above relations into Eq.(A.19) yields the solution of the line vortex strength

distribution:
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~ - P z -~
y.(¢.7) = 2sin Beos B £ (¢.1) - 2SSPX() ] cosfB f(s) ds
4 X s=¢

onls{ <z (A.22
where
B =tan'[sin B({,1))] (A.23)

A.4 Kernel Function x (<)

The kernel function solution development here closely follows for the mono-hull

craft. From Muskhelishvili(1958) and Vorus (1996); the kernel function x({) in

Eq.(A.22) is:

X({)=P() " (A.24)

where,

P =1 -C,) (A.25)
r@) =2 [X L, 0¢) = argan 22 (.26

k =1 |_ ©.m) a(()
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p in (A.25) and (A.26) is the number of arcs, with the end points at coordinates

of C.,. The A, are integers which will be selected according to character of the x({)
function in each arc L,, i.e, -z <{<-1 and 1<{ <7z for present problem. Here
p = 2, the respective C_, =-z,,-1.01.0,z,. We may select the parameter A  to match
the solution for the catamaran hull contour.

A kernel function for the type of integral in Eq.(A.22) is developed in Appendix

F. It is different from the kernel function for the mono-hull (Vorus, 1996) for two

singularity points located at the keel and z, two points for the catamaran.

K({.T)

xX({,1)= - — (A.27)
J@2 -1z -¢?)
where
B (1) B; (1)
- tj+1+Z " Z_tj+1
K(&,T) =T} Y = (A.28)

The t; and ﬁj (r) are the end offsets and angles of the jth element (refer to Fig. 5 of

Vorus(1996)). For deadrise contours £({,r)=(r) is constant in ¢, defining

K({,T) =k, (Z,T) inthiscase:

A7) B(1) B@)
_|z+g] 7

Z_ZC|” — Zf‘fz d
oo Fa 5 A
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The kernel function then will be:

— KO(Z'T) _ 1 [EZCZ—ZZJ ™
x({,1)= = ; (A.30)
J -0z -7 Ji-nz2-7n L -1

A.5 Bounded Vortex y,.({,7)

Expanding the equation (A.22) with respect to Eq.(A.13),

y.(¢,7)=2sinBcosp f({,1)
‘f f (¢, T)lcosB  d¢, +]° f(¢,T)cosB  dZ, ]
=, xun) (-0 0 Xt (§-4)

~ 2 cos B (¢ 1)
T .

(A.31)

Dueto the symmetry of x({,7) and f({,7):

xX(=¢,0)=x({.1) (A.32)
and
f(-¢.r)=1({.1) (A.33)

Thusthe integral of first termin Eq.(A.31) will be,
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‘f f(¢u70icosB dg,  _ j f(-¢,7)cosB d(-{,)

wa X&) (G- L x4 (40
:_T f(¢,T)cosB  dZ,

aa X)) (€1t 4)

(A.34)

Substituting the above equation into Eq.(A.31) yields,

y.(¢,7) = 2sinBcosB f(Z,7)

-2 cos5 (0) [i€nesf 1 1 g

4=l X(Z1) (Zl_Z) (Z1+Z)
:25in[>’cos[>’ f({,1)
% f(,)cosfB 1

4z =~
7 P D“Z)(L Q) @-7)

1< 7 <z (A.35)

d7,

Substituting f({,7) into Eqg.(A.35):

y.(Z,T) = =2sin B cos B cos? BV (7)

-2 s(&os 2d 0
sin 3 cosf = J'y(Z r) Z 4
-2 s\Gos 2d
sin 3 cos 3= jy(( T) Z o
+—COSﬂ Dy (&)[cos” BV (T) E:OS,B DI del N
aa X =47)
cos,[?mli1
— s\$os 0 2\(72 2y <
+4 cosﬂD((Z)[ jy(z 1) ZLX@(ZI =g ol
+—cos,8D((Z)[ j Ve(loD) @, j cos 3 14, [, ]

2,21 X(Zl)((l Zz)(Zoz _le)

1< ¢ <z (A.36)



According to the partial fraction reduction identity given by Vorus (1996):

T p s T { b T } (A37)
(Zl _Z )(ZO _Zl) Zo _Z Zo _Zl Zl _Z

Thus, the inner integration in Eq.(A.36) becomes,

Z le

L XO)CE -T2 =)

_ 1 T e, [ 1 1 }

7E-7 2L x4\ e -¢ it -¢ 39

_ 1 i dZ, - dZ,

ZZO_ZZ Z=1 X(Zl)(ZC)Z_le) 471 X(Zl)(ZZ_Zf)

1

= AR

7 _Zz{ (ORI
where,
A, = Zf dd; b <¢,<lor 2,0, <b’ (A.39)

o X)W =47)

A(C) = Zf d; 1<z (A.40)

D X -22)
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Substituting Eq.(A.38) back into Eq.(A.36), we have the following expression for the

bounded vortex y.({):
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yc(Z’T) :ynormal (Z’T)-l_ysingular (Z’T) (A41)

where the normal component is the non-singular part of the solution:

Verorma ({,7) = —28in B cos B cos? BV (1)

—2sin fcosf = j V(o)

d¢, A.42
ZZ Z ( )

Z
ZZ

—2sinBcosff— IVS(ZO T) d¢,

The singular term is the part with the singular kernel function x(¢):

Vesnguar ({1T) = 4—7:)((( 1) cosB{V (r) cos? feos B [I-A({)]

+Zcosf j oD 722 0N G- ()
T Z

+= cos,GDj Vs, r) Z 5> AN (o) — A}

where ¢ isindependent variable, {,,{, areintegration variables, and

A(0) = T d¢, 1<z, (A.44)
4=l X(Z1)(Zz _512)
AN, = Zf dd; b-<¢, <1 (A.45)

S X2 =77)



o Edg,
N ()= > 5 . <
€= yaoci-ay %S
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(A.46)

The numerical model for the bound vortex distribution y.({,7) in Eq.(A.42) and

Eqg.(A.43) can be found in the Appendix E. Next we derive the velocity continuity

condition based on the bound vortex distribution in Eq. (A.43).

A.6 Veocity Continuity or Vorticity Conservation Conditions

Equation (A.43) has singularity pointsin its solution domainat { =1 and { = z_.

When { - 1and { - z,, x({) - o.

For non-singularization in Eqg. (A.43) we use the following identities (Vorus,

1996):

) for { -1

) for { - z,

When ¢ - 17, use the identity in Eq.(A.47):

(A.47)

(A.48)



Vo (011) = %x(() cos3
{cos? Beosf I-A({)] W(T)

+1cos,8 [ V3(€0n) 721 40N (€)= A

Zozl
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+(7 - L cosf j ValGo D)8 dZ,IN (€0 ~AQ)]

(€2 -D(2-7?)
+ HCOSB Dj 3 (o) 72 oA (€0) = A

+(52—1)7Tcos/?q VoCoD) oy st dZ A (C) - AT
Z

({5 =D& =¢7)

(A.49)

The requirement that ). be bounded results in the following velocity continuity

eguation (Kutta condition):

0={-c08" BIV(D)IND + [ Va(¢0 D) o2 [N ({o) ~ADIHC,
lTb_ Z 0o—1

15 + {o + _
+7_T£VS(Z0’T)Z2 _1[/\ (o) = AMIdo}

When { - z_, usetheidentity in Eq.(A.48),

7 > 1" (A50)
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Venosm (€)= 2 () 005
{cosz BeosB IV (7) - /\(Z)]
+= cosﬂ Ej Vs (o) g2 A (€)= AN,

o
(%0 -2) (% —{7)

-~ cos iz ~{?) j Vi (lo7) [N (¢o) = A@)NdE,

+~cos Dj o) 522 5 I (€)= NI,

o
({%0-2)(¢5 ={7)

-~ oosfz -¢?) Tv20n [A*(¢o) = AENIAZ,)
z

(A.51)

The requirement that . is bounded results in the following velocity continuity

equation (Kutta condition), from (A.51):

0={cos’ AIV(7)[-A(z)] + jys(zo o o N (@)= Az,

+_ij(ZO z’) [/\ (Zo) /\(Z )]dZo}

{ -z, (A52

C

As was noted in Chapter 2, in the chine-unwetted flow phase, there are five
unknowns: V" (1), V (1), z (1), z, (1), z.(r). The Kutta conditions of the kinematic

boundary integral provide us with two velocity continuity equations (Eg.(A.50) and Eq.

(A.52)).
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APPENDIX B

DISPLACEMENT CONTINUITY CONDITION

In the chine un-wetted flow phase, the velocity continuity condition provides two
equations of the five for solving five unknowns, the pressure continuity conditions
provide another two equations. In this section, we develop the last necessary equation of

the five based on the physics of a continuous body-free-surface contour at the jet-head

b* in the chine unwetted flow phase.

Ye

/vﬁ/ vt

Z,

-b* -z, -10 -p° b~ 1.0 z. b

Fig. B.1 Displacement continuity condition model
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B.1 Water Surface Elevation

In the time coordinate system [O,t], in the chine-unwetted flow phase, the

dimensional bottom contour y,(z,t) can be expressed as:
y.(zt) =h.(zt)-V(t) @ z, <2<z (B.1)

where V is the section impact velocity, the V [ term is, in fact, a transient draft, , and

the water elevation above the kedl is:

(z-z)tan 8 z, <2<z (t)

0 z(t)<sz<z, (8.9

h.(zt) = {

The second branch of h, is an approximation, assuming that the fluid surface is first

order un-deflected, or the fluid separates at the keel.

Define the net vertical fluid velocity on the contour:

ayca(tZ,t) = V(1) = v(z,t) +%y(z,t)sin[z’(z) onz <z<z, (B3

Integration of the above equation gives the body contour:
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y.(zt) = j [V(z,7) +£V(Z, r)sin (2)]dr
= 2 (B.4)

—v' (21) +%y* (zt)sin B(2)

where;

Vi (zt) = jv(z, r)dr and y (z,t) = jy(z, r)dr (B.5)

=0 =0

Non-dimensionalize the transient draft variable 7 = % and the spatial variables
k

{ =z and % Substitute Eq.(B.4) into Eq.(B.1). The non-dimensional Eq.(B.1) now
Zy K
becomes,
. 1. . +
V(Z,T)+§y (f.0)snB({) = £({,1) 1<s{<b (B.6)

According to the above assumptions f({,7) can be expanded into the domain:

b <{<b” as

~-r+h({,1) 1< <b*(7)

-7 b <7 <1 8.7

f(Z.T)={
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where,

({ -Dtan S 1<{<b™(7)

0 b (1)< <1 (B.8)

ﬁc(z.r)={

The vertical velocity time integral, v’ ({,7), is again expressible in terms of the
time-integrated displacement vortex strength, y.({,r), by the Biot-Savart law as in

Eqg.(A.6). Thusfrom (B.6),

1, . 1%, 1 _ R
Eyc(z,r)sm/s(o+57_{+yc(zo,r) ;o= 1s¢<b’ (B9
where,

y.(¢,1)=0 on -1</ <1 (B.10)

Again EQ.(B.9) is the Carleman type of singular integration equation. Using the
same transformation of Carleman type singular integral equation as in Appendix A, the

solution to Eq.(B.9) isfound in the following form (Vorus, 1996):

2cosB Oy (¢,1) ¢ cosB f(s) ds

Y. (¢,1) =2sinBcosf £({,1) - - e 57

onl<s{ <b" (B.11)
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where

~

B =tan"[sin B({)] (B.12)

B.2 Kernel Function x (Z,7)

The kernel function for the integral in Eq.(B.11) is developed in Appendix G. The

difference from the kernel function x(¢,7) isthat the solution domain is now on the arcs

of -b"<{<-b”andb” <{ <b". Therespective C,, =-b",~b™,b™,b".

(2) Inagenera case, the kernel function will bein the form:

X ({.1)= K(¢.7) (B.13)
(22 =0)2)((b")* -7?)
where
B (1) B; (1)
t. s —t.
K({,1) =} t‘_ﬂ: ; ZZ_ t’l (B.14)

Thet; and Ej (r) arethe end offsets and angles of the jth element.
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(2) Inthe case of constant £({, 1) = B(7), the kernel function will be:

B(1)
. _ Ko({,T) _ 1 (b*)? —zzjn
X (le—)_ - 2 N2
J@2 =)0 -¢%) JZ-0)A)(b")?-2%) (¢ =)
(B.15)
where
b Z|B(r) o Z|B(r) (b+)2 e B(1)
+ T — m — Vs
KO(Z,T)—|b_+Z| E\Eb__z| —(ﬁ_—wj (B.16)

B.3 Displacement Continuity Equation

Expanding Eq.(B.11) with respect to Eq.(B.10) gives,

Y. ({.1) = 2sinBcos f({.7)

_%COSED(*(Z,T)[ j f({o,7hicosB dd, + f({o.7)cosf  d¢, ]
4

Je XD G-D L X e G-0)

on-b"<{<-land1<{<b” (B.17)

where ¢ isindependent non-dimensional variable.

