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Cyclotron frequency coupled enhancement of Kerr rotation in low
refractive index-dielectric Õmagneto-optic bilayer thin-film structures

A. De and A. Puri
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

~Received 18 December 2001; accepted for publication 22 February 2002!

We investigate the enhancement of magneto-optic polar Kerr rotation over a broad range of optical
frequencies. The Drude model for the dielectric tensor is considered. Resonance-like peaks in the
Kerr rotation and ellipticity caused in the vicinity of a plasma edge is extended throughout the
visible spectrum by deriving an expression for the cyclotron frequency such that Re(exx);1 at any
given incident photon energy and plasma frequency of the material. The Kerr rotation obtained by
use of this expression was studied for the case of InSb and further enhancement of Kerr rotation was
achieved in the case of LiF/InSb bilayer thin-film structure, grown on a glass substrate. The
numerical analysis was carried out using a 232 characteristic matrix, which takes into account
multiple reflections and interface effects within the medium. In addition the role of various
magneto-optic material parameters and layer thicknesses is investigated in determining the optical
frequency at which the maximum Kerr rotation occurs, under the present cyclotron frequency
condition. Enhanced Kerr rotation greater than 1.5° over a broad range of optical frequencies was
obtained. Tables showing optimum figure of merit for repeated LiF/InSb bilayers at 3.1 eV for
different plasma frequencies are also provided. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1469665#

I. INTRODUCTION

In the last three decades a vast amount of research has
been carried out in order to enhance the magneto-optic Kerr
effect ~MOKE!, particularly because of its importance in the
optical readout of magnetically stored information. The polar
Kerr effect continues to be the preferred configuration for
magneto-optic~MO! readout as most MO materials have per-
pendicular magnetization. The appearance of high peaks in
the MOKE spectrum has been attributed to various physical
origins such as interband transitions and spin–orbit
coupling.1,2 Feil and Hass3 have suggested a slightly differ-
ent explanation for large MOKE. They have shown through
model calculations that large MOKE occurs where Re(exx)
;1, which is in the vicinity of plasma resonance frequency
of free charge carriers.

Kerr rotation~KR! enhancement in the case of ferromag-
netic layers embedded in metallic matrices has been more
widely attributed to plasma resonance of free carriers in the
nonmagnetic noble metals4,5 and also to sharp surface plas-
mon resonance of noble metals in total reflection geometry.6

It has also been reported7–9 that enhancement of KR is pos-
sible by deposition of a low refractive index dielectric~DE!
film on top of the MO material. This has been attributed to
the fact that the DE film would reduce the polarization com-
ponent of the directly reflected light without influencing the
component induced by the KR. In Ref. 10 it has been shown
that such an enhancement of MOKE can be expected if the
dielectric constants of neighboring materials are low and
well matched to each other.

In this article we have carried out numerical simulations
to enhance the KR in view of the concepts presented in Refs.
3 and 7–9. In particular we study the combined effect of

Kerr enhancement due to plasma resonance in the MO media
and due to deposition of a low refractive index film on such
a MO media. This is done for the particular case of LiF/InSb
bilayer structures. We assume that macroscopically, MO ef-
fects of free carriers can be represented by the Drude model
with reasonable accuracy and that large MOKE indeed oc-
curs wherever Re(exx);1. This enables us to obtain a simple
expression for the cyclotron frequencyvc in the Drude
model, which satisfies the Feil and Hass condition@i.e.,
Re(exx);1# at any optical frequency and thus enables us to
obtain high KR at any optical frequencies of our choice,
simply by adjusting the MO and dielectric layer thickness
and by choosing an appropriate plasma frequency. Broad-
band characteristics in the KR can also be achieved. This has
been carried out with particular reference to InSb, which was
the chosen MO material and has been discussed in greater
detail along with some theoretical background in Sec. II.

A 232 characteristic matrix formulation11–13 which
would be required to analyze multilayer structures, is briefly
discussed in Sec. III. In Sec. IV, under thevc condition
obtained in Sec. II, we were able to further enhance the KR,
by depositing a low refractive index DE on top of the MO.
We chose LiF as our DE as it has a very low refractive index.
Various parameters such as plasma frequency~which de-
pends on the doping density! and layer thickness were varied
in order to investigate their respective effects on MOKE. It
was found that the optical frequency at which the KR peaks
is quite heavily dependent on the layer thickness of the DE
and the MO material, which enabled us to control the MOKE
to some extent by controlling layer thickness. The LiF/InSb
bilayer structure was also studied by repeating it a number of
times at an optical frequency of 3.1 eV. We have provided
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tables that give us various MOKE parameters after having
optimized the figure of merit~FOM!.

