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Abstract

We examine the expectational stability (E-stability) of rational expectations equilibrium
under optimal interest rate rules in the context of the standard, “New Keynesian” model of
the monetary transmission mechanism. We focus on the case where the monetary authority
adds interest rate stabilization to its other objectives of inflation and output stabilization. We
consider both the case where the monetary authority lacks a commitment technology and as
well as the case of full commitment. We show that for both cases, optimal interest rate rules
yield rational expectations equilibria that are E-stable for a wide range of empirically plausible
parameter values. This finding stands in contrast to the findings of Evans and Honkapohja (2002,
2003ab) for optimal monetary policy rules in environments where interest rate stabilization is
not part of the central bank’s objective function.



1 Introduction

Evans and Honkapohja (2002, 2003ab) examine the stability, under adaptive learning dynamics, of
rational expectations equilibrium (REE) in the standard New Keynesian model of the monetary
transmission mechanism! when the policy rule of the central bank is optimally derived. They con-
sider the case where the central bank minimizes a quadratic loss function that penalizes deviations
of inflation and output from certain exogenous target values. The result of this minimization prob-
lem is an optimal interest rate rule which interacts with the equations characterizing the behavior
of the private sector.

Evans and Honkapohja report that, regardless of whether the central bank operates under
commitment or discretion, the REE of the system is always expectationally unstable when the policy
rule is derived under the incorrect assumption that the private sector has rational expectations —
Evans and Honkapohja call this policy rule the “fundamentals—based” policy rule. While the private
sector is assumed to use the correct reduced form model to form expectations, and it upates the
parameters of this model in real time using all relevant data, the central bank’s fundamentals—based
interest rate policy causes this adaptive learning process to diverge away from the REE, and for
this reason, the fundamentals—based policy rule is considered undesireable.? This instability result
suggests that the central bank might do well to assume that the private sector does not (initially)
posses rational expectations. Indeed, Evans and Honkapohja show that if the central bank does
not assume rational expctations on the part of the private sector, the resulting, optimally derived,
“expectations—based” interest rate rule, which conditions on the private sector’s expectations of
inflation and output, results in a REE that is always expectationally stable.

Conditioning policy on private sector expectations presents some difficulties that may not be so
easily overcome. First, the private sector’s expectations may not be observable, or might be quite
heterogeneous, so that figuring out which expectations to use becomes a complicated task. Second,
as Honkapohja and Mitra (2003) point out, if it the central bank was known to be conditioning policy
on private sector expectations, the private sector might begin to form its expectations strategically
in an effort to steer policy in a direction it found more favorable. Third, conditioning on private
sector expectations can increase the likelihood that the REE becomes indetermiante, as shown by
Bernanke and Woodford (1997). Indeterminacy implies multiple solution paths preventing the use

of standard, comparative static exercises and it also allows for the possibility that non-fundamental

!See Clarida et al. (1999) for a presentation of this model.
2See Evans and Honkapohja (2001) for a complete treatment of the notion of expectational (in)stability.



sunspot shocks provide and additional source of volatiliy.?

In this paper, we consider an alternative approach in which the central bank does not need to
condition on private sector expectations. Instead, the central bank continues to presume rational
expectations on the part of the private sector, but the central bank expands its loss function to
include interest rate stabilization as a third objective, in addition to the traditional twin objectives
of inflation and output stabilization. As Woodford (2003) notes, the optimal monetary policy rules
derived under this alternative, three-element objective function share many similarities with Taylor-
type instrument rules. Specifically, these optimally derived policy rules posit that the nominal
interest rate is a function of the inflation and output gaps, and these rules obey Taylor’s principle.
This same finding is not true of optimal interest rate rules derived under the more typical (but
less general) two—element objective function that ignores interest rate stabilization. As Taylor-type
instrument rules appear to have considerable empirical validity over time and across countries, (see,
e.g. Taylor (1999)), this external validation carries over to the optimal interest rate rules that we
consider in this paper.

We show that when the central bank adopts interest rate stabilization as part of its objective,
the resulting optimal interest rate rules yield rational expectations equilibria that are stable under
adaptive learning dynamics for a wide range of weighting parameters under all calibrations of
the New Keynesian model that have appeared in the literature. This result holds, for certain
parameter values, regardless of whether the central bank operates under commitment or is limited

to discretionary policy decisions.

