University of New Orleans ScholarWorks@UNO

Ocean Waves Workshop

Jan 15th, 2:15 PM - 3:00 PM

Session 3 Discussion Notes

Christopher Brown Marine Information Resources Corporation

Follow this and additional works at: https://scholarworks.uno.edu/oceanwaves

Brown, Christopher, "Session 3 Discussion Notes" (2015). *Ocean Waves Workshop*. 4. https://scholarworks.uno.edu/oceanwaves/2015/Session3/4

This is brought to you for free and open access by ScholarWorks@UNO. It has been accepted for inclusion in Ocean Waves Workshop by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Session III Notes Advances and issues in wave measurement technologies

These notes are intended as a supplement to the Session III presentation. The following discussion points were captured by workshop rapporteurs:

- The new U.S. Navy paddle-driven wavemaker is much more effective than the former pneumatic wavemaker. The pneumatic wavemakers did not allow directional capabilities.
- Future capabilities with the paddle-driven wavemaker may support physical wave modeling in synchronization with waves measured from a wave buoy.
- *In-situ* wave measurements are sparse in the open ocean, but are useful for model verification or could be used in the analysis of satellite observations.
- Modeling efforts can be used to compensate for the inadequate number of *in-situ* wave measuring systems that are very unevenly distributed.
- Wave buoys come in a variety of shapes and sizes (i.e., spherical, discus, spar, or boatshaped hulls). Algorithms use buoy response function to characterize wave motion.
- Organizations such as NOAA are involved in the calculation of measurement uncertainties, especially for different types of wave buoys. Assess differences in buoys with a main accelerometer sensor attached to a fine wire strain gauge in fluid on floating gimbal platform versus strapped down accelerometer.
- Use remote sensing imagery to extend observations from wave buoys and to support wave modeling.
- Innovations may support use of radar (coastal vs. deep ocean), improved measurement capabilities in marshes, and enhancements that allow modeling surf in wave tanks.
- Data telemetry is challenged in certain environments, for example in areas that are associated with sea ice. Development of the Hydrokite for air-sea interaction, data exfiltration, and challenging polar deployment sites has been initiated by Woods Hole Group. Hydrokite is a streamlined towed vehicle that is attached to a bottom mount or subsurface mooring.