Considering the following symmetries,
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f(=¢.1)=1({.7) (B.18)

X (-¢.n)=x({.1) (B.19)

First term of the integral in Eq.(B.17) can be transformed into:

j f({o,7)  dd, —bj f(={5.7) d(=¢) _bj* f({o,7)  dd,

- = B.20
o X&) ((o=4¢) L X(=40.T) (o =¢) L X({0.T) ({6 +{) (520
Substituting the above equation into Eq.(B.17) yields:
y.({,1)=2sinBcosB f({,1)
2 . =" f(¢,7T)cosB, 1 1
- ) P - dd,
o (O10sP Zj X @D (G-0 @ e
' (B.21)

:Zsinﬁcosb7 f({,1)

4z . =" f(¢,T)cosB 1
g X (G10sP (I X (Gun) (@7-3)

dd,

Substituting f (¢,7) into above equation, (B.21):

V.({,1) = 2sin BcosB[~T + (¢ —1)tan 3]

4 ~ % [-r+({,-DtanBlcosB 1
PX €Nt | ey @0

=2sin BcosB[-T + (¢ -1 tan f]
_«

= X' (¢.1)cos® fx
JT

d¢,

dzl+tanﬂmbf <

b* 1
-T—t O d
{( ' anﬂ) zl=bf)(*(51,T)(512—52)

Z1=b” X* (Zl’ T)(le - ZZ)

¢}

(B.22)
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When ¢ - b*, there is a singularity in the kernel x"(¢,7). To diminate the

singularity, we express the term:

1 1, bt

2 2 = T2 € 2 2
Z]_ _Z b* —le Zj_ _Z

)

Substituting Eq.(B.23) into Eq.(B.22):

Vo(Z,1) = 2sin BecosB[~T + (¢ —1)tan 3]

4 1

(B.23)

X' (¢,)cos” BR~(r +tan ) I |

3 o2 X (G007 = 27)

+(b+2_Z2) j * +21 2 2 2 d
Zl=b’X(Z1’T)(b _Zl)(Z1 _Z)

b
ttan B~ | — S .
ol X (D)0 =)
+2_Z2) j * +2Zl 2 2 2 dg
Zl=b’X(Z1’T)(b _Zl)(Z1 _Z)

1]

d¢,

+(b

1)

dd,

(B.24)

When ¢ - b*, the vortex strength (¢, 1) must be bounded. This requirement

results in the displacement continuity condition:

dd, 0 4

O:(r+tan,6’)Db —tan g

o2 X (L) =) o2 X (CLT)(b™ =)

Define the following notations:

d¢, (B.25)
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|, = j : lez (B.26)
o= X (ler)(b+ _le)

’
|, = ¢ dz, (B.27)

zllfb‘ X (¢, T)(b+2 - 512)

The displacement continuity condition then can be expressed in terms of |, and

|, as:
O=(r+tanp)0, -tan g0, (B.28)

(B.28) could be re-written in atransient draft form as in following (B.29), which provides
an additional condition solving for the unknowns in the steady planing problem defined
in Chapter 2.7 and a necessary equation for solving the seaway dynamics problem

(seakeeping) at each time step.
r :tanﬂ[ﬂll—z—l] (B.29)
1

B.4 Integrals In Displacement Continuity Condition

The integralsin (B.29) can be transformed into an easy-cal culated semi-analytical

form.



304
B.4.1 Integral I,

Substituting the kernel function in Eq.(B.15) into 1,

b*

L= uf
ot X (D07 -22)

. _ _ (B.30)
b 1,8 1B
= [(@2-pn () - g,

leb

N

Defining variable transform t = ¢ in Eq.(B.30), d{, -1 dt

N ™

1 1,5 1
t 2(t-b2)2 7(b*? —t) 2 7t (B.31)

1 b 1 1B 1B
I, ZED J- (x+b?) 2x2 7(b*”? -p™? -x) 2 7dx (B.32)
x=0

From Gradshteyn and Ryzhik (1965), p287, 83.197, Eq.(8):

jx”’l(x +a) (Uu—x)*tdx = a "B, V) Q F (A, v u + V;—E) (B.33)
a
0
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where

arg(g)

<m, Reu>0, Rev >0. Compare with Eq.(B.32) where,

a:b_z,u:b+2—b_2,ﬂ:1—1—£:1—£, V:§+£,A:—1_
2 T 2 T 2 T 2
Thus:
b* le
I, = _[ « +2 5
oz X ({007 —=47) (B.34)
102 -b) .1 B3 B 13 B. (0)2-(0)
1O -0 L B 3, By 13,6, 0 -0
2 b 2 m2 71 22 (b7)
where B(u,v) is the Beta function, and ,F(a,8;y,2)=F(a,B;y,2) is Gauss

hypergeometric function.

Gradshteyn and Ryzhik (1965), P1043, 89.131, Eq.(1) provides an integra

transform for the hypergeometric function:

F@.8.y,2)=1-2 F(a,y—ﬁ,y,zi_l) (B.35)

Compare with Eq.(B.34), the correspondent parameters are:




Therefore,

P 12 _ ()2 - P 2 _ |2
22 T (b7) b 22 b
Thustheintegration 1, will be,
+2 -\2 n n P 42 _ ()2
=070 gt B8 Byl L L"), (B.37)
2 b 2 m2 o1 22 b
B.4.2 Integral |,
Substituting the expression of x*(£,7) into 1,
bt
{
=] oo™ ¢
leb+ /Y 1 ~ 1 ~ (B.38)
b 1.8 15
= [(¢2 =022 7(b™ =¢7) 7 7¢,dd,
51:b7
. : . ) 1dt . _
Defining variable transformation t = {,°, d{; =§W in Eq.(B.38):
b” 1,8 W
I, = [(¢2=b?)27((b")* =¢7) 2 "¢, dd,
s i . (B.39)
_1 o -2 %"ﬁ +2 _%_ﬁ
_EDI (t-b2)2 7(b*2-t) 2 7 dt

t=b2

306
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Again define the transformation x =t —b™, dx = dt. Then Eq.(B.39) becomes,

b2-p2 1 B

1.8 1B
=10 x2 7(b"2 -b2-x) 2 7dx (B.40)
22

x=0

From Gradshteyn and Ryzhik (1965), p284, 83.191, Eq.(1) :

jx"’l(u = X)“tdx = u" B, V)
0

(B.41)
where Reu >0, Rev > 0. Compare with Eq.(B.40), where,
U=b+2—b_2, qul_l_ﬁ:l_ﬁ, V:§+£
2 m 2 2
Thus:
= T ¢, g,
2 . .
o2 X (Db =47 (B.42)
1,00 - 1 B3 f
== -b))B=-=,-+£
2( (b7)%) (2 pts n)

where B(u,Vv) isthe Betafunction.
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In this appendix, a necessary condition: displacement continuity condition in

(B.29) has been derived for solving the five unknowns in the chine-wetted flow phase.
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APPENDIX C

PRESSURE CONTINUITY CONDITION FOR STEADY PLANING

C.1 Surface Pressure Distribution

As described in Chapter 2, the solution of the time-dependent impact problem can
be used for the solution of steady planing (x —problem). This appendix develops the
correspondent pressure distribution in steady planing in the impact (time) space.

Assuming the boat is advancing in with a constant forward speed U , the impact
velocity V can be obtained from Eq. (2.19). Bernoulli's equation gives the dynamic

boundary condition of the impact problem:
p+%p(\/f+vf)+p¢t=pm+%pvz z,<z<z  (CY)

where the definition of V,, V, are given in Appendix A. With 7 representing non-
dimensional time and ¢ representing non-dimensional z-distance, the non-dimensional

pressureis,
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IN

J<b"  (C2)

_ P=P. _ 2 2 _ 09 -
Co(¢{,1)= =1-v:,- -V, -2—(,T b
P(Z ) :I/vaz n S GT(Z )

The relation of velocity potential ¢({,7) with thevelocity (V,,V,) isdefined as,

g—w(z,r) =V, (0.7)
n

09 ) (C.3)
e (¢,1) =V.({,1)

Define g(b*,7) =0 at the jet-head. Thus the potentia is therefore defined in the region

of 1 <b" as,

b*(r)

A1) =~ [V,({p,0)dg,  1sZ<b’ (C4)
{

Define the following catamaran transform variables:

-1 . _b-1 . b-1
z.(r)-1' s ()= z.(r)-1' s z.(1)-1

(C.5)

By using these transforms, the solution domain will have a new coordinate system shown

in Fig. 3.3. In this new coordinate system the potential is:
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s'(1)

AZ,1) = (2, =D [Vi(s0,7)0s, (C6)

s(7)

Intheregionof 0<s<s", the dg/dr term will be,

s*(r)
_0gs,T) _ 0z, [ J'Vs(so,r)dso +V(s,7) (3]

or o7 ¢,
- O<s<s" (C7)
ds* °{av
+(z, -V (s",T + S (s,,7)ds
(2. ~DIVi(s".1) S(Lar(so )ds; ]
where ds(@) =-_° % has been used in the derivation. In the region of

dr z(r)-1 or

s” <s<0, thesimilar form of dg/0r is,

_ogs,r) _ oz, )
s a_r[ IVS(SO,T)dSo +V (s, 7) ]

=) s <s<0 (C8)

_ s
GRS ACHOL S AT ERONS

s(7)

IN

Using the new variables, the pressure coefficient, (C.2), is,

Co(s7)=1-V?-V2? - 23—?(5, r) s <s<s"  (C9
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Substituting the dg/or term in Eq.(C.7) into the Eq.(C.9), we have the pressure

distribution in theregion of 0< s<s",

C.(s, 1) =1-VZ3(s,1) -VZ(s,T)
s'(1)
+ 262c [ jVS(SO,T)ds0 +V,(s,7) (3] 0<s<s" (C.10)
s(7)

+2(z, ~ DIV (s",7)

ds*  *{av,
ot | (s n)ds]

o) or

Similarly, intheregion s” <s<0,

Co(s, 1) =1-VZ3(s,1) -VZ(s,T)
s (1)
%Z; [ J'VS(SO,T)ds0 +V,(s,7) 3] s <s<0 (C1l)
s(7)

+2

_ s
+2(z, -V, (s ) v [ 2
or

7)d
ar ") (Sy,7)dsy]

C.2 Pressure Continuity Condition

At the jet head z;, the dynamic condition is C (s",7) =0 (refer to Fig. 2.6).

Eq.(C.10) gives,

VZ(s', 1) +VZi(s',1)-1
A/ (s",T)

b (r) = as=s" (Cl12
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Recall that in the chine un-wetted case V,(s",7) =0 and in the chine wetted case

V. (s",1) =1 (Fig. 2.6), thus the pressure continuity condition at s=s" is,

* Inthe chine un-wetted phase

2 fat _
b (1) = e 8 D) "1 a s=s' (C.13)
(s, 1)
* Inthe chine wetted phase
+ 1 + +
b (1) = EVS(S ,T) as=s (C.19

Similarly, at thejet head z;, C,(s7,7) =0, Eq.(C.11) gives,

VZi(s™,1)+VZi(s,1)-1

b (7) = N.(s.0)

as=s (C.15)

Recall that in Fig. 2.6 the ked a 2z is aways in the chine-wetted phase, and

V, (s, 1) =1, thus the pressure continuity conditionat s=s" will be,

b () = %Vs(s‘ ,T) as=s (C.16)
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Therefore we have two pressure continuity conditions in both the chine unwetted and

chine wetted phases.

C.3 Euler's Equation

In the dynamic condition, C,(s,7)=0 in the regions of s <s<0 and

1< s< s, differentiation of Eq. (C.9) gives,

2
9Ce (s, 1) == (s,7) Vs -2 0°¢
0s 0S 07 0s

(s,7)=0 l<s<s" (C17)

Differentiation of Eq. (C.7) gives,

*Az 1) = _{ai[—vs(s, r)+V (s 1)+ SGVS] -(z.-)) A2 (s:7)}
dsar or ds o7 1<s<s' (C.18)
_ _{‘ZZC s 14 0-2) M (510
r 0s or

Substituting (C.18) back into Eq.(C.17), an Euler equation results (refer to Vorus 1996):

0z,
s]
or = 0s

oV, _ 1-z) AZ (s,7)=0 l<s<s’ (C.19)

[Vi(s7) - Py

This is the one-dimensional inviscid Burger's differential equation that the free vortex

distribution on the jet-head sheet must satisfy.
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Similarly, intheregion of s™ <s<0, the Burger'sequation s,

0z

VACRIRRE® N _

0S

Vv,
or

IN

a-z) (s,7)=0 s <s<0 (C.20)

C.4 Pressure Distribution Formulae

The pressure distribution on the hull contour 0<s<1 can be obtained from

Eqg.(C.10). To find the pressure expression, first we need to deal with the %VS termin
r

(C.10). The expression of the velocity time derivative term can be found from Eq.(C.20),

vV,
or

0z, S)% 1<s<s" (C.21)
or ~ 0s

_ 1 _
(s,r)—E(\/s

Re-formatting Eq.(C.10) yields,

1 S
Co(s,7) =1-V2 -V2(s,7)+ 2662; [~ [Vi(sy,7)ds, = [V, (s5,7)ds, + 51V, (5,7)]
s' (1) 1
LoV SOV ds*
2(1- s ,7)d S .7)ds, —-V_(s",
+2( Z°)[Jm 5SS D) SO*{ar (8, 7)ds, ~Vy(s".7)" ]

0<s<1 (C.22)

Defining terms associated with thejet head as T,
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0z, & LoV ds*
¢ |V (s,,T)ds, +2(1- 2, °(s,,7)ds, =V (s",T)— C.23
arszjms(o )ds, +2( )[J,) 5 (8, 1)ds, =V (8", 1) ] (C.23)

T=-2

The pressure in (C.22) then can be written:

?32; [‘ivs(so )0, +S(Z2 T)V,(S,7)]

Co(s,7)=1-VZ-VZ(S,T) +2

0<s<l (C.24)
oV

S(s,,7)ds, +T
aT(Sor)so+

+2(1- zc)j

On the jet head 1< s<s", we substitute the %VS term expression of Eq.(C.21) into
T

Eq.(C.23) to simplify the expressionin T:

0z,
or

YA
J

o (D) =SV (s, 1)~ [V.asl)

s'(7)

(C.25)

1.1 1
T)ds, = ———{ZV2(L1)-ZVA(s', 1) -
g (s, 7)ds, 1—zc{2 D) =SV (s77)

Therefore, the T term in EQ.(C.23) can be expressed as:

d+

T =V2(L7)-Vi(s' 1) -2 S
dr

9%\ 1)+ 2% sV (s7. 1)~ 20— ZV.(s"7)
or or

(C.26)



317
To find the pressure distribution on the hull contour 0<s<1, substituting Eq.(C.26)

back into the pressure expression in Eq.(C.24),

gzi [—fvs(so,r)dso sz nV.(sD)

Co(s7) =1-V2-V7(s,1)+2

vV,
or

+2(1-2,)[==2(s,,1)ds, + V(L T)
1 (C.27)
2%y 1)
or

9% s (s7,1) 20— 2V, (s", 1) C

—V2(sT,7)+2 S
or dr

The jet head terms in (C.27) can be simplified. Considering Eqg.(C.10), in the regions of

1<s<s’,with C (s",7) =0 (Fig. 2.6) gives,

1-V2(s', 1) -VZ2(s", 1) +2 ‘ZZC s'V,(s",1) - 21—z )V.(S",7) ds

T dr

=0 (C.28)

Substituting above equation into the pressure expression in Eq.(C.27) gives the pressure

distribution:

Ca(87) = 1=V =V (5.1) + 252 1-[V, (5,,1)c, + SV, (.7)
1
tOV, 0z,
+2(1—zc>£ 5 (S D)8, +VI(L7) ~2 2V, (L) (C29)

+V7?(s*,1)-1
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* Inchinewetted case, V,(s",7) =1

Co(s.7) =1-V2(s7) +V2(L1)

_,02 [TVS(So’ r)ds, +V,(L7) - sV, (s, 7)] 0<s<1l (C.30)

or

toV,
+21-2)[ > (s, 1)ds,
1

* Inchineun-wetted case, V, (s",7) =0, pressure distribution is,

Co(s.7) =V2(L 1) -VE(s,7)

0

-2 62; [fvs(so, r)ds, +V.(L7) - sV, (s,7)] 0<s<1 (C.31)

oV,
57 (S0 1)dS
T

+2(1- zc)Js'

(C.30) and (C.31) are used to compute the pressure on the hull.
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APPENDIX D

PRESSURE DISTRIBUTION AND EULER’'S EQUATION IN SEAKEEPING

The pressure distribution in seakeeping is in the following form:

Co(X%,ST)=V?*(X,T) -V>(X,5,T) —VZ(X,ST)
00X, ST)  0p(X,ST),  0@X,ST),,
A or * 0x I=( 0Xx )

0<x<L(r),0<s<s’(x,7) ors <s<0 (D.1)

The Euler’s equation and the hull contour pressure distribution in seakeeping can

be derived from (D.1).

