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Robert L. Field 

Naval Research Laboratory, Stennis Space Center, Mississippi 39529-5004 

(Received 3 December 1993; revised 30 August 1994; accepted 2 February 1995) 

In general, higher-order correlation detectors perform well in passive detection for signals of high 
third- and fourth-order moments. Previous studies by the authors have shown that the normalized 
third- and fourth-order signal moments are reliable indicators of higher-order correlation detector 
performance [Pflug et al. (1992b)]. For a deterministic energy transient of known moments through 
fourth order, it is possible to predict theoretically the amount of gain over an ordinary 
cross-correlation detector for a bicorrelation or tricorrelation detector applied in a noise environment 
of known variance. In this paper, formulas that predict detector performance for passive detection 
at the minimum detectable level are derived. The noise is assumed to be stationary and zero mean 
with Gaussian correlation central ordinate probability density functions. To test the formulas, SNR 
detection and gain curves are generated using hypothesis testing and Monte Carlo simulations on a 
set of test signals. The test signals are created by varying the time width of a pulse-like signal in a 
sampling window of fixed time duration, resulting in a set of test signals with varying signal 
moments. Good agreement is found between the simulated and theoretical results. The effects of 
observation time (length of detection window) and sampling interval on detector performance are 
also discussed and illustrated with computer simulations. The prediction formulas indicate that 
decreasing the observation time or the sampling interval (assuming the signal is sufficiently sampled 
and the detection window contains the entire signal) improves detection performance. However, the 
rate of improvement is different for the three detectors. The SNR required to achieve the minimum 
detectable level of detection performance at a given probability of false alarm (Pfa) decreases with 
the fourth root of the observation time and sampling interval for the cross-correlation detector, the 
sixth root for the bicorrelation detector, and the eighth root for the tricorrelation detector. Relative 
detector performance also varies with Pfa' The probability of detection (Pd) for higher-order 
detectors degrades less rapidly with decreasing Pfa than the Pd for ordinary correlations. Thus 
higher-order correlaters can be especially appropriate when a very low Pfa is required. 

PACS numbers: 43.60.Gk, 43.60.Cg 

INTRODUCTION 

For transients of high skewness and kurtosis, it has been 
shown that higher-order spectral detectors can outperform 
second-order or energy detectors in passive detection, i.e., 
the unknown source model. The higher-order frequency- 
domain detection methods proposed by Kletter and Messer 
(1989) and Hinich and Wilson (1990) are applicable to sta- 
tionary random signals. These methods use segmentation for 
averaging which results in noise suppression. However, seg- 
mentation of short-time energy transient signals is generally 
not appropriate. The problem addressed in the current paper 
is that of detecting a transient for which only one short-time 
realization (received on multiple sensors) is available for 
processing. Not only are the signals short, in that not many 
samples are available for segmentation, but changes in the 
signal over its duration also make segmentation inappropri- 
ate. [The issue of averaging over the sensors is addressed by 

Pflug et al. (1994).] Hinich (1990) addresses this problem in 
a paper proposing a frequency-domain method of transient 
detection in Gaussian noise using the inner triangle of the 
smoothed bispectrum. Care must be taken in applying the 
alternate detection test described by Hinich based on the 
outer triangle, which holds for calculations done with 
continuous-time transients and not for calculations done with 

discrete-time transients (Pflug et al., 1993, Appendix B). The 
authors have shown that higher-order time-domain detection 
methods for transient signals can show improvement over 
the ordinary second-order, or cross-correlation, method (Ioup 
etal., 1989a, b, 1991, 1993; Pflug etal., 1989, 1990a, b, 
1992b, 1994). 

In earlier work the authors have described studies using 
Monte Carlo simulations and hypothesis testing, and the re- 
sulting receiver operating characteristic (ROC) curves to ex- 
amine higher-order correlation detection performance of 
transient signals distorted by Gaussian noise. In this paper, 

248 J. Acoust. Sec. Am. 98 (1), July 1995 248 

Downloaded 17 May 2011 to 137.30.164.165. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



prediction formulas that allow theoretical evaluation of 
higher-order correlation passive detection performance are 
derived. 

The efficacy of higher-order detectors vis-h-vis the ordi- 
nary correlation detector has been a matter of continuing 
interest. It is still under discussion whether it is possible for 
a higher-order detector to do better than a matched filter in 
the active case. The appropriate approach to answer these 
questions is the derivation of theoretical formulas which de- 
scribe performance for the passive and active ca•es. '[hen the 
circumstances under which the higher-order detectors do bet- 
ter than the ordinary correlation and those signal properties 
and detection conditions which give superiority for the 
higher-order detectors can be clearly delineated. 

The prediction formulas require knowledge of the noise 
variance and the low-order moments of a sampled energy 
signal and give the signal-to-noise ratio (SNR) at which the 
minimum detectable level is achieved for a given probability 
of false alarm (Ph)- This enables ranking of the detectors 
under various test conditions. From these formulas, one can 

predict the amount of theoretical SNR gain that a higher- 
order correlation detector can provide over the cross- 
correlation detector. In addition, for a zero-mean signal, one 
can use the theoretical expressions to calculate the minimum 
levels of signal skewhess and kurtosis for which the bicorre- 
lation and tricorrelation detectors will show improvement 
over the cross correlation detector. Prediction formulas to 

determine detector performance for transient signals also de- 
pend on factors such as the observation time, sampling rate, 
and Pf•, which are discussed in detail. 

One important application of passive detection is in un- 
derwater acoustics. An environmental model can be used to 

identify regions of multipath distortion where the signal 
third- and fourth-order moments remain high, and for which 
selected levels of SNR gain may be expected. A preliminary 
study by Field and Leclere (1993) shows examples of the 
robustness of a finite-element parabolic equation propagation 
model in predicting signal kurtosis of multipath signals, and 
thus tricorrelation detection performance. Using real and 
simulated data, they find that although signal kurtosis in gen- 
eral decreases with increasing multipath distortion, there ex- 
ist ocean areas, particularly near the surface and bottom, 
where signal kurtosis remains high and tricorrelation detec- 
tion may be applicable. 

