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Performance of sinusoidally deformed hydrophone line arrays
Deanna M. Caveny,a) Donald R. Del Balzo, and James H. Leclere
Naval Research Laboratory, Stennis Space Center, Mississippi 39529

George E. Ioup
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

~Received 31 January 1997; revised 2 April 1998; accepted 14 December 1998!

It is well known that array deformations can distort beam patterns and introduce bearing errors if the
beamformer assumes linearity. It is also known that deformed arrays can resolve left–right
ambiguities, provided the shape is known. In this work, these two effects are studied for undamped
and damped sinusoidally deformed arrays with small deformation amplitudes in the horizontal (x,y)
plane only. By use of fixed arc-length separations along the array, the hydrophone (x,y) coordinates
are determined numerically and the error in assuming equalx spacing is summarized for a sample
array. Array-response patterns are analyzed for two conditions:~1! when the deformed array shape
is assumed linear and~2! when the deformed array shape is known exactly. Degradations resulting
from assuming linearity and the ability to resolve left–right ambiguities are discussed in terms of
reduced gain, degraded angular resolution, and bearing errors. Shape-unknown signal-gain
degradation ranges to 7 dB at broadside, but is less than 1 dB near endfire. For the shape-known
case, signal gain for the true peak is greater than signal gain for the ambiguous peak by up to 9 dB
for sources at broadside and to just over 2.5 dB for arrivals near endfire. ©1999 Acoustical
Society of America.@S0001-4966~99!06103-2#

PACS numbers: 43.30.Wi, 43.30.Bp@SAC-B#

INTRODUCTION

Hinich and Rule,1 Hodgkiss,2 Bouvet,3 Ginzkey,4 and
Butler5 have shown that deformations from a straight-line
shape in the horizontal plane of towed arrays can produce
significant distortions in array-response patterns and errors in
bearing estimation if the beamformer assumes linearity. Hin-
ich and Rule1 use approximate undamped and damped sinu-
soidal shapes and report the case of 31

2 half-cycles of the
sinusoid. For the damped case, deformation increases with
distance from the towing platform. Hodgkiss2 employs a
single circular arc shape and discusses errors in passive rang-
ing and bearing estimation. Bouvet3 develops a model for
large random array variations using fixed sensor separations
~nonelastic array! with application to a circular arc. Bouvet3

also gives a helpful brief review of related literature.
Ginzkey4 studies the effects of small two-dimensional ran-
dom position errors. Butler5 uses a sinusoidal deformation
model which assumes equalx spacing of the hydrophones.

More recent work has discussed nonacoustic and acous-
tic methods to estimate array shapes, without emphasis on
performance implications. One nonacoustic method involves
direct hydrodynamic modeling based on single-point mea-
surements either on the tow ship or on the cable itself with
motion propagated along the array.6–9 Another is based on
distributed measurements from nonacoustic sensors along
the array~e.g., depth gauges and compasses!.10,11 Generally,
these techniques rely on solving the Paidoussis equation
and/or interpolating between known points with polynomials
or splines. The acoustic approaches involve a variety of

signal-processing techniques using acoustic signals received
at the hydrophones in two general categories—~a! from near-
field controlled sources, and~b! from far-field noncontrolled
sources of opportunity. The first approach usually involves
arrival-time measurements from explosive sources12,13 and
the second often exploits relative phase information by
working in the frequency domain.14–16

The issue of practical determination of array shapes is
addressed well by the references above and others, and is not
discussed further. The work reported here examines the im-
pact~either good or bad! of array deformations~both known
and unknown! in terms of beamformer performance and
left–right ambiguity resolution.

