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Contours of constant pseudo-Brewster angle in the complex
e plane and an analytical method for the
determination of optical constants

R. M. A. Azzam and Ericson E. Ugbo

The locus of all points in the complex plane of the dielectric function EtEr + jeZ = lel exp(jO)], that represent all
possible interfaces characterized by the same pseudo-Brewster angle pB of minimum p reflectance, is derived
in the polar form: ll = I cos(/3), where I = 2(tan2 ckpB)k, r = arccos(- coso cos2 kpB/k3), and k = (1 - %
sin2

0pB)1/
2 . Families of iso-4pB contours for (I) 00 < OpB S 45° and (II) 45° S kpB • 75° are presented. In

range I, an iso-q5pB contour resembles a cardioid. In range II, the contour gradually transforms toward a circle
centered on the origin as kpB increases. However, the deviation from a circle is stillsubstantial. Only near
grazing incidence (OpB > 800) is the iSO-OpB contour accurately approximated as a circle. We find that lel < 1
for kpB < 37.23°, and lel > 1 for tpB > 45°. The optical constants n,k (where n +jk = ell2is the complex refrac-
tive index) are determined from the normal incidence reflectance Ro and OpB graphically and analytically.
Nomograms that consist of iso-Ro and iSO-kpB families of contours in the nk plane are presented. Equations
that permit the reader to produce his own version of the same nomogram are also given. Valid multiple
solutions (nk) for a given measurement set (R, 0spB) are possible in the domain of fractional optical constants.
An analytical solution of the (R 0 ,OPB) - (nk) inversion problem is developed that involves an exact
(noniterative) solution of a quartic equation in lei. Finally, a graphic representation is developed for the
determination of complex e from two pseudo-Brewster angles measured in two different media of incidence.

1. Introduction

The complex amplitude Fresnel reflection coeffi-
cient of a p-polarized monochromatic plane wave of
light at the planar interface between two (homoge-
neous, isotropic, linear, and nonmagnetic) media is
given by'

e os - (e - sin2k)1
/2

p e cos,0 + (e - sin0/2 '

where 0 is the angle of incidence,

e = El/co,

(1)

The relationship between k0pB and complex e = E, +
jei, or the complex refractive index,

N- l/2 = n +jk, (4)

was derived by Humphreys-Owen2 and by others.34

Following the notation of Ref. 3, pB is determined, for
a given complex e, by solving the cubic equation:

(2er + 21el2)u3 + (ie 4 - 3le12 )u2 - 21e14 u + Jei
4 = 0, (5)

where

(2)

and eo (real), e (complex) are the dielectric functions
(or constants at a given wavelength) of the media of
incidence and refraction, respectively. For a given ,
Irpl is a function of 0 that reaches a minimum at the so-
called pseudo-Brewster angle kpB. When the medium
of refraction is also transparent, e is real, and (kpB
reverts to the exact Brewster angle,

OB = tan_'(el"2), (3)

at which Irpimin = O.
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u = sin 2pB. (6)

In this paper we consider the nature of the contours
of constant qOpB in the complex e (and N) plane both
analytically and graphically. Previously, Holl5 pre-
sented a family of constant-(pB contours in the nk
plane but without giving any accompanying formula
that would permit others to create fresh and accurate
sets of those contours.

A second objective of this paper is to further develop
a previously suggested method6 for the determination
of n and k from measurements of q0pB and the normal
incidence reflectance R,. This is accomplished graph-
ically by providing nomograms of lines of constant 10pB

and lines of constant R0 in the nk plane, and analytical-
ly, by deriving a new and explicit mathematical solu-
tion. The analytical solution is an efficient and direct
alternative to the numerical iterative scheme of Ref. 6.

Finally, a graphic construction is presented with
which complex e of an absorbing medium is deter-
mined from two pseudo-Brewster angles measured in
two different incidence media.
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Fig. 1. Contours of constant pseudo-Brewster angle qkpB in the
complex plane for angles pB from 50 to 450 in 50 steps. Each

contour is symmetrical with respect to the real axis.
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Fig. 2. Continuation of Fig. 1 for angles kpB from 450 to 750 in steps
of 50.