Higher-order correlation detectors are described in Sec. 
I. In Sec. II, non-normalized and normalized moments for 

energy transients and the second moment for stationary ran- 
dom signals, such as noise, are given. Theoretical detector 
performance formulas and SNR gain formulas are derived in 
Sec. III. In Sec. IV, discussions concerning detector depen- 
dence on Pfa, sampling interval, and observation time are 
presented. Finally, in Sec. V, computer simulations are used 
to test the theoretical prediction formulas. Conclusions are 
given in Sec. VI. 

I. CORRELATION DETECTORS 

The ordinary correlation detector for an unknown source 
signal involves the cross-correlation of received data from 
two sensors, which is defined for discrete-time energy sig- 
nals as (Bracewell, 1986) 

N-I 

C2(T) =At E rl(t)r2(t+r), (1) 
k=0 

where t=k•t and r=jAt, ri(t ) represents a received signal 
of the form ri(t) = s(t) + hi(t), $(t) represents an energy sig- 
nal, and each hi(t) represents one noise realization. When 
the noise-free signal reaching each sensor is different, s(t) 
must be replaced by si(t). The cross-correlation detector 
compares the cross-correlation central ordinate value of the 
two noisy received signals to a preset threshold. Received 
signals from three sensors may be correlated similarly to 
form the bicorrelation (Ioup et al., 1989b) 

N-I 

c•(r,,r2)=AtZ r•(tlr2(t+rj)r3(t+•'2), (2) 
k=0 

or from four sensors to form the tricorrelation (Ioup et al., 
1989b) 

N-I 

C4(rl,r2,•)=At• rl(t)r2(t+r•)r3(t+r2) 

X r4(t+ r_0, (3) 

with the corresponding central (or other) ordinate threshold 
detectors defined. The bicorrelation and tricorrelation can 

also be formed using output t¾om only two sensors and re- 
peating signals in various w•ys (Pflug et al., 1992b, 1994). 

II. MOMENTS FOR SAMPLED ENERGY AND 
STATIONARY RANDOM SIGNALS 

A signal is said to be an energy signal if it has finite sum 
of squares. That is, for a signal x(t) and t=kAt, 

• x•(t)At < oo. (4) 
k= oo 

In contrast, a power signal (such as the noise modeled in this 
paper) has finite power, or 

1 

0< !im (2N+ l)•t • x2(t)At < oo. (5) 3/•o k= N 

That is, a power signal sum is finite only if the sum is nor- 
malized by time (Robinson, 1980). 

The second-, third-, and fourth-order non-normalized 

moments for a di•, crete-time energy signal 
s={so,s • ..... s n_ •} are the same as the correlations given in 
the previous section. However, only the central ordinate val- 
ues of the energy signal moments are needed for detection at 
zero lag, and these are given by 

N-I 

m;=At • sV(t), (6) 
k=0 
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$ 

where p = 1,2,3 .... represents the order of correlation, and mp 
the central ordinate value of the correlation. For sufficient 

sampling and assuming the observation window contains the 
entire signal, these values are independent of both sampling 
interval (At) and observation time (T), and are thus good 
descriptors for a deterministic bandlimited energy transient. 
However, non-normalized signal moments do not always 
give the simplest formulas for central ordinate correlation 
detector performance since the noise is a power signal. To 
improve compatibility when combining representations for 
energy and power signals, the energy signal moments may 
also be defined using normalizations analogous to traditional 
power signal normalizations. However, the signal duration 
T s is used in the normalization instead of T to avoid the 
signal moments and SNR changing with observation time. Ts 
is a signal property just as the moments are. A natural choice 
for T• is the shortest duration which includes all nonzero 
values of the signal. 

Normalized signal moments can be defined simply by 
subtracting the means and dividing the moment definition of 
Eq. (6) by T,. If it is desired to have dimensionless third- 
and fourth-order moments, which are zero for Gaussian dis- 
tributed ordinate values, then the mean, variance, skewness, 

and kurtosis for finite-energy signals, denoted by ], oq•, S, 
and K, respectively, are defined by Press et al. (1986) as 

N-I 

At 5; s(t), (7) •= Ts k=0 
N-I 

2--At • [s(t)--]] 2, (8) ITs -- •ss k=0 

At•'[s(t)-•] 3, (9) S--•-,k:0 L o-.• d 

N-1 -3. (10) 
T•.k=0 t o'• j j 

For zero-mean signals, the first four normalized signal 
moments defined in Eqs. (7)-(10) can be written as 

g=m•lTs, (11) 
2 s 

cr • = m2/T• , (12) 
_ s s 3/2 S- m 3 x•s/(m 2) , (13) 

r = {m•rs/(m•) 2} - 3. (14) 

Like the non-normalized signal moments, the normalized 
signal moments are independent of sampling interval and 
observation time. 

Predicting detector performance requires knowledge of 
the noise variance in addition to the signal moments. We 
assume stationary zero-mean noise, which is a power signal, 
with an ensemble average to define the sample variance, or, 
if ergodicity and a finite sum approximation are assumed, 

2 At •] •v-• = n(t)2=l•a=on(t) 2. (15) O' n •- k= 0 

Note that the time definition contains a normalization by the 
observation time while the energy signal variance contains a 
normalization by the signal duration. In this way, both the 
signal and noise statistics remain unaffected by changes in 
sampling rate and observation time. All the calculations in 
this paper are based on finite-time realizations. The differ- 
ences between the sample and population noise means and 
variances are assumed to be small for comparison of theo- 
retical and simulated results. • is used to represent both 
variances in this paper. 

We take SNR of an energy signal realization in noise to 
be 

SNR= rr•/o'•. (16) 

However, rewriting the signal variance in Eq. (8) in the form 

2 At ,• [s(t)_•]2= [S(t)2--• 2] (17a) = TT 

At •l 
(17b) 

1 m[(0)- m• - Ts • (17c) 
allows us to define SNR as 

1 1 ml 
SNR= -- m}- . 