This work examines the performance of towed arrays
with small, horizontal deformations, primarily caused by un-
planned variations in the tow-ship trajectory. The array-
shape model is also capable of treating larger deformations,
which could result from planned tow-ship maneuvers. The
physical basis for the shape model derives from a harmoni-
cally driven damped oscillator, with small steering correc-
tions of the towing platform providing the driving force. The
attachment~or tow! point between the steel tow cable and
the neutrally buoyant horizontal array is the origin for this
model, and it is approximated to be a fixed node. A short
vibration isolation module~VIM ! is inserted between the tow
point and the hydrophone array. The model produces an ar-
ray shape based on the number of cycles~whole or frac-
tional!, the amplitude, and a damping factor. A drogue is
assumed to be attached to the aft end of the array; thus, the
damping in this model decreases the deformation as one
moves away from the tow point, in contrast to the model of
Hinich and Rule.1

This study is based on acoustic field modeling and
a!Present address: Department of Mathematics, College of Charleston,
Charleston, SC 29424.
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beamforming using computer software17 that generates
cross-spectral matrices for arbitrary hydrophone locations in
specified noise fields. The results presented here use conven-
tional beamforming with infinitely high signal-to-noise ratio
on horizontal arrays with sinusoidal deformations. The fixed
arc-length method of defining array shapes is described,
along with a comparison of beamformer performance be-
tween known and unknown shapes. Finally, a discussion of
the impact of array deformation on gain and bearing ambi-
guity resolution is given.

I. DETERMINATION OF HYDROPHONE X – Y
LOCATIONS

To approximate a sinusoidal shape, Hinich and Rule1

use straight-line segments between hydrophones. To calcu-
late the locations of hydrophones for the sinusoidal models
without approximation, however, it is necessary to fix the
hydrophone spacing along the array curve and determine the
x andy ~horizontal plane! coordinates. This models an elastic
array with varying sensor separations, overcoming the limi-
tation discussed by Bouvet.3 The vertical variablez is as-
sumed constant for this study. The method for determining
the coordinates involves the numerical evaluation of the arc-
length integral. In the limit of small sinusoidal amplitudes,
the hydrophones can be assumed to have equally spacedx
locations, greatly simplifying the calculation. For the present
work, only the arc-length integral method is used, and nei-
ther the assumption of equally spacedx locations5 nor the
assumption of straight-line segments between hydrophones1

is employed.
The natural dimensions for scaling position variables

and other length measures for deformed, equally spaced hy-
drophone arrays are the array element spacing,d, and the
design wavelength,l, which is assumed to be 2d. The array
is simulated to contain a forward VIM with arc-length of 6d,
followed by 128 hydrophones, and terminated by a drogue
for stability. The first hydrophone is at an arc-length ofd/2
from the point where the VIM connects to the hydrophone
array. Each succeeding sensor is separated by an arc-lengthd
along the curve from the previous one.

The problem is stated as follows. Assume that the towed
array takes the shape of an undamped or damped sinusoid.
Given a specific number of cycles, the undamped amplitude,
and the amount of damping, determine the (x,y) coordinate
location of each hydrophone. An equation for the array shape
can be written as

y~x!5Ae2ax sin~px/w!, ~1!

where the undamped amplitude,A, and the amount of damp-
ing, a, are specified. The third parameter,w, although fixed
by the number of cycles, is not known initially. It is to be
determined before the coordinates are calculated.

Consider an undamped sine curve ofp cycles. LetL
denote the total array length, which is (N15.5) d if there are
N hydrophones and the VIM is 6d in length. Then, the arc-
length between two adjacent nodes for an undamped array is
L/2p. The arc-length integral is given by

I U~A,L !5E
0

u

@11A2q2 cos2 qx#1/2dx, ~2!

whereq5p/w and u and w are to be determined. Various
approaches may be used; for example, one could choose
u5L/2p and w5u and use numerical integration to refine
these values until a specified tolerance between the calcu-
lated and known arc-lengths is reached.

In the damped case, the equal spacing of the zero-
crossings~or nodes! is preserved, but the array length be-
tween any two adjacent nodes is no longer a constant. The
arc-length integral is given by

I D~A,L,a!5E
0

u

@11A2e22ax~a sinqx2q cosqx!2#1/2dx.

