
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

Physics Faculty Publications Department of Physics 

1999 

Digital signal propagation in dispersive media. Digital signal propagation in dispersive media. 

P. M. Jordan 
University of New Orleans 

Ashok Puri 
University of New Orleans 

Follow this and additional works at: https://scholarworks.uno.edu/phys_facpubs 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
J. Appl. Phys. 85, 1273 (1999) 

This Article is brought to you for free and open access by the Department of Physics at ScholarWorks@UNO. It has 
been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ScholarWorks@UNO. 
For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/phys_facpubs
https://scholarworks.uno.edu/phys
https://scholarworks.uno.edu/phys_facpubs?utm_source=scholarworks.uno.edu%2Fphys_facpubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.uno.edu%2Fphys_facpubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


Digital signal propagation in dispersive media
P. M. Jordan and Ashok Puria)

Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

~Received 13 August 1998; accepted for publication 23 October 1998!

In this article, the propagation of digital and analog signals through media which, in general, are
both dissipative and dispersive is modeled using the one-dimensional telegraph equation. Input
signals are represented using impulsive, Heaviside unit step, Gaussian, rectangular pulse, and both
unmodulated and modulated sinusoidal pulse type boundary data. Applications to coaxial
transmission lines and freshwater signal propagation, for both digital and analog signals, are
included. The analysis presented here supports the finding that digital transmission in dispersive
media is generally superior to that of analog. The boundary data~input signals! give rise to solutions
of the telegraph equation which contain propagating discontinuities. It is shown that the magnitudes
of these discontinuities, as a function of distance, can be found without the need of solving the
governing equation. Thus, for digital signals in particular, signal strength at a given distance from
the input source can be easily determined. Furthermore, the magnitudes of these discontinuities are
found to be independent of both the dispersion coefficientk and the elastic coefficientb. In addition,
it is shown that, depending on the algebraic sign ofk, one of two distinct forms of dispersion is
possible and that for small-time intervals, solutions are approximately independent ofk. © 1999
American Institute of Physics.@S0021-8979~99!03803-7#

I. INTRODUCTION

In 1876, the telegraph equation,

]2u

]x22
1

c2

]2u

]t2 2g
]u

]t
2b2u50, ~1.1!

wherec is a positive constant andg and b are nonnegative
constants, was investigated by Heaviside in his research on
coaxial marine telegraph cables1 ~see also Doetsch2 and
Bland3!. This equation describes phenomena in a vast array
of fields. For example, it appears in the theory of supercon-
ducting electrodynamics where it describes the propagation
of electromagnetic waves in superconducting media.4 The
telegraph equation also has a central role in the study of
excitons.5 The telegraph equation has applications in the bio-
logical sciences as well. In cases where linearization of the
leakage conductance is justified, the telegraph equation is the
governing equation for the transmission of electrical im-
pulses in the axons of nerve and muscle cells.1 It governs the
propagation of pressure waves which occur in pulsatile blood
flow in arteries.6 The telegraph equation also describes the
random, one-dimensional motion of insects along a hedge6 ~a
generalization of the random walk problem7!. Special cases
of it arise in almost all branches of physics. Takingg5b
50 gives the classical wave equation with phase velocityc.
Takingb50 gives the damped wave equation. This equation
describes the propagation of thermal waves, at finite speeds,
in a thermally conducting medium~by the Maxwell–
Cattaneo theory8–10!, the propagation of electromagnetic
waves in an electrically conducting~hence absorbing!
medium,11 and the classic form of the random walk
problem.7 Finally, taking g50, b25m0

2c0
2/\2 and c5c0 ,

wherec0 is the speed of light in free space,m0 is the parti-
cle’s rest mass, and\ is Planck’s constant divided by 2p, the
telegraph equation becomes the one-dimensional Klein–
Gordon or relativistic wave equation.12,13 It is the correct
wave equation for a spinless relativistic particle and is there-
fore regarded as the governing equation for the scalar meson
field.12