D.1 Euler's Equation and Location of Free Vortices

The Euler’s equation governing the free vortex distribution in seakeeping can be
obtained from the differentiation of the pressure distribution equation (D.1). Considering

the requirement of the dynamic boundary condition, C, =0 in the region of

1<s<s’(x1) and s <s<0 (Fig. 2.6), differentiation of the pressure distribution in

Eq.(D.1) will give:
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2 2 2
oC, (X,8,7) = =2V, (X,S,T) AL -2 o (x,5,7)—2 ¢ (x,s,r)—Za—wE)a—w(x,s,r)
0s 0s 07 0s 0x0s OX 0x0s
=0

0<x<L(r),1<ss<s’(x,r)ors <s<0 (D.2

The derivative terms in (D.2) can be found from the differentiation of potential.

Recall the potential definition in seakeeping:

s"(¢1)

A& sT) = -2,z D) [Vi(£,5.7)ds, 0Ossss’ (D3
s(é:7)

where ¢ is the non-dimensiona x- coordinate, s is the non-dimensional
2 - coordinate, 7 isthe non-dimensional time.

Based on the potentia definition in Eq.(D.3), the g—¢ term in (D.1) has the
X

following form:

s"(£.1)
~@(&,51) = 2()(z - | CAAGIE T

s(¢.7)
s"(¢r)
2, ()2 =] [V,(£,5,7)ds, (D-4)
s($r)
s (&)
+2(0)z.,] V(€ 8, 7)s,

s(¢37)

ds, +V,(£,8",7)s; ~V,(£,5.7)s,]
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Following the variable transformation in (4.70), s, = ‘(Z‘l)Zc,xz =-s Zox . The
[z.($,7) -1 z,(¢,7)-1
V, 5, termin Eq.(D.4) becomes,
2, ($)(z. —DI[-V.(¢,s,7)s,] =[sx (§) Lz, ] Vg (D.5)
Substituting (D.5) back into (D.4) yieldsthe ¢, term:
S+(5vf)av .S, T . .
~g6s0= 2,000 | 282D as 1 (657, s)]
)
s*(&.7)
+2,((z.~Y) V(& 5.7)ds)] (D6)
s(§:7)
S"(E7)
+2(6)2, ] [Vi(£,5,1)0s, +SIV,(£,57)]
s(:7)
_ _— 0¢ 0¢
Similar to the derivation of the — o term, the — PP teremin (D.1) is.
_0gé s T) _ =0
; [zk(z 1) [V,(& 5,7)0s]
r S(E.1)
s ({,r)av S*(E,r)av
=2,z -0 | SEEs Do+ [ 228
szn 97 sen 06 0T (D.7)
ds
+ —V —
z(z, - (&8, )dr]
0z, 0z, 3&.° 4D
< Vv d
ral o] j (€5, 7)ds,

s(¢.1)



Following the definition of & in (4.69), i:iL(r), ¢, :—xL—;, therefore, the
0 Ox L
derivative of the s — coordinates will be:
dfé(r).7l . (€=D 0z, 3z 0¢,
dr (z.(r)-)? or o0& ar
- 0z, o0z, _ L,
WD (%% % by 0.9

(z()-D%or ox L
=27, -7, ]
z(r)-1 - ’ L

and,

ds"[$(z),7] _ 0s"  9s” 0§ _0s" _os’ L. (D.9)
dr or 0d&0r Or OXx L

Substituting (D.8) and (D.9) into Eq.(D.7) yieldsthe ¢ term:

= z,(z. -1 S(!ﬂ 5 (&%, 1)ds, —x- | (%5, 7)ds,

0s’ os" L

-V.(&,s",T k—=~
ar (¢ )ax L]

_ogesn) ey gy
0

s(é.7)

+V, (&,s7,7)

s*(&.1)
+2,7, [ [V,(&5.7)ds, +SIV,(&,57)]
s(¢.1)
L s*(&.1)
~2,2,, [ [V, (€,5,7)ds, +SIV,(&,5,7)]
s(§.7)
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O<s<s' (D.10)



Second time differentiation of the ¢, term in (D.6) with respect to s gives,

—-0°@(X,S,T) _ o OVi(&,87)
W—Zk(f)(zc DI o ]

+ Zk,x (E)[_(Zc _1)Vs (El S, T)]
+2,($)z.,[ V(&8 T) +V (¢ sT7) +5
0V, ({,s.7)

ox

oV (¢,s,7)
0s ]
(D.11)

=+7($)1-2z)
+ 2, (A= Z)Vs($,8.7)

+2,(0)2,, 675D
’ 0s

and differentiation of the ¢ termin (D.10) with respect to s,

_OP@E s T) _

asaz_ Zk(zc _1)[_

oV, L, aV,
ar (5’ S, T) + XT OX (5’ S, T)]

+2.2,,[-V,(&,5T)+V (E,5T) + saa\gs]

D(L—LT -V, (&,s,7) +V.(&,8,7) +sa(;/5] (D.12)

- 77
k
S

C,X

oV,
or

L, oV, oV
S T)—X——]+z2z  [B—=
(&8 1) =x "1+ 270, B

= Zk (l_ Zc)[

oV, ]
0s

L
-Z.Z,, D(Tr (s

summing up (D.11) and (D.12) termsyields,

323
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0%p 0%p
- X, S, T X, S,7) =
aa( )~ aa( )

=z()- Z)[ S(c‘ST) (d-x T)

oV, (¢,s,7)
0s

oV, (f S,T)

] (D.13)

+z,()lz,, + 2z, (X r)]
+z,(5HA- Zc)Vs(f,S,T)

Substituting above equation into Eq.(D.2), and recall that z, (&) =1 in { plane, therefore

the (D.2) becomes:

V(€50 S+ 1= 2)1 2 (€ 57+ (- x ) TSy

[z, + 2,0 X%)]sw +2,(OA- 2V, (E,5) 0.14)
6(0 9° (0( X5.7)
0X 0X0s

Simplifying, (D.14) takes the following form,

6V(Esrﬁ
ox 1<s<s' (D.15)

2N s D)+

L OV(fsr)

+[Zc,r + Zc,x (1_ XTT)] 6~ - g(f S, T)

where g(¢,s,7) istheright-hand-side termsin (D.15).
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If we ignore the higher order g(&,s,7) term in (D.15), and assuming the keel

offset is constant in axial direction, thus z, (¢) =1 and z,(¢) =0, the Euler's equation

in (D.15) is,

+ azc Sl_Xi)]}%_(l_ Zc)%(fi S, Z-)

N ox 0s o7 1<s<s’ (D.16)
C(-z)a-xtr r)ﬂ

This is an inviscid Burger's differential equation that the free vortex distribution at the

free jet-head sheet must satisfy.

Similarly, intheregion of s™ < s<0 the Burger'sequationis,

+ %o sa-x o - 0-2) S (651 - - 2)0- xL’)"’V(‘;S” 0

{

D.2 Pressure Distribution Formulae

The hull contour pressure distribution in seakeeping can be found from (D.1).

Substituting the dg/or and d0@/ox terms into the Eq.(D.1), we have the pressure

distribution in theregion of 0< s<s",



326
Co(&,51)=V?(&1) -V (&,8T1)-VZ(&,8T)

s*(&1)
+22,(2, -0 | (2 (€50 +a-x) S Dy
s(¢.r)
L 65
s*(&1)
+22,2,,[ [V,(&5.1)ds +SIV,(£,5,7)]
s(¢.1)
L s*(&,7)
+22,(6)7,,[(1-x=1) [V (&, 5,7)ds, + (1~ X—)SW(EST)]
s(&7)
s*(&.7)
+22,, (O -D) [V.(£ 5, 7)ds)]
s(&7)

_OAX S, T)\2
o )

0<x<L(r),0<s<s’(&,71) (D.18)

On the contour of the ship hull 0<s<1, the pressure distribution can be found by

grouping termsin (D.18). Asin Appendix C, collecting the relevant terms associated with

the jet head intheregion of 1< s< s’ inEq.(D.18) as T :

s*(&7)
T = 2z, -4 j)[aVS(fsorH(l xiny el

0X Jds,

Las

s*(¢.1) st (&.1) (D.19)

222, [Vu(E,3,1)d8, ]+ 22,10 xL—Lf> [V.(€5.0)ds, ]

s*(&.7)

+22,,(Ol(z. =D [V.(£,5.1)ds, ]

the pressure thus can be written:
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C.(&,sT7)=V?*(&,1)-VZ(&,s1)-V(&5T)

OV, (£,5,,7)

ox Jdso}

+2(z, -2 | [a;(fsof)ﬂl X ,)
s(¢.1)

£202,, + 2, 0= XN [V, (65,108, + 1Y, (6,57
s(§.7)

+22,, (O -D [V.(&8,7)ds,]

s(¢.1)
_(aqo(x, S, r))2 AT
oX

0<s<1 (D.20)

To simplify the expression of T term in (D.20), first we need to solve for the

velocity time derivative term in T term of (D.19) from Eq.(D.16):

6V({sr)] 1 (V.(E s _azcs+azc
1-z, or ox

s(1-

[ S(fST)+(1 X T)

l<s<s" (D.21)

Onthejet head 1< s< s”, subgtitute the Burger's equation in Eq.(D.21) into Eq.(D.19) to

simplify the integral expressionin T term:
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ST,T)[%VTS (£,5,,7)+(1- X%)w]dso

- T{vs (€50 -1% 5+ o s x by Nogs om
- 1-1zc {%vj (&,5°,7) - %Vf (EL7) |
(2 B IV, (65T ) Vi) - ?Vs(f. s,7)ds])

Substituting (D.22) back into T term in Eq.(D.19):

T= _Vsz (El s’ ) Z-) +V32 (5’1’ T)

0z, 0z, Lo . =
+ e+ (Lo x IS VL6 S 1) Vo (E17) - {vs(f, 5,7)ds]
-2z V(ES D + X
S*(£.1)
+202,, 42, 0= X0 [V, (65108, ] (D.23)

=-VZ2(&,s",1)+VZ(ELT)

+ 1%+ 9% (1o xLoyrstv e st 0 v €L )]
or ox L
N P
21-2 V(65 D +a-x ) S )

Substituting (D.23) into Eq.(D.20) and ignoring the higher order (d¢/dx)* term give a

computable pressure distribution formula:
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Co(&,57) =V (&1) -V (&, 57) -V (€,57)

w2z, - [ 155

S(¢.1)

L OVL(E507)
(507 + (L)

1ds}

+202,, + 2, 0= x N [V,(E%, 708, + S, (6,57
S(¢.1)

—VZ(&,s", 1) +V2(ELT)

0z, 0z, ., L. oy
+2[0T "o (1-x L)][S Vi(¢,s7,7) ~V (L T7)]
o 08T . Ly0s
2AL=2 V(6,87 D+ (L= x=5) — ]

=V?(x,1) =V.2(x,8,T) =V (x,5,7) +VZ (£ LT)

+2(z, -1 [ 155 Tl 5]

S(¢.1)

(&,5.7) +(1—x%) Jds;}

+202,, + 2, =N [V,(E%,7)08, + SV, (6,5.7) -V, (EL7)]
S(¢.7)

—vsz(f,s*,r)+2[%+ai(1—xi)][s*vs(f,sﬂr)]
T O0Xx L
Js* L .o0s’

S
+(1l-x—
or ( L)ax

+2(z, ~)V(¢,s".7)] ]

(D.24)

Consider the fact that, at the jet head z;, C(&,s",7) =0, which resultsin:

VA(ET) -V2(E,S' 1) V2, S T)

0s +- xi) 0s
or L

+22,02,, +2,,(1- xL—Lf)]s+ V,(£,,7)

+27,(z, - DV, (£, 8", 1) ]

0X (D.25)

=0

Substituting (D.25) into (D24), we have the following hull pressure expression:
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C.(&,s7)=V*(&1)-VZ2(&,s1)-VZ(&EsT)+V(ELT)

vz, | (22 s +a-xin My
s(¢.7)

lds,}

+2z,, +z,,(1- X%)][ jVS(E, Sy, 7)ds, + SV (&,S,7) =V, (§L7)]

s(¢.1)

+VZ2(&,s",1)-VZ(£,7)

0<x<Ll(r),0ss<1 (D.26)

* Inthechinewetted casewhereV,(&,s",7) =V (&,7):

Co(&,57)=V?(&1)-VZ(&,8T)+VZ(ELT)
+2z, - | [a;(fs 1)+ (L= X ,)

s(¢.7)

oV, (E %0146

+ 2[Zc,r + Zc,x (1_ X%)][ _[Vs (f! So» T)dSO + SWS (f) S, T) _Vs (5)11 T)]
s(§.1)

0<x<L(r),0ss<1 (D.27)

where on the contour, V, (&,5,7) =0in 0< S<1.