~3!

In this case, the upper limit of the arc-length integral~i.e., the
unknown valueu! is chosen to be thex-coordinate of the last
hydrophone. Then, the known arc-length is the total array
length. Initially, u is taken to beL, andw5u/2p. The arc-
length expression~3! can be evaluated andu adjusted, with
w5u/2p, until the integral is close enough toL.

Thex-coordinate of each hydrophone is found in a simi-
lar fashion, except thatw is now determined andu gives the
hydrophonex-coordinate. The integration arc-length is ini-
tially from the tow point to the first hydrophone, or generally
from the last known hydrophone location to the adjacent
unknown location. The correspondingy-coordinates are eas-
ily calculated from Eq.~1!.

If instead one assumes that thex-coordinates are equally
spaced with spacingd, the numerical integration could be
avoided. For sine curves with small amplitudes, this assump-
tion introduces only small errors. But the magnitude of the
error grows with increasing hydrophone number and increas-
ing array-deformation amplitudes. The assumption of this
equal spacing always shifts thex-coordinates in a positive
direction, making the array appear longer than it actually is,
and the accumulated error increases more rapidly when the
tangent line to the sine curve is steeper. Figure 1 illustrates
the absolute value of the error in thex-coordinate of each
hydrophone as a function of hydrophone number for arrays
with 1/2-cycle distortion of various deformation amplitudes.
The cumulative effect of the equal spacing assumption is
evident, especially for the larger array amplitudes. The de-

FIG. 1. The absolute error in thex-coordinate vs hydrophone number of a
128-element array resulting from the assumption of equal spacingd along
thex axis. The array shape is an undamped 1/2-cycle sine, with deformation
amplitudes from 0.5d to 4.0d.
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viations of the truex positions from equalx spacing do not
become larger than 0.1d ~l/20! until the deformation of the
array is greater than 2d for a 1/2-cycle sine array of 128
hydrophones.

II. EXAMPLES OF DEFORMED ARRAY
BEAMFORMING

Hodgkiss2 investigates plane-wave beamforming for
various source locations and circular arc array shapes. His
results are given as array-response plots when beamforming
with both the actual circular arc hydrophone locations and
assumed linear locations. He does not consider left–right
ambiguity resolution and his array-response patterns go over
only 180 deg. Similar studies are conducted here for arrays
having undamped and damped sinusoidal geometries, with
the addition of an examination of left–right ambiguity reso-
lution and the calculation of performance curves.

Six array geometries are considered in this study:~a! a
linear array for reference;~b! an undamped 1/2-cycle defor-
mation with amplitude of 2.13 hydrophone spacings;~c! an
undamped full-cycle deformation with amplitude of 1.47 hy-
drophone spacings;~d! an undamped 1 1/2-cycle deforma-
tion with amplitude of 0.87 hydrophone spacings;~e! a
damped 1/2-cycle deformation with maximum amplitude of
1.55 hydrophone spacings~A52.13d and a50.0069!; and
~f! a more highly damped 1/2-cycle deformation with maxi-
mum amplitude of 0.95 hydrophone spacings~A52.13d and
a50.020!. These amplitude and damping factor values were
chosen to produce a value for the undamped cases of 0.3 in
the array shape statistic,s/l, with s the rms shape distortion
as measured from a best-fitting straight line, and values of
0.2 and 0.1, respectively, for the damped cases. The cases are
summarized in Table I.

