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     ABSTRACT 

 The inadequacy of Fick’s law to incorporate causality can be overcome by replacing it 

with the Green–Naghdi type II (GNII) flux relation. Combining the GNII assumption and 

conservation of mass leads to 

     2 ( )tt xx tc S    ,             (1) 

where ( , )x t  is the density function, ( )S   is a source term and c  is a positive constant which 

carries (SI) units of m/sec. A general source term given by 

     
1 1

m n

m n

s s

S
 

 
  

 
  

 
      0n m  ,          (2) 

is proposed. Here, the constants   and s  are the rate coefficient and saturation density 

respectively. The travelling wave solutions and numerical analysis of four special cases of 

equation (2), namely: Pearl-Verhulst Growth law, Zel’dovich Law, Newmann Law and Stefan-

Boltzmann Law are investigated. For both analysis, results are compared with the available 

literature and extended for other cases. The numerical analysis is carried out by imposing well-

studied Initial Boundary Value Problem and implementing a built-in method in the software 

package Mathematica 9. For Pearl-Verhulst source type, the results are compared to those found 

in literature [1]. Confirming the validity of built-in method for Pearl-Verhulst law, the generic 

built-in method is extended to study the transient signal response for similar initial boundary 

value problems when the source terms are Zel’dovich law, Newmann law and Stefan-Boltzmann 

law.  



vi 
 

Keywords: Fick’s law, Pearl-Verhulst Growth law, Zel’dovich law, Newmann law, Stefan-

Boltzmann law, Numerical Analysis, Travelling Wave, Initial Boundary Value Problem, 

Nonlinear differential equations. 
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I. INTRODUCTION 

Diffusion is one of the several natural transport phenomena. There are two approaches to the 

notion of diffusion, namely: 

a. Atomistic Approach: According to this point of view, diffusion is considered as the result of 

the random walk of the dispersing particles. Brownian theory of motion is based on this 

approach [2]. 

b. Phenomelogical Approach:  This methodology begins with Fick’s law which postulates that 

the flux goes from the regions of high concentrations to the regions of low concentrations. In 

1855, Adolf Fick proposed a steady flow law that was based on the same mathematical 

formalism as Fourier’s law for heat conduction or Ohm’s law for electricity [2, 3]. Fick’s law 

states that the mass flux q is proportional to the density gradient    , that is, 

                     (1) 

where D is the coefficient of diffusion. 

1.1 Development of Diffuson Models 

Fick’s law can be used to model various biological, physical and reaction diffusion systems. 

The continuity (mass conservation) equation is given by 

                             (     )             (2) 

Here,  (     ) is the source that accounts for the processes of the production and annihilation 

[4]. The subscript “t” indicates the partial differentiation of ρ(r, t) with respect to time. Taking 

the divergence of equation (1) and comparing with equation (2), we obtain 

                (     )            (3) 
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which is the general reaction-diffusion (RD) equation of the parabolic form that gives rise to 

various diffusion phenomena depending upon the source  (     ). For instance, Fisher (1937) 

[5] and Kolmogoroff et. al. (1937) [6] independently proposed a model for the propagation of a 

mutant gene in a population through random mating in one-dimension with the source given by 

Pearl-Verhulst growth law as 

      ( )     (  
 

  
).               (4) 

Combining equations (3) and (4) in one-dimension results in 

               (  
 

  
),                    (5) 

which is known as Fisher-KPP equation. This equation has diverse applications not only in 

biological processes but also in physical processes such as nuclear reactor theory, branching 

Brownian motion and flame propagation [1, 7].  

1.2 Generalization of the Source 

Before delving more into the details of equation (3), source is taken into consideration. The 

motivation to this research comes from the desire in developing a general source term that 

represents a broad class of diffusion models. Recently, Jordan [1] published an analytical study 

of equation (5) with an emphasis on shock and related kinematic wave phenomena with the 

source being Pearl-Verhulst growth law while Bargmann [8] independently conducted analytical 

study when the source term was Zel’dovich law [9] and Newman law [10, 11]. Mathematically, 

Zel’dovich law is written as 

 ( )     (
 

  
)
 

(  
 

  
)            (6)  
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whereas Newmann law is given as 

 ( )    (  (
 

  
)
 

).                        (7) 

Both Jordan and Bargmann also emphasized that the surface wave analysis of non-linear 

hyperbolic wave equations give rise to shock waves [1, 8]. Nonetheless, the source terms are 

different in the sense that Pearl-Verhulst law is evident in biological and physical processes as 

discussed earlier; Zel’dovich law is the representation of an autocatalytic reaction and Newmann 

law proposed by Newell and Whitehead to explain Rayleigh-Benard convection was applied by 

Newell to study diffusion problems in population genetics and combustion [1, 7, 9, 10, 11]. 