2 The model

The model of the private sector is the standard, “cashless” New Keynesian model used in analyses
of the monetary policy transmission mechanism (as set forth, e.g. in Clarida et al. (1999) or

Woodford (2003)) and consists of the following equations:

xy = —p(it — Eymi1) + Eiep + g (1)
T = AT+ BEimi +w (2)
ve = (grur) = Fuoi1 + e (3)

3Evans and Honkapohja (2003ab) are careful to show that indeterminacy of REE is not a problem when the central
bank uses the optimally dervied, expectations-based interest rate rules that condition on private sector expectations.
Berardi (2004) reconciles Evans and Honkapohja’s finding with that of Bernanke and Woodford (1997) and shows
that the main differences lie in different timing assumptions and in Evans and Honakpohja’s assumption that central
bank policy is optimally derived.



The parameters ¢ and A are assumed to be positive, as is the discount factor, 0 < 8 < 1. The
intertemporal IS equation (1) relates the output gap x, to its expected future value Fix411, and to
the the real interest rate; 4; is the short-term (one-period) nominal interest rate and Eym4q is the
expected inflation rate between ¢ and ¢ + 1. The aggregate supply equation (2) relates the current
inflation rate m; to expected future inflation and the current output gap. Both equations can be
derived from explicit microfounded models. The last equation (3) characterizes how the demand

and supply shock processes, ¢g; and u;, evolve over time:

[0 7]

where |pl, |p] € (0,1), e: = (egt, eut) and e ~ i.i.d.(0,02), i = g, u.
This model is closed by specifying how the central bank determines the short-term nominal
interest rate, .
Suppose the central bank’s objective is to minimize:
oo
EO Z BtLD (4)
t=0

where § € (0,1) is the discount factor and the period loss function is:
Lt = (ﬂ't — 7T)2 + Oéx($t — $)2 + Oéi('it — 1)2

where 7; denotes the inflation rate between period ¢t — 1 and ¢, x; denotes the time ¢ output gap,
and 4; is the short-term nominal interest rate in period ¢t. Variables without subscripts represent
central bank target values which are assumed to be constant. In particular, we will assume that
m = x = 0. The relative weights given to the output and interest rate stabilization objectives
are a; > 0 and a; > 0. This period loss function differs from the one considered by Evans and
Honkapohja (2003ab, 2002) by the inclusion of the third, interest rate stabilization element; Evans

and Honkapohja have «a; = 0.

3  Discretionary Policy

We first consider the case where the central bank cannot commit to future policies. Optimal
monetary policy in this case amounts to minimization of (4) subject to versions of equations (1-2)

modified to take account of the central bank’s lack of commitment:

Ty = _Soitv (5)
Tt = )\xt. (6)



The three first order conditions from this optimization problem can be manipulated to yield the

optimal interest rate rule:
. . A o
Zt:Z+%Wt+(p ‘:C

7 7

. (7)
The rule (7) is of the same form as Taylor’s instrument rule, though in this case it has been optimally
derived. In particular, (7) requires knowledge of the contemporaneous inflation and output gaps
but does not require knowledge of the contemporaneous shocks, us, g+, in contrast to the optimal
interest rate rule studied by Evans and Honkapohja (2003) under discretionary policy.

The system under discretionary policy thus consists of equations (1), (2) and (7). Letting

Yy = (x4, m), this system can be further reduced and written as:
Yt = 00 + Oy Eryrr1 + Oy, (8)

where dg, d, and 9§, representing comformable vectors or matrices with elements that are combina-
tions of structural model parameters.

To study the stability of the rational expectations equilibrium under adaptive learning, we
follow Evans and Honkapohja (2001) and suppose that agents have a perceived law of motion that
corresponds to the minimal state variable (MSV) representation of the rational expectation solution

to the system (8). This perceived law of motion may be written as:
Y = do + dyvy.
Using this perceived law of motion, agents form expectations of y;y1:
Ewyrr1 = do + dy Fog

Substituting these expectations into (8) (in lieu of rational expectations) yields a mapping from

the perceived law of motion to the actual law of motion:
Yo = Tay(do) + Ty, vt
where