The source azimuths considered in this section are 90
~broadside!, 45, and 10 deg from endfire, all at the design
frequency and all in the horizontal plane. Calculations for
out-of-plane arrivals~10 deg from the horizontal! were made
and shown to be consistent with the in-plane results~to
within 0.003 dB! and therefore are excluded from the study.
Figure 2 illustrates the beamformed array-response patterns
~with equal weighting on each hydrophone and no back-
ground noise! for a linear array over the full 360 deg azi-
muthal sector. The upper plot shows the 90 deg~broadside!
source azimuth result. The middle and lower plots show the
45 and 10 deg source results, respectively. Note the standard
results of beam broadening away from broadside and the
occurrence of grating lobes as the signal approaches endfire.
Figures 3–5 contain array-response patterns for sinusoidally
deformed arrays assuming that beamforming is implemented

with both ~1! the incorrect assumption that the array geom-
etry is linear, and~2! the actual hydrophone locations known.
The responses shown in Fig. 2 are included so that the de-
formed array responses can be compared. Beam powers for
all figures are referenced to 0 dB for the linear array-
response maximum at a given source direction. None of the
responses below230 dB is plotted.

Figure 3 shows the response of the undamped 1/2-cycle
sine array withs/l50.3 to sources at 90 deg in~a! and ~b!,
45 deg in~c! and~d!, and 10 deg in~e! and~f!. In Fig. 3~a!,
~c!, and~e!, the array shape is assumed known and the actual
element locations are used in the beamforming. Since the
distorted array has almost the same total aperture as the lin-
ear array, the forward~true! peak is almost identical to that
for the linear response. The ambiguous~false! peak, how-
ever, does not have the same phase delays for the deformed
array as the forward peak does, so it is significantly changed.
It has less signal gain, is broader, and is broken up into
several local maxima for the sources at 90 and 45 deg. While
the ambiguous peak at210 deg~corresponding to a source
at 10 deg! is somewhat reduced and broadened, it is not
broken up in the same way as the others. This is due to two
factors:~a! the array has less resolution~wider beams! near
endfire than at broadside, and~b! a plane wave arriving in a
direction close to endfire sees a smaller array deformation
than one arriving at broadside. If, as is generally the case, the

TABLE I. Array geometries.

Cases s/l A a Shape

a 0.0 0.0 0 Linear
b 0.3 2.13 0 Half cycle
c 0.3 1.47 0 Full cycle
d 0.3 0.87 0 1 1/2 cycle
e 0.2 2.13 0.0069 Half cycle
f 0.1 2.13 0.0200 Half cycle

FIG. 2. Linear array responses for sources at~a! 90 deg,~b! 45 deg, and~c!
10 deg from endfire.

FIG. 3. Undamped 1/2-cycle deformed-array response. Amplitude of defor-
mation is 2.13d ands/l is 0.3. Source is at 90 deg for~a! and~b!, at 45 deg
for ~c! and ~d!, and at 10 deg for~e! and ~f!.

2205 2205J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999 Caveny et al.: Sinusoidally deformed line arrays

Downloaded 21 Apr 2011 to 137.30.164.175. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



array shape is unknown and beamforming is done assuming
the shape to be linear, the responses of Fig. 3~b!, ~d!, and~f!
result. The signal gain is reduced, especially at 90 and 45
deg, where the response peaks are also split. At 10 deg, the
reduction in gain is small and the main peak shape is close to
that of the linear response, again because the deformation
looks smaller and the beams are wider near endfire.

For the remaining array shapes, only the array response
to a broadside arrival is shown. The second and third un-
damped examples are in Fig. 4, while the damped cases are
illustrated in Fig. 5. For the undamped arrays,s/l50.3, the
same value as the 1/2-cycle undamped array of Fig. 3. The
general behavior of the responses of the full-cycle array, Fig.
4~a! and ~b!, and the 1 1/2-cycle array, Fig. 4~c! and ~d!, is
similar to that of the broadside responses of the 1/2-cycle
array. The ambiguous peak in the shape-known responses
and both the true and ambiguous peaks in the shape-
unknown responses exhibit fine structure. This is because the
deformed-array shapes themselves have structure. In effect,
the deformed array is composed of several nearly straight
subsections, each of which has its own natural direction.
Thus, the incident plane wave is resolved into multiple di-
rections.