II. BACKGROUND THEORY AND DERIVATION

Circularly polarized light propagating along thez axis
can be expressed in terms of its electric field vector by

E65real$E0ei ~vt22pñ6z/l0!~ex6 iey!%, ~1!

wherel0 is the wavelength in vacuum, andex and ey are
unit vectors inx and y directions, respectively. The1, 2
signs represent right and left circularly polarized modes of
propagation of an electromagnetic wave in a longitudinal
magnetic field.ñ6 is the complex index of refraction given
by ñ65n62 ik6 , wheren6 and k6 are the refractive and
absorptive indices, respectively.

The dielectric tensor is in general complex and takes the
form

e jk5e1 jk1 i e2 jk . ~2!

Symmetry of the problem configuration allows simplification
of the dielectric tensor and it may be expressed as

e5

exx i exy 0

2 i exy eyy 0

0 0 ezz

. ~3!

It is well known that the dielectric response of the medium
can be described by Maxwell’s equations. Applying Max-
well’s equations on electromagnetic fields given by Eq.~1!
leads to the following expression for the complex index of
refraction:

n25me. ~4!

Ignoring nonlinear effects in the material response and fol-
lowing the arguments of Landauet al. that m51 at optical
frequencies, the complex index of refraction may thus simply
be expressed as

~n2 ik !6
2 5exx6 i exy5e6 . ~5!

The complex polar MO rotation and ellipticity of reflected
light can be described by using the properties of the materi-
al’s dielectric tensor by14

uk2 i jk5
exy

~12exx!Aexx

. ~6!

KR is described by the imaginary part of the off-diagonal
matrix elementexy and Kerr ellipticity~KE! by the real part.
The KR may be simplified and expressed as

uk5
p•exy8 1q•exy9

p21q2 , ~7!

where exy8 , exy9 are real and imaginary parts of the off-
diagonal dielectric tensor, respectively.p5a(12a21b2)
12ab2 and q5(a22b221)12a2b, where á and b are
related to the diagonal part of the dielectric tensor byAexx

5a2 ib.
On application of a magnetic field the plasma reflection

edge splits into two edges, and the separation between the
two minima increases linearly15 with the field. Hence the
application of a magnetic field changes the complex index of
refraction, inducing magnetic circular bifringence and mag-

FIG. 1. Solution curves showing real and imaginary parts ofvc for various values ofvp .
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netic circular dichroism. In the Kerr configuration with the
pointing vectorSiB0 andE'B0 the complex dielectric ten-
sor may be written16 as

e65e`S 12
vp

2

v~v6vc2 in!
D , ~8!

wherevp is the plasma frequency,vc is the cyclotron fre-
quency,n is the scattering frequency, ande` is the back-
ground dielectric constant. The plasma frequency may be
expressed asvp5(4pNe2/m* ec)

1/2 and the cyclotron fre-
quency asvc5He/m* c. H being the magnetic field,c the
speed of light,e the charge of an electron,m* the effective
mass,N the doping concentration, andec the dielectric con-
stant of the medium.

In a polar semiconductor material such as InSb, the MO
effects would be altered when lattice vibrations are added.
The changes will be largest in the vicinity of the optical
phonon frequencies. Hence we may express the dielectric
tensor as

e65e`S 12
vp

2

v~v7vc2 ig!
1

vL
22vT

2

~vT
22v21 iGv!

D , ~9!

where vL is the longitudinal phonon frequency,vT is the
transverse phonon frequency, andG andg are phonon damp-
ing constants.

An expression for the diagonal part of the dielectric ten-
sor (exx) can easily be obtained from Eqs.~5! and ~9!

exx5e`S 12
vp

2~v2 ig!

v~~v2 ig!22vc
2!

1
~vL

22vT
2!~~vT

22v2!2 iGv!

~vT
22v2!21G2v2 D . ~10!

By solving the above equation for real and imaginary parts
and ignoringg2 terms we obtain

Re~exx!5e`S 12
vp

2

v22vc
2 1AD , ~11!

where

A5
~vL

22vT
2!~vT

22v2!

~vT
22v2!21G2v2 . ~12!

