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Abstract

We introduce increasing returns to scale into an otherwise standard New Keynesian model

with capital, and study the determinacy and E-stability of Taylor-type interest rate rules. With

very mild increasing returns supported by empirical research, the conventional wisdom regarding

the design of interest rate rules can be overturned. In particular, the “Taylor principle” no longer

guarantees either determinacy or E-stability of the rational expectations equilibrium.
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1 Introduction

It is well-known that self-fulfilling expectations may cause business fluctuations if there are certain

types of coordination failures in the markets. In the real business cycle (RBC) literature, researchers

emphasize the importance of increasing returns in generating such fluctuations (Farmer and Guo,

1994). Increasing returns are usually originated from externalities or monopolistic competitions.

Coordination failures also have important implications for economic agents who do not possess

rational expectations and try to learn about the economic structure adaptively. With increasing

returns, the rational expectations equilibrium (REE) may not be “expectationally-stable” (E-stable)

under learning (Duffy and Xiao, 2003). The recent literature of monetary policy design, however,

emphasizes the role of interest rate policies in either facilitating or restraining fluctuations caused

by self-fulfilling expectations or E-instability. It is believed that if an interest rate policy is properly

designed, it leads the economy to a determinate (free from self-fulfilling fluctuations) and E-stable

REE (Clarida, et al., 2000, Bullard and Mitra, 2002). Determinacy and E-stability have undoubtedly

become two crucial criteria in evaluating monetary policies (Evans and Honkapohja, 2003).

Interestingly, when selecting the proper interest rate rules to prevent excess volatilities, re-

searchers prefer to condition on an economic environment that is free from any market coordination

failures. In other words, the possibility that both sources of indeterminacy and E-instability exist in

the economy has been largely neglected. For example, there are extensive studies of the potential

benefits and risks associated with Taylor-type interest rate rules. Yet when specifying the economic

environment for these studies, researchers seem to ignore the possibility of increasing returns, which

are known to cause indeterminacy and E-instability. The workhorse for this area — the New Key-

nesian model, has monopolistic competitions, staggered prices, but constant returns to scale. Since

increasing returns are widely believed to occur in monopolistically competitive economies, one nat-

urally wonders how robust the current findings are if the assumption of constant returns to scale

does not hold. Indeed, to some researchers, one is “required” to postulate increasing returns in a

monopolistic competition framework, since it is the “only way to account for the absence of sig-

nificant pure profits in the United States economy” (Rotemberg and Woodford, 1995). Therefore,
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incorporating increasing returns into the designing of interest rate rules seems the next logical step

to take in extending this research.

In this paper, we propose a first step towards such an extension. We introduce increasing returns

to scale into an otherwise standard New Keynesian model with capital, and study the determinacy

and E-stability of Taylor-type interest rate rules, as in Bullard and Mitra (2002). Bullard and Mitra’s

important finding is that if the interest rate rule follows the so-called Taylor principle, the REE of

the model is mostly likely to be both determinate and E-stable. The Taylor principle asserts that

the monetary authority must adjust the short-term interest rate more than one-for-one with changes

in inflation. Our research question is: when there are increasing returns in the economy, how must

the interest rate rules be changed to achieve a stable macroeconomic equilibrium? Does the Taylor

principle still guarantee the determinacy and E-stability of the REE?

Our major findings are as follows. We re-examine the determinacy and E-stability of REE under

four variants of the Taylor rule studied by Bullard and Mitra (2002). The four variants are: 1. the

contemporaneous data rule, 2. the lagged data rule, 3. the forward expectations rule, and 4. the

contemporaneous expectations rule. Bullard and Mitra (2002) find that in most cases the Taylor

principle is sufficient to guarantee both determinacy and E-stability. Moreover, with rule 1 and

rule 4 a determinate REE is always E-stable and vice versa. We find that with small increasing

returns that are consistent with empirical estimates, these findings no longer hold. In particular,

the Taylor Principle cannot guarantee either determinacy or E-stability in any of the four rules. In

some cases, a less than one-for-one response of the interest rate to inflation can lead to determinacy

and E-stability. The policy implications are clear. To rule out indeterminacy and E-instability, it

is critical for the monetary authority to identify the level of increasing returns — given a certain

level of increasing returns, a distinct set of parameters for the interest rate rule will maintain the

determinacy and E-stability of the REE.

The assumption of increasing returns to scale is widely considered in the business cycle and

growth literature.1 A major problem of models that possess indeterminate equilibria is that the

1See, among others, Hornstein (1993), Benhabib and Farmer (1994), Roternberg and Woodford (1995), and Ben-
habib and Wen (2004).
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required increasing returns are too high to live up to empirical tests. In empirical studies, the earlier

work of Hall (1990) is known to have over-estimated the degree of increasing returns (larger than

1.5). More recent research find mild but significant levels of increasing returns in the US economy.

For example, Basu and Fernald (1994 and 1997) conclude that the returns to scale is between 1.03

and 1.09. Laitner and Stolyarov (2004) use stock market data to estimate the returns to scale

and obtain values between 1.09 and 1.11. In our model, the required level of increasing returns to

generate indeterminacy is as low as 1.05.