In this work, we examine the propagation of electromag-
netic waves in media which, in general, are both conducting
and dispersive. In particular, we are interested in developing
a deeper understanding of digital transmission in such media.
Understanding of how digital signals evolve over time in
dispersive/conducting media is of much interest because of
the many diverse applications, e.g., in the fields of medicine,
electromagnetic wave propagation, and communications. In
Sec. II, we present a model system and solve Eq.~1.1! for
arbitrary input signals using the Laplace transformation
method. Section III contains numerical results for the follow-
ing input signals and various values of the time and solution
parameters: the Heaviside unit step, Gaussian rectangular
pulse, and unmodulated sinusoidal pulse. A comparison of
analog to digital signal propagation through a semi-infinite
coaxial transmission line, and an infinite conducting me-
dium, is presented in Sec. IV. In Sec. V, we determine the
magnitudes of the discontinuities using the method of
Boley14 and a connection is made to digital signal strength.
This sheds new light on how to devise a transmission line
based on digital signal strength at a given location. Finally,
Sec. VI is devoted to a brief discussion and conclusions fol-
low in Sec. VII.

II. MODEL SYSTEM

Consider an initially quiescent, homogeneous and isotro-
pic, electrically conducting dispersive medium occupying thea!Electronic mail: apuri@uno.edu
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half-spacex.0. At the x50 boundary, a time-dependent
input signal is applied. This system is modeled by the fol-
lowing initial-boundary value problem~IBVP! involving the
telegraph equation:

uxx2utt2rut2b2u50, x,t.0, ~2.1!

u~`,t!50, u~0,t!5F~t!, t.0, ~2.2!

u~x,0!5ut~x,0!50, x.0, ~2.3!

whereu5u(x,t) is any component of the electric field vec-
tor, r 5cg is the damping coefficient,b is the elastic coeffi-
cient, t5ct ~giving a phase velocity of unity!, andF(t) is
the input signal.

Applying the Laplace transformation with respect tot to
Eq. ~2.1! and employing initial data, Eq.~2.3!, we obtain

d2L–~u!

dx2 2~s21rs1b2!L–~u!50, ~2.4!

whereL–(•) is the Laplace transform operator ands is the
transform parameter. Solving Eq.~2.4!, we get the transform
domain solution

L–~u!5 f ~s!exp@2xA~s1r /2!21k#, ~2.5!

wherek5b22r 2/4 is known as thedispersion coefficientand

L–@u~0,t!#5L–@F~t!#[ f ~s!, ~2.6!

and wheref (s) exists. Thus using a table of inverse Laplace
transforms15 and the inverse Laplace transform convolution
theorem,15 we find that for all allowableF(t), thet-domain
solution is

u~x,t!5u~t2x!5
e2rx/2F~t2x!2E

x

t

F~t2h!KJ~x,h,k!dh, if k.0,

e2rx/2F~t2x!, if k50,

e2rx/2F~t2x!1E
x

t

F~t2h!KI~x,h,uku!dh, if k,0,

~2.7!

whereu~•! is the Heaviside unit step function,

KJ~x,h,k!5xAke2rh/2
J1@Ak~h22x2!#

Ah22x2
, ~2.8!

KI~x,h,uku!5xAukue2rh/2
I 1@Auku~h22x2!#

Ah22x2
, ~2.9!

and whereJ1(•) is Bessel’s function of the first kind of order
one andI 1(•) is the modified Bessel function of the first kind
of order one. The solutionu(x,t) consists of two terms. The
first shows that the boundary data are attenuated as they are
propagated into the solution domain. The second term van-
ishes fork50 and represents the effects of dispersion~i.e.,
the dependence of phase velocity on frequency!. It may be
thought of as a ‘‘tail’’3 following the first term. Observe that
if u(0,0)5F(0)Þ0 then the boundary data will be discon-
tinuous. This is due to the fact that the initial conditions were
taken asu(x,0)5ut(x,0)50. Since the telegraph equation is
hyperbolic in nature, this discontinuity in boundary data is
propagated into the solution domain. Henceu(x,t) is also
discontinuous. The graphs shown in Figs. 1~a! and 1~b! are
those ofKJ and KI , respectively, fort52.00. The broken
vertical line atx52.0 in each graph indicates where the dis-
continuity caused by the Heaviside function multiplying each
of the kernels would occur; to the right of it (x.t) both
plots would be zero. Physically, this shows that causality is
satisfied. Why this is so mathematically can be seen by fixing
t.0 at t5t0 and lettingx vary. The Heaviside function
u(t02x) must then be replaced byu(x)2u(x2t0). Finally,

the presence of the Heaviside function also serves to sup-
press the unbounded growth exhibited byKJ as x becomes
large.