O' n 
(18) 

For a zero-mean signal, the expression for SNR simplifies to 

SNR: x/-•(0)/o', x/•x ß (19) 
In Eqs. (18) and (19), SNR is shown in forms that exhibit the 
dependence of SNR on the signal moments and duration. 
Note that even though the noise-free original signal may 
have a shorter time duration than the noisy received signal, 
the SNR is independent of T. In this paper, SNR is converted 
to power dB using 20 logre(try/it ,) = 10 logm(•y•/tr, 2) for nu- 
merical examples and gains. 

III. THEORETICAL EVALUATION OF DETECTOR 
PERFORMANCE 

Given a fixed probability of detection, Pa, of 0.5, also 
known as the minimum detectable level, and a selected prob- 
ability of false alarm, Pra, one can calculate the SNR re- 
quired for ordinary and higher-order correlation detectors 
and the probable gain, or improvement, in SNR that a bicor- 
relation or tricorrelation detector will show over an ordinary 
cross-correlation detector for an energy signal. This is done 
using the statistics of the signal-absent and signal-present 
probability density functions (PDFs) which define a ROC 
curve. We assume the noise is zero mean, independent of the 
signal, and satisfies the assumptions in Appendix A. We also 
assume that for sufficiently large ensembles, the PDFs of the 
signal-absent correlation central ordinate values are Gaussian 
(see Appendix B) and that their areas can be calculated nu- 
merically or found in standard tables. See Van Trees (1968) 
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and Egan (1975) for detailed descriptions of ROC curves, 
and Pfiug et al. (1992b) for details on the simulations used 
later in this paper. 

The assumption is made that the signal-present PDF is 
symmetric and centered at the signal ordinate of detection, 
e.g., for an ordinary correlation detector it is at the correla- 
tion central ordinate value of the noise-free signal, mS. Thus 
the threshold of detection corresponding to Pa=0.5 is also 

s 

my. If this is not the case, then the median of the PDF must 
be determined to get the threshold. 

For the cross-correlation detector, 

CC_ • s zn - m2- (20) 

where /Jr 2 represents the mean and • the variance of the 
PDF of the ensemble of signal-absent cross-correlation cen- 
tral ordinate values. The zn score of Eq. (20) defines the level 
of Pfa (Egan, 1975). For zero-mean noise, /z•=0. A similar 
analysis is done for the bicorrelation detector at the mini- 
mum detectable level. Evaluating the z,, score at the: signal- 
present PDF mean, m•, results in 

.c , ,_/x3)/x/-•2,2. (21) Zn =[m 3 n 2 

/x• and/3, 2 represent the mean and variance, respectively, of 
the PDF of the ensemble of signal-absent bicorrelation cen- 
tral ordinate values, and/x• is zero for zero-mean noise. The 
signal-present PDF of the ensemble of central ordinate val- 
ues of the tricorrelation of four different signal-plus-noise 
realizations is centered at the central ordinate value of the 

noise-free signal autotricorrelation, m•. Thus for the mini- 
mum detectable level the z,, score is 

TC n 2 Z n = (m• --/./,4)/xj•2•, (22) 

where/x• is the mean and •n is the variance of the ensemble 
of signal-absent tricorrelation central ordinate values. For 
noise with a nonzero-mean Gaussian PDF of correlation cen- 

tral ordinate values, /.•, /z•, and/.t,• would be nonzero. The 
zero-mean PDF assumption is made only for simplicity. 
A. Ensemble variances 

To derive the prediction formulas, the necessary as- 
sumptions concerning the noise process are in Appendix A 
for the pth-order correlation. Evaluation of the zn scores for 
the cross-correlation, bicorrelafion, and tricorrelation re- 
quires evaluation of the signal-absent PDF variance for each 
of the three correlations. 

The ensemble variance of an infinite number of cross- 

correlation central ordinate values of two finite-length noise 
realizations, n• and n•, is evaluated using the expectation 
operator 

2 E n•(t)n8(t)At 0%---- /k=0 
N-I 

--E2{k•__ona(t)nb(t)At } . (23a) 
Since the noise is uncorrelated and zero mean, the second 
term is approximately zero and ignored. Then, 

a•:E At • na(t,:.nb(t,) At • n,(t2)nb(t2) 
kl=0 k2=0 

(23b) 

{ NIN-I =E (At)2• • na(tl)na(t2)nb(tl)no(t2) 
kl=0 k2=( 

(23c) 

N-I =(at)2e 2 2 na(lt)nb(tl) 
k• =o 

N-I 

=(At) 2• E{na2(t)nb2(t)} 
k=0 

= (At)2NE{na2(t)}E{nb22(t)} 

(23d) 

(23e) 

(23f) 

= (At)2No'2 (23g) 

: rata. 4. (23h) 
The ensemble variance of the bicorrelation central ordi- 

nate values of three finite-length noise realizations is 

-E2{ •_i na(t)n,(t)n•.(t)At } . (24a) 
Since the second term is approximately zero, it can be ig- 
nored: 

]3n-E E na(tl)nb(tl)nc(t•) 
k I =0 

N-I 

X[ •_,•--0 na(t2)nb(:2)n•'(t2)]} (24b) 
N-I N 1 =E (At)2E E na(tl)na(t2)nb(tl) 
k•=0 k2=0 

X nb(t2)nc(t I )nc(?2) } (24c) 
N-I } (At)2E y, 2 2 2 na(ti)nol t•)nc(t•) (24d) 
k 1 =0 

N-1 

=(At)2E 2 2 2 E{na( t)nb( t)n •.( t) } (24e) 
k=0 

= (At)2NE{n•2(t)}E [n•(t)}E{n•2(t)} (24f) 

= TAt •r, 6. (24g) 
The ensemble variance of the tricorrelafion central ordi- 

nate values of four finite-length noise realizations is 

Y•2=E [ •=0 n•(t)n•(t)n•(t)na(t)At 
N I 

-E2{•__ona(t)nb(t)nc(t)nd(t)At } . (25a) 
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For zero-mean noise which is uncorrelated in quadruples 
(Appendix A), the expression reduces to 

N-I 

yn 2: (At) 2 •] E{na(t)2nb(t)2nc(t)2nd(t) 2} (25b) 
k=0 

(25c) = TAtrrSn. 