In general, this paper adds to a series of other research that study the limitations of the Taylor

Principle as a criterion to design interest rate rules. Gali et al. (2004), for example, find that the

existence of rule-of-thumb consumers will render the REE indeterminate when the Taylor principle

holds. Fair (2003) argues that the Taylor principle cannot guarantee determinacy if aggregate

demand responds to nominal interest rates and inflation has a negative effect on consumption.

Benhabib et al. (2001) find that the Taylor principle does not necessarily lead to determinate REE

when there is zero bound on nominal rates. All these works focus on the determinacy of the REE.

We have not seen any papers that challenge the role of the Taylor principle in maintaining the

E-stability of the REE.

In the literature, the baseline New Keynesian model ignores endogenous variations in capital,

on the ground that capital fluctuations do not correlate much with output at the business cycle

frequency (McCallum and Nelson, 1999). However, a number of researchers have recently pointed

out that certain topics can only be studied when capital is allowed to vary endogenously.2 In our

context, increasing returns in capital are known to have non-trivial effects on the determinacy of the

equilibrium. For example, Benhabib (1998) illustrates that self-fulfilling expectations about future

investment returns are important in generating indeterminate equilibrium. Grandmont et al. (1998)

show that the capital-labor substitutability affects the robustness of sunspot equilibrium. Moreover,

with endogenous capital, our model becomes a natural extension of Farmer and Guo (1994), which

2Gali et al. (2004) show that endogenous capital is required for rule-of-thumb consumers to make a difference in
system dynamics. Christiano et al. (2001) use investment adjustment costs to generate hump-shaped response of
output to a monetary shock. Edge (2000) shows that investment adjustment with a time-to-build technology helps
generating a liquidity effect.
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ensures that the same mechanism that causes indeterminacy in their paper still exists in the New

Keynesian framework. We therefore incorporate capital into the model in this study. We introduce

capital in a standard way, as in Gali et al. (2004). In our analysis, we compare a constant-return

version of our model with Bullard and Mitra (2002)’s labor-only model to make sure that introducing

capital alone does not alter the determinacy and E-stability of the REE. All changes in the REE

properties are caused by incorporating increasing returns to scale.

The rest of the paper is organized as follows. Section 2 lays out the micro-founded model frame-

work and derives the equilibrium conditions. Section 3 discusses the methodology and calibration

of the model. Section 4 presents the results. Section 5 concludes.

2 A New Keynesian Model with Capital and Increasing Re-

turns

This is a standard New Keynesian model with capital, except for the novel assumption of increasing

returns in production. We abstract from any exogenous processes, such as productivity shocks

or demand shocks, in order to minimize the number of equations to manipulate when deriving the

conditions for E-stability analytically. Adding or leaving those processes do not change the properties

of the equilibrium.

2.1 Households

The economy is composed of a large number of infinitely-lived consumers. Each of them consumes

a final good Ct, and supplies labor Nt. Savings can be held in the form of real money balances Mt

Pt
,

bonds Bt, and capital Kt. Consumers seek to maximize life-time utility

E0

∞X
t=0

βt[
C1−σt

1− σ
+ γ

(Mt/Pt)
1−b

1− b
− v

N1+χ
t

1 + χ
],
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where σ, γ, b, v, χ > 0 and 0 < β < 1, subject to a budget constraint

Ct +
Mt

Pt
+

Bt

Pt
+ It =

Wt

Pt
Nt +

Mt−1
Pt

+
Rt

Pt
Kt + (1 + it−1)

Bt−1
Pt

+Dt (1)

and the capital accumulation equation

Kt+1 = (1− δ)Kt + φ(
It
Kt
)Kt. (2)

Hence, the consumers receive real labor income (Wt/Pt)Nt, and real capital rental income

(Rt/Pt)Kt. Bt−1 is the quantity of riskless one-period bonds carried over from period t − 1 which

pay out interests at a nominal rate of 1 + it−1. Dt are dividends from ownership of firms. Mt−1/Pt

are real money holdings carried over from period t − 1. The consumers spend their income on

consumption Ct, new money holdings Mt/Pt, new bond purchases Bt/Pt, and new investment It.

Capital adjustment costs are introduced through the term φ(It/Kt)Kt, which determines the change

in capital stock induced by investment spending It. We assume φ
0 > 0, and φ00 ≤ 0, with φ0(δ) = 1

and φ(δ) = δ as in Gali et al. (2004).

The first order conditions for the consumer’s problem can be written as

vNχ
t = C−σt

Wt

Pt
, (3)

C−σt = γ(
Mt

Pt
)−b + βEtC

−σ
t+1

Pt
Pt+1

, (4)

1 = βEt(
Ct+1

Ct
)−σ

Pt
Pt+1

(1 + it), (5)

Qt = βEt(
Ct+1

Ct
)−σ{Rt+1

Pt+1
+Qt+1[(1− δ) + φt+1 −

It+1
Kt+1

φ0t+1]}, (6)

where φt+1 = φ(It+1/Kt+1) and φ0t+1 = φ0(It+1/Kt+1), respectively. Qt is the real shadow value of

capital, i.e., Tobin’s Q. This is defined as

Qt =
1

φ0( ItKt
)
. (7)
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Given our assumption about φ, the elasticity of the investment-capital ratio with respect to Q is

− 1
φ00(δ)δ = η.

2.2 Firms

There exists a continuum of monopolistically competitive firms producing differentiated intermediate

goods. The latter are used as inputs by a perfectly competitive firm producing a single final good.