1 = 2(-p/3)'/,

11. Constant Pseudo-Brewster Angle Contours in the
Complex e Plane

The equation of the constant pseudo-Brewster angle
contour (CPBAC) in the complex plane takes its
simplest form in polar coordinates. For this purpose,
we write

e = let exp(jo), (7)

where I and 0 are the absolute value and argument (or
angle) of complex , respectively. If E = CI cos is
substituted into Eq. (5), the result can be reduced to a
cubic equation in lEi of the standard form,

1el3 + plel + q = 0, (8)

where

a- 2u) (9)-u2

q = q' cosO, (10)

2u3 (11)
(1 - )2

where u is given by Eq. (6). The nature of the roots of
cubic Eq. (8) is determined by the discriminant7

D = (p/3)3 + (q/2)2. (12)

We have verified that

D<O (13)

for all possible values of u(O < u < 1) and (0 0 r),
but the proof is omitted for brevity. Consequently,
Eq. (8) always has three real roots of which only one is
positive, hence acceptable. This root is given by7

El = Icos(g/3), (14)

where

(15)

arccos [ (-q2)1 (16)
(ll3 271 2 .j(6

From the definitions of p,q [Eqs. (9)-(11)], and u [Eq.
(6)], and can be written explicitly as

I = 2 tan2 B(1 - 2/3 sin
2 pB)1 2 , (17)

= arccos[- cosO cos2kp(1 - % sin 2
kPB)

31
/2]. (18)

Equation (14), which to our knowledge is new, speci-
fies the CPBAC in polar coordinates in the complex e
plane. For a given 'kpB, EI varies with 0 as a cosine
function of amplitude, 1, which is determined by 'kpB
only [Eq. (17)], and argument /3, which is a somewhat
complicated function of 0 [Eq. (18)].

Equations (14), (17), and (18) permit the direct cal-
culation of the Cartesian coordinates

(erEj) = (lEt coso, let sino) (19)

of any number of points on the CPBAC for any given
EkpB (e.g., 181 points are obtained by scanning 0 in 10
steps over the range 0 0 1800). This can be
repeated for any number of specified angles OpB mak-
ing possible the accurate plotting of any desired family
of CPBACs.

Figure 1 shows a family of CPBACs for 'kpB from 50
to 450 in steps of 5. To reveal the nature of these
contours, we have allowed 0 to scan the range 0 0 <
3600, even though complex e is restricted only to the
half-plane above (or below8) the real axis, the real axis
included. It is apparent that a CPBAC for OpB 450
has a cardioid shape and departs considerably from a
circle centered on the origin. Therefore, the circle
approximations is far from satisfactory in this range of
EkpB.

Figure 2 is a continuation of Fig. 1 in which the
CPBACs are plotted for OpB from 450 to 750 in steps of
5°. For q0pB > 750, the CPBACs become nearly circles
centered on the origin, hence are not plotted.
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1l1. Characteristics of the CPBACs

According to Eq. (14), , which is given by Eq. (17),
defines an upper bound on IEC for a specified or mea-
sured pB. The points of intersection A, B, and C of
the CPBAC with the positive real axis ( = 0), the
imaginary axis ( = 900), and the negative real axis (0 =
1800) are also special features that characterize a given
contour. The associated values of e are

eA = tan2 pB,

1. 1.6| 

1. 4 -

1. 2 -

1.0-

ei. 3 

(20)
.6

(21)
. 4

EC = - /2[EA + C3(1-2 - 2A)1/2] (22)

Figure 3 shows a CPBAC in the upper half of the
complex e plane, with the points A, B, and C marked.
As 0 increases from 00 to 1800, the contour is traced in
the direction of the arrow from A to B to C, and the
associated minimum reflectance Irplmin at kpB (which
angle is fixed) increases monotonically from 0 (at A) to
1 (at C). [It is obvious that Eq. (20) is the Brewster
law: in the limiting case of 0 = 0 ( real), OpB becomes
the exact Brewster angle.]

The deviation of a given contour from a circle (or
semicircle) centered on the origin is measured by the
ratios

11 = El/BIleAt = (3 -2 sin2 OpB)12, (23)

'72 = tEC1/tEAl = /2[1 + (9 - 8 sin 24,B) 1. (24)

A specified or measured qo B places JEC in the interval
tan 2

OpB = EA1 • Id < 772eAT but leaves 0 unrestricted.
The CPBAC deviates most from a (semi)circle as pB

0 ; in that limit aql and fl2 reach their maximum
possible values of Ad and 2, respectively. On the other
hand, when kpB - 900,,ql and -2 1 and the CPBAC
approaches a semicircle.