According to Ref. 7, a pronounced enhancement of the com-
plex MOKE is expected in the vicinity of plasma resonance
of free charge carriers which is in regions where Re(exx)
;1. Thus by substituting this condition in Eq.~11! we obtain
an expression forvc

vc5Av22
e`vp

2

e`~11A!21
~13!

and by setting Re(exx)51, Eq.~7! can simply be rewritten as
follows:

uk5
1

2 S exy8

A12b2
1

exy9

b D . ~14!

FIG. 2. ~a! Kerr rotation and~b! Kerr ellipticity for bulk MO ~01 arrangement!.
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Expression~13! suggests if the cyclotron frequency~which is
dependent on applied magnetic field and temperature! were
made to vary as a function of incident photon energy and
properties of the material such as plasma frequency~which
depends on doping concentration! then a high and possibly
flat KR could be obtained across the optical frequency spec-

trum of interest. We set a maximum upperbound limit for the
plasma frequency in order to allowvc to have only real
values. This constraining factor can be obtained from Eq.
~13! and can be written as

~~11A!21/e`!v2>vp
2. ~15!

FIG. 3. ~Color! Kerr rotation as a function ofv andd1 at vp50.8 eV.

FIG. 4. ~Color! Average reflectivity as a function ofd1 andv at vp50.8 eV.
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Figure 1 shows the real and imaginary parts of the cyclotron
frequency for InSb for various values of plasma frequency.
The optical constants for InSb were obtained from Ref. 17.
As can be quite clearly seen from Fig. 1, the maximum value
of plasma frequency for this material has to be around 0.9 eV
so as to keepvc real.

III. 2Ã2 CHARACTERISTIC MATRIX FORMULATION

In order to analyze the spectra of the complex MO Kerr
spectra of a multilayer system, a 232 MO characteristic
matrix is employed. The characteristic transfer matrix forN
number of parallel, homogeneous, isotropic layers can be
given by

F S̃11
6 S̃12

6

S̃21
6 S̃22

6
G5)

i 51

N
1

t̃ i ,i 11
6

Fej b i6 0

0 e2 j b i6
G

3F 1 r̃ i ,i 11

r̃ i ,i 11 1
G . ~16!

In the polar Kerr configuration the magnetization is perpen-
dicular to the surface and parallel to the direction of light
propagation. The eigenmodes are left and right circular po-
larizations and thus the Fresnel’s reflection and transmission
coefficients at normal incidence of each interface is given by

r̃ i ,i 11
6 5

ni
62ni 11

6

ni
61ni 11

6

and

t̃ i ,i 11
6 5

2ni
6

ni
61ni 11

6 . ~17!

The phase factor is given byb i
65(2p/l)ni

6di , wheredi is
the thickness of thei th layer.
The complex reflection coefficient of the multilayer system
can be obtained from the resultant characteristic transfer ma-
trix

r r
65

S̃6
21

S̃6
11

. ~18!

The reflectivity is given by

R65ur r
6u2. ~19!

KR can also be expressed as the phase difference between
left and right circularly polarized light18

uK52 1
2~D12D2!, ~20!

where the phase difference is given by

D65tan21S 22k6

n6
2 1k6

2 21D
52 j log

r r
6

ur r
6u

. ~21!

KE can simply be expressed in terms of reflection coeffi-
cients as

jK52
ur 1u2ur 2u
ur 1u1ur 2u

. ~22!

FIG. 5. ~a! Kerr rotation~b! Kerr ellipticity, ~c! reflectivity, and~d! FOM for 013 withd154.5 nm.
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FIG. 6. ~Color! Kerr rotation as a function ofd1 andd2 at v53.1 eV andvp50.8 eV.

FIG. 7. ~Color! Average reflectivity as a function ofd1 andd2 at v53.1 eV andvp50.8 eV.
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FIG. 8. ~Color! Color contours of constant Kerr rotation as a function ofd1 andd2 at v53.1 eV andvp50.8 eV.

FIG. 9. ~a! Kerr rotation,~b! Kerr ellipticity, ~c! reflectivity, and~d! FOM for 0213 bilayer stack withd155 nm andd2556 nm.
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A FOM may be used to characterize the performance of a

multilayer MO media.14 While evaluating several MO mate-
rial systems, the FOM can be used as a basis for quantitative
comparison. It can be expressed as

FOM5Auk
2
•Ra, ~23!

where Ra is the average reflectivity and is given byRa

5ur 1
2 u1ur 2

2 .