2.2.1 Final Goods Producers

The final goods are produced by a representative, perfectly competitive firm with a constant returns

to scale technology

Yt = (

Z 1

0

Y
ε−1
ε

jt dj)
ε

ε−1 , (8)

where yjt is the quantity of intermediate goods j used as an input, and ε > 1 governs the price

elasticity of individual goods. Profit maximization yields the demand schedule

Yjt = (
Pjt
Pt
)−εYt, (9)

which, when plugged back into (8), yields

Pt = (

Z 1

0

P 1−εjt dj)
1

1−ε . (10)

2.2.2 Intermediate Goods Producers

The intermediate goods market features a large number of monopolistic competitive firms. The

production function of a typical intermediate goods firm is

Yjt = (K
α
jtN

1−α
jt )θ, θ > 0, (11)

whereKjt and Njt represent the capital and labor services hired by firm j. The parameter θ measures

the level of returns to scale. When θ = 1, the production technology reduces to the constant-return
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Cobb-Douglas production function. When θ > 1, the intermediate goods firm has increasing returns

to scale.

The firms’ real marginal costs ϕjt is derived by minimizing costs:

ϕjt =
1

(1− α)θ

Wt

Pt

Njt

Yjt
=
1

αθ

Rt

Pt

Kjt

Yjt
, (12)

which in turn implies the optimality condition

Kjt

Njt
=

α

1− α

Wt

Rt
. (13)

Note that when there are constant returns to scale, (12) and (13) imply that the real marginal costs

ϕct are given by

ϕct =
(1− α)α−1

αα
Ra
tW

1−α
t , (14)

which is equalized across all firms since there is no j in the expression. When there are increasing

or decreasing returns to scale, a firm’s real marginal costs are associated with its production levels.

In this case we can define the average level of marginal costs as

ϕt =
1

(1− α)θ

Wt

Pt

Nt

Yt
=
1

αθ

Rt

Pt

Kt

Yt
. (15)

Using (12), (13), and the demand schedule, we can relate the real marginal costs of a firm ϕjt to

the average level of marginal costs ϕt as

ϕjt = ϕt(
Pjt
Pt
)
ε(θ−1)

θ . (16)

Intermediate firms set nominal prices in a staggered fashion, according to the stochastic time

dependent rule proposed by Calvo (1983). Each firm resets its price with probability 1 − ω each

period, independent of the time elapsed since the last price adjustment. A firm resetting its price
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in period t seeks to maximize

Et

∞X
i=0

ωiβi(
Ct+i

Ct
)−σ(

P ∗t
Pt+i

Yjt+i − ϕjt+iYjt+i), (17)

where P ∗t represents the (common) optimal price chosen by firms resetting prices at time t.

Finally, the equation describing the dynamics for the aggregate price level is

Pt = [ωP
1−ε
t + (1− ω)P ∗1−εt ]

1
1−ε . (18)

2.3 Monetary Authority

The central bank sets the nominal interest rate it every period according to a simple linear rule

contingent on information about output and inflation. Following Bullard and Mitra (2002), we

consider four variants of the interest rate rule. The first variant is called the “contemporaneous data

rule”:

it = φππt + φyyt, (19)

where φπ ≥ 0 and φy ≥ 0. This is the original Taylor rule that conditions the interest rate on current

output and inflation rate.3 Since current data for output and inflation may not be available at time

t, some suggest a “lagged data rule”:

it = φππt−1 + φyyt−1. (20)

The third rule is called “forward expectations rule”:

it = φπEtπt+1 + φyEtyt+1, (21)

3 In the standard New Keynesian model without capital, the interest rate rule conditions on output “gaps” rather
than on output levels. It should be noted that the properties of the REE will not change whatsoever if output gaps
are replaced by output levels in those models. We use output levels because output gaps cannot be easily derived in
a model with endogenous capital.
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where central bankers use the market’s expectations about the future to set the interest rate rule.

The fourth rule is called the “contemporaneous expectations rule”:

it = φπEt−1πt + φyEt−1yt, (22)

where the underlined assumption is that the market does not have current data and attempts to use

past data to estimate today’s output and inflation.

2.4 Equilibrium and Reduced Linear Systems

The following conditions clear the factor and goods markets: Nt =
R 1
0
Njtdj, Kt =

R 1
0
Kjtdj, Yt =R 1

0
Yjtdj and Ct + It = Yt.

We need to derive the linearized versions of the key optimality conditions in order to conduct

our analysis. We use lower case letters to denote linearized variables. There are six non-dynamic

equations and four dynamic equations. The first equation is the linearized version of the labor supply

schedule (3):

χnt + σct = wt − pt. (23)

The second equation is the linearized version of (7), which defines Tobin’s Q:

xt − kt = ηqt, (24)

where, to avoid confusion with the nominal interest rate, we have denoted investment by the letter

xt. The third and fourth equations are the linearized versions of (12). We are interested in the

average level of marginal costs, which are given by

ϕt = nt + (wt − pt)− yt, (25)

ϕt = kt + (rt − pt)− yt. (26)
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The fifth equation is the linearized production function

yt = αθkt + (1− α)θnt. (27)

The sixth equation is the market clearing condition

yt =
C

Y
ct +

I

Y
xt, (28)

where C, I and Y are steady state levels of consumption, investment and output. The first

dynamic equation is Phillips curve, which is derived by solving the firm’s dynamic price-setting

problem and combining it with (18). The equation is given by

πt = βEtπt+1 +
κ

1 +A
ϕt, (29)

where κ = (1−ω)(1−βω)
ω and A = ε(1−θ)

θ .