III. NUMERICAL RESULTS

Here we give Mathematica16 generated graphs of solu-
tion ~2.7! for the following input signalsF(t):

~1! Heaviside unit stepF(t)5u(t),
~2! GaussianF(t)5u(t)e2m2t2

,
~3! Rectangular pulseF(t)5M @u(t)2u(t2p)#,
~4! Unmodulated sinusoidal pulseF(t)5@u(t)2u(t

2p)#sin(pt/p),

where the positive constantsM, m, and p denote the pulse
magnitude, the decay coefficient, and the pulse width, re-
spectively. Note that, with the exception of Fig. 4, we have
adopted the following convention here in Sec. III: a broken
curve corresponds to the dispersion coefficientk.0, a bold
curve tok,0, and a thin solid curve tok50. Finally, Figs. 3
and 4 were plotted forp51.50.

A. Small-time behavior

In Figs. 2~a!–2~c! are shown plots for Heaviside, Gauss-
ian, and unmodulated sinusoidal pulse inputs fort50.50 and
all three cases ofk. Note that in each plot, the curves for all
three cases ofk lie very close to each other. Furthermore,
note that by inverting the larges expansions given in the
Appendix, we can obtain small-t expressions of Eq.~2.7! for
the variousF(t). For example, the small-t expressions cor-
responding to Figs. 2~a!–2~c! are
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~a! u~x,t!5e2rx/2u~t2x!S 12
kx

2
~t2x!1

k2x2

16
~t2x!22¯ D , ~3.1!

~b! u~x,t!5e2rx/2u~t2x!S 12
kx

2
~t2x!2m2~t2x!21¯ D , ~3.2!

~c! u~x,t!5
p

p
e2rx/2u~t2x!F ~t2x!2

kx

4
~t2x!21S x2k2

48
2

p2

6p2D ~t2x!31¯ G
1

p

p
e2rx/2u~t2x2p!F ~t2x2p!2

kx

4
~t2x2p!21S x2k2

48
2

p2

6p2D ~t2x2p!31¯ G . ~3.3!

From Eqs.~3.1!–~3.3!, one can clearly see thatk does not
appear in the first~dominant! term of any of any of these
series. Hence, for smallt ~time!, we conclude thatu is ap-
proximately independent ofk.

B. Effects of dispersion on pulse-type inputs

In Figs. 3~a!, and 3~b! with t52.00 M51.00, andp
51.50, we can clearly see the dispersive tail in the plots of
both the rectangular pulse and the unmodulated sinusoidal
pulse, respectively. Note that fork,0, the tail lies above the
x axis while fork.0, it lies below~for k50, the tail does not
exist!. In addition, we see that thek50 curve lies above the
k.0 curve and below thek,0 curve. Furthermore, while
the rectangular pulse is clearly discontinuous, the unmodu-
lated sinusoidal pulse is continuous everywhere. The devel-
opment of the dispersive tail~for k,0! as a function oft,
for both rectangular and modulated sinusoidal pulse data,
will be demonstrated in Sec. IV.

C. Effects of elastic and damping coefficients

Figures 4~a! and 4~b! show, respectively, the effects of
varying the elastic coefficientb and damping coefficientr,
with k521.03 fixed, for a rectangular pulse. In Fig. 4~a! r is
fixed at 2.85 and we use the following convention for the
plotted curves: broken⇒b50.50, bold⇒b51.00, and
solid⇒b51.25. In Fig. 4~a! observe that increasing~de-

FIG. 1. For t52.0 and r 52.85: ~a! KJ vs x, k50.44; ~b! KI vs x,
k521.03.

FIG. 2. u vs x for t50.50 andr 52.85. Bold line:k521.03; solid line:k
50; broken line:k50.44. ~a! Heaviside;~b! Gaussian withm51.00; ~c!
unmodulated sinusoidal pulse withp51.50.
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creasing! b decreases~increases! the area under the disper-
sive tail, the area under the pulse, and the magnitude of the
trailing edge of the pulse. Note, however, that varying the
elastic coefficient has little or no effect on the leading edge.
For Fig. 4~b!, b is fixed at 1.00 and the convention for the
plotted curves is as follows: broken⇒r 52.25, bold⇒r
52.85, and solid⇒r 53.35. As would be expected, increas-
ing ~decreasing! r decreases~increases! pulse magnitude, at
both trailing and leading edges, and the area under the pulse
while increasing~decreasing! the area bounded by the dis-
persive tail.