* Inthechineun-wetted casewhere V, (s",7) = 0:

Co(&,57) =V (ELT) -V (é,8,T)

#2021 | 155650+ 0-x0) Pl Dgg)
s(¢.7)
+ 2[Zc,r + Zc,x (1_ X%)][ _[Vs (f! So» T)dSO + SWS (f) S, T) _Vs (5)11 T)]

S(&.0)
0<x<L(r),0ss<1 (D.28)
(D.27) and (D.28) are the final forms for the pressure distribution on the surface

contour.
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APPENDIX E

COMPUTATION OF BOUND VORTEX DISTRIBUTION y.({,7)

The singular bounded vortex distribution representation derived in Eq.(4.20) has

two terms:

yc((lr) :ynormal (er)+ys'ngu|ar (Z!T) (El)

The normal component is derived at (5.89) and the singular term (refer to (4.22)) can be

expressed as the sum of three individual termsasin (5.92).

yc,s'ngular (Z,T) = Vg(zar) +VC_(Z1T) +VC+(Z,T) (E2)

The following section gives the details of the derivations of the computational forms of

thethreetermsin (E.2).

E.1 Computation of y?2(Z,7)
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Substitute the integral A(¢) in (5.49) into the formulaof y?(Z,7) in (5.93):

V(1) = 4—;)((5, r)cos® i (eos® BIV(1)[-A({)]
= —% (¢, 7)cos? B [tos’ BIV (1) x

1 1 1
[Ezc |:Bn EI:11 +_(ZZ _Zc2 _1)_D311 EI:12

C

1 .,
S N(@ -7 Z( [l (O]
:—% X(¢,7)cos® 3 (tos® BIV(7) [z, (B, [F,

—%x(z,r)coszmoszﬁwm 7% -22 —1)i B, [F,

2( 2 n 2 -
+7)((Z,r)cos Btos’ BIV(r) (¢ * ~1)(z2 - %)% z\/, (Al (9)

1<{ <z (E3)

where B, F, and F, defined in (5.50), (5.51) and (5.52) respectively, the numerical

integra Al ({) in the above equation defined in (4.32), (4.34) and (4.36) according to

the variation of the variable ¢ .

E.2 Computation of y, ({,7)

Substitute the integral (5.47) into the expression of y, ({,7) in (5.94):
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o= Lot B r)E[ Voo 72tz 0N (G~ A
=% cos Bx(¢, r)E[ Voo 2ol

15 =4 s EFlz—%(ZO S RAD

+1(52—1)(z 7Y z( DI, ()]

ii cos? B x({,7) G—EB11 [F,, Dj Yz (5 7)E 000,

2{

-— 008" BIX(¢.7) Dj Vs€oD) 7ot s z A A OL
+ 2 08 Ox(¢1) UE" - D(Z - )
DR 3,(Z>Ej oo n) 2o,

1<{ <z (E4)

where F,; isdefined in (5.53). Again, discretizing the above integrals:

N (1)

v.(¢.1)= cos BX(, r)l}EBn Fy, DZVS.(r)j 2,47,

N (1)

-2 cos? I(C.1) O3 ¥ (0% Fuld; )Dj

7 (¢o" - 1)dd,

+2;cos BYC. 0T - )2 -¢?)

L1 N (1)
2= 3,(Z)DZVS.(r)Dj Zz

dd,

1< <z (E5)
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The integral in the second term in the above equation can be written in as follows:

(i_+1 Z Zi_+1 Z

° 02_1d 0= 2 > 2 02_ ? >-1)d 0
!Zzo—zz(z ¢ Jzo—z ({7 =¢2+¢%-Dd¢

j {odls +({7 - 1)] szz (E6)
_\]11(Z )+(Z2 _1)D]12(Z)

wheretheintegral J,,({;) defined in (5.90) and,

{in 1
3@ = [ odds =2 1(¢0n)" = ()] (E.7)

&

Substituting the above integral, (E.6), and the relation of the free vortex strength y, (7)
with the induced velocity V_ (i,7) (), (1) = -2V, (i,1)) into (E.5) yields the numerical

formulaof y.({,7):

V€0 = =2 cos’ BOYE.0) (B F, DNZ(f)zw (1) 00,,(0)

N (1)

+ 2 cos? B¢, 1) B3, 2005 6.0) X Fo€) 13, 0) + (2 =13,

- Z o8 FIX(¢. D) A0 -1)(2 - {7

F
L N7 (1)
xZ% |3,j(Z)DZZWS_(i,T)D]12(i)

J

1<{ <z (ES)
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E.3 Computation of y; ({,7)

Substitute the integral, Eq.(5.48), into the expression of ). ({,7) in (5.95):

yi({.1)= —cos BX(.1) Dj Y€1) 27 G4 (€)= A ()

Z

8 = :
:FCOS ,BD((Z,T)DZ[ Ve ({o:T) dd, x

ZZO_ZZ
[%(Zoz _ZZ)iEBn EFlZ _l(zcz _Zoz)x Fzz(Zo)

1,
+§(Z (z2 -{?)x Z\/f [Al5; ()]

— 2( 2 N > +
_?COS ,BD((Z,T)EI—EBM F,, Ej‘ Vs ({4, 1){0dd,
- 2% o8’ FIX(C, r)Ej Kion 7 Co (22 -7, X Fp(80)dE,

ZZ
+2?cos B, DU -1(Z2-0?)

L 1 b*
= |3j ; 0’ zozdo
Zﬁ ,(Z)EZ{V(Z 0 s ®

1< <z (E9)

where F,, isdefined in (5.54). Again, discretizing the above integrals:

N (1)

yi(¢.1)= cos BX(,1) ELEBH Fy, DZ Ve (0) j e

2 N/ (7)

S L WAL Y )Dj

72 (22 -4,")dd,

N (1)

2{ 2 :
nzCOSﬁD((ZT)E(Z Nz -¢?)x Z( 3,(Z)DZVS.(r)DJ

@,
e

1< ¢ <z, (E.10)
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The integral of the second term in the above equation can be written as:

Zi:l ZO ( 2 Z Z)dZ Zitl ZO ( 2 ZZ ZZ Z Z)dZ
Z. = ¢ 0o~ 2 > (Z, — + 6o 0
J {%-02"° (j {0-¢

=—jzodzo+(z Z)j

d E.11
Zz o (E.11)

= J21(Z )+(Z -{? )Eﬂzz(Z)

wheretheintegral J,,({,) definedin (5.91) and theintegral J,,({;) Is:
Zi++1 1

3a(8) = [ £08¢0 = 21¢)" = (¢1)7) (E.12)
g

Again, substitute (E.12) and the relation of the free vortex strength y7; () with the

induced velocity V¢ (i,7) (v, (1) = -2V (i,7)) into y; ({,7), Eq.(E.10). This yields the

numerical formulaof y; ({,7):

V€0 = 2 cos’ B¢ (B (F DN_ZU)ZW (.7 D 0)

=1
N/ (7)

+2;C°S BONE DU, 21; 6.0 % Fo ) 13000 + (2 =€) 3,00
—%cos FOn¢.nag? -2 -¢2)
N;" (1)

XZL:L (Al () DZZWS+(i'T) [0, (i)

i=1 4/t

1< <z (E13)



337

APPENDIX F

KERNEL FUNCTION x(¢)

The solution procedure of the kernel function x({) for the Carleman singular
integral equation (refer to (4.8)) for the catamaran is similar to that for the monohull
(Vorus 1996). The solution is developed here in dlightly expanded detail over that

presented by Vorus (1996).

The singular integral equation representing the kinematic boundary condition is:

%VC(Z,T)sinﬂ(Z,miz“M

78 R d¢, = f({.7) 1<{<z, (48

where the parameters in (4.8) defined in Chapter 4.
From the definition of Muskhelishvili (1958), the kernel function for the solution

of (4.8) hasthe following expression,
X({)=P()" (F.1)

where,
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P) =1 ~C,) (F2)

M) = (F.3)

1 IIogG(t)dt
2y t-¢

The unknown function G(t) and the definitions of the parameters in the above can be
found from the solution procedure developed for the Carleman singular integral equation
by Muskhelishvili(1958). The following derivation mainly follows Muskhelishvili(1958)
and Tricomi(1957).

In a more general form than (4.8), the Carleman-type singular integral equation

can be expressed as,

,T)

{

A¢ D¢+ 2D [ Xl D gz gg (F4)

where A*(J,7)+B?(,1)#0 everywhere on the integration path L. Introduce a

sectionally analytic function,

I A)
21y o4

BZ,1) = dZ, (F5)

This function ®({,t) vanishes at infinity. Following Tricomi’s (1957) derivation, it can

be proved that the analytic function ®({,t) satisfies the following relations:



P T) =P (¢ 1) =y ({.T)

EN A

O @nre @=L [T

dZ,

Substituting (F.6) and (F.7) into (F.4) gives,
AL, DIP (1) =P ({, D]+ B, D[P ({, 1) +P ({,1)] = f({,7)
Group the coefficients together:

[A({,7)+B({,D]®" (¢, 1) -[A, 1) -B({,D]®"({,1) = ({,7)

Solve for the boundary function ®* (¢, 7) from the above equation to get:

AL =BED) ¢y, TED)

A1) +B({.T) A1) +B({.T)

®*({,7)=

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)
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Comparing (F.10) with the boundary condition in following equation of the non-

homogeneous Hilbert problem in Muskhelishvili (1958),

@7 (1) =G()P™ (1) + g(t) on L

(F.11)
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where G(t) and g(t) are the functions of the class H (the functions satisfy the Holder

condition, refer to Tricomi’s (1957) and Muskhelishvili (1958)), given on L, and

G(t) # 0 everywhereon L. Thusthe unknown functions G(t), g(t) are of the following

form:

_A{,1)-B({,1)
G({,1) = AC.D)FBE.D) (F.12)
o(¢.1) = &) (F.13)

A1) +B({,1)

The coefficients A({,7) and B({,7) then can be found by comparing (F.4) with

the Carleman equation (4.8):
1. 1
A(Z,T)=§Sm,8(i.f), B(¢,7) =§D‘J (F.14)

Substitute A({,7) and B({, 1) into (F.12),

601y = SNBE.D -1

- - (F.15)
snpg({,r) +i

Substitute the following complex identity into (F.15),

sinB—i=+1+sin? B [&" (F.16)
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Therefore,

(SnB-i)°> _ (1+sin? B)? 20 = g2 (F17)

D= rawp T 1rsnig ¢ °

wheretheangle 6 is,

— -1 -1
6 = tan [—sin,[z’(Z,r)] (F.18)

Using the transform defined in (A.20),
snB=tan B (F.19)
At the X-Y axisintersection of Fig. F1, the 6-anglesdepicted in Fig. F.1 are,

_—1]
+tan B({,7)

I+

6* =tan™[ ] =tan™[ (F.20)

=t
tsinf5({,1)

where the sign of +sin3({,7) comes from the two symmetric angles at the catamaran

two sides respectively.



—tan

A, + A8

-1.0

Fig. F.1: Phase angle definition

By Fig. F.1, the phase angle can be calculated as,

o* =-" s p0=-"saan(tanB) = - L5 B(¢.7)
2 2 2

Thus, the anglerelationis:

NN

-B(Q) -z, s{<-1

T

o) = )
-2+ B@) 1s¢ sz,

Substitute the G(t) termin (F.17) into (F.3) to get,

00 &

") =2y [

k=1 th

(F.21)

(F.22)

(F.23)

342
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where p is the number of arcs, with the end points at coordinates of C_. The A are

integers which will be selected according to character of the x(¢) function in each arc
L. For present problem, the arc are -z, <{ < -1 and 1< { < z,. Thus the number of
arcsis 2, thereby p =2. According to the correspondent end coordinates of the arcs, the
respective C., parameter in (F.2) may be chosen as C, =-z.,-1.01.0,z,. Then from

(F.2),

P)=@+) " (2 +) "2 (2. =) (¢ -7 (F.24)

where the parameter set A  is selected to match the solution to the catamaran hull.

Expanding (F.23) according to (F.22),

[Ie(nm+79(nm]

t
f _ (F.25)
:_l‘li_ifﬁ(wt —I dt 1Tﬂ
2_zct— me, t { my t-¢

Theintegral in the third term of the above equation is changed into the following form,

Tt _ S dt | F oo

s
=In[¢ —t]{ +In[t = ¢] %, (F.26)
=lne-In({ -D+In(z. -{)—-In¢

=-In¢ =1 +In(z, - ¢)



Substituting (F.26) into (F.25) produces,

_ 1% dt _ ﬂ(t)dt L 15 BMd
€)= _It { Ejt { ﬂj ﬂ'[t {
:—E[In(—l—o—ln(—zc ~0)=In(¢ - +In(z, - ¢)] - j ﬂ“)‘“ j ﬂ“)‘“

=|ﬂf D~z - rﬂ Iﬂﬁﬂ(m) 1jﬂ®m

(-1-9)(z - —t=¢
|[(Z Dz + Iﬂﬂmt Iﬂﬂmt
1+{)(z. - t+¢ 7w

(F.27)

To simplify the form of (F.27), we further reduce the last two integrals in (F.27).