Particularly, both Pearl-Verhulst and Zel’dovich laws were studied by Rosen in the propagation 

of pressure waves in a combustion field [12]. In addition, Stefan-Boltzmann law which is 

applicable to high heat flux processes [13, 14] is given by 

 ( )    (  
    ),         (0 < ε < 1),          (8) 

where   is the emissivity,   is the Stefan-Boltzmann constant and    is the temperature of the 

surrounding. The physical significance of ρ changes depending upon the diffusion process under 

study. When applied to a gene mutation study, ρ represents the population density in Pearl-

Verhulst growth law and Newmann law. On the other hand, ρ denotes the concentration density 

in Zeld’dovich law for autocatalytic reactions and temperature in Stefan-Boltzmann law, 

respectively. These four laws mentioned above fall into the category of a general source term 

given as 

      
1 1

m n

m n

s s

S
 

 
  

 
  

 
 0n m  .         (9) 
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This generalization of the source can be applied not only to categorize a class of diffusion 

models but also to study such models with a general case inquiry. 

1.3 Replacing Fick’s Law with GN-II Flux Law 

Although Fick’s law adequately describes many diffusion processes, it is not applicable 

in all situations. For instance, the parabolic nature of equation (1) implies that the initial 

concentration pulse will propagate with infinite speed and the diffusion will be felt 

instantaneously [8]. Maxwell (1867) defined this contradictory feature as a “paradox of heat 

conduction (diffusion)” [4]. Researchers in heat conduction theory felt that the main cause of this 

anomaly is the fact that, according to Fourier’s law, changes in the temperature gradient are 

instantaneously reflected in the thermal flux [1, 4, 8]. Among the various formulations to replace 

the Fick’s law, Maxwell- Catteneo (MC) law [15] is the most promising; it predicts that the 

diffusion results from the damped temperature waves that propagates with finite speed and also 

introduces a relaxation time in order to delay the flux [1, 4, 8]. Mathematically, it is written as, 

  0 t xq q                 (10) 

By letting 0   and assuming 2

0

.const c
   , equation (10) reduces to 

          
2

t xq c   ,          (11) 

which is the constitutive assumption known as Green-Nagdhi type II [16] in thermal theories [4, 

8]. When Fick’s law is replaced with Green-Nagdhi type II, the continuity equation takes the 

one-dimensional form 

    
 2 ( ) .tt xx tc S   

         (12) 
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Substituting the general source in equation (12) from equation (9), we get 

   

1

2 .

m n m

tt xx t

s s

c m n
 

   
 

 



    
      
     

 ,        (13) 

which is a class of strictly non-linear (for m   n) hyperbolic partial differential equation offering 

more realistic models to various biological, physical and chemical reaction based diffusion 

processes. 

1.4. Organization of Thesis 

Having derived the general equation (13) of interest, the next step will be to investigate 

the solutions arising from various cases of the general source. In Section 2, integral equation 

approach for deriving travelling wave solutions (TWS) and built-in method in Mathematica for 

transient wave analysis of a well-posed dimensionless initial boundary value problem (IBVP) are 

applied.   

The analytical and numerical results for various source terms are presented in Section 3.  

Comparisons are drawn with existing literature whenever available. Finally, based on the 

coefficients of right hand side of equation (13), an attenuation analysis is performed followed by 

brief discussions and conclusions.  
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I. METHODS OF INVESTIGATION 

Equation (13) arises in a wide range of diffusion systems whose source is governed by 

equation (9). The main objective of this research is to investigate how the wave evolves for 

different values of m and n in the source term. This study is conducted by exploring the 

travelling wave and numerical analysis of four special cases, namely: Pearl-Verhulst growth law, 

Zeld’ovich law, Newmann law and Stefan-Boltzmann law. The results obtained from the 

analysis are compared with the literature and then extended to other cases. 