Even for an angle as high as 750, the CPBAC is
perceptibly different from a centered circle (see Fig. 2).
(At EkpB = 750, ql = 1.065 and q2 = 1.120.) Therefore,
one should not invoke the circle approximation9 of the
CPBAC except near grazing incidence. (At k = 800, 7)l

= 1.030, 2 = 1.057; the deviation of the CPBAC from a
centered circle is -5%.)

An interesting question is the following. What is
the largest value of q0pB for which the CPBAC lies
entirely within the unit circle of the complex C plane?
Put differently, what is the upper limit on k0pB below
which the optical constants Er and Ei are always frac-
tional? The answer is obtained by setting

EC = -1. (25)

.2

-.8 4 I . 4 .8

1. 4

1. 2

1. 0

.

. 6

4

.2 

0

Er

Fig. 3. An iSO-cpB contour in the upper half of the complex e plane.
A, B, and C are the points of intersection of the contour with the
positive real axis, imaginary axis, and negative real axis, respective-
ly. The arrow indicates the direction in which the minimum reflec-

tance (at 'kpB) increases monotonically from 0 at A to 1 at C.

special angle, tkpB = 37.230, 1 = 1.004, i.e., the ampli-
tude of the cosine function of Eq. (14) happens to be
nearly unity.

Another special angle is q0pB = 450. The polar equa-
tion of the associated CPBAC is given for reference:

let = (8/3)1/2 cos{ cos [-(27)1/2 cosol} (28)

A measured q pB > 450 guarantees that 1EI > 1. In the
intermediate interval, 37.230 < < 4H<the optical
constants may or may not be fractional.

For completeness, we conclude this section by giving
the explicit Cartesian equation of the CPBAC, which
can be derived by algebraic manipulation of Eq. (5).
The result is

ei = [a + (a2 - ber)'12 - E]/ 2, (29)

where

a = u(3 - 2u)/(1 -U)2,

b = 2u3/(1 - u)2 .

(30)

(31)

[Note that a = -p/2 and b = q', where p and q' are given
by Eqs. (9) and (11).] Equation (29) allows the deter-
mination of the maximum possible value of Ei that is
consistent with a specified or measured kpB (or u).
This maximum is located by the condition that

Substitution of Eq. (25) into Eq. (22) and solving the
resulting equation for ckpB give the interesting result:

tan4OpB = 1/3, (26)

hence

pB = 37.230. (27)

A measured pseudo-Brewster angle of <37.23° directly
indicates that both Er and eC are fractional. At this

aei/aErju=const = 0. (32)

Squaring both sides of Eq. (29), taking the derivative
with respect to Er, and setting the result equal to 0 give

16be3 - 16a 2 E2 + b2
= 0. (33)

Cubic Eq. (33) can be solved explicitly for Er and the
result substituted into Eq. (29) to yield Cimax. The
remaining details of this exercise are left to the inter-
ested reader.
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IV. Determination of the Optical Constants of an
Absorbing Medium from the Normal Incidence
Reflectance and the Pseudo-Brewster Angle:
Graphic Method

Humphreys-Owen2 and others51011 surveyed sever-
al methods for the determination of optical constants n
and k [real and imaginary parts of the complex refrac-
tive index N, Eq. (4)] of an absorbing medium from two
measured reflection parameters without ellipsometric
analysis. Darcie and Whalen 6 (D&W) added a new
method which is based on measurement of the normal
incidence intensity (power) reflectance R, and the
pseudo-Brewster angle pB of minimum parallel re-
flectance. They presented a nomogram of contours of
constant n and contours of constant k in the ROq'pB
plane and a numerical method with which n and k may
be determined once R, and qOpB are specified.

We have reexamined the D&W method in the light
of our analysis of the nature of the CPBACs. An
alternative nomogram is suggested that consists of the
iso-R0 contours and the iS-O0pB contours in the (com-
plex) nk plane. In Sec. V, we also give an analytical
solution that provides a direct answer for (n,k) given a
set of measurements (R 0 ,FpB), without recourse to nu-
merical iteration.