B. Performance prediction formulas 

The ensemble variances can be used in the z, scores 
given previously to obtain detection prediction formulas. 
Starting with the z, score (corresponding to the selected Pfa) 
for the cross-correlation detector given in Eq. (20), 

cc s. /--• s' 2 Txf•. (26) Z n =m21•lOtn=rt1210'n 

This can be recast into a formula containing SNR: 

cc rr• • 2 
z. - • -[ SNRcc ] (27) 

or 

cc • SNRcc = (r•X/z. rq•-•lm' 5, (28) 
in which SNRcc represents the SNR required to achieve the 
predefined level of detection of Pa=0.5 and selected Pfa' 

Bicorrelation detector performance is derived by substi- 
psy= TAtrr, into Eq. (21) to give tuting 2 6 

BC s, • rn;/o.3n f•. (29) Z n =rn31¾Pn = 

To show the SNR dependence, rewrite the equation as 

--[SNRBc] 3 (30) Zn s 
m 3 

or 

SNRBc = trs•jz• c Txf•/m;. (31) 
Similarly, by substituting Eq. (25c) into Eq. (22), the 

tricorrelation detector prediction formula is given by 

or 

•y,2 tr•4• [SNRTc]4 (32) 

SNRTc: trs•/Z•TCT'j•/m•. (33) 
The prediction formulas simplify even more for zero- 

mean energy signals. Using Eq. (19), the cross-correlation 
SNR reduces to 

SNRcc= -k/-• dZnCCXf• dZnCCX/TAt • T• • m•2 - •t • ' (34) 
The bicorrelation and tficorrelation reduce to forms that can 

be easily written in terms of signal skewness and kurtosis, 
respectively. Thus 

SNRBc = ¾ ,,,3/-•d - (35) 1s m3 •TsS 

and 

SNRTc = ,,,'•J's -- (36) •1 Tsm 4 ¾ Ts(K+ 3)' 
Only the signal-present and signal-absent PDFs of cor- 

relation central ordinate values are required to derive general 
prediction formulas for energy transients in noise. In particu- 
lar, at the minimum detectable level, only the signal-absent 
PDF and the median of the signal-present PDF are required. 
Appendix B gives the assumptions necessary for the signal- 
absent correlation central ordinate values of the noise to have 

a Gaussian density and shows that the moments of the PDFs 
are consistent with a Gaussian density given these assump- 
tions. 

C. SNR gain formulas 

p , cc For a given fatZn = z, = z,), the SNR gain of the 
bicorrelation detector over the cross-correlation detector at 

the minimum detectable level in dB is defined by 
20 log SNRcc-20 log SNRnc. This is equivalent to 

zn (TAt) (m3) 

20 log q/-•---•, •['•201og . •/z, x/•/m 3 j ' (m}) 
(37) 

For zero-mean energy signals, the bicorrelation SNR gain 
can be expressed in terms of skewness as 

[ 4Zn,•/r $ [Z2n(rAt)S 4' '/12 
(38) 

Simil•ly, •e •ico•elation SNR gain in dB, 
20 log SN•c-20 log SNRTc, for nonzero-mean signals at a 
fixed Pf•(z• c = z• c = z,,), is given by 

s [Z 1/4 TAt •/8 mS)It4 ] •Z• Tx•/m•] =20 log -- . 
20 log qZnXf•/m•J J 

(39) 

For zero-mean energy signals, the tricorrelation SNR gain is 
expressed as 

20 log {/z,xf•/T•(K+3) 

z](TAt)(K+3)2- = 20 log 2 (40) 
Ts 

For a given obse•ation time and sampling rate, the bico•e- 
lation or tricotelation SNR gain at Pa=0.5 can be deter- 
•ned for any 

For example, using stapling interval •t= 1/1024 s and 
T=T•=2 s, •e predicted bico•elation and tricotelation 
SNR gains as a function of signal skewness and kurtosis for 
a zero-mean energy signal •e given by the curves in Fig. 1 
for two values of Pfa' It is evident from these curves that a 
decrease in Ph (increase in z,) co•esponds to an increase in 
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5 10 15 20 
Signal Skewness 

-2 =0.001 
_4. P,:;=o.o• 

(b) 0 200 4.00 500 800 

FIG. l. Theoretical bicorrelation and tricorrelation SNR gains versus signal 
skewness and kurtosis, respectively, using At=(l/1024) s and T= T,= 2 s. 

higher-order detector SNR gain. The minimum signal skew- 
ness necessmq for a positive bicorrelation SNR gain is 

s= / z.2(Tat) (4l) 
and the minimum signal kurtosis necessary for a positive 
tricorrelation SNR gain is 

K: T,, - 3. (42) 

lo 

• SNRcc 
8 • SNRec 

• SNRTc 

Skewness = 4.0• Kurtosis = 20.0 

'.. 
-•0 

$NR 

lO 

8 

•- 6 

4 

2 

Skewness -- 8.0 

• SNRTc •, 

Kurtosis = 50.0 

-10 

$NR (dR) 

FIG. 2. Theoretical curves of observation time versus SNR required to 
achieve Pa=0.5 and Pfa=0.001 for the cross-correlation, bicorrelation, and 
tricorrelation detectors with three 2-s signals of varying skewhess and kur- 
tosis. The sampling interval is fixed at At=(1/1024) s. 

0.006 

-• 0.004 

Eo 0.00:2 

(b) 

0.006 

.E 0.004 

u• 0.002 

Skewness = •,.0, Kurtosis = 50.0 

0 0 SNRm: ./ •/ ?- 

-16 -14 -12 -10 -8 -6 
SNR (as) 

FIG. 3. Theoretical curves of sampling interval versus SNR required to 
achieve Pa=0.5 and Pfa=0.001 re: the cross-correlation, bicorrelation, and 
tricorrelation detectors with three ,'!-s signals of varying skewhess and kur- 
tosis. The observation time is fixed at T=2 s. 