2.1 Travelling Wave Analysis 

From plasma physics to biology, the study of nonlinear waves offers more approximate 

models to study several phenomena [5, 6, 18]. Unlike linear wave theory, in which one can easily 

apply Fourier analysis to solve the TWS, nonlinear wave theory has to be dealt with a variety of 

approximate methods [18]. For travelling wave analysis, the inadequacy of a formal generalized 

method has attracted the attentions of scientists in the related field for the proposition of a 

common method [18, 19, 20]. This thesis focuses in devising a generalized equation from 

equation (13) so that TWS foe each case can be easily derived. Since equation (13) is invariant 

under the transformation x   - x, it is assumed that 

     ( , ) ( )x t f   ,          (14) 

where ( )x t     with   being a constant whereas  , the wave (propagation) speed is a 

positive constant. Substituting this transformation into equation (13) and integrating once yields 

    2 2

1 1
( ) ' .

m n

m n

s s

f f
c f   

 
  

 
    

 
        (15) 
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Here   is the constant of integration and a prime denotes differentiation with respect to . 

Provided that the integral 

1 1

m n

m n

s s

df

f f
 

  

 
  

 

  be determined, the TWS for any particular 

case of a given value of m and n can be successively derived.  

2.2 Numerical Analysis 

The strictly hyperbolic nature of equation (13) has the potential of giving rise to shock 

waves. However, the shock wave analysis is limited within the shock wave region. To 

quantitatively study the evolution of waves beyond the shock region, computational tools and 

methods have to be employed. In order to conduct a successful numerical analysis, a well- 

studied IBVP [1] given by 

1

2

f

0 f f

f

,      ( , ) (0, ) ( , );

(0, ) [ ( ) ( )]                      ( ,  ) ,       ;   

( ,0) ,       ( ,0) 0,          

m n m

tt xx t

s s

c c

c t

c m n x t t

t
t A H t H t t Sin t t t

t

x x x

 
   

 

    

  

 



 



    
         
     

 
      

 

  (0, );








 




      (16) 

is considered; here, H(.) represents the Heaviside Unit Step function, the constant 0 (0, ]sA   

denotes the amplitude of the input ‘ pulse’, (0, ]c s    and 
ft

c
 is the duration (or width) of 

the pulse. Introducing the dimensionless variables, 

   
f

,          ,             ,c

s

x t
x t

t

 





                       (17) 
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the IVBP is simplified into non-dimensional form 

    
 

1
,      ( , ) (0,1) ( ,1);                                (18a)

(0, ) [ ( ) ( 1)]                      (1,  ) 0,       1;                                    (18b) 

(

m n m

tt xx tm n x t

t H t H t Sin t t t

       

   



        

    

,0) 0,       ( ,0) 0,          (0,1);                                                                               (18c)tx x x







  



where the bars have been omitted but understood, c

s








 , ft   and 0

s

A



 . 

2.2.1 Generic Finite Difference Scheme 

Whenever one attempts to perform numerical analysis of partial differential equations, 

method of finite differences is adopted [1]. Following the footstep of Jordan [1], the simple 

discretization of equation (18a) is considered:  

    
1 1 1 1

1
1 1

2 2

2 2
   = ,

2( )( ) ( )

k k k k k k k k
m n m

k kh h h h h h h h

h hm n
tx t

       
    

   
 

 
     

     
   

(19) 

where hx h x  , kt k t   and ( , ) ( , )h kx t x t  . The explicit scheme for the most advanced 

time-approximation is given by 

2 2 1 1 2

1 1

1

1

2(1 ) ( ) { ( ) } 1
2

1 ( ) { ( ) }
2

k k k m k n m k k

h h h h h h

k

h

k m k n m

h h

k
R R m n R

k
m n


       




   


  

 




 

 
        

 


   

 ,          (20) 

where R = k/h and the truncation error is given by 
2 2[ ]h k  . Implementing an algorithm for 

equation (20), one can easily analyze the transient response based on equation (18) by 

performing a case by case analysis as in literature [1]. Nevertheless, in order to implement an 

algorithm for equation (17), one has to consider the discretization of values of x , t  and R 
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wisely. Even though one may be able to perform clear and informative analysis with the aid of an 

algorithm, the values chosen may be irrelevant to the desired phenomenon under study [1].  

2.2.2 Built-in Finite Difference Method 

In order to reduce the complexity in carrying out the numerical analysis of IVBP denoted by 

equations (18a), (18b) and (18c), built-in methods in Mathematica 9 are subscribed and 

interweaved in the simplest manner to apply “NDSolve”. The built-in method used in solving the 

IVBP is Method of Lines.  