The normal incidence, complex amplitude reflection
coefficient is obtained by setting q = 0 in Eq. (1):

E
1 2

- 1
f 1/2 + 1 '

The associated power reflectance is

RI = ror. (35)

If we write El/2 = N = n + jk, Eqs. (34) and (35) give the
well-known result 5

RI (n - 1)
2 + k2 (36)

(n + 1)2 + k2

Equation (36) can be rearranged to read

n- 1) 2+ k2
= G2, (37)

where
1-?0F= l +R° X (38)

G= -R0 (39)

Equation (37) indicates that the iso-R0 contour is a
(semi)circle in the nk plane with center on the n axis at
('IF,O) and radius G.

The CPBACs in the nk plane are also analytically
determinable from

(k) =(|f 12 COS E , E 1/2 sin-2s (40)
I~~~)ICI~2 2/ 

where I is related to 0 at a given OpB by Eq. (14) [and
Eqs. (17) and (18)].

Figure 4 shows a family of iso-R, contours (circle
arcs) and iSO-OpB contours (CPBACs) in the nk plane.

2. 5

2. 0

1.5

1.0

.5

0 .5 1.0 1.5 2.0 2.5
n

Fig. 4. Families of iso-R and iso-rkpB contours in the nk plane. R
is the normal incidence reflectance and assumes values from 0.05 to
0.90 in steps of 0.05. pB is the pseudo-Brewster angle and takes
values from 5 to 65° in steps of 5°. This nomogram can be used to
find an approximate solution for the optical constants (n,k) given a

measured set (R 0,,pB)-

The nomogram is limited to the square 0 ' n,k < 2.5
and covers the range of kpB from 5 to 650 in steps of 50
and of R, from 0.05 to 0.90 in steps of 0.05. The major
advantage of this type of nomogram is that both fam-
ilies of iso-R0 and iso-0pB contours are governed by
explicit equations (with the iso-R contours being cir-
cles). Thus we have provided the reader with the
analytical tools with which he or she can generate an
accurate version of the nomogram with a computer and
a plotter. The values and ranges of R, and pB are
selected at will.

Figure 5 is another nomogram of iso-R0 , iso-kOpB con-
tours plotted over a large range of n,k, a square of side
20. The constant values of R, are the same as before
(0.05-0.90 in steps of 0.05) and the constant values of
kpB are 650, 700, 730, 770, 790, and 80-87° in steps of
10.

In general, an iso-R& contour intersects an iSO-kpB
contour at one and only one point, so that a unique
solution (n,k) is found for a given pair (R.,5pB) as
shown in Fig. 6. An important exception occurs when
n and k become fractional, as in Fig. 4. Here an iso-R0
contour may intersect an iso-4OpB contour at two points
leading to two solution pairs (n,k) that are consistent
with one and the same measured set (R 0 ,OpB). This is
the case, for example, when R, = 0.20 and OpB = 200.
For clarity, the intersection of the R, = 0.20 and OpB =
200 contours in the nk plane (at the two points Pi and
P 2) is illustrated in Fig. 7 on an expanded scale. The
possibility of multiple solutions was not discussed in
Ref. 6, because the domain of fractional optical con-
stants was not covered.

15 December 1989 / Vol. 28, No. 24 / APPLIED OPTICS 5225
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Fig. 5. Similar to Fig. 4 except that the constant values of kpB are
650, 700, 730, 750, 770, 790, and 80-87° in steps of 10. (Ro is in the
range from 0.05 to 0.90 in steps of 0.05, as in Fig. 4). Again this
nomogram serves as an aid in solving the (IokpB) - (nk) inversion

problem.

2.

1 .

k

1.

0 - pB-= 6001 - I- -I--
I I s~~~~i& 0.35i

i 2
0 /1 10 1 2.I

- 2. 0

2. 5

n

Fig. 6. An iso-R contour (I? = 0.35) generally intersects an iso-kpB

contour (ckpB = 600) at one point P that specifies a unique solution
pair (n,k) at P.

V. Determination of the Optical Constants of an
Absorbing Medium from the Normal-Incidence
Reflectance and the Pseudo-Brewster Angle:
Analytical Solution.