Assuming S({) isapiecewise constant,

lleﬁmm+iTﬂmm
ﬂlt+Z my t-¢
dt 1, dt (29
“Zﬂfw AP lie
Thefirst term of (F.28) is,
- m 23 me (F29

mH t+Z T
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tj tj+l

Fig. F.2: Singular Integration

According to Fig. F.2, the second integral term in Eq.(F.28) can be divided into two parts

according to the parameter ¢ ,

—Zﬂ] -—Zﬂ] W

=3+

__z,g In[¢ - t];1+_ zﬁ Inft -]y

J =Jo*l

:7_725,.[|n(z—t,.+1) —In({ —t;)]

o (F.30)
+_’zﬁj[|n(tj+l—i)—ln(tj ={)]
J_Jo+1
__Zﬂ ]+1+_ z ﬁ In J’rl Z
jl ﬂj =Jo+1 Z
1 Z_tj+1
_l_T,Z:;"Bj In‘ =

Substituting above equationsinto (F.27), we get,



r(():m[\/(f Dz, +Z)] _Iﬂ(t)dt %Iﬂ(t)dt

L+<)(z, t+¢
((-Dz, + tutd 19 ”
\/(1+Z)(z -{) n;'g t,+d 77,2;"3 n ‘ t,
- (¢ -) Uz, j+1 Z| |Z j+1
WJ@+O@—Z) nZﬁ[\t raire.
- (¢ YUz + 13 Uiy Z| |Z Ui
In[\/ ) —Z) ”JZ,B In[‘t +Z‘ ‘Z L ‘]
By
In[\/(Z ERA O e Z| ¢t ]
-0 &M Z\ T |
B
lmJ@ DAz +0) s {2 % qu
@z -0) | t | (F:31)

Now, according the definition of the kernel function in (F.1), it is expressed as,

X&) =P
=(1+{) " (z,+{) " 2 (2, =) (¢ -1

B B
x\/(Z—l)EﬂZchZ) NYaL. tj+1"'Z|7 Z_tj+l d
W)z -0 Ty [t

=(1+{) " (z,+{) " 2 (z, - )" (¢ -1 ><K(Z)\/

(F.32)

(€ -Dz +4)
1+4)(z. =4)

where,

el
m

B
t'+1'+'Z|7 Z_t'+1
\E+Z\ %Z-E\ (F.33)

k() =T
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B, is the average value of E(Z )over the j element. For the constant deadrise wedge

contours, B({) isconstant. Denote «({) = k,({) inthiscase, whichis,

5 s B,
i =S Y
-1 (P

S

B
|z+¢|7 o=z
O 7] Yol T

The choice of A ,in (F.32) is for matching the solution of catamaran-type hull.

This is accomplished by choosing A ,=0, A ,=-1, A ,=0, A ,=-1. Thus, the kernel

function for the catamaran planing problem can be expressed as,

(1) Inagenera case S = £({,1) (refer to (4.13)),

1 ((-Dz +7)
D= 0w KW)J =9
(F.35)
k()

-z -0

(2) Inthecaseof = £(r) constantin { (refer to (4.16)),

KO(ZIT)

X(¢.7) = = = [ﬁzg _sz ' (F.36)
J@2-D(Z2-¢%) (-1 -77)

{*-1
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APPENDIX G

KERNEL FUNCTION x"(0)

The construction procedure for the kernel function x"(¢) in the solution of the
Carleman equation for the displacement vortex strength, (4.47), is, in general, the same as
the procedure of x(¢) in Appendix F. The difference of x" () from x(¢) in (4.13) is
that its solution domainisnow onthearcsof —b*<¢{<-b  andb™ < <b".

The definition of the kernel function x” (¢) issameasin (F.1), (F.2) and (F.23):

X ({)=P() " (G.1)

where,

P =1 ~C,) (62)
O 2 [ ©3

where p =2 and the respective C,, =-b",—b™,b™,b". Then,
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P({) = (¢ +b")" (¢ +b7)"=({ -b7)"*({ —b")™ (G.4)

The anglerelation in (F.22) now is:

~2-B@) ~b's{sb
oQ)=1 2 _ (G5)
- *BQ)  bs¢sb’

Substituting (G.5) into (G.3) yields,

r(0) = [J-H(t)dt J-Ht*f[)(dt]
d d (G.6)
17t _lb,[z’(t)dt 1 ﬂ(t)dt
B E{ -{ 77'[[ jt { 7Tj

Following the same derivation procedure as in Appendix F, we get the kernel function

X (),

X (©)=POE
=(¢+b")"({+b7)"* (¢ -b7)** (¢ —b")"
A A
tj+1+Z|” #Z_tjﬂ i

-, ‘

A -\ 1/ Ny ({-b7)db" +J)
— b 1 b 2 _b 3 _b 4 %
(¢+b")"*({+b7)"*({-b7)"*({-b") K(Z)\/ b+ )b —7)

(G.7)

X\/(Z—b‘)ﬂb++i)xn;
(b +O)b" -0 Tt ]
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where,

k() =T

|/’i By
t'+1+Z i Z_t'+1 d
7] sz—t’i | (©9

and B, isthe average value of ,E(Z ) over the j element. For the straight-bottom wedge

contours, B({) isconstant. Denote x({) = k,({) inthiscase, giving,

N ™

b* Z|E b* Z|E
+ 7 - m
KO(Z)_|b_+Z| #

(G.9)

s s
b +¢| gﬁw | :((W —52]

b -¢| |¢+b| J¢-b | \¢7-(0)?

The choice of A ,in Eq.(G.7) is to match the solution for the catamaran hull. It is

A,=-1,1,=0,4,=-1, 41 ,=0. Thusthekernel functionis,

(1) Inthe general case S = £({,1) (refer to (4.48)),

x() (G.10)
(7)) ((b")*-7?)

X ()=
s

(2) In the case of constant 5 = 5(r) (refer to (4.50)),

B(1)
1

X*( (b)_Z]”

= Gl
O @y - (-6 ) e
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APPENDIX H

FUNDAMENTAL INTEGRALSIN VELOCITY CONTINUITY FORMULATION

To develop a numerical model for the velocity continuity condition and the bound
vortex distribution y_({,r) computation, the fundamental singular integral terms in
Eq.(4.23), (4.24) and (4.25) must be evaluated numerically. In this appendix, these

integrals will be transformed into an easy numerical computation form by an analytic

method.

H.1 Three Elementa Integrals

The three singular integralsin (4.23) — (4.25) are in the same form, but defined in
different value domains. Therefore, it is convenient to derive the semi-analytical
formulation according to the integral in (4.23), then to apply this derived formulae to the
integralsin (4.24) and (4.25).

By (4.23),

AQ) = Zf dd; 1<z (H.1)

i XL =4Y)



where the kernel function is (refer to (4.16))

x¢n = D
J(2-D(2-77)

and,
, , A1)
%(Ar)z(zgz_(lj ’
Thus,

ne)= | A DE =,
&=l Ko(Zl)EQZZ—Zf)
- | 1 (e (R I
o Ko(() B2 -D(Z2 -7 (7=

Introduce the identity:

¢ -1 ISR Sl St S
Zz_le ZZ_ZJ_Z

{’-1
ZZ_ZJ_Z

ZCZ_Z]_Z :ZC2+ZZ_ZZ_Z]_2 14 25_52
ZZ _512 ZZ _le ZZ _le
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(H.2)

(H.3)

(H.4)

(H.5)
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Substitute (H.5) into (H.4) to produce the result:

(le _]2-)(Zc22_(1) _(Zz E(Zl _21)(2 _Zl)
¢°=4;) (¢*-772)
2 2 -1 Z 2-7°
= - -1+
(€ =¢R i e o)

ZZ_l _ZC_Z2+ ZZ_l D2§_(2
ZZ_le ZZ_Z12 ZZ_Z12 52‘512
2_ 72, 72 2 o ((2-)(z2-4?)
= =4+l 2_ 72
R st
(§* -1z -7%)
ZZ_ZJ_Z

=(¢* -4 01+ 1 (H.6)

=i (-2t

Substituting Eq.(H.6) into Eq.(H.4) yields three elemental integrals,

1 (¢ -D(z -¢7)
Q)= 2 4104z,
zlj-l K (C)QICE-D(Z2 -7 (=4
% 1 2 (* -z -¢%)
= [(F+({?-2z2-1])+ 1d¢,
Zl[l Ko(Z1)Q/(le _1)(23_51) Z Zl
=1, +1,({) +15({)
(H.7)
The three elemental integrals are defined as (refer to (4.29), (4.30) and (4.31)),
Il: Zc q/ flz 2 2 le
4=l Ko(Zl) (Z1 jl)(zc _Zl) i (H8)

z LB 1B
= [ ¢l@ -y 2 (22 -¢l) 2 e,

Z1:1



@)= -2 =)0 11
aa Ko@) O -0z - 47)
W 15 (H9)
=((*-22-1) Dj (¢F =D 2 7(22 =¢f) 2 7dd,
4=
110 = € -0z ¢ D] ¢
Ga Ko@) AP =EDN(EE =122 - F)
1,8 1B (H.10)
=(¢? —1)(z§—(2>mj (C*=¢)M¢E =D 2 (22 =¢f) 2 Tdd,

=1

In following sections, we derive semi-analytical forms for the three elemental integrals.

H.2 Elemental Integral |,

Define the variable transformation t=¢/ in Eq.(H.8), with d{, = Ldt

20t
becomes:
1E 1% 1t LB LB
—j t(t-12 ’T(z —1) 2 fr—dtz—j t2(t-1) 2 7(2-t) 2 7dt  (H.11)
t=1 \/E 2t=1
Againtransformas x=t-1, t = x+1, dx =dt. Then Eqg.(H.11) becomes,
123 1,8 1B
=] - D27 (F 1) 2 ot
t=1
i s 1p N E (H.12)
= j (x+1)2x 2 7(z2-1-x) 2 d
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From Gradshteyn and Ryzhik (1965), p287, §3.197.8:
J'x”‘l(x+ a) (u-x)*"dx = a’u"" ' B(u,v) Q F(A,v; u + V'—E) (H.13)
0
where arg(ﬂ) <m, Reu>0, Rev>0.
a
Comparing with (H.12),
a=1,u=2>-1, ,u:1—£—£:1—£, v :1+£, a=1
2 m 2 2 T 2
Thus,
% 2 1.1 B1. 8 1. B
= & =ZeC-L i Dnrel i L
i Ko(C) Q@ -2 - 7) m2on ﬂ
(H.14)

The parameter

hypergeometric series for F(a,B;y;z). To obtain a convergent solution, use the

transformation formulas in Gradshteyn and Ryzhik (1965), p1043, §9.131.1:

F@.By2)=01-2 Flay-B.y——) (H.15)
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@)
o
3
g}
2
>
(@)
3
5
T
B
Q
"
[
I\Jll—‘
™
"

_ % 1.1 1 f 11 4.

l, = df, ==BE-Z£ 2+ QF(-=,=+511-
zLKo(zl)BV(Zf—l)(zZ—Zf) G5B gt Y IR )
1, gl AL By Ll B, 21

— 27 EB(z T2 n)EF( 2'2 n’]’ zf)
(H.17)

H.3 Elemental Integral 1,({)

Define again the variable transformation t = 72 in (H.9), with dZ, = L dt

2.



z 1.5 1B
1,(0)=(* =2 -)0[ (@ -D) 2 (22 -¢F) 2 7dd,
ot i (H.18)
1 1,5 15
_—(( - 72 —1)Djt2(t N2 (2 -t) 2 7 dt

Again define the second transform x =t -1, with dx = dt. Then (H.18) becomes,

z2-1 1 1,8
L(O)=5(" -7 -0 ey X2 (2 -1-%)

NH—\
N ™

dx (H.19)

From Gradshteyn and Ryzhik (1965), p287, §3.197.8:

J'x” (x+a) (u-x)*"dx=a’u*TB(u, V) QR (A, v u + V'—E)
0

(H.20)
where arg(ﬂ) <m,Reu>0, Rev>0.
a
Comparing with Eqg.(H.19),
a=1,u=2z-1, ,u:1—£—£:1—£, V=1+£, a=-1
2 m 2 2 2
Therefore:
% 1
1,(0)=(¢* -2z -)0] = Zdzl
a=1 Ko (dy) E{/(Z1 -D(z; - 4Y) (H.21)
. ~

ez ymd-L i A ged Ll g
2 T T
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where B(u,v) is the Beta function, and ,F(a,8;y,2)=F(a,B;y;z) is Gauss

hypergeometric function, just asin the case of |, .

Again using the transformation formula (H.15), comparison with the parametersin (H.21)

~

gives: a:%, ,8:%+£, y =1, z=1-2z°. Therefore, in (H.21): 1-z=1-1+2> =27,
T

_ 52 2 _ > =~
2 =1 ch =Z°21<1. J/—,6’=1—£—£=1 ﬁ , and the hypergeometric function
z-1 -Z Z; 2 m 2
in (H.21) becomes:
115 11 B.,2°-1. 1 __11 B 722-1
FE&,=+=11-27 z ZEF———;'C =—F(=,=—-=1L=
(2277 )=(@) (22 ﬂlzf)z (22 ﬂlzz)

(H.22)

The elementa integral 1,({) therefore has the following semi-analytical form (see

(7.2)):

1
1,(0)=(¢?-22-1)0 dZ,
ZLMQWW4MAZ)

- @22 -yBG-L 2 %@FF~*ﬁL12) (H.23)

-

2
C

2
Zc

) O ( L

S| I‘m

1,., o, 1 1 B 1
=—{ -z-)—B(=—-—"—,—+
2(( . )Z (2 et

|\>_I|—\
N
SIS

z

C

H.3 Elemental Integral 1,({)
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For the elemental integral in (H.10), use the same variable transformation again:

1dt

t =77 with d{, = 3 \/_ The elemental integral 1, becomes:

1B
1,({) = ({?-1)(z Z)ﬁftz(iz —t)(t - 1)”(Z t) 2 7dt (H.24)

A convergent semi-analytical solution for the elemental integral 1,({) in (H.24)

can not be found analytically as for 1, and 1,({), but we can develop an approximate

solution for 1,(¢) in a numerical form. Because the function f (t) :% in the integral

(H.24) is a slowly-variation function in the region of 1<t<z’, let us assume that

ft)== i

T is a piecewise constant function in this region. With this approximation, the
t

integral in (H.24) can be written in the following form (see Fig. H.1),

12
()= (" -z -¢ )#jtw (-1 2 (2 - 7
W]
L0 ) —t)“
=200 -7 z ( j a dt (H.25)
W) N
1, ,, “(t 2”(2 —t)2”
5P -0z -7 Z( o o
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Fig. H.1: Integration elements

In Fig. H.1, t, =7 is the parameter variable of the integral. Define the integral term in
(H.25) to be:

. 1B _
j+l 2 T

AL = | (t=1 t_(?zz_t) dt (H.26)

1
2

N ™

The integral term Al ;(¢) can be computed in different domains of the variable { as

follows.