Method of Lines allows us to discretize in spatial dimension. The PDEs must be well posed 

as an initial (Cauchy) value problem in at least one dimension in order for this method to be 

applied. Since spatial variables are the ones to which the discretization is done and temporal 

variable to be found, we use the default value “TensorProductGrid” in the “Spatial 

Discretization” option. The “TensorProductGrid” uses discretization methods for one spatial 

dimension and uses an outer tensor product to derive methods for multiple spatial dimensions on 

rectangular regions. The maximum value the difference order can take is determined by the 

number of points in the grid. A limiting order is commonly referred to as “Pseudospectral”; 

however, “Pseudospectral” has a drawback that artificial oscillations (Runge’s phenomenon) can 

be extreme. To avoid such oscillations, “Pseudospectral” method is replaced with “Minpoints” 

and “PrecisionGoal” methods. While implementing the NDsolve for IBVP, a warning message 

about inconsistent boundary conditions is issued.  This happens due to the discretization error in 

approximating the boundary conditions. The error occurs because the spatial error estimates used 

to determine how many points to discretize with are based on initial conditions and PDE not 

boundary condition [21].  
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3. RESULTS 

In this section, TWS derived from equation (15) and transient signal response for IBVP from 

equation (18) for Pearl-Verhulst growth law, Zel’dovich law, Newmann law and Stefan-

Boltzmann law are presented. 

The sequences shown in figures I – XVI show the evolution of the normalized relative 

density profiles ρ/ε versus x different values of α, where x corresponds to the interval x (0, 1). 

The choice of values of parameters was based on the need for comparison with the literature [1] 

and for clear, informative graphs. The values chosen may not necessarily correspond to a 

particular diffusion system. Moreover, attenuation analysis for each law is carried out, 

respectively. 

3.1 Pearl-Verhulst Growth Law 

For Pearl-Verhulst growth law, equation (15) takes the form 

    
2

2 2( ) ' .
s

f
c f f   




 
    

 
         (21) 

Separating the variables and integrating once results in 

    
2 22

constant
( )

s

df

cf
f



 
 





 
 

  
 

  

When solved in Mathematica 9, the integral on the left takes the form of ArcTanh and the 

equation reduces to 
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2 ( 2 )
( 4 )

( 4 )

s s

s s

s

ArcTanh f


 
   

   

 
 

  


 = 

2 2
constant

( )c



  




. 

Hence, 
2 2

( ) constant
2 4 ( )

sf Tanh
c

  
 

   

  
    

   

         (22) 

is the required TWS for Pearl-Verhulst growth law with ( 4 )s      and
1

2 s





 . The 

solution represented by equation (22) has similar form of Tanh as in literature [1] and the 

solution in literature [1] is a special case of TWS given by equation (22). It should be noted that 

Jordan [1] derived the TWS for this case using Riccati equation. 

Figures I –IV show the time evolution of relative density profiles for Pearl-Verhulst growth law. 
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Fig. I: ρ/ε versus x for Pearl-Verhulst law for α = 0.75, γ
*
 = 5.0 and ε = 0.25.  
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Fig. II: ρ/ε versus x for Pearl-Verhulst law for α = 0.50, γ
*
 = 5.0 and ε = 0.25.  
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Fig. III: ρ/ε versus x for Pearl-Verhulst law for α = 0.0, γ
*
 = 5.0 and ε = 0.25.  
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 Fig. 

IV: ρ/ε versus x for Pearl-Verhulst law for α = 0.0, γ
*
 = 5.0 and ε = 1.0.  
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In Fig. I and Fig. II, both profiles suffer attenuation. Since these profiles were generated 

for α = 0.75 and α = 0.50 respectively, the profiles behave as expected based on the fact that the 

coefficient of the term t is strictly negative for α ≥ 0.5 as mentioned [1] . Further analysis of 

Fig. I and II were carried out in terms of singular surface theory and acceleration wave in 

literature [1]. However, our attention is restricted only to confirm our scheme for carrying out the 

numerical simulation and performing the attenuation analysis based on the coefficient of t  in 

equation (18a). Unlike figures I and II, the density profile suffer amplification for α = 0.0 as 

shown in Fig. III; by t = 0.5, the peak value of ρ/ε already exceeds the input impulse [1]. From 

the last profile of Fig. III, it is clear that peak value of ρ/ε even exceeds 0.5. If ρ < 0. 5, the 

coefficient of t  would have been positive and negative for ρ > 0.5. In the literature [1], the 

seemingly conflicting effect of amplification observed in figure III was found to be in agreement 

with the analysis of singular surface theory. The profiles observed in Fig. IV for α = 0.0 and ε = 