Since the damped arrays of Fig. 5~both 1/2 cycle! have
smaller values ofs/l ~0.2 and 0.1! than the undamped cases,
the shape-unknown responses are closer to the linear array

response at broadside than the undamped responses of Figs.
3 and 4. Thus, for the unknown-shape case, the drogue seems
beneficial to performance because it increases damping,
which in turn decreases physical deformations, leading to
reduced beamformer phase-delay errors when linearity is as-
sumed. This produces greater signal power through the
beamformer.

The irregular nature of the broken peaks in Figs. 3
through 5 leads to instabilities in such performance measures
as peak height, bearing, and beamwidth because of the diffi-
culty in defining these quantities. The splitting of the true
peak when the beamforming is done assuming a linear array
leads to bearing errors resulting from choosing the largest
subpeak. This suggests that for arrays which have a large
enough aperture and enough deformation to produce this
splitting, it may be better to fit a smooth analytic shape in
order to estimate signal gain, source direction, and beam-
width.

Note that the shape-unknown responses are all symmet-
ric about 0 deg in Figs. 3–5. This is because differences in
the field as sensed by a distorted array correspond to phase
shifts ~from the phases of a linear array! that are equal and
opposite to the phase errors in the steering vectors that result
from assuming that the distorted array is straight. To under-
stand this result, consider the phases at the hydrophones for
arrival directions of plus and minusu. For the deformed
arrays, arrivals from1u will have, at each hydrophone, a
shifted phaseD1 from the phase value at a straight line
array, and arrivals from2u will have a different shifted
phaseD2 . These phase shifts will be incorporated into the
cross-spectral matrix for both shape-known and shape-
unknown beamforming. For shape-unknown beamforming,
the steering vectors correspond to a linear array. Thus, the
phase errors in these steering vectors are opposite to the
phase differences in the cross-spectral matrix mentioned
above, and therefore the plus and minus arrival directions
have the same~incorrect! array response.

III. PERFORMANCE DEGRADATION FOR DEFORMED
ARRAYS

Hodgkiss2 quantifies degradations in the beamforming
process, with the incorrect assumption of linearity, for
known circular arc shapes as a function of the amount of
bow. This section contains a systematic study of perfor-
mance degradation for sinusoidally deformed arrays when
the shape is unknown, in terms of three measures:~1! signal
gain, ~2! beamwidth broadening, and~3! bearing shifts. The
signal-to-noise ratio is infinite and the signal degradation is
considered fors/l in the range of 0.0 to 0.3.

Figure 6 addresses the first issue, signal gain, by show-
ing the power loss in the true peaks in the shape-unknown
case, relative to the linear-array peak power, plotted versus
s/l, for various array damped and undamped shapes~half
cycles, full cycles, 1 1/2 cycles! and for various source azi-
muths. The azimuths selected are 10, 30, 45, 60, and 90 deg
for the 1/2-cycle cases, and 10 and 90 deg for the others. For
the damped array,s/l may be varied by changing either the
amplitude~controlled primarily by tow-ship trajectory varia-

FIG. 4. Undamped full-cycle,~a! and ~b!, and 1 1/2-cycle,~c! and ~d!,
deformed-array responses for a source at 90 deg. Deformation amplitude for
full cycle is 1.47d, and for 1 1/2 cycles is 0.87d. s/l for both cases is 0.3.

FIG. 5. Damped 1/2-cycle deformed-array response for a source at 90 deg.
~a! and ~b! are for a shape determined byA52.13d, a50.0069, ands/l
50.2, while ~c! and ~d! are for an array withA52.13d, a50.020, and
s/l50.1.
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tions! or the damping factor~controlled primarily by the
drogue characteristics!. This performance evaluation is con-
ducted by varying the damping factor.