If Eq. (34) is substituted into Eq. (35) and F of Eq.
(35) is evaluated, one gets

2 Ree1/2

F- IEI+1i

2tE l/2 cos °

tEl + 21 (41)

where e = I exp(jO), as before. Equation (41) can be
solved for cos(0/2):

cos(0/2) = /_(lEt"/2 + elt 2)F. (42)

Equation (42) is one form of the constraint on I and 0
for a given F (orR0).12 Squaring both sides of Eq. (42)
and using the trigonometric identity cos0 = 2 cos2(0/2)
- 1, we obtain

2 cosO = (El + lel- + 2)F 2
- 2. (43)

The condition of minimum parallel reflectance (at
q)pB) establishes another relationship (or constraint)
between lel and cos0. This appears in Eq. (8), where p
and q are given by Eqs. (9)-(11). Solving Eq. (8) for
cos0, we find that

2 cosO = u-'(3 - 2u)lel - u-
3

(1 -U)
2

JEt
3
. (44)

By equating the right-hand sides of Eqs. (43) and (44),
cos0 is eliminated and a quartic equation in I only is
obtained:

(45)E3 fl = 0,
i=o

where

# = u 3F2 ,

f = 2u 3(F 2
- 1),

#2 = u2(uF 2 + 2u - 3),

#3 = 0,

(46)

04 = (1 - )2 .

For given Ro and qOpB, the coefficients fi of Eqs. (46) are
determined. [Recall that u = sin2 pB and F = (1-RO)l
(1 + R)] Quartic Eq. (45) has a direct (closed-form)
solution.13 Only those roots that are real and positive
are acceptable. Once IsC is found, cos0 can be calculat-
ed from Eq. (43) and the real and imaginary parts of
complex e are subsequently obtained:

e, = lEt coso = /2(1El + 1)2 F2
- |

i= l t sinG = (lr2 -

(47)

(48)

n and k follow from Eq. (40) or by taking the complex
square root. This concludes the development of the
analytical method of determining the optical constants
n,k from the measurements of RO,4PB.

Our analytical method has been tested using simu-
lated data 4 and the data given by D&W, and has been
found to yield the correct results. To quote one specif-
ic numerical example, we take an InSb semiconductor
substrate. At wavelength X = 517 nm, D&W give R =
0.46 and kpB = 77.13°. For this (R0 ,OpB) pair, Eq. (45)
[with the coefficients calculated from Eqs. (46)] yields
the following four real roots: 19.6512,0.0759,-1.7840,
and -17.9431. Of these four roots, the last two are
negative and are rejected because e > 0. The second
is also rejected because it is inconsistent with (the
large) 0pB; only the first root el = 19.6512 is acceptable.
Continuing with the analytical solution, we get cos0 =
0.4844 (hence 0 = 61.026°), Er = 9.5192, e = 17.1917,
and n = 3.8191 and k = 2.2508. The latter n and k
agree with the values of D&W.
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As another use of our analytical method, we deter-
mine the exact points of intersections P1 and P2 of the
R = 0.20 and E)pB = 20° contours in the nk plane (Fig.
7). Quartic Eq. (45) gives the following four roots: e
= 0.1776,0.1517,-0.1646, and-0.1646. Both positive
roots are acceptable in this case and the analytical
solution fixes the exact coordinates (n,k) of points P1
(0.3925,0.1534) and P 2 (0.3839,0.0657). A significant
advantage of the (R,pB) - (n,k) analytical inversion
method presented here is that it facilitates the study of
the propagation of experimental errors (RJ,10pB) into
corresponding errors (n,ak) in the determined optical
constants. For example, using our approach, we have
verified directly the uncertainties n,ik caused by 6R,
= 0.001 and 5kpB = 0.050 for the cases studied by
D&W.

VI. Determination of the Optical Constants of an
Absorbing Medium from the Measurement of Two
Pseudo-Brewster Angles

Elsewhere Azzam'5 has described a novel analytical
method for the determination of r and Ei (hence n and
k) of an absorbing medium from the pseudo-Brewster
angles q0pBl and kpB2 measured in two different trans-
parent media of incidence of dielectric constants 0
and 2. Here we provide further (graphic) insight into
this two-angle method (TAM) by making use of the
results of Sec. II which resolved the nature of the iso-
9

5
pB contours in the complex e plane. We do this by

way of the specific example given in Ref. 15, namely,
that of an opaque TiN film deposited on a Cleartran
(ZnS) substrate. The two pseudo-Brewster angles
qkpB1 and pB2 are measured from the air side ( = 1)
and the substrate side (o2 = n S) of the TiN film.
The (simulated) measurements (using published val-
ues of the optical constants of TiN and ZnS) yield pBl
= 66.4323° and pB2 = 40.1148° at wavelength X = 600
nm.