For the conditions set in Fig. 1, the minimum signal skew- 
hess for a positive biconelation SNR gain is 3.83 for 
Pfa=0.001, and 4.41 for Pfa=0.01. For the tricorrelation, the 
minimum signal kurtosis for a positive SNR gain is 11.65 for 
Pfa=0.001, and 16.42 for Pfa=0.01. 

All of the predictions gven in this paper could be given 
in terms of moments, or moments normalized by the time 
duration, without considering normalization by powers of the 
variance, the latter being the commonly used approach for 
power signals. Because tea tiers may be very familiar with 

TABLE 1. Normalized moments of the nine test signals. Mean is in ampli- 
tude units and variance is in ampli:ude units squared. 

Signal number Mean Variance Skewness Kurtosis 

1 3.2748X10 2 2.6850X10 3 1.3762 0,35895 
2 2.6776X10 2 2.3151X10 3 1.7013 1.4017 
3 1.8987>(10 -2 1.7788)<10 3 2.2651 :3.7804 
4 1.4551)<10 2 1.4264X10-3 2.7400 6.2895 
5 9.8513)<10 -3 1.0117)<10 3 3.5188 11.459 
6 4.9714x10 3 5.3476X 10 '4 5.2247 2'7.271 
7 1.9937x10 3 2.2039)<10 4 8.5062 75.059 
8 9.9722X10 -4 1.1124)<10 4 12.146 154.81 
9 4.3883)< 10 -a •.9193X 10 5 18.412 357.89 
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TABLE [I. Theoretical predictions and computer simulations of SNRcc at 
Pfa=0.001 for the nonzero-mean test signals. 

Theoretical Computer 
prediction calculation Difference 

Signal number SNR (dB) SNR (dB) (dB) 

I -13.117 -12.965 0.151 

2 - 12.829 - 12.688 0.141 

3 - 12.459 - 12.294 0.165 

4 -12.258 -11.975 0.118 

5 -12.055 -11.911 0.144 

6 - 11.853 - 11.399 0.454 

7 - 11.735 - 11.50l 0.265 

8 11.696 - 11.500 0.196 

9 - 11.674 - 11.544 0.130 

TABLE III. Theoretical predictions and computer simulations of SNRBc at 
Ph=0.001 for the nonzero-mean test signals. 

Theoretical Computer 
prediction calculation Difference 

Signal number SNR (dB) SNR (dB) (dB) 

I - 11.419 - 11.229 0.190 

2 -11.434 - 11.166 0.268 

3 - 11.565 - 11.314 0.251 

4 - 11.750 - 11.517 0.233 

5 - 12.112 -11.864 0.248 

6 - 12.900 -12.643 0.257 

7 - 14.104 -14.093 0.012 

8 -15.068 -14.864 0.204 

9 -16.235 - 16.048 0.187 

TABLE IV. Theoretical predictions and computer simulations of SNRT½ at 
Pf•=0.001 for the nonzero-mean test signals. 

Theoretical Computer 
prediction calculation Difference 

Signal number SNR (dB) SNR (dB) (dB) 

1 -10.693 -10.395 0.298 

2 -10.862 -10.637 0.225 

3 - 11.246 -11.043 0.203 

4 - 11.624 - 11.291 0.333 

5 -12.268 -12.129 0.139 

6 -13.552 -13.399 0.152 

7 - 15.417 - 15.067 0.350 

8 - 16.882 - 16.654 0.228 

9 - 18.643 - 18.218 0.425 

TABLE VI. Non-normalized moments of the zero-mean test signals. Mo- 
ments are in powers of amplitude units times time in seconds. 

Signal number m 2 m 3 m 4 

I 5.3701 x 10 -3 3.8295x 10 4 4.8432x 10 -5 
2 4.6300x 10 -3 3.7900• 10 -4 4.7340• 10 -5 
3 3.5577x 10 -3 3.3988• 10 -4 4.2910• 10 -5 
4 2.8529x 10 -3 2.9511 • 10 -4 3.7803• 10 -5 
5 2.0234x 10 3 2.2646• 10 4 2.5990x 10 • 
6 1.0695•10 3 1.2921•10 4 1.7313•10 5 
7 4.4080• 10 -4 5.5662x 10 5 7.5831X 10 -6 
8 2.2247• 10 4 2.8500x 10 5 3.9053• 10 -6 
9 9.8385x 10 5 1.2705• 10 5 1.7467x 10 -6 

moments normalized by the variance, like skewness and kur- 
tosis, we give prediction formulas for zero-mean signals in 
terms of skewness and kurtosis. 

IV. SAMPLING INTERVAL AND OBSERVATION TIME 

Detection dependence on the number of sample points 
for deterministic energy signals or stationary power signals 
has been previously discussed by Giannakis and Tsatsanis 
(1990), Hinich and Wilson (1990), and Pflug et al. (1992b). 
Hinich (1990) has shown that the bispectral detector per- 
forms well for signals of large time-bandwidth product. In 

-8 

-10 

-14 
-16 

-18 

-20 
0.0000 

(o) 
0.0010 0.0020 0.0050 

Signal Variance 

-8 

-10 

-12 -14 

:z -16 
1/3 

-18 

-20 
0 

(b) Signal Skewhess 

TABLE V. Non-normalized signal moments of the original test signals. 
Moments are in powers of amplitude units times time in seconds. 