Tdo(do) = 0o + 0ydp
Tdv(dv) = 5ydvF+5U

The rational expectations solution consists of values dy = Ty,(do) and d,, = Ty, (d,). Expectational
(E)-stability of (dg, d,) is governed by local asymptotic stability of the matrix differential equation:

d
I v =T yWoy ) — y o ).
= (do, dy) = T(do, d,) — (do, )



Evans and Honkapohja (2001) show that E-stability requires that the eigenvalues of

DTy, = 0y,

DT, = 6,F,

v

have real parts less than unity. As Evans and Honkapohja (2003) point out, these conditions
correspond closely to whether or not the rational expectations equilibrium of the system (8) is
determinate; the condition for determinacy is that the eigenvalues of J, are all less than unity.
Indeed, given the restrictions imposed on the matrix F' it is clear that in this case of discretionary

policy, the determinacy and the E-stability conditions exactly coincide. As Duffy (2003) shows:

Y

£ A o(Aag + Boay) + By |7

where ¢ = a; + p?(a, + A?). Since the eigenvalues of this matrix do not yield clear analytic
results, we must investigate them numerically. Duffy (2003) considered one calibration, due to
Woodford (1999), but in this paper, we provide a more general analysis, considering several different
calibrations that have appeared in the literature and allowing the values of the two weights,
and «; in the central bank’s objective function to vary over a grid of plausible values. In addition,
Duffy (2003) did not consider the case where the central bank operates under commitment. We

now turn to an analysis of that case.

4 Policy Under Commitment

If the central bank can commit to future policies, the problem it faces changes to reflect this
possibility. In particular, we follow Woodford (2003) in adopting the timeless perspective to optimal
policy under commitment. This perspective requires that the central bank minimizes (4) subject
to the original private sector equations, (1)—(2). The first order conditions from this optimization

problem can be manipulated to obtain the optimal interest rate rule under commitment:

(= —% + (Z—iﬁt + a;{? (zt —x4-1) + %Zt—l - B“‘2 (9)

As noted by Giannoni and Woodford (2003), the optimal rule (9) bears a close resemblance to

the policy-smoothing version of the Taylor instrument rule, though (9) involves greater history
dependence (via the variables x;_1, i;—2) than is typically assumed in policy smoothing versions of

Taylor instrument rules.



Using the optimal rule (9) to substitute out for i; in (1), we have

2 2 2
o . A
i T
_plpA+ B+,

B B

1+ fit—2 + gt

2
(07%

Q;

Tt—1

Defining y; = (z¢, )" and wy = (i¢,4;—1)’,the system under commitment can be written as:

Yt = 00 + Oy1 Eiyiq1 + Oy2yi—1 + Owwi—1 + Oyt

The interest rule (9) can also be written in matrix notation as

i — _%M + %z:e 52_? Tt + —ar
(] 0 0 0 T
+ S»\%ﬁﬂ 1/5 751‘,71
1 0 1t—2

or simply

Wy = ag + a1yt + a2yr—1 + azwi_1

The perceived law of motion (PLM) in this case is:
Y = do + dyyr—1 + dypwi—1 + dyvy

Given (12), (3) and (11), we obtain the expected value of y;+1 as

o[ ]

(12)

Eyyir1 = do + dyys + dw(ao + a1y + agyi—1 + azwi—1) + dy Foy

Since there are two y; terms in this equation, we need to apply (12) one more time to eliminate

them. Doing this yields

Etyt+1 = T,Z}O + '(/)yytfl + '(/)wwtfl + '(;Z)U'Uh

where

o = dyao+ (I +dy+ dyai)dy
vy = (dy+dypar)dy + dyas

Yy = (dy+ dyar)dy + dyas

Yy = (dy + dwa1)dy, + dyF

(13)



Substituting (13) into (10), we can get the T-map from the PLM to the actual law of motion
(ALM):

= 0p+ 5y1[dwa0 + (I +dy, + dwal)dg] 14

= 5y1[(dy + dwal)dw + dwag] + Ow 16

(14)
(15)
(16)
= dyl(dy + dwar)dy + du F] + 0y (17)

A closer look at this mapping reveals that (15) and (16) are quadratic in d,, and d,,, respectively,
so there are multiple MSV rational expectation solutions. Once d, and d,, are obtained, there
are unique values of dp and d, that correspond to them, which is obvious from (14) and (17).
Rather than calculate all possible solutions, we focus on the unique, saddle point stable solution.
This solution can be found using the Blanchard-Kahn technique described, e.g., in Evans and
Honkapohja (2001, Section 10.8). Thus, for the commitment case, we are restricting attention to
determinate REE.