Figure 8 shows the two CPBACs in the complex e
plane at these two angles as determined by Eq. (14).
The task of determining complex e from qtpBl and pB2
amounts to finding the radial line through the origin
(arge = = constant) at which

lell/lE21 = E02/E0 l' (49)

where, for the present example,

'E2/Eo = nns = 2.3632 = 5.583769. (50)

The left-hand size of Eq. (49) is a function of 0 only
given by

IlE/tE2t = f 2 (0) =11 cos(t 1 /3) (51)
12 cos(~2 /3)

where 1i and Mi (i = 1,2) are the values of and r
evaluated from Eqs. (17) and (18), respectively, at k>pBl
and pB2. Subscript 12 of /12(0) is used to emphasize
the dependence of this function of 0 on the two angles.
Combining-Eqs. (49)-(51) gives

f2(= E0 2/E (52)

or

.

. 5
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n
Fig. 7. In the domain of fractional optical constants, an iso-R
contour (R = 0.20) may intersect an iO-OpB contour (pB = 200) at
two points PI and P 2 that specify two valid solution pairs (nk) at PI

and P2.
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Fig. 8. Two iso-,pB contours at fpB = 66.4323° and kpB = 40.11480
in the complex E plane. These two angles are the pseudo-Brewster
angles measured in external (in air) and internal reflection, respec-
tively, on an opaque TiN film covering a ZnS substrate at = 600
nm. Finding complex E of the TiN film amounts to locating a radial
straight line through the origin (shown dashed) such that lt/tE21 =
2.3632 where n = 2.363 is the refractive index of the ZnS substrate at

600 nm.

(53)f140) = 5.583769.

Figure 9 shows a graph of f2(0) vs 0 for qOpBl =

66.4323° and kpB2 = 40.1148°, which is the example at
hand. The solution of Eq. (53) for 0 is represented by
the intersection of the curve of f12 (0) with a horizontal
straight line at an ordinate equal to 5.583769. This
fixes 0 (= 125.8560 by numerical iteration) and deter-
mines the correct value of complex l = CTiN =
(-3.740,5.175) at X = 600 nm by Eq. (14).

The method presented in this section is not meant to
substitute for the direct and explicit analytical method
of Ref. 15.
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8. 0 (4) A new method for measuring optical constants
that uses two pseudo-Brewster angles measured in two

7 5 different media of incidence 5 is further discussed
based on our understanding of the nature of the iso-,OpB

7.0 contours. The associated inverse problem is reformu-
lated with the help of a graphic construction.
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Fig. 9. Function f2(O) of Eq. (51) plotted vs 0 for the pseudo-
Brewster angles of external and internal reflection, OpBl = 66.43230
and pB 2 = 40.11480, of a TiN film on a ZnS substrate. The point of
intersection of the curve with a horizontal line drawn at an ordinate
= 2.3632 gives the argument 0(= 125.856°) of complex e of the TiN

film.

VII. Summary

The following is a brief summary of what is accom-
plished in this paper:

(1) A polar equation le I cos(t/3) has been derived to
represent the locus of all points in the complex e plane
that share the same pseudo-Brewster angle '0pB of
minimum parallel reflectance. In this equation, I is a
function of kpB and r is a function of OpB and 0, where 0
is the (polar) angle of E(O = argE). Families of iSo-40pB
contours are presented. It is noted that these contours
deviate significantly from circles centered at the ori-
gin, except near grazing incidence. 0p < 37.23° indi-
cates fractional optical constants (i.e., ICl <1), whereas
kpB > 450 guarantees that ei > 1. Exact limits have
been set on ICd for a given value of kpB.

(2) A method for the determination of the optical
constants n,k from measurements of the normal inci-
dence reflectance Ro and the pseudo-Brewster angle
EkpB has been examined in detail. Nomograms that
consist of families of iso-R and iSO-OpB contours in the
complex nk plane are presented. The reader is given
the mathematical equations with which to produce his
or her own version of the nomogram, e.g., to facilitate
the application of the R,- pB method to a certain
class of materials such as semiconductors. We have
noted that two solution sets of (n,k) can correspond to
the same measurement set (R,q1pB) in the domain of
fractional optical constants.

(3) An analytical solution for the (R,,,OpB) - (n,k)
inversion problem has been discovered. It involves
solving a quartic equation in lEl whose coefficients are
determined by Ro and q5pB. This analytical solution
facilitates error analysis and makes the R,, - q0pB meth-
od more attractive to use.
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