Signal number m• rn• m• 

1 7.5149X 10 3 9.8077• 10 -4 1.3545X l0 4 
2 6.0640X 10 -3 7.8932X 10 4 1.0888X 10 -4 
3 4.2787• 10 3 5.5622x 10 -4 7.6679• 10 -5 
4 3.2763x 10 3 4.2581X 10 -4 5.8693x 10 5 
5 2.2175• 10 3 2.8817• 10 -4 3.9719• 10 5 
6 1.1190x 10 -3 1.4541 • 10 -4 2.0042X 10 -5 
7 4.4875• 10 -4 5.8314x 10 -5 8.0376x 10 -6 
8 2.2446• 10 4 2.9168x 10 5 4.0203• 10 -6 
9 9.8771X 10 -5 1.2835x 10 -5 1.7691 x 10 6 
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FIG. 4. Theoretical and computer simulation results for (a) SNRcc, (b) 
SNRac, and (c) SNRTc versus normalized signal moments at Pt•=0.001 for 
the zero-mean test signals with At=(1/1024) s and for T=2 s. 
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the paper by Pflug et al. (1992b), it was shown that for 
broadband pulse-like signals of relatively large time- 
bandwidth product, the bicorrelation and tricorrelation detec- 
tors perform well. However, for highly oscillatory signals 
they do not. Consideration of only the time-bandwidth prod- 
uct and not the moments is not sufficient for prediction of 
energy signal detection performance. For energy sigmds, it is 
also important to distinguish between the two potential 
sources of change in the number of sample points, the obser- 
vation time and the sampling interval. 

The SNR for which a correlation detector produces 
Pa=0.5 at a fixed Pea depends on both the sampling interval 
and the observation time. An increase in T or At results in an 

increase in SNRcc, SNRBc, and SNRTc as given by Eqs. 
(28), (31), and (33). The dependence is shown in Figs. 2 and 
3. Figure 2 depicts the predicted SNR required to achieve 
Pa=0.5 and Pra=0.001 for the cross-correlation, bicorrela- 
tion, and tricorrelation detectors for 2-s duration zero-mean 

signals with skewhess and kurtosis pairs of 1.0 and 10.0, 4.0 
and 20.0, and 8.0 and 50.0, respectively. The sampling inter- 
val is held constant at (1/1024) s, and the variable T is plot- 
ted versus SNRcc, SNRBc, and SNRTc. For all three detec- 
tors, as T increases, the SNR for which the detector performs 
with Pd=0.5 and Pfa=0.001 increases, implying degraded 
detection capability. However, the relative performance of 
the higher-order detectors to the cross-correlation detector 
improves with increasing values of T. In Fig. 3, the observa- 
tion time is fixed at T=2 s and the sampling interval is 
varied. Increasing the sampling interval corresponds to in- 
creasing SNRcc, SNRBc, and SNRTc, and thus degraded 
detection performance. The different curvatures in the 
SNRcc, SNRBc, and SNRTc curves shown in Figs. 2 and 3 
reflect the proportionality of SNRcc, SNRBc, and SNRTc to 
the fourth root, sixth root, and eighth root, respectively, of 
observation time and sampling interval. As T or At is in- 
creased, the higher-order detectors improve relative to the 
ordinary correlation detector. 

V. COMPUTER-SIMULATED SNR GAIN CURVES 

In this section, computer simulations are used for com- 
parison with the theoretical gain prediction curves. To create 
a set of test signals, a 2-s cosine is amplitude modulated with 
a set of Gaussian envelopes of decreasing standard deviation 
resulting in a set of pulse-like transients of the form 

x( t) = cos[*r(t- Ts12 ) ]e -[rr(t- T•t2l]2t2•r2. (43) 
As the standard deviation of the Gaussian envelope de- 
creases, the width of the resulting pulse decreases relative to 
the time window, and the skewhess and kurtosis both in- 

crease. Nine different test signals were used in the simula- 
tions, each with duration T,=2 s and sampling interval=O/ 
1024) s. The normalized moments of the test signals are 
given in Table I. The standard deviation for the Gaussian 
envelope used to create the pulselike signal must be limited 
to a minimum value since the sampling interval of (1/1024) s 
determines signal cutoff frequencies beyond which aliasing 
occurs in correlations calculated from sampled data. For this 
sampling interval, 512, 341.3, and 256 Hz are the frequency 

cutoffs beyond which the cross-correlation, bicorrelation, 
and tricotrelation, respecticely, would be aliaseal (Pflug 
etal., 1992a, 1993; Nielson, 1992; Le Roux etal., 1993). 
These numbers double if the same signals are sampled with 
2048 points per second. The signals are designated with in- 
tegers 1-9 such that the hig[.er integers correspond to signals 
created using narrower Gacssian envelopes. All test signal 
autobicorrelation peaks occtr at zero time lag; hence the bi- 
correlation threshold detecter will perform better at the cen- 
tral ordinate than at any othcr time lag for each signal (Pflug 
et al., 1992b). 

Although SNR will depend on the T s chosen, SNRcc, 
SNRBc, and SNRTc have tht'• same functional dependence on 
T,., and relative detection p•.rformance does not change as a 
function of T•. To illustrate specifically the dependence of 
detection on signal moment:. alone and to facilitate study of 
the roles that the observation time and sampling interval play 
in detection, we hold T, con.,.tant and large enough to include 
all values of the broadest te: t signal considered. This choice 
means that for the narrowes: signals in our study, there will 
be a sizable number of leading and trailing negligibly small 
signal values. If we had been studying these narrower signals 
individually, smaller values •f T.• could have been selected. 

The test transients are used to create curves of Pd versus 
SNR in a zero-mean Gaussian noise environment at fixed 

Pfa=0.001 and Phi0.01 for each of the three detectors. 
Gaussian noise is among the noise types that lead to Gauss- 
ian distributed correlation central ordinate values which cor- 

respond to Ihe assumptions made in Appendixes A and B for 
derivation of the prediction formulas. Interpolation is used to 
extract the SNR value for each detector corresponding to 
P,/=0.5, the minimum detec-able level. Since the signals are 
nonzero mean, the forms fcr SNRcc, SNRnc, and SNRTc 
given in Eqs. (28), (31), and (33) are used to predict the SNR 
required to achieve the minimum detectable level. The theo- 
retical predictions and the results of the computer simula- 
tions are given in Tables II, lIl, and IV. The computer cal- 
culations match the theoretical predictions quite well, with a 
maximum difference in SNR of 0.454 dB for the cross- 

correlation detector, 0.187 d B for the bicorrelation detector, 
and 0.425 dB for the tricorrelation detector. 