For all cases, the degradation is greatest for broadside
arrivals ~6–7 dB whens/l50.3!, decreasing, in general, as
the source arrival angle approaches endfire~about 0.5 dB
whens/l50.3 for the 10 deg source!. The small exceptions,
as before, are due to the irregular qualities of the degraded
peaks. As expected, the degradation becomes worse with in-
creasing array deformations~i.e., greaters/l! for all shapes.
For a given source direction, the degradations are similar for
all combinations considered, except for the results corre-
sponding to the 90 and 60 deg source directions. For these
arrival angles, among the cases examined, only the 1/2-cycle
undamped and the full-cycle performance for sources at
broadside track fairly closely. The performance ats/l50.3,
however, is identical for all arrival angles for the damped
and undamped 1/2-cycle cases because the two array shapes
are identical since the damped array hass/l50.3 when the
damping is exactly zero.

One practical application of performance summaries,
such as those shown in Fig. 6, is to determine, as a function
of s/l, if the array-element locations need be known or if the
beamforming process can assume a linear array. As an ex-
ample, given a full-cycle, damped or undamped, deformed
array and broadside arrivals, if no more than a 5-dB loss in
signal gain is acceptable, then array-element locations are
needed whens/l.0.2. If no more than a 3-dB loss is toler-
able, then the approximate upper limit for assuming linearity
is s/l50.13. These findings are consistent with the general
loss in signal gain for Gaussian errors in element locations
given by Steinberg18 in his Fig. 6 and the accompanying
discussion. Note that theses/l limits are a function of array
shape, and that for broadside arrivals they are higher for 1
1/2-cycle arrays and lower for damped and undamped 1/2-
cycle arrays.

Second, distorted arrays can produce beam broadening.
One can consider the true-peak beamwidth for shape-
unknown beamforming as a measure of performance degra-
dation by comparing it to the beamwidth for the true peak in
the corresponding linear-array response. Although not quan-
tified here, significant true-peak broadening can be observed

in the shape-unknown response patterns of Figs. 3 through 5.
Performance curves for true-peak broadening as a result of
assuming linearity serve as a measure, which, along with the
loss in array-signal gain, can be used to determine the largest
acceptable value ofs/l for shape-unknown beamforming.

Third, distorted arrays can produce bearing errors. For
small values ofs/l, incorrectly assuming a linear array may
result in only small losses in signal gain and beam resolution.
In these instances, one may choose to accept this degrada-
tion. As Hinich and Rule1 and Hodgkiss2 point out, however,
there can still be a bearing error of 1 to 2 deg. This bearing
error arises from the splitting of the true peak into two or
more subpeaks, the largest of which is not centered with
respect to the peak spread. For the deformed-array responses
shown in this paper, only damped 1/2-cycle responses are
included for deformations withs/l less than 0.3. In Fig.
5~b!, s/l50.1 and the peak is already asymmetrical, al-
though not highly broken. Fors/l50.2, the response shown
in Fig. 5~d! is split into two parts with a minimum between
them at the correct source bearing. The broadsides/l50.3
peaks, shown for various array shapes in Figs. 3~b! and 4~b!
and~d!, exhibit behavior ranging from a simple splitting into
two parts to a highly broken and irregular shape. Thus, it is
understandable that even relatively small array deformations
lead to bearing errors as large as approximately half the true-
peak beamwidth in shape-unknown beamforming. Hinich19

and Bouvet3 ~and references cited therein! discuss techniques
for estimating the correct bearing.

IV. LEFT–RIGHT AMBIGUITY RESOLUTION FOR
DEFORMED ARRAYS WITH KNOWN SHAPE

The standard technique to resolve left–right ambiguities
on nominally straight towed arrays is first to record the two
possible true bearings toward a source, second to make a
course change, and third to note the new possible true bear-
ings. A consistency check will give the correct bearing. Un-
fortunately, during a course change, uncorrected array defor-
mations can be so severe that loss in beamformer signal gain
can cause a loss in source detection~against noise!. After the
turn is completed and the tow-ship trajectory has stabilized,
there is still a residual time required for the array to
straighten and stabilize. For some applications, these time
delays are unsatisfactory. A process which could allow con-
tinuous monitoring of the true source bearing without loss in
detection time is desirable.