Casel: when {? >t (see4.32)

Define:

N
N ™

1B ,
|3jj(52)=j(t‘1) t_(?z_t) at (H.27)

Therefore,

A|3,j = |3,j+1 - |3,j

(H.29)



Case2: when {? <t (see4.34)

Define:
1B
t—1 G z;-t) 2"
15,(0%) = j( ) t (ZZ )" (H.29)
Therefore,
A|3,j =|3T,j _I.':,j+1 (H.30)
Case3: whent, <{*<t,
Define:
;ﬁ 1B
t 2 T Z 2 7T
1,0({?) = j( ( . BT (H.31)
-{
Therefore,
Aly; =1l5,— I3‘J—I3+’j+1 (H.32)

At this point, we have a solution form for the integra 1,. However, to calculate

the terms in (H.27), (H.29) and (H.31), further development is needed to express the
integrals in (H.27), (H.29) and (H.31) in terms of semi-analytical functions. The

following sections: H3.1 — H3.3 present this development
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H.3.1 Integral I,,(¢?)

For the integral in (H.31), use the definite integral formulas in Gradshteyn and

Ryzhik (1965), p290, §3.228. (2):

v-1 _ -V _ v-1
j(x 8" (b-x"  __7c-a ctg(v 07) for a<c<b [0<Rev <]
X—C (b-c)"

Comparing with (H.31), the parameters are: a=1, v—1:—1+ﬁ - v:1+£

2 T 2 T

b=z, v=-1 B | v:1+£; ={?, 1< {? < z? which satisfies the condition
2 2 T

of a<c<b [0<Rev <]]. Therefore,

1,8 1B
% (t- H2r7(zZ-t)2r
30(Z )—J- t_Zz dt
1,8 (H.33)
_m{i-n T 1
( ~7? )Zfr tan(727+ﬁ)
Since tan(g+ﬁ):—cotﬁ,
LE , LI
30(5)‘f(t Y (zz_t) ar =12 ;xtanﬁ 1<¢ <z, (H.34)

(z Z)Z”
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H.3.2 Integral 1,({?)

For the integral term in (H.27), defining the variable transformation x=t -1,

t =x+1, with dx =dt. Then (H.27) becomes,

P LB
_ x2m(zs-1-x) 2"
1,.({%) = c H.
51 (¢%) jo SR (H.35)
Define a second transformation:
y=— x=(t, -1y, dx=(t, ~Ddy, x+1=1+(t, ~1)y (H.36)

t. -1

J

The above integral, (H.35), becomes,

~ 1B 1B
1B Ly 2r[z2-1-(t -1y] 2 "
|3:j(Z2):(tj _1)2”qtj _l)EIJ‘ y [c (]2 )y]
J2o0 t -Dy-({° -9
2B t-1) LB
KW B A e e
==(t, - ? "0t -DAP -2 - 7 7 =] dy
y=0 |
7217
N _ LE (-1 LB
£ ] 2 = Vi 2
O i e AV BT S S
- 7o | T y
y=0 - y
%1

(H.37)



364
From Gradshteyn and Ryzhik (1965), p287, §3.211:

1

J-x”‘l(l— X)“(L-ux) P (L-vx) 7 dx = B(i,A)F, (A, p, T, A + 11;u,v) (H.38)
0

where Reu >0, Red >0.

Comparing with (H.37), the parameters are:

/1‘—1:—£+£ - /1‘=1+£; Uu=-1=0 - u=1, —-p=-1 - p=1;
2 T 2 T

3 t -1 t -1
a:1+£:/1‘;u: : =
2 T

|V_
J?-1 z2-1

T

The condition of ReA >0, Reu >0 issatisfied. Therefore,

15 1B _;+i[1 ST ]_2_5
N e L R
15,02 =~ ; < | T W
72 -1 Lo _5
7Y (H.39)
1.8 1B
t,-D27qzZ-1) %"
__ G-y ZZE“_Zl ) " CBLA Y (LA A +Lu)

where B(u,V) is again the Beta function, and F (a,5; B',y;X,Yy) is Hypergeometric

function of two variables.

L TAOr® _ T _ 1
BlLA)= A +) ATMA) A° (H.40)
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From Gradshteyn and Ryzhik (1965), pl1054, §9.182.1, the transformation of the

Hypergeometric function of two variables to Gauss's hypergeometric function (of one

variable) isthe following formula,

Fi(@.B.B8"B+B"xYy)=0-Y)“"F(a.B.B+B" ) (H.41)

t, -1 z2-1-t +1_ zZ -t

1- :1—] = = )
Y 22 -1 zZ -1 zZ -1
t.-1 t -1 2_ 72
X—y= '2 —12 :(t]. —1)[—21 _ 1 _(t]- -1 ZZC Zz
7*-1 72-1 72-1 Z2-1 (¢2-1(Z -1
_ 2 _ 72 2_ t _1 2
y:(t _3) ZZC { ch 1_ EF < (H.42)
1- ((?-)(z2-1 Z2*- Z -1 z —t;

Therefore, A ‘:1+£
2 T

2 1[? t_ 2
F,(A LA 7,4 7 +Lu,v) = ( ’) Z"F(;+%Lz+% (2—1EFz —¢ ) (HA43)

c J

Substituting the above equations into (H.39):
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1,5 1B
) t,-D2 7z -n 27 1 _z-t &5
15,({%)=-— > x———) 2
{°-1 A z; -1
51 - ,
xF(1+ﬂ1,§+ﬁ Z)
2 1772 m{*- 1z§—tj
1.8
t. -2 70 G g t -1 722-7?
_ 21 t, -1 2 1_[F(1+ﬁ,1§+£, ] . Z)
{o -1, LB ) 2 m 2 m{°-1 z -t
(Zc_tj)zn
Therefore,
1B 1B
(t-27(zZ-t)2"
(Z)—j - dt
1,8
t, =270 % Bt -1 72-72
_ 21 (t; -1 g 1_EF(1+£,L§+£; ] . z
-1 LA ) 2 m 2 m{°-1 z;-t,
(22 —t)2”

ZZ >tj+1 (H44)

H.3.3 Integral 17,({?)

For the integra in (H.29), define the variable transformation x=2z>-t,

t =27 —x, with dx = —dt. Then (H.29) becomes,

1 _B 1.5
0 2 n(z -1- X) 2
15,%) =~ j g, ™
o c i (H.45)

., 1P 1,5
7 2 -1- 2

_ J- (Z : X) dx

x=0 Zc _Z -X
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Define another transformation,

X
Y= X=(E )y, &= (2 )y, (H.46)
i
The above integral, (H.45), becomes,
oy 2P LB
. (lx2r(zZ-1-x) 27
15;({?) = < d
J xJ=-0 202 ZZ_X
. LB , 1B
£ Ly 2[z;-1-(z2-t)y] 2"
—(Zf_t])ZITl]Zs_t])DJ- y [20 . ((:2 J)y]
y=0 C_Z _(Zc _t])y
1B (Zcz—tj) 1B
15 1.8 , Yy 2= 21 yl 27
=(Z-1)2 Tz - 2Tzt -¢)t | = dy
y=0 Z; _tj
1 ) ;Y
z"-¢
1B (22-t,) -2
1 l_é _}+E L y 2 n[l_ 22 _1 y] 2
= 5 zmzs_t])Z ﬂng_)ZIT.[ 2c dy
Z, _Z y=0 Z, _tj
1 5 >y
z, ¢

(H.47)

From Gradshteyn and |. M. Ryzhik (1965), p287, 83.211.:

Jl-XH(l— A=) (L) T dx = B AR (A p,0 A+ ppuy) - (HAY)

where Reu >0, Red >0.

Compare with (H.47) with (H.48):
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% z? -t i
By, s <l.v=——
T z°-¢ z; -1

The condition of ReA >0, Reu >0 satisfied. Therefore:

T E )
1 17 EWTR A e/
I;’J(Zz): 5 Zmzs_tj)z ﬂl]zs_l)er.[ 2C dy
z"-¢ yz0 z; -t
1-— Sy
z"-¢
1 E_E —}+E
=2 e Mz’ -t,)2 "0z2 -1) > " xBLA ) F (A " LA ,2 "+1u,v)

(H.49)

where B(u,V) is the Beta function, andF,(a, 8; ',V X, y) is Hypergeometric function

of two variables. Again:

_ranrg_ ran 1
TTAYYD) AT At

BLA ") (H.50)

Using the same integral transform asin (H.41), the parameters now are:

A z2-t, z2-1-z2+t, t -1
y= z22-1 22 -1 zZ-1

C C C




zZ-t.  z?-t. 1 1 J*-1
x-y=——L =1 =(z2 -t - = (22 -t
YT 7 =4 22 =" 23—1] ( ')(zf—zz)(zf—l)
- 2 _ 2 _ 7> —t. 2 _
b P WL it N - S Sk W - Sl D (H.51)
1-y (z.°-7°)(Z2-D -1 z°-¢% t,-1
.1 B . _ .
and, A "= 2T Thus the hypergeometric function in (H.49) is,
T

)

C

-t 21
i H.52
z°-72° —1) (H52)

C

Substituting the above equations into (H.49), theintegral | (¢ %) isasfollows:

3 ™

+é
us

15;({%) =

1 1 1
z; -t,)? -1 2
S )z -

xBLA )R " LA A T+ 1u,)

3 ™

]
m

0z -1 2

l_

1t -1 -¢-5 -t 72—
X 2T E(ATLA T+ %74
A*quc —) A7 1 e dtj _11)

t. -
XA+EF(/1+':LA++1; ZC J E{ 1)

Therefore,
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, _1,B 1B
z 2
+ (-9 27z -1) 2"
MIGE . dt
J tJ- t_ZZ
-1 D(Z‘f—t';_i R R L. Sul IR ik
e WRE (471 lzz_ . t.—1)
C (tJ _1)2 Vi C ]
{? <t (H.53)

At this point, all derivations required in the |, term computation, (H.10), have

been completed. In next section, the final form of the fundamental integral A(¢) will be

given based on the above derivations.

H.4 Fundamental Integral A({)intheRegionof 1<{ <z,

Theintegral A({) can be expressed in terms of the above as,

Z d(
N({) = s
51[1 X(Zl)(ZZ_Z1 )

=1 41, +],

1 1 1 B 11 B 722-1
=—zBEE-=="+)F(——=,=— -+

2% (2 n’2+n) (22 nl zf)

1.1 81 B, .11 B, 72-1

Sl -2-)-—BE-L 2+ OFE -2
oz )zc (2 n’2+n) (2’2 nl zf)
L@ -y - mi, )

2 ,:1\/ﬁ :

1<{<z

. (H.54)
withthe Al ;; () term as:
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. Casel: {*>t,,

Al =15, 13

(H.55)
1.8
_ 1 -D2"0 1 1 B.3 B .t -1 z22-72
| 2y=— ! — X F(—+—1—+~—; !
2 ({7) = I (2 ﬂlz 7771 Zcz-t,)
(Zc _tj)2 i
{>t,,  (H56)
. Case2: {’ <t,
Al = |3+,j _|3+,j+1 (H.57)
15
+ 2\ — 1 Zf_t])z d 1 + + . Zs _t] 2_1
e v S CL IR R e e
(t, -0
{?% <t (H.58)
. Case3: t; <{*<t;,
AIs,jzls,o_ls_,j |3+,j+1 (H.59)
1.5
2 _ 2 _
le,,o(Zz)=ﬂ(Z 1)1~ xtan B 1<{ <z, (H.60)
(=072

As discussed at the beginning of this Appendix, the formulation in this section for

NA({) can be applied to the formulation of the fundamental integralsin (4.24) and (4.25).

The next sections are the applications.
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H.5 Fundamental Integral A" ({,)intheregionof b~ <{, <1

Define,

N, = Zf % p<g st (H.61)
4= X(Zl)(Zo _Zl )

Intheregionof b™ <{, <1, theintegrd is,

) % a7,
N ({o) = 2 2
(Z) (!:1 X(Zl)(Zo _Zl)

=1+,

1 1 B1 B 11 B, 72—

==z BE-Z, 2+ F(E=,=-E1%

ZC(Z T'2 7T)(22 ﬂlzfl)
1

B-
2
—%(Zoz—n(zs—zoz) Y 4, ()

b-<{,<1, 1<t; <z (H.62)

where ¢,* <1<t;. Apply the case 2 formulation,

i P (H.63)

where
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1 22 -t 1 ;- 2 -
31(50)_ 2 2[‘( le X +|:F(A 1'/1 +1' 2 _ J2 to_ll)
c _ZO > c ZO i
t,-n>r
{o° <1<t,, 1<t <z (H.64)
Re-grouping,

_ % d7,
IN(OE
(€)= (L X =4))

1 1 81 B 11 B, 72—
=2z BE-Z 2+ F(-Z, -2
2% (2 T2 n) (22 lTl'zczl)
1,,, , ~1. .1 B1 B._11 B 2~
+= -z -)—B=-——=-+)F(=,=——
Z(ZO % )zc (2 T2 77) (22 lTl zfl)
1.» L
-—({," -1 N3 () —Nsja(l
2(0 ) % JZ;,\/EED 35 (o) =N'3jn(do)]
b-<{,<1, 1<t; <z (H.65)
where,
1B
. (z2-t)2" 1 e e Tt 721
Ny = S L E e e
(t _1)5; (o 0 J

{,° <1<t,, 1<t <z’ (H.66)

Therefore, the A™({,) —/A({) termin (4.26) and (4.27) of Chapter 4 will be,
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>
X
Z
o
Tl
N -

N
&
I\Jll—‘
3 I‘m
I\Jll—\
+
N ™
by
|

2'2
1,,, , 1 .1 g1 B 11 B_2-
(P-22-)—BE-E o+ FE,=-£

+2(Z % )z (2 ’2+n) (2’2 n’l 1)

ok 1_212 11 5,
Z)ZCEB(Z 7T’2+77)EF(2’2 lT'l )
_1) z\/f[ﬂ/\ 31(50) /\3J+1(ZO)]

1 .,
5« D(zg —¢%)x z\/,

1s{<z,b <{,<1,{,° <1<t;,1<t, <z’ (H.67)