1.0 also resemble those of literature [1]. Similar analysis is carried out for other source terms, 

respectively. 
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3.2 Zel’dovich Law 

Repeating the integral approach with Zel’dovich law, the value of 
2 3

2

s s

df

f f
 

 

 
  

 

 is 

calculated using Mathematica 9. The obtained value being a root sum of slot functions is not 

suited for performing travelling wave analysis. However, for 0  , the integral reduces to a 

sum of reciprocal of f and natural logarithmic functions of f and the implicit TWS given by 

   
2 2

ln constant
( )

s sf

f f c

  


  

  
    

   
, 

is obtained. This is in agreement with the literature [8]. Bargmann [8] even found the explicit 

TWS for a special case in terms of Lambert W function.  

The figures V – VIII represent the time evolution of relative density profiles for Zel’dovich law. 
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Fig. V: ρ/ε versus x for Zel’dovich law for α = - 0.5, γ
*
 = 5.0 and ε = 0.25.  
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Fig. VI: ρ/ε versus x for Zel’dovich law for α = 0.0, γ
*
 = 5.0 and ε = 0.25.  
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Fig. VII: ρ/ε versus x for Zel’dovich law for α = 0.5, γ
*
 = 5.0 and ε = 0.25.  
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Fig. VIII: ρ/ε versus x for Zel’dovich law for α = 0.5, γ
*
 = 5.0 and ε = 1.0.  
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In Fig. V, attenuation is observed. In all the frames of figure V, it is clear that the peak 

value of ρ is less than 0.5. Since the coefficient of t  is strictly negative for either ρ > 0.5 or ρ < 

0.5 whenever α = - 0.5, attenuation is expected. Unlike in figure V, the profile ρ/ε versus x 

undergoes amplification in figure VI when α = 0.0 and ε = 0.25; in this case, the coefficient of 

t is negative for ρ > 2/3 (i.e. attenuation) and positive for ρ < 2/3 (i.e. amplification). The 

amplification is expected as the peak value of ρ is still less than 2/3 even in the fourth frame of 

Fig. VI. For a positive value of α, the sign of the coefficient of t  is bounded by (2 – 3α)/3. For 

ρ > (2 – 3α)/3, the coefficient is strictly negative whereas positive for ρ < (2 – 3α)/3. Based on 

this fact, the profile in figure VII for α = 0.5 and ε = 0.25 must suffer attenuation since the peak 

value of ρ, is greater than 0.167, is 0.25 in the last three frames of Fig. VII. Nonetheless, the 

profile does not remarkably behave so in the graph. To obtain a clear picture, α is held constant 

at 0.5 and the amplitude of the input impulse is increased to 1, i.e. ε = 1.0. The plot of evolution 

of ρ/ε versus x over time shows that the negative growth becomes prominent for ε = 1.0 as shown 

in Fig. VIII. This confirms that ρ diminishes for ρ > (2 – 3α)/3 as the peak value of ρ is greater 

than 0.167 in all frames of figure VIII. 
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3.3 Newmann Law 

Applying the integral approach, the TWS for Newmann law (for a special case of 0  ) 

given by 

    

2 2

1

2
1

( )

f

AExp
c



  

 
 

  
 

, 

where A is a constant. Again, the above TWS has the same form as in literature [8] for a special 

case.  

The sequences of the figures IX – XI depict the evolution of normalized relative density profiles 

ρ/ε versus x in the interval x (0, 1) for Newmann law and correspond to α < 0, α = 0 and α > 0, 

respectively.  
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Fig. IX: ρ/ε versus x for Newmann law for α = - 0.5, γ
*
 = 5.0 and ε = 0.25.  
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Fig. X: ρ/ε versus x for Newmann law for α = 0.0, γ
*
 = 5.0 and ε = 0.25.  
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Fig. XI: ρ/ε versus x for Newmann law for α = 0.0, γ
*
 = 5.0 and ε = 0.25.  
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Fig. XII: ρ/ε versus x for Newmann law for α = 0.0, γ
*
 = 5.0 and ε = 1.0.  
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For Newmann law, the coefficient of t is strictly negative for  
2

   > 1/3, the 

analysis is constrained for different values of α within the interval (-1, 1). As shown in figure IX, 

the relative density profile over time amplifies because     becomes  0.5   whose 

square turned out to be less than 1/3. Even the peak value of ρ is 0.75 at t = 0.95 for α = - 0.5, γ
*
 