IV. NUMERICAL RESULTS AND DISCUSSION

The numbers 0, 1, 2, 3 are assigned to air, MO semicon-
ductor material~InSb!, low refractive index DE material, and
substrate, respectively. The low refractive index DE material
chosen was LiF and SiO2 was chosen to be the substrate. We
are justified in choosing a low refractive index material as a
substrate. It has been shown9 that if the nonmagnetic reflec-
tor has a low refractive index then an enhancement of KR is
achieved. Material dispersions were taken into account and
the refractive indices for LiF and SiO2 in the 1–5 eV regions
were obtained from Ref. 17. In the optical frequency range of
1–5 eV, the refractive indices of the InSb were calculated
using Eqs.~5!, ~9!, and~13!. The optical constants for InSb
are:17 e`515.7, vL519 meV, vT517 meV, G51.2 meV,
andg50.6 meV.

In Fig. 2 we plot various MOKE parameters for bulk
MO media ~01 configuration! as a function of optical fre-
quency and for variousvp values. The reflection coefficients
are calculated using Eqs.~15! and~16!. The KR as seen from
Fig. 2 is in general higher for the highervp value. At vp

50.8 eV, the KR has a quadratic variation with respect to
the optical frequencies, it is 0.355° at 1 eV and then gradu-
ally flattens out to 0.266° at 5 eV. The higher KR value of
0.355° at 1 eV is due to the close proximity of the plasma
resonance edge. The KE also exhibits a quadratic behavior
and is20.662° at 1 eV and goes down to20.621° at 5 eV.
With vp50.2 eV, the MOKE parameters vary more linearly
since the plasma resonance edge would be further away from
the spectral region under observation, as compared to the
vp50.8 eV case. KR is about 0.2635° throughout; KE varies
from 20.608° to20.533°.

The effect of depositing a thin film of InSb on a SiO2

substrate~013 configuration! is studied next. A three dimen-
sional~3D! graph showing the effect of varyingv andd1 on
the KR can be seen in Fig. 3, where at higher optical fre-
quencies the KR peaks for a film thickness of aboutd1

54.5 nm. It is worth noting that the value ofd1 at which
maximum KR occurs increases rapidly as we move to lower
optical frequencies. The corresponding average reflectivity is
shown in Fig. 4. We can observe from the figures that the
highest average reflectivity corresponds to the lowest KR
value, however the converse is not necessarily true.

In Fig. 5 by setting the film thickness to the optimized
value of 4.5 nm we plot various MOKE parameters for dif-
ferent values ofvp . The resulting reflectivity and FOM are
quite low in this case. The peak KR was 0.743° at about 3.1
eV and forvp50.8 eV. The corresponding KE was 0.042a,
andR1 andR are 19.32%, and 16.7% respectively. The KR
for vp50.8 eV displays impressive broadband characteris-

FIG. 10. ~Color! Color contours of constant Kerr rotation as a function ofd1 andd2 at v52 eV andvp50.8 eV.

TABLE I. Comparison of MOKE parameters for various configurations at
v53.1 eV andvp50.8 eV.

Configuration
d1

~nm!
d2

~nm!
uK

~deg!
jK

~deg! R1 R2 Ravg FOM

01 — — 0.269 20.625 0.994 0.349 0.672 0.200
013 4.5 — 20.743 0.053 0.184 0.159 0.171 0.128

0213 5 56 1.563 0.274 0.087 0.152 0.119 0.544
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tics and is greater than 0.7° between 2.15 and 4.67 eV. The
KR for most part of the spectrum is higher forvp50.8 eV
than for vp50.2 eV. However, at 1.836 eV they are both
equal and below 1.836 eV,vp50.2 eV yields a higher KR.

A further improvement in the KR is seen in the 0213
configuration where a thin film of a low refractive material
~LiF! is deposited on the input side. The KR is expected to
increase and is also usually accompanied by an enhancement
in KE. This is due to the fact that the polarized light beam
would experience multiple reflections and interference ef-
fects in the DE layer. A low refractive index DE would re-
duce the polarization component of the directly reflected
light without influencing the component induced by the KR.
This would thus aid in the enhancement of KR.