[Al,; (<)

H.6 Fundamental integral A" ({,)_intheregionof z. <, <b”

Define,

. i dZ,
N ({o) = 2,2
(Z) (;[1)((()((0 _Zl)

7. <{,<b’ (H.68)

Intheregionof z, <{, <b", theintegral is,
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. % d¢
N () = —
ZILL X(Z1)(Zo _51)
=1, 41, +,
1 al Bl By 11 B 7
_2Z°EB(2 72 R0t zfl)

1_
2
—%(&f—l)(zf—zf) >l (C)

z,<{,<b", 1<t; <z} (H.69)

where ZO > 77 >t,,,- Apply the case 1 formulation,

Alg; =g~y (H.70)
1,8
_ 1 t—lz”Dl 1~3~t—1 2 _ 2
@D = )1~>< FEa B3 B LT el
{o -1, 1B 2 m 2 m{,y -1zt
(Zc_tj)Zﬂ
(o272 >t, 1<t <Z (H.72)
Re-grouping,
z, d7
N'({,) =
i J X =7
1 1 g1 R 11 3. 22-
=7 B___)_-'-_ D: -, T,
SZ B0 SRl 2021)
Lir2_, 1 1 g1 7 11 B z’ -
+= -2 -)—BEE-L£ =+ FE, =5
A R e [ ot Zf)

z,<{,<b", {222 >t,,1<t, <z (H.72)

where,
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1.8
, (t _1)2 ITDX 1 1 E § E t. -1 Zo
NS o t)l+E “FGr sty Zoz—liz -t )
ZC_J_ZIT

(o272 >t, 1<t <z (H.73)

Therefore, the A" ({,) —=A({) termin (4.26) and (4.27) of Chapter 4 will be,

N (o) =) = 57, TB( - §%+§)m(—% %—,%:lzfzgl)
L
_;(Zg—ZOZ)XE%Q/\_3IH_A_3])
B Dot Lun
P2 1)%55(%—%%)?(% %—élzigl)
—%(52—1)(z§—52)><§%m'34}
=@ -¢ )—EB(% %% é)[F(%%—%liﬁ

; ) z ﬁ A 551(86) = Ao (8]

b Z.<{,<hb", ZO >7 >t,,1<t, <z’ (H.74)

The above formulae are used in the numerical computation of the velocity continuity

condition and the bound vortex distribution y,({,7).
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APPENDIX |

TIME MARCHING ALGORITHM

[.1 Artificial Damping And Ve ocity Marching

For the purpose of developing the artificial damping concept, assume a simple

mass-spring system, as depicted in Fig. 1.1,

F(7) X(7)

SR
_

Fig. 1.1 Artificial damping

The system equilibrium equation is,

mx + cx = F(7) (1.2)
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At thetime 7, , the system equation is,

My, +c%, = F(7;) (1.2)

Thus, representing the acceleration in (1.2) by a backward difference in terms of the

velocities at two successive times;

mA 3ok =F (1.3)
At
or,
x - %, + 8Ly = FAl (14)
m m
Therefore,

o = X, +FAT/m _x_ +F Ar/m

1+g 1+C
m

(1.5)

damp

where C,, = Ar is the effective damping coefficient, which set by the user input. In
m

steady planning case, a larger damping coefficient C,, = makes the computation more

rapidly settle to the stable time-independent state desired. The% term is determined

from the average acceleration as follows:
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(1.6)

Therefore, the velocity results at time 7, can be obtained by integrating the acceleration

results X, which were directly from the coupled equations of motion.

|.2 Displacement Marching

Time marching of the vessel velocity and displacement is carried out according to

following agorithms.

For the increments of the heave 77,(7) and the pitch angle 7.(7) ,

1 . .
Ans; ZE(Aﬂs,i +AM4) XAT

where,

5 4. VXAT
A, :1 (i *173i1)
2 1+C

damp

with C,__ developed in Eqg. (1.5), and

damp

1 . .
Ans; = E (Ans; + D, 1) X AT

(1.7)

(1.8)

(1.9)



where
5 A VXA
A/75i =£ (’75,| ,75,|—1) r (llO)
2 1+ Chp
Thus, the displacements will be:
N5(7;) =n5(r; =D +An,(7)) (1.11)
ns(1,) =ns(r; =D +Any(7)) (1.12)

.3 Algorithm to Determine The Transient Wetted Length

y| yp
_ X
A e \/
AT \H E
Yia _
XI—l — HT
Xm
X

Fig. 1.2 Determining wetted length
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This agorithm is for the wetted length search outlined in (3.97) and (4.92) of

Chapters 3 and 4,
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In the transom coordinate system, the keel upsets (include the upsets due to trim

angle and waves) are represented as x;, Yy, i =12,---,n. The transient wetted length can
be found by comparing the transom draft H; with the sectional transient keel upset
Y, (T) (seeFig. 1.2).

Assuming y, >H;, Yy, <H;, it is desired to find the coordinate x, which

corresponds to the transient transom draft H , starting from the slope:

Yi “Yia _Yi -H,

(1.13)
X =X X = X
From (1.13):
X =Xy =(y, ~Hp) ol (1.14)

Yi = VYia

Thus, the entry position X, is the required wetted length, from (1.14):

X — X4

Xn =X _(y _HT)
Yi =Yia

m 1 1

(1.15)

This algorithm is used in the following steps in the Subroutine ENTRY .
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Step 1. Based on the last time step X discretize the vessel length x_ into N

sections. Interpolate the keel upset at every section, then modify by the displacement
from trim angle and the wave elevation (refer to (3.97) and (4.92)).

Step 2: In the transom coordinate system, start from the transom section and move
forward toward the bow, comparing with the transom draft H; , to search for the entry
intersection point (refer to (1.13)). This step mainly is for searching for the point where

the transient draft Y, (x,,7) =0 (refer to Fig. 3.8). The correspondent vessel length will

be the wetted length L(7) = X,,.



383

APPENDIX J

FUNDAMENTAL INTEGRALSIN THE FIRST ORDER MODEL

The fundamental integrals in the vortex strength of the first order model are
(3.11), (3.12) and (3.13). Asinthe 2" order model, these three singular integrals are in
the same form, but defined in different value domains. Each of the three integrals can be
separated into three elemental integrals. In this Appendix, a more detail derivation for

these semi-analytical evaluationsis outlined.

J.1 Three Elemental Integrals

Define (refer to (3.11)),

Z le

N = 1< < J1l
©= | yec - (=z .
where the kernel function is (refer to (3.7)),

X0 = = (32

V(2 -D(Z2-77)



384
Following the same procedure as in Appendix H, the integral in (J.1) can be separated

into three simple elemental integrals as (refer to (3.16) and (H.7)):

NQ) =1, +1,(0) +15(0) 1<{s<z,  (3)

where (refer to (3.17), (3.18) and (3.19)),

=] 2« 04
L@y z - '

Z
L.()= (-2 =)0 ——— ¢, (35)
am V(2 -D(Z2 - 47)

% 1
15(0) = (¢* -1z -7 Of (36)

dZ,
Ga (P -2 -D(Z2 -¢2)

In following sections, semi-anaytica forms for these three elemental integras are

developed.

J.2 Elemental Integral |,

For the elemental integral I, of (J.4), transform the variable as t =¢7; the

integral |, becomes:
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1% Jt 1% t
Il =5 dt == —Zdt )
2!1 t-D(zZ -t) 2!1 (t-D(z -t) (3.7)

From Gradshteyn and Ryzhik (1965, p233, §3.141.16):

T/LdXZZ\/a—CE()(, p)-2/ 27U s ushsg g
2\ (@=x)(x~b) u-c

. /(a—c)(u—b) _ /a—b
where y = arcsin —(a—b)(u—c)' p A c’

Comparing (J.8) with (J.7), the parametersare: a=u =22, b=1, ¢=0, )(:ﬁ

2 )
zZ-1_[ 1 . : : : :
p= — = 1—?, Thus, theintegral 1, in (3.7) has the following semi-analytical
ZC C
form:
z 2
$
I, = d{,
zj V@ -0 - &7)
:%xsz(’E’,Jl—J/zf) (39)
= 2B \1-VZ)

where E(g,,ll—]/zf) isthe complete elliptic integral of the second kind.



J.3 Elemental Integral 1,({)

For theintegral 1,(¢) in (J.5), defining variable transformation t = {7,

Z,
B e 1)1( —
=1 T -D(z -4
’ 2 (3.10)
1 1
=% -z -0 dt
Z(Z = tL t(t-1)(z -t)
From Gradshteyn and Ryzhik (1965, p219, §3.131.5);
( dx 2
- PO, zu>b 311
lJ(a—X)(x—b)(x—c) Taso P [azu>b>d (3.12)

e /(a—c)(u—b) _ /a_—b
where y = arcsin —(a—b)(u—c)' p o

Comparing (J.11) with (J.10), the parametersare: a=u=12>, b=1, ¢ =0, )(:%,

2_
p= %= t= -t ok Thus theintegral 1, is
ZC ZC

1 z
.(0)=5¢* -2 -0

1
dt
Gyt -1z -1) (3.12)

= (¢ -2 -nE=F(Z K
z, 2

386
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where F(g,k) isthe complete elliptic integra of the first kind.

J.4 Elemental Integral 1,(1<{ <z;)

For theintegral 1,({), from Gradshteyn and Ryzhik (1965, p251, §3.157. 9) :

|

=%{ n()(M q)+(p—b2)F(x,q)} [azu>b>0; p# b’
ap(p—b?)

(p- x)J(a x)(x b?)

a’(p-b?)
(3.13)
where y = arcsin® uz—bz . q= a’ b
uVa“-b a
Comparing (J.13) with (J.6), these parameters are: a* =u’ =z, b* =1,
p={>2, X:ﬁ,q: Z°2_1: 1—%:k
2 \[ Z; \/ Z;
Thus, theintegral 1,({) in (J.6) hasthe form:
2\ 72 2 1 /4 Z (Z -1 Vi
=(1- ) ~1F(Z K
,=A-00)((7-22) 252(52—1){H[ oy +(e? -2F )}
z -7? T {3z -)) Vg (14
e {H[2 T )k]+(z —1)F(5,k)}

where [](¢,n,Kk) istheélliptic integral of the third kind.
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The form dliptic integral of the third kind, [](¢,n,k) in (J.14), is not in a semi-

anaytical form ready for the numerica computation. In the this section, further

reductions of [](¢,n,k) are accomplished.

Use the following identity (refer to (L.8)):

rwnm_nm—nun—m—,fz_n/ ] 1s¢<z  (315)

According to the elliptic integral notation in Appendix L, and comparing with (J.14), the

parametersin (J.15) are,

k=sina = /1—2—12 (J.16)

_{%z -]
z(¢* -1

1s{<z, (3.17)
In (J.17),when { - 1", n - +00; ¢ -z, n - 1, which impliesthat,

n{)>1 1<{ <z (J18)

According to the Case(ii) in Appendix L, when n >1, the transformation in (L.13) can be

applied:
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e T
n 2z {N(ze-)  z; {(zz-D) ¢

. 1 sna ., .
Since { >1 - Nzl—F,and n>1 - N= - <sn‘a, thevalue domain for N

O<N<sin’a (J.20)
In this condition of (J.20), (L.14) in Appendix L will apply to the transform in (J.15):
[M(n\a)=F(a)-T](N\a) (J.21)

where a isdefined in (J.16).

From (L.12) in Appendix L, in (J.21):
[M(N\a)=F(a)+o,F(a)Z(s \a) J.22)

where,

0, =[N@-N)™*(sin®a - N)™]¥?

\/ N 1 (J.23)
= D
1-N sn?a-N

Since,
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L R T N
I-NT @y
ZZ

=J*-1,

sntg-N=Z 1 (P-) _zl*-{" -2+ 7z -
Z‘? - z:{? 7272

Thus, the parameter 9, is,

N 1 2(2 ZZ _1
0, = B e E R J.24
From (L.9) in Appendix L, &, in (J.22) is:
1
g, = arcsin(N/sin® )2
2_ 2 2 _ (J.25)
=arcsin I\: —arcsm\/(Z ) 2° =arcsin— 52 1
sn“a z. - {\z -1
From (L.11) in Appendix L,
Z(g,\a)=E(g,\a)-[E(a)! F(a)]F (g, \a) (J.26)

Substituting all of the above into (J.21) yields the final form of the eliptic integral of the

third kind, [1(¢,n,k), in (J3.15):
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Mn\a)=1z¢ %[E(G)F(q \a)-F(a)E(g \a)] (J.27)

Substitute (J.27) back into (J.14) Thefina formof 1,({) isthen:

I, = V(¢ '1)Z(ZC < )[E(a)F(sl\a)— F(a)E(e,\ )]

1<{ <z (J.28)
(¢
z, [?

+

(¢ -1 F(a)

where F(a) and E(a) are the complete eliptic integrals of the first kind and the second

kind respectively, F(s1\a) and E(& \a) are the incomplete elliptic integrals of the

first kind and the second kind respectively, with the angles a =sin™ /1—%, and
ZC
.z, _|7%-1 : . . .
£ = arcsm? - .During the derivation process, it isrequiredthat ¢ #1 (refer to
(3.13)).