IV. PHYSICAL APPLICATIONS

We now consider two physical applications. In both of
these examples we will focus on the case ofk,0. The case
of k,0 is of much interest as it occurs in transmission line
applications and has the potential for the greatest impact on
digital transmission in dispersive media.

A. Coaxial transmission line

Consider a simplified model of a coaxial transmission
line. Equation~1.1! is the governing equation for both cur-
rent and voltage in such a line with no external driving.1–3

Expressing the constantsc, g, andb in Eq. ~1.1! in terms of
the electrical parametersL, R, C, andG we find

c5~LC!21/2, g5LG1RC, b25RG, ~4.1!

where, per unit length, we have inductanceL.0, resistance
R>0, capacitanceC.0, andG>0 is the leakage conduc-
tance between the two wires. Thus, Eq.~1.1! becomes

]2u

]x22LC
]2u

]t2 2~LG1RC!
]u

]t
2RGu50. ~4.2!

In terms of the electrical parameters, the dispersion coeffi-
cient k is given by

k52
~RC2LG!2

4LC
. ~4.3!

Hence for a coaxial transmission line, we havek<0 always.
This was also shown by Doetsch2 and by Bland.3 Thus Eq.
~4.2! admits, at most, only one form of dispersion. In his
research, Heaviside found that by designing a marine cable
such thatRC5LG, he could produce a ‘‘distortionless’’ ma-
rine transmission line. Over the years, such lines came to be
known as Heavified lines.1 Thus k50 corresponds to a
Heavified transmission line. As can be seen from solution
~2.7!, an input signal propagating down such a line is attenu-
ated, but experiences no dispersive effects~i.e., it is reduced
in magnitude but maintains its form!. In contrast, fork,0 an
input signal is not only attenuated, but also suffers from dis-
persion. This dispersive effect is represented by the corre-
sponding integral term given in solution~2.7!.

Figures 5 and 6 illustrate, respectively, thet evolution of
solution ~2.7! for the rectangular and modulated sinusoidal
pulses,

F~t,p!5M @u~t!2u~t2p!#,

FIG. 3. u vs x for t52.00, r 52.85, andp51.50. Bold:k521.03; solid:
k50; broken:k50.44. ~a! Rectangular pulse withM51.00; ~b! unmodu-
lated sinusoidal pulse.

FIG. 4. u vs x for a rectangular pulse witht52.00, M51.00, and
p51.50. ~a! r 52.85 ~fixed!. Broken: b50.50; bold: b51.00; solid:
b51.25. ~b! b51.00 ~fixed!. Broken: r 52.25; bold: r 52.85; solid:
r 53.35.
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FIG. 5. u vs x for a rectangular pulse with
k522.02,r 52.85,b50.1, M51.00, and
p51.50. ~a! t50.50; ~b! t51.50; ~c!
t52.00; ~d! t53.00; ~e!,~f! t54.00.

FIG. 6. u vs x for a modulated sinusoidal
pulse with k522.02, r 52.85, b50.1,
v59.00, q52p/3, and p51.50. ~a!
t50.50; ~b! t51.50; ~c! t52.00; ~d!
t53.00; ~e!,~f! t54.00.

1277J. Appl. Phys., Vol. 85, No. 3, 1 February 1999 P. M. Jordan and A. Puri

Downloaded 08 Jul 2011 to 137.30.164.182. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



and

F~t,p!5@u~t!2u~t2p!#sin~vt!sin~qt!, ~4.4!

where v.q are positive constants. Figures 5~a!–5~e! and
6~a!–6~e! correspond tot50.50, 1.50, 2.00, 3.00, and 4.00
while Figs. 5~f! and 6~f! are magnified views of Figs. 5~e!
and 6~e!, respectively. Clearly Figs. 5 and 6 could, respec-
tively, represent a digital pulse and a short modulated analog
signal, with carrier frequencyv and modulation frequencyq,
propagating down a semi-infinite coaxial transmission line
with electrical parametersL, R, C, andG chosen in such a
way that Eq.~4.3! yieldsk522.02. In Figs. 5 and 6, we see
that upon entering the medium both inputs suffer heavy at-
tenuation. Byt52.00, a tail has developed on each signal.
Observe in Fig. 5~e! how a discernible digital signal is still
present att54.00, whereas att54.00 the analog signal is
almost imbedded in the noise of its dispersive tail@Fig. 6~e!#.