Both Hinich and Rule,1 and Hodgkiss2 discuss advan-
tages of a deformed array over a linear array to discriminate
true from ambiguous peaks. This section examines two ap-
proaches for continuous left–right ambiguity resolution for
sinusoidally deformed arrays when the shape is known. The
first involves the power difference, and the second involves
the beam width ratio between the true and ambiguous peaks.
All of the results are discussed in terms of the amount of
array distortion, as defined by thes/l measure, with infinite
signal-to-noise ratio. Figure 7 illustrates the power loss in the
‘‘false,’’ or ambiguous, peak. This loss is plotted vss/l for
various array damped and undamped shapes~half cycles, full
cycles, 1 1/2 cycles! and for various source azimuths. The

FIG. 6. Performance curves of peak-height degradation for deformed arrays
assumed to be linear. Loss in array-signal gain of deformed arrays is given
as the power loss in the source peaks, in dB, relative to the corresponding
peaks for a linear array, versuss/l for sources at 10~h!, 30 ~s!, 45 ~n!, 60
~1!, and 90 deg~3!.
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azimuths selected are 10, 30, 45, 60, and 90 deg for the
1/2-cycle cases and 10 and 90 deg for the others.

In Fig. 7~a!, the 1/2-cycle damped array performance is
given for left–right ambiguity resolution in terms of true
peak minus ambiguous peak power difference in dB versus
s/l. In general, for this and all cases in Fig. 7, the ability to
discriminate an ambiguous peak from a true peak by power
difference is greatest for sources at broadside, and decreases
to be least for sources close to endfire. This trend is expected
because the left–right phase difference is smaller at endfire.
Deviations from this observation are slight in Fig. 7, and
occur because of the instabilities in the broken ambiguous
peak maxima discussed earlier.

The first observation from Fig. 7 is based on a compari-
son of 7~a! and~b! where the array is distorted into the same
general shape~i.e., 1/2 cycle! but with and without damping.
For a givens/l, the undamped array almost always has
greater power differences, and is therefore a better left–right
source discriminator, for source azimuths away from endfire.
Thus, damping is generally deleterious to performance when
attempting to resolve left–right ambiguities by true peak–
ambiguous peak power differences. This is in contrast to the
previous conclusion that damping is beneficial when consid-
ering beam power~signal gain! on a distorted array assumed
linear. There is a tradeoff between the two countering effects
which can be evaluated for a given scenario.

In Fig. 7~b!, ~c!, and~d!, the left–right ambiguity reso-
lution performance for the undamped 1/2-cycle, full cycle,
and 1 1/2-cycle arrays can be compared. At broadside, for a
givens/l, the undamped half and full cycle arrays are better
~i.e., have greater power difference! at resolving left–right
ambiguity than a 1 1/2-cycle array. An examination of Figs.
3~a! and 4~a! and~c!, however, shows that fors/l50.3, this
advantage in ambiguity resolution is due mainly to two thin
spikes in a highly broken 1 1/2-cycle ambiguous peak. If an
average or curve-fit peak is used instead of the tallest sub-
peak to measure ambiguity resolution, this distinction in the
difference performance measure is not expected to be as
large.