The second dynamic equation is the linearized version of (6), which describes the evolution of

Tobin’s Q:

qt = βEtqt+1 + [1− β(1− δ)]Et(rt+1 − pt+1)− (it −Etπt+1). (30)

The third dynamic equation is the Euler equation (5), which can be linearized as

ct = Etct+1 −
1

σ
(it − Etπt+1). (31)

The last dynamic equation is the capital accumulation equation (2), which is linearized as

kt+1 = (1− δ)kt + δxt. (32)

Finally, we add the interest rate rule and use the non-dynamic equations to substitute out seven

variables qt, wt − pt, rt − pt, xt, it, ϕt, and yt. The system becomes a four dimensional linear
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difference equation system consisting of zt = (ct, nt, kt, πt) :

zt+1 = Jzt. (33)

3 Methodology and Calibration

3.1 General Methodology

Next, we examine the determinacy and E-stability of four variants of the Taylor-type interest rate

rules. For each variant, the determinacy of the REE is decided by computing the eigenvalues of the

system (33). Since there is only one predetermined variable kt, an REE is determinate if the number

of explosive roots is three and the number of stable roots is one. If the number of stable roots are

bigger than one, we have an indeterminate REE. If there is no stable root, the system is explosive.4

To study adaptive learning, we re-write the system as

bzzt + bkkt = dkEtkt+1 + dzEtzt+1, (34)

kt+1 = ezzt + ekkt, (35)

where the second equation is derived from the capital accumulation equation that does not involve

any expectations and does not need to be learned. We assume agents have the perceived law of

motion (PLM)

zt = a+ ψkt,

which is in the same form as the MSV solution under REE.5 The parameter vectors a and ψ will

have to be learned. Given this PLM, we calculate the forward expectation of zt as

Etzt+1 = a+ ψEtkt+1 = a+ ψEt(ezzt + ekkt) = a+ ψezzt + ψekkt.

4With the lagged data rule, the interest rate rule itself is a dynamic equation with a state variable it−1. In that
case we require two stable roots to yield determinacy.

5With the lagged data rule and the contemporaneous expectations rule, the PLM will be slightly different since
agents do not possess knowledge of current data. See the appendix for details.
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Parameters Values Description
β 0.99 Discount factor
α 0.33 Capital share
δ 0.025 Depreciation rate
ε/(ε− 1) 1.05 Level of markup
ω 0.75 Fraction of firms leaving prices unchanged
η 1 Elasticity of investment to Tobin’s Q
σ 1 Risk aversion
χ 1 Inverse of labor supply elasticity

Table 1: Calibration

Plugging this expression into (34), we obtain the T-mapping from (a, ψ)0 to combinations of the true

parameters of the model. The model is E-stable if d
dτ (a, ψ) = T (a, ψ)− (a, ψ) have eigenvalues less

than 0. We derive the specific E-stability conditions for each interest rate rule in the appendix.

3.2 Benchmark Calibration

The system (33) has four dynamic equations and four variables. We cannot obtain analytical solu-

tions for either determinacy or E-stability. We therefore rely on numerical simulations to study the

properties of the equilibrium. Table 1 summarizes the values we used for the benchmark calibration.

Most parameters are chosen to conform with parameters used in the literature. For example, the

discount factor is set at 0.99, the depreciation rate is set at 0.025, and the capital share in production

is set at 1/3. The steady state mark-up is set at a mild level of 1.05, which implicitly defines a value

for the elasticity of substitution across intermediate goods, ε. The inverse of the elasticity of labor

supply, χ, is set to 1. The curvature of the utility function σ is set to 1 so that the utility is in

logarithm form. The fraction of firms that keep their prices unchanged, ω, is given a value of 0.75,

which corresponds to an average price duration of about one year. The elasticity of investment with

respect to Tobin’s Q, η, is set to 1, following King and Watson (1996).

The weights for inflation and output in the interest rate rule, φy and φπ, and the level of increasing

returns θ are left open so we can experiment with different values.
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4 Determinacy and E-stability of Interest Rate Rules

In this section, we study the determinacy and E-stability of REEs under different interest rate rules.

Since the results for the four variants of the Taylor rule bear some similarities, our strategy is to

closely examine the results for the contemporaneous rule, and then go over the results for the other

three variants briefly. To simplify exposition, we use the term “stable REE” to refer to an REE that

is both determinate and E-stable, and the term “active policy” to refer to an interest rate rule that

responds more than one-for-one to changes in inflation.

4.1 Contemporaneous Data Rule

In this section we consider the interest rate rule (19).

A standard New Keynesian model does not have endogenous capital. Therefore our first question

is whether or not adding capital alone will change the properties of the equilibrium. To answer this

question, we do a side-by-side comparison of a model with capital and a model without. The latter is

a special case of the model in section 2 and is essentially the same as in Bullard and Mitra (2002). In

both cases, the production function has constant returns to scale, and we keep all other parameters

identical when necessary. We vary the policy weights for output and inflation and examine the

properties of the REE for each combination of the parameters. The results are presented in Figure

1. We use a dark-colored star “*” to indicate that an REE is both determinate E-stable, a square

to indicate that an REE is determinate but not E-stable, and a light-colored circle “o” to indicate

that an REE is explosive.6 We left indeterminacy areas blank.