The above derivation process for (3.11) is also applicable to the evaluation
procedure for the integrals in (3.12) and (3.13). The semi-anaytical form in (J.9) and

(J.12) for the integral 1, and |, are the same for the elemental integrals in (3.12) and
(3.13), the only difference is for the elemental integral 1,({’) where the value domain is
different. In next section, the semi-analytical form of 1,({) in the different value domain

isgiven.
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J.5 Elemental Integral 1,(b™ < { <1)

In the value domain b~ < { <1, the elemental integral 1,({) derived from (3.12)

has the following form:

— (:2 Z ”Z (Z _1) 2 _ 7_T
(=5 {n[ 2 7D K+ 1)F(2,k)} (329)

where the liptic integral of thethird kind, M (n\a), isdefined as,

nonayqun—nun_nﬂﬁéii_n - ] b < <1 (1.30)

[_1 _{%Z-) - - -
In (J.30), k=sina = [1- zf Zs(zz_l).whenial,n_» ¢ - (b7),

_ (04 -

2 ()2 1) <0, which impliesthe parameter n in (J.30) to be:

_{Nz -
(-

—oo <N

<0 b <7 <1 (3.31)

With n<0, the transform parameter N in (L.19) of Appendix L is:

. 2 _
N:E%E#E (1.32)



393

. . 22 -1 2_2°
Since, snza—n:—#, 1—n:f—2°,thus,
z:({" -1 z:({° -1

N - z;—Zz b-<{ <1 (J.33)

z,? -1

and,when { - 1", N=—=———<1;when{ - b,
z -()°
z°-1 _z°-1
=— 0)’ > _—=dn’qa. Thevaluedomain for the parameter N thusis:
ZC - ZC

sna<N<1 (J.34)

In this condition, (L.40) in Appendix L applies to the transform for the eliptic integral of

the third kind in (J3.30):

NS a pinva)y+—3N9_(p(g) (.35)
@-n)(sn“a—-n) s

Mn\a) = PEIo—

where F(a) isthe complete eliptic function of thefirst kind, and

cos’a =1-sin’a = (i)z.
z

C

From (L.18) of Appendix L, thethird kind Elliptic function IM(N \ a) is,



M(N\a) = F(a) +%nc§[1—/\0(£2 \a)] (3.36)
where,
N 1
0, = E 1.37
2 \/1—N N-sin?a (3.37)
— 2 —
sincel—Nzlz—Zz, N-sin’qg = ﬂ . therefore,
z.-¢ (ZZ2-¢%) (%
2 _ 72
52=\/ N p 1 _Zpz-¢ (3.39)
1-N N-sn‘a (¢ 1-¢

and,

. /1—N . /1—(2
&, = arcsin =zarcsin(z. J——— J.39
2 COSZO' ( (o ZS_ZZ) ( )

Substitute (J.38) and (J.39) into (J.36) to get the expression for NM(N \ a):

I'I(N\a)—F(a)+—GZ— " m-n (&,\a)] (J.40)

1(2

Substitute (J.40) back into (J.35):
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N(n\a)=1-{*}{F(@)B % 4+ Z.x¢

z2-{* 2 [(Z2-¢3)a-¢?)

Substituting (J.41) into (J.29), thefinal form of 1,({) is:

1-¢°

Y4

C

l 3

F(a)+——¢(1 72)(Z2 - P)[L- N5\ )]

where from (L.17) of appendix L,

No(&;,\ @) = Z{F(2)E(g, \a') ~[F(a) - E@)IF (¢, \ ")
° }

The parameter €, is defined in (J.39) and the parameter a' is:

a'=90° -a

J.6 Elemental Integral 1,(z, <{ <b")

[1-N,(s,\a)]} (341)

b- < <1 (342)

(2.43)

(3.44)
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In the value domain z, <{ <b", the elemental integra 1,(¢) derived from

(3.13) has the following form:

m {*(z -))
| _
oz? {H[ z2({%-1)

> g\
Kl+(¢ 1)F(2,k>}

{ <b* (1.45)

c ]
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where the liptic integral of thethird kind, M(n\a), isdefined as,

nn\a) =M= n\a)_|-|[”,i((zZ D - ] z <7 <b’ (3.46)

n(346), sna = 1- L n=%Z "D
22" 2D
2 _ 2 2 _
WhenZazc,n:(Zczl)Dzz >(Z°21):sinza;wheniab+,
Z; z; -1 Z;

_ 0z -0 _ () 'z -z +z - (b)) _ z((b")* -1 - ((b")* - Z)
z;((b")* =D z;((b")* -1 z;((b")* -1

()’ -z

z;((b")* - 1)

which means the parameter n in (J.46) to be:

sinza<n—Z( - <1 z.<{<b’ (3.47)

Z2((2-1)

IN

In this condition of (J.47), (L.18) in Appendix L can be applied to the dliptic integral of

the third kind in (J.46):

M(n\a) = F(a')+%7ﬂ53[1—/\0(53 \a)] (J.48)



where F(a) is the complete eliptic integral of the first kind,

and,

L e

i 2 c 2 2
1-n n-sin“a {° -1z

Substitute (J.49) and (J.50) into (J.48) togive M(n\a):

I'I(n\a)—F(a)+ Q e ;2 > M=y (&5 \a)]

This gives the final semi-analytical form for theintegral 1,({):

2 2
_z ¢

I, =

F(a )———\/(ZZ )2 =D[L1- A, (&\ )]

C
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A, is defined in (1.43),

(3.49)

(3.50)

(3.51)

z,<{<b" (152

In this appendix, the semi-analytical forms for the fundamental integrals of (3.11),

(3.12) and (3.13) in thefirst order model have been given.



398

APPENDIX K

INPUT FILES FOR THE REGULAR WAVE EXAMPLE

The input data for the CATSEA(2-4a) and NewCat(2-4a) of the design tools in
the regular wave numerical computation have been listed in this appendix as an example.
The physical explanation of the input data can be found in Chapter 8.

There are four input files for the catamaran with two transverse steps. The first
input file “CATSEA.IN” is a control file which provides the global control data for the
computation. The other three files are the local geometry data files which provide the
detailed geometry parameters for three hulls, one for the main body hull, other two for

each individual step hull.

K.1 Input File: CATSEA.IN

CATSEA.IN isthe mater file which gives the global control data.

K.1.1 Input Data

11
Example-1: catamaran. ZK = 2 FT, 6000 LBS, 2 STEPS, 3 FT CHINE
60 .005 .03 2.
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.001.0001.800

.02 24.046.33 5. 14.25.0187 7.27 .01 .1 1 1 10001
1

10000

70. .61

2

2.292.29

2560.0.1

K.1.2 Read Statement in Fortran Code (CatSea2-4a or NewCat2-4a)

The following is the read statement in the code of CatSea2-4a and in NewCat2-4a.

OPEN(16,FILE='CATSEA.IN',STATUS='OLD)
READ (16,*) RESTART,DUMP

READ (16,2) (PROB(l),I1=1,15)

READ (16,*) MMZ,DSPZ,SBARZ,RATZ

READ (16,*) CRIT(1),CRIT(2),FAC,KPRNT,KPLOT

READ (16,*) DTOS,XMASS,GYRAD,XCG,XLOA,CLA XCA,CDA,DEPS,KODE,
KSTEP,MALL

READ (16,*) NPRNT

IF (NPRNT .NE. 0) READ (16,*) (IPRNT(1),I=1,NPRNT)
READ (16,*) UK,ZKM

IF (KSTEP .EQ. 0) GO TO 5998

READ (16,*) NSTEPS

READ (16,*) (XLSTEP(1),I=1,NSTEPS)

C DATA READ AND CONVERTED IN WAVE:

C

C KODE = 1: REGULAR WAVE;

C READ (16,) AHTA WAVL,PHASE,WAVES

C

C KODE = 2: IRREGULAR WAV E (JONSWAP Spectrum)
C READ (16,*) WMIN,WO,WMAX,GAM ,NEW,WAVES

K.2 Input File: CATSLIN

The CATSL.IN fileisthelocal geometry datafile for the first (main) hull segment.
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K.2.1 Input Data

COBRA evauations- 2 STEPs
1176 1.088

11

1.001 80.005.02.015.01521
.675-.3.09-.0-.08.92.170.
38.-3.3317.0.0.
38.38.17.17.

1.0.1. 0.
1.10.215150.2.170.

K.2.2 Read Statement in Fortran Code (CatSea2-4a or NewCat2-4a)

The following is the read statement in the code of CatSea2-4a and in NewCat2-4a.

9000 IF (KSTEP .EQ. 0) OPEN(15,FILE='CATS.IN',STATUS='OLD’)
IF (KSTEP .NE. 0 .AND. MHUL .EQ. 1) OPEN(15,FILE='CATSL.IN',
,STATUS='0OLD")
IF (KSTEP .NE. 0 .AND. MHUL .EQ. 2) OPEN(15,FILE='CATS2.IN',
,STATUS='0OLD")
IF (KSTEP .NE. 0 .AND. MHUL .EQ. 3) OPEN(15,FILE='CATS3.IN',
,STATUS='0OLD")

READ(15,2) (PROB(I),1=1,15)

READ (15,*) HT,TRIMD

READ (15,*) NGAM,NSEC

READ (15,*) ZC1,MM,DZMIN1,DELZ1,DZMIN2,DELZ2,KIT,NELE
READ (15,%) YKO,YKOP,YKOPP,YK1,YK1P,XMAX XLA XLC
READ (15,*) BETAO,BETAOP,BETALBETA1P,XLAB

READ (15,*) BET11,BET12,BET21,BET22

READ (15,*) ZK0,ZKOP,ZK 1,ZK 1P

READ (15,*) ZCI0,ZCIOP,ZCIM,ZCl1,ZCI1P,XLAC,XLCC
CLOSE(15)
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K.3 Input File: CATS2.IN

The CATS2.IN fileisthe local geometry data file for the second hull segment (the

hull segment after first step).

COBRA evauations - 2 STEPs (segment 2)
.1609 1.088

11

1.00150.005.04.02.0221
.03-.050.0.0.2.29.790.

17.0.17.0.0.

17.17.17. 17.

1.0.1. 0.

150.15150.0.0.

K.4 Input File: CATS3.IN

The CATS2.IN file is the loca geometry data file for the third hull segment (the

hull segment after the transverse second step).

COBRA evauations - 2 STEPs (Segment 3)
.20431.088

11

1.00250.01.04.02.0221
.03-.050.0.0.2.29.790.

17.0.17.0.0.

17.17.17. 17.

1.0.1. 0.

150.15150.0.0.



402

APPENDIX L

ELLIPTIC INTEGRALS

The following sections of this appendix are from Abramowitz and Stegun (1964)
(Handbook of Mathematical Functions, National Bureau of Standards, U. S. Government
Printing Office, Washington, D. C.). The material has been included here in the interest

of independence of the presentation.

Defining m=sin’a , where m isthe parameter, a is the modular angle, and,

1
X=sing =snu, cos¢ =cnu, the deltaamplitude: (1-msin®@)2 =dnu=A(g),

the amplitude: ¢ =arcsin(x) = arcsin(snu) =amu.

» Elliptical Integral of the First Kind

F(p\a)=F(p|m) = J(e(l—sinzasinzﬁ)_;dﬁ
:f[(l—tZ)(l—thM’Zdt (L.2)

:wazu
0

» Elliptical Integral of the Second Kind
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9 1
E(p\a) = E(u|m)—j(1—gn2agn29)2d9

) . (L.2)
j(l t?) (1 mt2) 2t
» Elliptical Integral of the Third Kind
M(ne\a) = J(/:(l—nsinz8)‘1[1—sinzasin29]_2d9 (L.3)
If x=sn(u|m),
M(nu|m) = f(l— nt?) *[(L-t?)(L- mt?)] 2dt (L.4)

Referred to above canonical forms of the elliptic integrals, they are said to be
complete when the amplitude ¢1=g and so that x=1. These complete integrals are

designated as follows,

» CompleteElliptical Integral of theFirst Kind

Usually K and F are used to express the complete eliptic integral of the first

kind.

/2

K =[K(m)] = j[(l t2)(1-mt?)] V2dt = j(l msin? 8) ¥2dg
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K = F(%m m) = F(%n\a) (L.5)

/2
K'=[K(m)]=K(@-m)= j(1—mlsin29)-]/2d9
=L et
K—F(2ﬂ|ml) F(27T\27T a)
m, =sin®(90° —a) = cos® a (L.6)

» CompleteElliptical Integral of the Second Kind

E isused to express the complete elliptic integral of the second kind.

1 2
E = E[K(m)] = j(1—t2)-1/2 (1-mt2)¥2dt = j(l— msin? 8)¥2dg

E = E[K(m)] = E(m) = E(%n\a) (L.7)
72

E'=E(m)=E@1-m)= j(l—mlsinzé?)‘]/zde

E'= E[K(m,)] = E(m,) = E(%n\%n—a)

» CompleteElliptical Integral of the Third Kind

M(n\a) isused to express the complete eliptic integral of the third kind.



I'I(n;%n\a) -N(n\a)

405

(L.8)

The following sections list the frequently referred cases for the complete integrals of the

third kind.

» Casesof the Complete Elliptic Integrals of the Third Kind

Case(i): HyperbolicCase O<n<sin’a

Define:

1
£ =arcsin(n/sin® a)?2

o
IN
[\
IN

N~
N|

o, =[nl-n)*(sina —n)™]*?

Z(g\a)=E(¢\a)-(E/K)F(¢\a)

In this case, the elliptic integral of the third kind is,

M(n\a) = K(a) + 5K (a)Z(e\ a)

Case (i ): HyperbolicCase n>1

(L.9)

(L.10)

(L.11)

(L.12)

The n>1 case can be reduced to the case 0< N <sin’a by defining,



L (L.13)

n
In this case, the eliptic integral of thethird kind is,
M(n\a)=K(a)-N(N\a) (L.14)
Case (iii ): Circular Case sin®a <n<1

Define:

= 1
£ =arcsin[(1-n)/cos’ a]? OSé‘SEﬂ (L.15)
d, =[nl-n)*(n-sin®a)™]"? (L.16)
0 _
Aop\a) = TO\0—a) , 24 () 7(p\90° - a)
K@ 7« (L.17)
= 21K (@)E(@\ 90° - @) ~[K (@) - E(@)]F (¢\ 90° - @)
T

In this case, the eliptic integral of thethird kind is,
M(n\a) = K(a)+%ﬂé;[1—/\0(£\a)] (L.18)

Case(iv): Circular Case n<0

406
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The n <0 case can be reduced to the case sin a < n <1 by writing,

N=(sn*a-n)1-n)" (L.19)

In this case, the transform of the elliptic integral of the third kind is,
N(n\a) =(-ncos’ a)(d-n)(sin*a-n)"M(N\a)+sin*a(sina -n) 'K (a) (L.20)

The above sections have listed the most useful elliptic integrals in the numerical
computation for the 1% order model. In the numerica model, the third kind dliptic
integrals, at most time, can not be calculated directly. In this case, it is very useful to use

the above integral formulae based on the value domain of the integral parameters.
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