= 5.0 and ε = 0.25. Therefore, amplification is expected in Fig. IX. However, it should be noted 

that as the value of α is gradually decreased from - 0.5, the square term increases and at a certain 

value of α, it exceeds 1/3. By slightly altering the values of α towards -1 while keeping other 

parameters constants, it is found that the lower bound on α is – 0.70 for γ
*
 = 5.0 and ε = 0.25. For 

– 1 < α < - 0.70, the attenuation is witnessed as anticipated. Now, the value of α is increased 

towards 1. Fig. X clearly displays that the profile suffers positive growth over time for α = 0. The 

peak value of ρ exceeds 1/3 by t = 0.5 and the square of its peak value exceeds 1/3 by t = 0.75. 

This surprising growth is not predicted by the coefficient of t  in equation (18a) for Newmann 

law. In fact, the upper bound on α is spotted to be 0.45, after which attenuation becomes 

prominent. As depicted in Fig. XI, the relative density profile suffers attenuation for α = 0.50, γ
*
 

= 5.0 and ε = 0.25 as normal.  

To see if the contradictory negative attenuation observed in Fig. X extends further,  ε is altered 

from 0.25 to 1.0 holding α constant. The time evolution of ρ/ε versus x over time shows that 

there is not only no indication of amplification but also a slight diminution in the peak value of 

profile as shown in Fig XII. 
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3.4 Stefan-Boltzmann Law 

Similarly, the implicit TWS for Stefan-Boltzmann law for 0  is found to be 

2 2
2 ln 4 constant

( )

s s

s

f
ArcTan

f f c

  


   

   
     

      
. 

The sequences of the figures XIII – XVII depict the evolution of normalized relative density 

profiles ρ/ε versus x in the interval x (0, 1) for Stefan-Boltzmann law and correspond to α < 0, 

α = 0 and α > 0 respectively.  
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Fig. XIII: ρ/ε versus x for Stefan-Boltzmann law for α = -0.5, γ
*
 = 5.0 and ε = 0.25. 
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Fig. XIV: ρ/ε versus x for Stefan-Boltzmann law for α = 0.0, γ
*
 = 5.0 and ε = 0.25. 
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Fig. XV: ρ/ε versus x for Stefan-Boltzmann law for α = 0.5, γ
*
 = 5.0 and ε = 0.25. 
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Fig. XVI: ρ/ε versus x for Stefan-Boltzmann law for α = 0.0, γ
*
 = 5.0 and ε = 1.0. 
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In figure XIII, which was generated for α = - 0.5, γ
*
 = 5.0 and ε = 0.25, positive growth is 

observed. This is exactly what one should expect for this case based on the fact that the 

coefficient of the term t is strictly positive as long as the value of ρ is less than – α. It is also 

clear from the last frame of Fig. XIII that even the peak value of ρ, which is 0.3, is less than 0.5. 

As α becomes more negative, amplification dominates. Upon slightly changing the value of α 

towards 0, we found that the positive growth of the profile completely diminishes at α = -0.3 and 

finally, the profile represent the general hyperbolic wave with no damping. When α = 0.0, γ
*
 = 

5.0 and ε = 0.25, the profile still shows no effect of damping as shown in Fig. XIV. This result 

seems to contradict the prediction that the damping coefficient for this particular case turns out to 

be strictly negative (and hence negative growth). However, when the profile of relative density 

versus space is plotted for α = 0.5, γ
*
 = 5.0 and ε = 0.25, attenuation is detected as shown in Fig. 

XV, which approves the anticipated effect of damping coefficient in equation (18a). To see if the 

contradictory negative attenuation observed in Fig. XIV extends further, ε was converted from 

0.25 to 1 with α held constant. The time evolution of ρ/ε versus x over time shows a strong 

negative growth of profile as shown in Fig XVI. 
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 Conclusion 

To sum up, a general equation for a class of diffusion models is successfully formulated. 

It is shown that implicit TWS can be derived by using the integral equation approach. Moreover, 

the explicit TWS for Pearl-Verhulst growth law and Newmann law were successfully derived 

directly from the integral approach. Similarly, the numerical analysis is successfully conducted 

for the mentioned cases of the general source. Following attenuation analysis and comparison 

with the literature [1], it is noted that the damping effect becomes pronounced when the strength 

of the input impulse is amplified and singular surface analysis should be conducted to completely 

understand the overall impact of the input transient signal.  
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APPENDIX A: Mathematica Code for NDSolve and Plot methods 
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