The top panel of Figure 1 shows the REE properties of the model without capital. Not sur-

prisingly, the results are identical to those of Bullard and Mitra (2002). When the policy weight

for inflation is larger than 1, the REE is always determinate and E-stable. The Taylor principle

therefore guarantees the uniqueness and stability of the REE. The lower panel of Figure 1 shows

the results for the model with capital. We note that the stability area nearly coincides with that

6When the system is indeterminate, we do not examine the E-stability of the equilibrium, as in Bullard and Mitra
(2002).
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Constant returns without capital

Constant returns with capital

Figure 1: Properties of the REE with the contemporaneous data rule and constant returns. The
areas of determinacy and E-stability are marked dark. The areas of indeterminacy are left blank.
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of the top panel. Most of the determinate and E-stable regions require an inflation weight higher

than 1. When the inflation weight goes below 1, the required output weight must adjust upwards.

Moreover, a determinate REE must also be E-stable, and vice versa, since there is no region denoted

by squares or circles. The Taylor principle undoubtedly still guarantees stability in this case. We

hence conclude that adding capital alone basically does not change the equilibrium properties of the

model.7

Next, we examine the effect of increasing returns to scale. As a first step, we fix the policy

parameters for output and inflation to be 1.5 and 0.5, as originally proposed by Taylor, and increase

the level of θ to see if the REE properties will change. We find that when θ is between 1 and

1.05, the REE remains determinate and E-stable. But when θ rises to 1.06, the system becomes

indeterminate and E-unstable. This is a first hint that the Taylor Principle might not lead to stable

equilibria with increasing returns.

To examine the issue more closely, we next study how the policy parameters φy and φπ affect

the outcomes when increasing returns exist. We fix the level of increasing returns to be 1.09. We

choose this number for the benchmark experiment because it is the lower bound of the recent value

estimated by Laitner and Stolyarov (2004), and is the upper bound estimated by Basu and Fernald

(1994). Other values will be examined shortly. The results are presented in Figure 2.

The results are striking. With moderate increasing returns, the Taylor Principle no longer

guarantees stability: the area of indeterminacy and the area of determinacy and E-stability almost

exactly reversed when compared with the constant-return case. While the area of determinacy and

the area of E-stability still coincide, this area requires policy weights for inflation that are mostly less

than one. Contrary to previous studies, this suggests that an inactive monetary policy is appropriate

in terms of stabilizing the equilibrium.

One naturally wonders how the area of stability shifted from the right to the left as the level of

increasing returns changes. Next we plot a series of three graphs in Figure 3 to show the transition

7Dupor (2001) show that with endogenous capital, an active interest rate rule will render the REE indeterminate.
Carlstrom and Fuerst (2000), however, point out that Dupor’s findings are largely due to the timing conventions in
the continuous time model he used. Our results confirm that Carlstrom and Fuerst are correct.
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Figure 2: Properties of the REE with the contemporaneous data rule and increasing returns. The
area of determinacy and E-stability is marked dark. The area of indeterminacy is left blank.

process. The level of returns to scale starts from 1.06 and increases at an increment of 0.01 in these

graphs. We can clearly see that as θ increases, an area of indeterminacy and E-instability is created

and gradually expands to the right and wipes off the stability areas on the right. In the mean time,

a stable area occurs on the left and slowly expands. The E-stability and determinacy areas always

coincide with each other, as in the case of constant returns (there is no area of squares).

In our analysis, we find that the level of markups, denoted by ε
ε−1 , significant affects the required

levels of increasing returns to generate indeterminacy. In our benchmark study, we set the markup

level to be 1.05. It turns out that if we lower the markup level, the REE is more likely to become

indeterminate. We show this finding in Table 2, where all results are obtained by setting the policy

weight for output to 0.5 and for inflation to 1.5. When the level of markup is 1.03, for example, an

increasing return of 1.04 is enough to generate indeterminacy. When the level of markup is 1.11, the

required level of increasing returns is 1.12. This suggests that if an economy has small markups, it

is more likely for the REE to be unstable.

The series of results have important implications for policy making. First, it is no longer safe

to implement the rule-of-thumb principle of reacting “more than one-for-one” to changes in the

inflation rates. As Figure 2 shows, when increasing returns are at a moderate level, the Taylor
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Increasing returns: θ = 1.06

Increasing returns: θ = 1.07

Increasing returns: θ = 1.08

Figure 3: REE properties as returns to scale increase from 1.06 to 1.08. The areas of determinacy
and E-stability are marked dark. The areas of indeterminacy are left blank.

Markup Lowest increasing returns leading to indeterminacy
1.01 1.02
1.03 1.04
1.05 1.06
1.08 1.09
1.11 1.12
1.17 1.18

Table 2: Table Caption
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principle will exactly lead to an unstable equilibrium. Second, the designing of policy rules should

condition heavily on the status (level of increasing returns) of the economy. The combinations of

policy parameters that lead to determinate and E-stable vary as the level of increasing returns vary.