The other approach for left–right ambiguity resolution
concerns beam broadening. Beamforming with the known
hydrophone locations gives true peaks which correspond

closely, in terms of 3-dB beamwidth, to the true peaks which
a linear array would produce for the small deformations con-
sidered here. For the ambiguous peaks, on the other hand, the
broadening is large and the ratio of the 3-dB beamwidth of
the ambiguous peak to that of the true peak may be taken as
another measure of left–right ambiguity resolution. In Fig. 8,
this ratio is given, as a function ofs/l, for all three un-
damped cases with broadside arrivals and for the undamped
1/2-cycle case with a 10 deg arrival. For broadside incidence,
the ratio of the beamwidths for the ambiguous peak to the
true peak increases rapidly with increasings/l to a value of
30 to 35 ats/l50.3 for all three shapes. It is possible that, at
small deformations, this ratio may be a better discriminator
for left–right ambiguity resolution than the difference in sig-
nal gain for sources at broadside in some applications. For
the 1/2-cycle deformation and a source at 10 deg, however,
the beamwidth ratio is almost constant at 1, versuss/l, and
so would not serve as a useful discriminant. The 3-dB beam-
widths of the broken ambiguous peaks have been determined
as accurately as possible without recourse to curve fitting and
may be subject to small errors.

It should be noted that the shape-unknown beamwidths
in the previous section are smaller for all these examples
than the beamwidths of the ambiguous peaks in the associ-
ated shape-known responses. Therefore, in this limited range
of calculations for shape-known beamforming, the ratios
shown in Fig. 8 are larger than would be found for shape-
unknown beamforming. This result is not surprising, since
the phase errors for the ambiguous peaks for shape-known
beamforming are, in a sense, twice those of shape-unknown
beamforming.

V. CONCLUSIONS

This paper reports results of array performance as af-
fected by known and unknown distortions in array shape.
Using a simple but accurate model of hydrophone positions,
which produces an array with equal arc-lengths between el-
ements, various array configurations were constructed. These
included undamped and damped 1/2-cycle sinusoidal con-
figurations and also undamped full-cycle and 1 1/2-cycle
configurations.

FIG. 7. Performance curves for peak-height difference in left–right ambi-
guity resolution of deformed arrays with known element locations. Amount
by which left ~ambiguous! peak is down from right~true! peak is given in
dB versuss/l for sources at 10~h!, 30 ~s!, 45 ~n!, 60 ~1!, and 90 deg
~3!.

FIG. 8. Left–right ambiguity beamwidth resolution. The beamwidth ratio,
defined as the false-peak 3-dB width over the true-peak 3-dB width, for
deformed arrays beamformed with array-element locations known, versus
s/l. Results are given for a 1/2-cycle array~h!, a full-cycle array~n!, and
a 1 1/2-cycle array~3! for a broadside source and also for a 1/2-cycle array
~s! with a source at 10 deg.
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In shape-known beamforming, the ability to discriminate
true peaks from ambiguous peaks increases as array defor-
mation increases. Differences in array-signal gain for these
two peaks range up to 9 dB fors/l50.3 when the source is
at broadside. For arrivals near endfire, however, the largest
difference is only about 2.5 dB. In shape-unknown beam-
forming, the degradation in array-signal gain ranges up to 7
dB at broadside, but remains less than 1 dB near endfire. The
results can be used to determine if shape estimation is re-
quired.

Beamwidths of the ambiguous peaks were compared to
beamwidths of the true peaks in shape-known beamforming.
The ratio of these beamwidths increases rapidly withs/l,
reaching a value of 30–35 ats/l50.3 for the full-cycle array
with the source at broadside. The true-peak broadening for
shape-unknown beamforming is also significant, but less
than that of the ambiguous peak. Near endfire, the broaden-
ing is negligible for both types of beamforming for the do-
main of s/l considered.

Straightforward measures of array signal-gain degrada-
tion and beamwidths are difficult to apply due to the broken
nature of the peaks with the resolution capability of 128
hydrophones~64-l array!. This problem also leads to errors
in bearing estimation.

Regarding the question of the utility of drogues to sta-
bilize towed arrays, there is an apparent dichotomy. Drogues
reduce array horizontal deformations, and this improves sig-
nal gain for the shape-unknown case with linearity assumed.
However, array straightening hinders left–right signal dis-
crimination. Thus, use of drogues may depend on the specific
objectives and scenarios.
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