The conditions for expectational stability of the REE solutions to the system (10) are again
addressed in Evans and Honkapohja (2001, section 10.3) The conditions are that the eigenvalues of

the matrices DTy, j = 0,y,w,v all have real parts less than unity. The relevant matrices are:

DTy, = S(I +dy + dyar)

DTdy = d_ly & 5y1 +1I® <5y1d_y + 591%@)
D1y, = %®5ylal+ll®6yl(d_y+(11%+ag)
DTdy = 5y1d_y + 5y1%a1 + (SylF

In the case of optimal policy under commitment, it is no longer the case that determinacy
and stability of equilibrium under adaptive learning are inextricably linked; while we focus on
determinate REE, these equilibria may or may not satisfy the E-stability conditions given above.
Again, it is not possible to obtain analytic results, so we must resort to numerical methods to assess
whether the REE in the commitment case are stable under adaptive learning. We now turn to this

numerical exercise.

5 Numerical Analysis

The calibrated values of the structural model parameters that we consider in our numerical exercise

are due to Woodford (W) (1999), Clarida, Gali and Gertler (CGG) (1999), and McCallum and



Author © A
W 1/0.157 | 0.024
CGG 1 0.3
MN 0.164 0.3

Table 1: Three values of the structural parameters of the model

Nelson (MN) (2000) and are given in Table 1. In addition, we assume that p = p = .35 in (3) for
all three model calibrations.

The strategy we pursue in our numerical analysis is to consider the stability of the rational
expectations equilibrium for each of the three structural model calibrations and for both the case
of discretionary policy and policy under commitment — a total of 6 numerical exercises. For each
exercise, we vary the weights a; and «, in the policymaker’s loss function. The case where a; =0
corresponds to the case that Evans and Honkapohja (2002, 2003ab) considered previously; numerical
results when a; > 0 therefore provide us with information on the value of interest rate stabilization

policies in promoting learnability of the rational expectations equilibrium.

5.1 Numerical Findings Under Discretionary Policy

Figures 1-3 show our numerical findings under discretionary policy for the three calibrations given
in Table 1 for various combinations of c, and «;. The numerical routine checks the eigenvalues of
the matrix J, to determine whether the eigenvalues have real parts less than unity. If this is the
case, the rational expectations solution is both E—-stable and determinate, and a star is plotted
for that (ag, ;) combination. Otherwise, an open circle is plotted indicating that the rational
expectations solution is both E-unstable and indeterminate for that («a, ;) combination. (Recall

that in the discretionary policy case E-stability and determinacy conditions exactly coincide).
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Conclusions

Evans and Honkapohja (2002, 2003ab) consider optimal monetary policy under discretion or com-
mitment, where the central bank’s objective is to minimize (4) with «; set to 0. They show that
using the optimal interest rate rule, the fundamentals-based MSV rational expectations equilibrium
is always expectationally (E)-unstable in this case. They go on to show that if private sector ex-
pectations are included in the central bank’s optimal policy rule, that the E-instability finding can
be reversed, and the resulting expectations-based policy rule leads to a MSV REE that is E—stable.

We show that if central bankers are concerned with interest rate stabilization, and alter their
loss function objective (4) by setting «; > 0, the resulting optimal interest rate policy yields
a fundamentals-based MSV rational expectations equilibrium that is E-stable for a wide variety
of calibrations found in the literature under both discretionary and commitment policy regimes.
This result obtains without the requirement that the central bank condition its policy decision on
private sector expectations, in contrast to the findings of Evans and Honkapohja (2002, 2003ab).
Furthermore, the optimal interest rate rules derived under the assumption that «; > 0 closely
resemble Taylor—type instrument rules, which are ad hoc, but empirically relevant. Optimal interest
rate rules derived under the assumption that a; = 0 do not resemble Taylor rules.

We conclude that the value of interest rate stabilization as a central bank objective is that it
may aid private sector learning of the rational expectations equilibrium relative to the case where

this objective is absent.
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