When θ is 1.06 (top panel of Figure 3), a strong response to inflation combined with a weak response

to output will almost always guarantee stability, but when θ is 1.09 (Figure 2), such a policy always

leads to instability.

In the next three sections we show that similar results hold for the other three variants of the

Taylor rule.

4.2 Forward Expectations Rule

We now turn to the interest rate rule (21).

Just as in the previous section, a first experiment shows that when θ = 1.06, the Taylor-suggested

policy weights 1.5 for inflation and 0.5 for output no longer guarantee stability. We therefore make

a side-by-side comparison of two different REEs, one with constant returns, and the other with

increasing returns (θ = 1.09). The results are presented in Figure 4.

The top panel of Figure 4 displays the results for the case of constant returns to scale. The

plot is again almost identical to the no-capital case studied by Bullard and Mitra (2002). While in

general the stability area is smaller than the contemporaneous data case, a more than one-for-one

response to inflation combined with a moderate response to output still guarantee the determinacy

and E-stability of the REE. The lower panel of Figure 4 displays the results for the increasing returns

case. The conclusion is again reversed. With increasing returns, a less than one-for-one response to

inflation is required to obtain determinacy and E-stability of the REE. The smaller stability area

compared with the contemporaneous data case shows that an expectation-based rule is in general

less desirable.

4.3 Lagged Data Rule

We next examine the rule (20). We present the results in Figure 5.
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Constant returns

Increasing returns: θ = 1.09

Figure 4: Properties of the REE with the forward expectations rule. The areas of determinacy and
E-stability are marked with dark stars. The areas of indeterminacy are left blank.
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Constant returns

Increasing returns

Figure 5: Properties of the REE with the lagged data rule. The areas of determinacy and E-stability
are marked with dark stars. The Indeterminate areas are left blank. The determinate but E-unstable
areas are denoted by squares. The explosive areas are marked by light circles.
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The top panel of Figure 5 shows the results for the constant returns to scale economy. With

a lagged data rule, it is no longer true that a determinate REE is always E-stable. Instead, two

new areas are introduced. The areas denoted by squares represent determinate equilibria that are

not E-stable. The areas denoted by light circles represent REEs that are explosive. While stability

seems harder to achieve, it is still true that the Taylor principle basically guarantees determinacy

and E-stability, as long as the weight for output is mild enough. The lower panel shows the results

for the increasing returns economy. As before, the small area of determinacy and E-stability violates

the Taylor principle and requires a less than one-for-one response to inflation. Active response to

inflation leads to either indeterminacy or explosive REEs.

4.4 Contemporaneous Expectations Rule

Lastly, we examine the economy with the rule (22). The results are presented in Figure 6.

Bullard and Mitra (2002) believe that the contemporaneous expectations rule is both practical

and desirable — practical because current data on output and inflation are generally not available

but can be estimated to form expectations, and desirable because it guarantees stability when the

policy weight for inflation is larger than 1. This can be seen from the top panel of Figure 6. The

large area of stability resides to right of the area where φπ is equal to 1. However, as we introduce

increase returns, the conclusion no longer holds. As shown in the lower panel of Figure 6, if we

increase the level of θ to 1.09, the area of stability switches to the left, just as in the previous cases

we studied. Now an active response to inflation will only lead to indeterminate or E-unstable REEs.

4.5 Discussion

When increasing returns are introduced, implementing the Taylor principle often leads to indeter-

minacy and E-instability. What explains this puzzling result? The key is to understand the role of

increasing returns in generating self-fulfilling business cycles.

When Benhabib (1998) first explains the intuition of indeterminacy, he uses the example of

sunspot-driven investment booms. When agents expect higher investment returns, they increase

21



Constant returns

Increasing returns: θ = 1.09

Figure 6: Properties of the REE with the contemporaneous expectations rule. The areas of deter-
minacy and E-stability are marked with dark stars. The Indeterminate areas are left blank. The
determinate but E-unstable areas are denoted by squares. The explosive areas are marked by light
circles.
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investment and accumulate more capital. But with constant returns, the return of investment

(marginal product of capital) decreases with more capital accumulation, and the expectations of

higher returns will never be self-fulfilled. When increasing returns are high enough, however, more

capital will actually increase the return of investment and fulfill the earlier expectations. In our

context, this implies that with constant returns, we have the standard increasing marginal cost

curve; but with increasing returns, the firms operates on the part of the marginal cost curve that

decreases with the level of inputs.

The rest of the intuition is straightforward. In our model, the monetary authority’s job is to

dampen any fluctuations driven by inflation expectations. When consumers expect higher inflations,

the monetary authority responds by raising the nominal interest rate more than one-for-one with the

expected inflation rate. As a result, the real interest rate will rise, which in turn will curb the rise

in aggregate demand. With lower demand and a standard marginal cost curve, firms will cut their

prices — an action that goes against the earlier expectations of high inflation. This is why the Taylor

principle leads to a determinate equilibrium with constant returns to scale. If the firms operate

on the decreasing part of the marginal cost curve, on the other hand, lower demand will actually

lead them to increase prices, which exactly fulfills the consumers’ earlier expectations about high

inflation rates. This is why the Taylor principle leads to indeterminacy in the increasing returns

case.