A 3D profile view of KR and reflectivity as a function of
thickness and forv53.1 eV ~400 nm! and vp50.8 eV can
be seen in Figs. 6 and 7, respectively. The highest reflectivity
corresponds to the lowest KR, however, and as stated earlier
the converse is not necessarily true. A color contour plot of
the KR was plotted and is shown in Fig. 8. This was done in
order to determine thed1 andd2 values that yield the highest
KR. The dark red and the blue regions correspond to the
highest and lowest KR values, respectively. This figure leads
us to a choice ofd155 nm or d2556 nm to optimize KR.
Note the KR and the average reflectivity are periodic with
respect to layer thickness and that there exist multiple solu-
tions of d1 and d2 that would yield identical results. We
select the lowest possible values ofd1 andd2 .

FIG. 11. ~a! Kerr rotation,~b! Kerr ellipticity, ~c! reflectivity, and~d! FOM for 0(21)n3 as a function ofn at v53.1 eV, vp50.8 eV, andd154 nm.

TABLE II. MOKE related parameters obtained after optimizing FOM for
0(21)n3 layers atv53.1 eV andvp50.8 eV.

n
d1

~nm!
d2

~nm!
uK

~deg!
jK

~deg! R1 R2 Ravg FOM

1 5 56 1.563 0.274 0.087 0.152 0.119 0.544
2 10.9 61.7 1.570 20.378 0.735 0.619 0.677 1.329
3 12.3 63.5 1.566 20.448 0.886 0.843 0.865 1.515
4 12.7 62.8 1.571 20.466 0.929 0.915 0.922 1.573
5 12.9 62.2 1.571 20.472 0.944 0.945 0.944 1.594
6 13.0 62.1 1.571 20.472 0.948 0.964 0.956 1.604
7 13.0 62.9 1.571 20.467 0.945 0.983 0.964 1.609
8 13.1 62.0 1.569 20.471 0.951 0.983 0.967 1.611
9 13.1 62.2 1.570 20.469 0.950 0.989 0.969 1.614

10 13.1 62.3 1.570 20.469 0.950 0.993 0.971 1.615

TABLE III. MOKE related parameters obtained after optimizing FOM for
0(21)n3 layers atv53.1 eV andvp52.4 eV.

n
d1

~nm!
d2

~nm!
uK

~deg!
jK

~deg! R1 R2 Ravg FOM

1 10.0 67.1 1.497 20.043 0.220 0.123 0.172 0.620
2 16.9 60.5 1.571 20.409 0.767 0.587 0.677 1.336
3 19.0 61.8 1.568 20.473 0.920 0.823 0.872 1.529
4 19.6 61.4 1.569 20.490 0.966 0.911 0.939 1.593
5 19.9 63.2 1.570 20.486 0.971 0.968 0.969 1.619
6 20.0 60.9 1.571 20.497 0.989 0.971 0.980 1.631
7 20.1 60.3 1.570 20.497 0.992 0.979 0.985 1.635
8 20.1 60.8 1.570 20.496 0.992 0.989 0.990 1.639
9 20.1 61.1 1.571 20.495 0.992 0.994 0.993 1.641

10 20.1 61.3 1.571 20.495 0.992 0.996 0.994 1.642
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Using thed1 andd2 values obtained from above we plot
various MOKE parameters for the 0213 configuration in Fig.
9. We see that the KR at 1.71 eV is the same for both values
of vp . Above the 1.71 eV mark, however,vp50.8 eV yields
a higher KR and is at least 1.4° over a relatively broad range
of optical frequencies between 2.45 and 4.32 eV. The peak
KR is 1.563° and the corresponding KR is 0.274° at 3.1 eV.
The reflectivity forR1 andR2 is 8.7% and 15.18%, respec-
tively. R1 remains below 20% below the 4 eV mark forvp

50.8 eV. However, its increase is more rapid for the lower
vp value of 0.2 eV. The KR and KE for this particular con-
figuration has certainly been enhanced over the 013 case. As
an illustration, a comparison among the 01, 013, and 0213
configuration MOKE parameters atv53.1 eV and vp

50.8 eV has been shown in Table I. Notice an enhancement
of nearly 100% as we go from the 013 to the 0213 configu-
ration.

In Fig. 10 we setv52 eV and look ford1 and d2 to
yield optimum KR. After comparing this against Fig. 8 and
by looking at a number of other cases with differentv values
we conclude that higher thickness for bothd1 andd2 is re-
quired in order to optimize KR at lower optical frequencies
and vice versa.

One obvious drawback of the simple bilayer structure is
its low average reflectivity and hence low FOM. By repeat-
ing the LiF and InSb bilayers a number of times, i.e., a
(21)n3 configuration, the FOM can be significantly im-
proved.