The non-normalized signal moments, which define the 
means of the PDFs of the signal-present correlation en- 
semble and ultimately detec :ion performance, change when 
the mean is subtracted. This is illustrated by comparison of 
the original non-normalized nonzero-mean signal moments, 
given in Table V, to the non-normalized moments of the test 
signals with the mean subtracted, given in Table VI. As ex- 
pected, the signals with larger mean (see Table I) show larger 
changes in non-normalized •,ignal moments when the mean 
is removed, and detection performance can change signifi- 
canfly with a small change in signal mean. As an example, 
for Signal I, which has a mean value of 3.2748X10 -2 and a 
maximum amplitude of 0.159, the nonzero-mean theoretical 
SNRcc, SNRBc, and SNRac are -13.117, -11.419, and 
-10.693 dB, respectively, as given in Tables II, Ill, and IV. 
Contrast these values with the theoretical SNRcc, SNR8c, 
and SNR•c values of -11.,557, -8.696, and -8.460 dB, 
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F[G. 5. Theoretical and computer-simulation results for (a) SNRcc, (b) 
SNRBc , and (c) SNRTc versus normalized signal moments at Pfa=0.001 for 
the zero-mean test signals with /xt=(1/2048) s and for T=2 s. 

FIG. 6. Theoretical and computer-simulation results for (a) SNRcc, (b) 
SNRBc, and (c) SNRTc versus normalized signal moments at Pfa=0.01 for 
the zero-mean test signals with At=(l/1024) s and T=2 s. 

respectively, using moments of the zero-mean signal 1 in 
Eqs. (34)-(36). 

To test further the zero-mean signal formulas, simula- 
tions were performed for the zero-mean test signals with 
T=Ts=2 s, and two different sampling intervals, (1/1024) 
and (1/2048) s. For Pfa=0.001, the results are shown plotted 
against the theoretical results in Figs. 4 and 5. The corre- 
sponding results for Pfa=0.01 are shown in Figs. 6 and 7. In 
all cases, the simulations match the theoretical predictions 
closely. As predicted, decreasing the sampling interval re- 
sults in decreasing levels of SNRcc, SNRBc, and SNRTc, 
corresponding to improved detection performance. As shown 
in the figures, for zero-mean signals, SNRcc is independent 
of the variance of the signal. 

Theoretical bicorrelation and tricorrelation SNR gains 
calculated using Eqs. (37) and (39) and the results of the 
computer simulations are shown in Figs. 8 and 9 for the test 
signals with sampling intervals of (1/1024) and (1/2048) s 
for Pfa=0.001 and in Figs. 10 and 11 for Pfa=0.01. As indi- 
cated in the prediction formulas for SNR gain, decreasing the 
sampling interval decreases the bicorrelation and tricorrela- 
tion SNR gains over the cross-correlation detector, even 
though decreasing the sampling interval improves detection 
performance overall for each of the three detectors. Decreas- 
ing the Pfa (increasing z,) results in larger bicorrelation and 
tricorrelation SNR gains; thus higher-order correlators per- 

form at their relative best when the tolerance for false alarm 

is low. 

To test whether the theoretical formulas predict accu- 
rately for various observation times, detection performance 
is evaluated using computer simulations for the 2-s Signal 1 
in a 4-s observation window (Ts=2 s and T=4 s). The re- 
sults of the computer simulations are SNRcc=-11.311, 
SNRBc=-10.134, and SNRTc=-9.8256 dB. These num- 
bers are close to the theoretical predictions of -11.611, 
-10.415, and -9.9403 dB, respectively. Similarly, using 
T--6 s for the same signal, the computer simulations result in 
SNRcc = -10.326, SNRBc=-9.4610, and SNRTc = -9.2428 
dB, compared to the theoretical predictions of -10.731, 
- 9.8284, and - 9.4912 dB, respectively. 

To predict or simulate performance accurately for very 
small values of Pra is generally difficult. The main problem 
is knowing realistically the shape of the probability density 
function for the noise and therefore its correlation central 

ordinate values of interest in the very small tail region. When 
measured noise statistics are known sufficiently, the domain 
of the noise probability density function can be well enough 
determined to do low Pf• performance modeling by theoreti- 
cal prediction (if formulas are known) or computer simula- 
tion. If the actual noise statistics are not sufficiently well 
known, then inaccuracy is due to experimental limitations 
and not theoretical definitions. 
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FIG. 7. Theoretical and computer-simulation results for (a) SNRcc, (b) 
SNRt• ½, and (c) SNRTc versus normalized signal moments at Pra=0.01 for 
the zero-mean test signals with At=(1/2048) s and for T=2 s. 
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FIG. 8. Theoretical and computer simulation results for (a) bicorreladon 
SNR gain versus signal skewhess and (b) tricorrelation SNR gain versus 
signal kurtosis at Pra-0.001 for the zero-mean test signals with At-(1/ 
1024) s and T=2 s. 

FIG. 9. Theoretical and computer-simulation results for (a) bicorrelation 
SNR gain versus signal skewnest; and (b) tricorrelation SNR gain versus 
signal kurtosis at Pr•-0.001 for the zero-mean test signals with At-(I/ 
2048) s and T=2 s. 

Determining performance for very low Pt, by simula- 
tion, however, has two additional problems which must be 
taken into account. The first is that the occurrence of central 

ordinate values which give a false alarm is so infrequent as 
to require a huge number of realizations in the simulation to 
accomplish statistical significance. This can become a pro- 
hibitive use of computer time. It is also true that many meth- 
ods used to generate randon statistical density functions do 
not produce outliers beyond a certain limiting value and so 
cannot accurately reproduce the extreme tail values of the 
density function. For exam91e, the Gaussian noise generator 
used in our simulations produces a maximum outlier of six 
for a standard deviation of one. 