5 Conclusion

This paper incorporates increasing returns into an otherwise standard New Keynesian model with

capital. Within this framework, we re-examine the determinacy and E-stability of REE under four

variants of the Taylor rule studied by Bullard and Mitra (2002). While Bullard and Mitra (2002) find

that in most cases the Taylor principle is sufficient to guarantee both determinacy and E-stability, we

find that with small increasing returns that are consistent with empirical estimates, these findings no

longer hold. In particular, some levels of increasing returns require a less-than-one-for-one response

of the interest rate rule to inflation to obtain determinacy and E-stability.
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The results in this paper suggest that designing the interest rule is much more complicated

than simply following a rule of thumb. In our context, a successful interest rule must condition

on the level of returns to scale of the economy. There is no reason to believe that the returns to

scale of the economy is constant over time. For example, when arguing about the existence of a

“new economy,” some researchers point out that the widespread usage of IT technology generates

additional externality effect that gives rise to increasing returns. Our results suggest that the

monetary authority may well be required to adjust its policy with such changes to ensure market

stability.

This paper suggests that the types of interest rate rules that can maintain the stability of the

REE are different when there are market failures in the economy. Given this result, opportunities

now exist for us to study other implications of increasing returns for monetary policy making. In

particular, we wonder what effect increasing returns will have when the monetary authority designs

its interest rate rules by minimizing a cost function, either with discretion or with commitment. We

leave this for future research.

6 Appendix

In this section we derive the E-stability conditions for all four variants of the interest rate rules. We

re-write the system as

bzzt + bkkt = dkEtkt+1 + dzEtzt+1, (36)

kt+1 = ezzt + ekkt. (37)

The second equation is derived from the capital accumulation equation that does not involve any

expectations.
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6.1 Contemporaneous Data and Forward Expectations Rules

With the contemporaneous data rule and the forward expectations rule, the information sets available

for the learning agents are the same, therefore the E-stability conditions are similar. We assume

agents have the perceived law of motion (PLM)

zt = a+ ψkt,

which is in the same form as the MSV solution under REE. The parameter vectors a and ψ will

have to be learned. Given this PLM, we calculate the forward expectation of zt as

Etzt+1 = a+ ψEtkt+1 = a+ ψEt(ezzt + ekkt) = a+ ψezzt + ψekkt.

Plugging this into (36), we get

zt = (I −mez)
−1b−1z dza+ (I −mez)

−1(mek − b−1z bk),

where m = b−1z dk + b−1z dzψ. Therefore we obtain the T-mappings:

T (a) = (I −mez)
−1b−1z dza,

T (ψ) = (I −mez)
−1(mek − b−1z bk).

The REE solution consists of values a = T (a) and ψ = T (ψ). The E-stability of (a, ψ) is governed

by the local asymptotic stability of the matrix differential equation:

d

dτ
(a, ψ) = T (α,ψ)− (a, ψ).

The conditions for expectational stability of the REE solutions are addressed in Evans and Honkapo-

hja (2001, section 10.3). These conditions are that the eigenvalues of the matrices DT (a) and DT (ψ)
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all have real parts less than unity. The relevant matrices are:

DT (a) = (I −mez)
−1b−1z dz,

DT (ϕ) = e0k ⊗Nb−1z dz − (ezNmek)
0 ⊗N(−b−1z dz) + (ezNb−1z bk)

0 ⊗N(−b−1z dz),

where N = (I −mez)
−1 and a and ψ are evaluated at the steady state values.

6.2 Lagged Data Rule

With the lagged data rule

it = φyyt−1 + φππt−1,

the implicit assumption is that the agents do not possess knowledge of current data. Therefore the

perceived law of motion must be different. If we plug the interest rate rule into the set of equilibrium

conditions, the system becomes

zt = FEtkt+1 +GEtzt+1 +Hkt−1 + Lzt−1,

kt = ezzt−1 + ekkt−1.

The PLM of the agents is

zt = a+ γzt−1 + ψkt−1.

Given this PLM, the T-mapping of parameters are derived as

T (a) = Feza+G(γa+ a),

T (γ) = Fezγ + Fekez + L+G(γ2 + ψez),

T (ψ) = Fezψ + Fe2k +H +G(γψ + ψek).
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The key matrices that determine the E-stability property of the REE are

DT (a) = Fez +G(γ + I),

DT (γ) = γ0 ⊗G+ I ⊗ (Gγ + Fez),

DT (ψ) = e0k ⊗G+ I ⊗ (Fez +Gγ).

6.3 Contemporaneous Expectations Rule

With the contemporaneous expectations rule

it = φyEt−1yt + φπEt−1πt,

our implicit assumption about agents’ information set is that they do not possess knowledge of

current data, and have to use past data to estimate today’s output and inflation. We can substitute

out the variable yt and re-write the interest rate rule as

it = fkEt−1kt + fzEt−1zt.

The system can be re-written as

git + bzzt + bkkt = dkEtkt+1 + dzEtzt+1,

kt = ekkt−1 + ezzt−1.

Plugging the PLM

zt = a+ ψkt−1 + γzt−1
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into the system, the system becomes

zt = FEt−1kt+1 +GEt−1zt+1 +Hkt−1 + Lzt−1 +Ma,

kt = ezzt−1 + ekkt−1.

Following the similar procedures, we derive the critical matrices as

DT (a) = Fez +G(γ + I) +M,

DT (γ) = γ0 ⊗G+ I ⊗ (Gγ + Fez − b−1z gfz),

DT (ψ) = e0k ⊗G+ I ⊗ (Fez − b−1z gfz +Gγ).