We would like to briefly discuss some general behavioral
aspects of this. In Fig. 11, various MO parameters have been

plotted as a function ofn for given d1 andd2 values, which
were arbitrarily chosen to emphasize the following charac-
teristics. We setd154 nm andd2512, 9, 6 nm. Note that the
KR and reflectivity are nonlinear and have a complex oscil-
latory behavior with respect ton. We have only shown the
first oscillation for our present discussion. Also note that the
FOM is nearly indistinguishable and insensitive to changes
in d2 up to n54, beyond which it is seen that the higherd2

value yields a higher FOM. In addition this is achieved for
fewer repetitions of the bilayer. The value ofn over which
the FOM remains indistinguishable depends on the choice of
d1 and is inversely proportional to it. This was concluded by
looking at various cases with differentd1 values.

In Table II we provide the optimizedd1 andd2 thickness
values for a givenn, which yields maximum FOM~at vp.

50.8 eV andv53.1 eV!. Betweenn51 andn52, there is a
significant jump in the reflectivity and hence FOM. Atn
54, the average reflectivity is more than 90% and FOM is
1.573 and from there on, for even higher values ofn, the
increase in the FOM is quite small. Also note thatd1 andd2

do not vary much and beyondn54 and they too tend to
saturate with increasingn. Similar trends are observed in
Table III, which is calculated atvp.52.4 eV and v .

53.1 eV. No improvements in KR and only minor improve-
ments in FOM were noted. Also the thickness ofd1 required
to optimize the FOM was higher in the case of the higher
plasma frequency, however thed2 requirements remained
essentially the same at about 60 nm. We conclude that due to
thevc condition set by Eq.~13!, the proximity to the plasma
edge would not yield much in terms of Kerr rotation once the

FIG. 12. ~a! Kerr rotation,~b! Kerr ellipticity, ~c! reflectivity, and~d! FOM for 0(21)n3 as a function ofn at v53.1 eV, d154 nm, andd2512 nm.

9786 J. Appl. Phys., Vol. 91, No. 12, 15 June 2002 A. De and A. Puri

Downloaded 20 Jun 2011 to 137.30.164.196. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



thickness of the individual layers has been optimized. Thus
under the present set conditions any error in the doping level
may be compensated by changing the MO layer thickness.
Notice that there is an enhancement of about 200% in the
FOM as we go fromn52 to n54.

Figure 12 gives the MOKE parameters at 3.1 eV for
various values ofvp by settingd154 nm andd2512 nm.
These were chosen to demonstrate some MOKE behavioral
trends, at arbitrary layer thickness, as the material’s doping
concentration is changed. The initial indistinguishable fea-
tures of Fig. 11 are not there. It is seen that forvp50.8 and
1.6 eV, a FOM of about 0.42 is achieved forn52 whereas
for vp52.4 eV, four bilayers are required to give the same
result. However the contribution due tovp is more signifi-
cant as we move on to a higher number of layers. Expect for
n51, the KR forvp52.4 is significantly higher in general.
Hence we can conclude that at arbitrary MO layer thickness
and at higher values ofn, the proximity of the plasma reso-
nance to the incident photon energy does make a significant
difference.

V. SUMMARY

In this work, the plasma resonance condition for free
charge carriers~i.e., Re@«xx#51) was extended to a broad
range of optical frequencies by appropriate coupling ofv
andvc, for fixed vp. It is observed that avc - coupled MO
layer could be made to peak at a particular optical frequency
by the appropriate choice of DE and MO layer thickness. In
general highervp values resulted in higher KR. We would
like to point out some similar findings in the literature. KR
values in the case of MnBi were reported as 0.7°8 and 2.0°18

for the same optical frequency. These differences have been
attributed to the doping densities and the band structure of
the MO medium, which in turn is related to their respective

dielectric-tensor properties. For several applications such as
design of MO storage media, high KR alone is not sufficient.
One needs to improve the reflectivity. We have shown this to
be achievable at 3.1 eV by making several repetitions of the
MO/DE bilayer. The most economical choice if one desires
average reflectivity greater than 90% along with high KR is
the 0(21)n3 design withn54 as shown in Table I. As a
further extension of the present work, the role of interplay
betweenvc and vp ~in addition to the plasma resonance
condition! in a Kerr enhancement mechanism is currently
being investigated.
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