B. Infinite conducting medium

Consider a conducting medium of infinite extent which
is both homogeneous and isotropic, for example, a large deep
freshwater lake. Somewhere in this medium is a spherical
cavity of radiusa. Starting at timet50 and ending att5p an
electromagnetic pulseF(t, p) is transmitted from the surface
of the cavity (r5a), into the medium~e.g., from a deeply
submerged radio transmitter!. We wish to describe the pulse
at any later time. Let us place the origin of a spherical coor-
dinate system at the center of this cavity. The IBVP we must
solve is

1

r2

]

]r S r2
]u

]r D2
n2

c0
2

]2u

]t2 2ms
]u

]t
50, r.a, t.0,

~4.5!

u~a,t !5F~ t, p!, u~`,t !50, t.0, ~4.6!

u~r,0!5ut~r,0!50, r.a, ~4.7!

wheren, m, ands are the refractive index, permeability, and
conductivity, respectively, of the medium, andp is the pulse
width of the input signal. Equation~4.5! is known as the
spherically symmetric damped wave equation. A derivation
of the general case of Eq.~4.5! is given by Born and Wolf.11

Let us solve IBVP Eqs.~4.5!–~4.7! for both digital and ana-
log signal inputsF. Substitutingu5U/r, t5vt, wherev
5c0 /n, andr 5smv IBVP Eqs.~4.5!–~4.7! become

Urr2Utt2rU t50, r.a, t.0, ~4.8!

U~a,t!5aF~t,p!, U~`,t!50, t.0, ~4.9!

U~r,0!5Ut~r,0!50, r.a, ~4.10!

wherep5vp. Clearly Eq.~4.8! corresponds to Eq.~2.1! with
b50. Hencek52r 2/4 and the solution follows using thek
,0 case of Eq.~2.7!.

~i! Rectangular~digital! pulse propagation. ForF(t,p)
5@u(t)2u(t2p)#, we have

u~r,t!5
a

r
e2r ~r2a!/2@u~t2r1a!2u~t2p2r1a!#

1
ar~r2a!

2r Fu~t2r1a!

3E
r2a

t

K~r2a,h,r !dh2u~t2r1a2p!

3E
r2a

t2p

K~r2a,h,r !dhG , ~4.11!

where K(r2a,h,r ), the kernel of the Laplace transform
convolution integral, is given by

K~r2a,h,r !5e2rh/2
I 1@~r /2!Ah22~r2a!2#

Ah22~r2a!2
. ~4.12!

~ii ! Analog pulse propagation. TakingF(t,p)5@u(t)
2u(t2p)#sin(vt)sin(vt) we obtain

u~r,t!5
a

r
e2r ~r2a!/2@u~t2r1a!sin@w~t2r1a!#sin@q~t2r1a!#2u~t2p2r1a!sin@w~t2r1a!#sin@q~t2r1a!##

1
ar~r2a!

2r Fu~t2r1a!E
r2a

t

sin@w~t2h!#sin@q~t2h!#K~r2a,h,r !dh2u~t2r1a2p!

3E
r2a

t2p

sin@w~t2h!#sin@q~t2h!#K~r2a,h,r !dhG . ~4.13!

We note that Eq.~4.13! is valid for all v,q.0. The plots in
Figs. 7 and 8 showu vs r2a. They illustrate thet evolution
of Eqs. ~4.11! and ~4.13!, respectively, for r 50.84, a
50.50, p51.50, q52p/3, andv55q. The corresponding
medium parameters used are for freshwater aren59.00
@⇒v5(1/3)3108 m/s#, and s50.02 mho/m. Furthermore
we havev corresponding to a carrier frequency of 55.50
MHz, q corresponding to a modulation frequency of 11.10
MHz, and we have taken a pulse width ofp54.50

31028 s. Again we see attenuation quickly reduces the
magnitude of both the digital and analog inputs. In addition
we note that while the digital pulse develops a tail~Fig. 7!, it
is apparent from Fig. 8 that the tail associated with the ana-
log pulse is not noticeable. Initially, this seems to be due to
the fact thatv is an odd-integer multiple ofq. However,
numerical work carried out but not presented here suggests
that this is also true whenv is an even-integer multiple ofq.
Hence, it appears that whenv is an integer multiple ofq, the
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two integrals appearing in Eq.~4.13! are nearly equal, result-
ing in a near cancellation of the dispersive part of the solu-
tion for t.(r2a)1p. Last, it is clear that for both digital
and analog inputs there exist critical distances past which
both become lost in the background noise and tail.