References

[1] Basu, S. and J. Fernald (1994), “Constant returns and small markups in U.S. manufacturing,”

International Finance Discussion Papers 483, Board of Governors of the Federal Reserve System

(U.S.).

[2] Basu, S. and J. Fernald (1997), “Returns to Scale in U.S. Production: Estimates and Implica-

tions,” Journal of Political Economy 105, 249 - 283.

[3] Benhabib, J., 1998. Introduction to Sunspots in Macroeconomics. Journal of Economic Theory

81, 1-6.

[4] Benhabib, J. and R. Farmer (1994), “Indeterminacy and Increasing Returns,” Journal of Eco-

nomic Theory 63, 19-41.

[5] Benhabib, J., S. Schmitt-Grohe, and M. Uribe (2001), “The Perils of Taylor Rules,” Journal of

Economic Theory 96, 40 - 96.

[6] Benhabib, J. and Y. Wen (2004), “Indeterminacy, Aggregate Demand, and the Real Business

Cycle,” Journal of Monetary Economics 51, 503-530.

28



[7] Bullard and Mitra (2002), “Learning about Monetary Policy Rules,” Journal of Monetary Eco-

nomics 49, 1105 - 1130.

[8] Calvo, A. (1983), “Staggered Prices in a Utility-Maximizing Framework,” Journal of Monetary

Economics 12, 983 - 998.

[9] Carlstrom, C. and T. Fuerst (2000) “The Role of Investment Spending in Sticky Price Models,”

Mimeo, Federal Reserve Bank of Cleveland.

[10] Christiano, L., M. Eichenbaum, and C. Evans (2001), “Nominal Rigidities and the Dynamic

Effects of a Shock to Monetary Policy,” NBER Working Paper No. 8403.

[11] Clarida, R., J. Gali and M. Gertler (1999), “The Science of Monetary Policy: A New Keynesian

Perspective,” Journal of Economic Literature 37, 1661—1707.

[12] Clarida, R., J. Gali and M. Gertler (2000), “Monetary Policy Rules and Macroeconomic Sta-

bility: Evidence and Some Theory,” Quarterly Journal of Economics 115, 147 - 180.

[13] Duffy, J. and W. Xiao (2003), “Instability of Sunspot Equilibria in Real Business Cycle Models

Under Adaptive Learning,” Computing in Economics and Finance 2003, Paper No. 287, Society

for Computational Economics.

[14] Dupor, B. (2001) “Investment and Interest Rate Policy,” Journal of Economic Theory 98, 85 -

113.

[15] Edge, R. (2000), “Time-to-Build, Time-to-Plan, Habit Persistence, and the Liquidity Effect,”

International Finance Discussion Paper No. 673.

[16] Evans, G.W. and S. Honkapohja, (2001), Learning and Expectations in Macroeconomics,

Princeton: Princeton University Press.

[17] Evans, G.W. and S. Honkapohja (2003), “Adaptive Learning and Monetary Policy Design,”

Journal of Money, Credit and Banking 35, 1045-1072.

29



[18] Fair, R. (2003), “Estimates of the Effectiveness of Monetary Policy,” Journal of Money, Credit

and Banking, forthcoming.

[19] Farmer, R., Guo, J., 1994. Real Business Cycles and the Animal Spirits Hypothesis. Journal of

Economic Theory 63, 42-72.

[20] Gali, J., J.D. Lopez-Salido and J. Valles (2004), “Rule-of-Thumb Consumers and the Design of

Interest Rate Rule,” Working Paper.

[21] Grandmont, J.M., P. Pintus, and R. de Vilder (1998), “Capital—Labor Substitution and Com-

petitive Nonlinear Endogenous Business Cycles,” Journal of Economic Theory 80, 14 - 59.

[22] Hall, R. (1990), “Invariance Properties of Solow’s Productivity Residual,” in Growth-

Productivity-Unemployment: 71-112, MIT Press, Cambridge.

[23] Hornstein, A. (1993), “Monopolistic Competition, Increasing Returns to Scale and the Impor-

tance of Productivity Changes,” Journal of Monetary Economics 31, 299 - 316.

[24] King, R. and M. Watson (1996), “Money, Prices, Interest Rates and the Business Cycle,” Review

of Economics and Statistics 78, 35 - 53.

[25] Laitner J. and D. Stolyarov (2004), “Aggregate returns to scale and embodied technical change:

theory and measurement using stock market data,” Journal of Monetary Economics 51, 191 -

233.

[26] McCallum, B. and E. Nelson, “An Optimizing IS-LM Specifications for Monetary Policy and

Business Cycle analysis,” Journal of Money, Credit and Banking 31, 296 - 316.

[27] Rotemberg, J. and M. Woodford (1995), “Dynamic General Equilibrium Models with Imper-

fectly Competitive Product markets,” in Frontiers of Business Cycle Research, T. Cooley ed.,

Princeton University Press, 243 - 293.

[28] Woodford, M. (2001), “The Taylor Rule and Optimal Monetary Policy,” American Economic

Review 91, 232 - 237.

30


	Increasing Returns and the Design of Interest Rate Rules;
	Recommended Citation

	nkm2.dvi