Vl. CONCLUSIONS 

Theoretical formulas a:e derived for determining cross- 
correlation, bicorrelation, aad tricorrelation passive detector 
performance for bandlimited energy transients in zero-mean 
noise with Gaussian distributed signal-absent correlation 
central ordinate values. Sp•:cifically, formulas which predict 
the SNR required by each (,f the three detectors to achieve a 
predetermined level of detection, P,/=0.5, for any value of 
Pt,, are given. From these, SNR gain formulas based on 
fixed P,•=0.5 and variabh Pt, are derived. The formulas 
simplify for zero-mean energy signals, and can be expressed 
using the familiar concepts of signal skewness and kurtosis. 
For a given signal, knowledge of the low-order signal mo- 
ments and noise variance are necessary to predict detector 
performance. For energy signals detector performance de- 
pends on P•h, sampling interval, and observation time. 
Higher-order gain improves with decreasing Pr• and with 
increasing observation time and sampling interval. Computer 

257 J. Acoust. Sac. Am., Vol. 98, No. 1, July 1995 Pflug et al.: Prediction of SNR for passive higlmr-order correlation detection 257 

Downloaded 17 May 2011 to 137.30.164.165. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



6 

o õ lO 15 20 

Io) Signal Skewness 

6 

o 5 10 15 20 

(0) Signal Skewhess ' 

8 

2 

0 

-2 

-4 

(b) 

i s 
0 2•0 400 (b) 0 Signol Kurtosis 

200 

Signal Kurtosis 
4O0 

FIG. 10. Theoretical and computer simulation results for (a) bicorrelation 
SNR gain versus signal skewhess and (b) tricotrelation SNR gain versus 
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s and T=2 s. 

calculations using Monte Carlo simulations and hypothesis 
testing are presented to corroborate the SNR prediction for- 
mulas. 
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FIG. 1 l. Theoretical and computer simulation results for (a) bicorrelation 
SNR gain versus signal skewness and (b) tricotrelation SNR gain versus 
signal kurtosis at Pea = 0.01 for the zero-mean test signals with A t = (1/2048) 
sand T=2s. 

APPENDIX A: NOISE ASSUMPTIONS REQUIRED FOR 
PREDICTION FORMULA ENSEMBLE VARIANCE 
DERIVATIONS 

The following assumptions concerning the noise are 
necessary to derive the expressions for ensemble variance of 
noise correlation central ordinate values given in Eqs. (23h), 
(24g), and (25c) (Papoulis, 1965; Robinson, 1980), with p 
the correlation order and M the number of time points: 

(1) The underlying random noise process is such that 
ensemble members (realizations) are identically distributed 
and stationary within the observation time. 

(2) The infinite-time sum of the product of p distinct 
realizations over t I and t 2 is zero except when t 1 = t 2. This is 
approximately true for large N. 

I 

N-1 N-1 

(At) 2• • {nl(tl)n2(tl)'"nt•(tl)n•(t2)n2(t2)'"nt•(t2)} 
kl=0 k2=O 

N-1 N-1 

=(At) 2• • [nl(tl)n2(tl)'"np(tl)nl(t2)n2(t2)'"np(t2)]eS(t2--tl) 
kl=0 k2-0 

N-1 

=(At) 2 • n•2(t•)n22(t•)...np2(t•), 1,2 .... p 
k] -0 

(3) The square of the distinct underlying noise process 
is uncorrelated across p realizations of the ensemble at any 
given time, 

E{n12( t)n22( t) .. .np2(t)} 
=E{n,(t)}E{n2(t)}...E{np(t) }, 1,2 ..... p distinct. 

Assumption (3) could be replaced by the stronger assump- 

tion of statistical independence for the realizations of the 
noise process (Papoulis, 1965). Independence and ergodicity 
imply assumption (2) for the infinite sum. 

APPENDIX B: GAUSSIAN CHARACTER OF 
CORRELATION CENTRAL ORDINATE PDFs 

Following Isserlis (1918) and Gardner (1986), the qth 
ensemble moments of zero-mean noise pth-order correlation 
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central ordinate PDFs are shown to be consistent with a zero- 

mean Gaussian density. That is, all odd order ensemble mo- 
ments are zero, and all even order ensemble moments greater 
than two are appropriately proportional to powers of the sec- 
ond moment. 

The assumptions in Appendix A must be extended for 

the following derivation. Assumption 2 must be extended to 
q time points and assumption 3 must be extended to q/2 time 
points. 

The qth-order ensemble moment of p zero-mean noise 
sequences, each of length ¾ with ti:kiAt, is 

I 

=(At) qE E rtl(tl)rt2(tl)" 'rtp(tl) Lk2 =ø rtl(t2)rl2(t2)'"np(t2) '" rtl(tq)n2(tq)'"rtp(tq) kt=O Lkq:0 

=(AI)qE • ... nl(tl)nl(t2)...nl(tq)n2(tl)n2(t2)...rt2(lq)...rtt•(tl)rtt•(12)...rtp(tq) . 
k 0 k 2 = 0 kq = I 

For large N, this expression is approximately zero when p is odd, and whenever all t i are distinct. It is only nonzero when p 
is even and times are equal in pairs. Using delta function notation, the moments are nonzero when 

{ Ni•_I N-I N-I (At)qE • '" • nl(tl)nl(t2)'"nl(tq)n2(tl)n2(t2)'"n2(tq)'"nr•(tl)np(t2)'"np(tq) 
k 0 k2=0 kq=O 

is nonzero, where the summation over the product of delta functions is taken over all possible ways of dividing q integers into 
q/2 combinations of pairs. There are (1)(3)(5)...(q- 3)(q- 1 ) terms in the summation. Applying the delta summation results 
in 

[(l)(3)(5)...(q_3)(q_l)](At)qNq/2E{n•2(t • 2 •)n•l. t2)'"nl(tq/2) 

Xn}(tl)n•(t2). 2 2 2 2• ß .n2(tq/2)...np(t l)np(t2)...nt•l, tq/2) }. 
Since the square of the noise is uncorrelated in time, this is equal to 

[(1)(3)(5)... (q- 3)(q - 1 )](At)qNq/2E{n•(tl )}E{n•(t2)}...E{n•2(tq/2)}E{n}(tl )} 
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