Figures 5 and 6 support the notion that digital transmis-
sion is generally preferred over analog in dispersive media.
Whereas a digital detector will sense only a high low signal
input, and will therefore ‘‘miss’’ the dispersive tail, an ana-
log detector, by its very nature, will sense both the intended
wave form and its dispersive tail which, inevitably, will ap-
pear as degraded output. However, Fig. 8 indicates that for
the example considered here dispersive effects on an analog
signal can be reduced by picking the carrier frequency to be
an integer multiple of the modulation frequency.

V. DISCONTINUITIES

Knowledge of discontinuities is extremely important to
researchers in many areas of physics. For example, in digital
systems we often encounter signals composed of a series of
rectangular pulses. Clearly such signals can be regarded as

discontinuous wave forms. As already noted, a rectangular
digital input pulse of magnitudeM and widthp can be rep-
resented mathematically by

F~t!5M @u~t!2u~t2p!#. ~5.1!

Obviously Eq.~5.1! is a function with a jump discontinuity.
Physically, the magnitude of the discontinuity~or saltus!,
which in this case is a constantM, indicates the signal
strength of the pulse. However, as a digital pulse propagates
in a absorbing/dispersive medium the signal strength of the
pulse is reduced over distance.

Here in Sec. V, the method of Boley14 ~see also Puri and
Kythe10! is used to determine the magnitudes of the propa-
gating discontinuities present inu. The power of this ap-
proach is that the magnitude of a discontinuity present in a
solution can be found without having to perform the often
difficult tasks of first obtaining the time-domain solutionu,
and then taking the appropriate limits. Let us now give the
precise statement of Boley’s14 criterion. Denote byS_@g(x0)#
the saltus of a functiong(x) at a pointx0 , i.e.,

S_@g~x0!#5g~x010!2g~x020!. ~5.2!

FIG. 7. u vs r2a for a rectangular pulse
with a50.50, r 50.84, M51.00, andp
51.50. ~a! t51.50; ~b! t52.00; ~c!
t53.00; ~d! t54.00.

FIG. 8. u vs r2a for a modulated sinu-
soidal pulse with a50.50, r 50.84, p
51.50, q52p/3, and v510p/3. ~a!
t51.50; ~b! t52.00; ~c! t53.00; ~d!
t54.00.
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Suppose that

Q~x,t!5
1

2p i Ea2 i`

a1 i`

@V~x,s!h~x!e2skx#estds, ~5.3!

whereV(x,s) is an infinite series in powers of 1/s, the func-
tion h(x)Þ0 is real valued and bounded forx>0, k is a
positive constant, anda is a constant chosen in the standard
manner of the inverse Laplace transform.15 Then the saltus of
the functionQ is given by the following criterion:
If

lim
s→`

sNFV~x,s!2
1

snG50, n>0, N>1, ~5.4!

then

S_@Q~x,t!#5H 0 for kx2tÞ0,

H 0
h~x!

`

if n.1,
if n51,
if n,1,

for kx2t50.

~5.5!

We illustrate the use of Boley’s method by applying it to the
larges expansions given in the Appendix@Eqs.~A1!–~A6!#;
we can determine the propagating discontinuities occurring
in u and its derivatives for the variousF(t) considered. We
give these results, up to first derivatives, in Tables I and II.
Table I contains the following input signals~boundary data!:
impulsive, Heaviside unit step, and Gaussian, respectively.
In Table II we have rectangular and unmodulated sinusoidal
pulse input signals. Hered~•! is the Dirac delta~impulse!
function and the quantityS_@ux# corresponding to the sinu-
soidal pulse input was determined using Hadamard’s lemma3

D

Dt
~S_@u# !5S_@ux#1S_@ut#, ~5.6!

where the operatorD/Dt denotes differentiation with re-
spect tot following the wave front, and the continuity ofu
~i.e., S_@u#50!. Observe from Tables I and II that in every

case the magnitude of the discontinuity is independent ofk.
Furthermore, in the case of rectangular pulse signal, we see
thatS_@u# at t andt2p gives the signal strength of the pulse
at the leading and trailing edges, respectively, without hav-
ing to solve for the time-domain solution of the problem.
Finally note that, with the exception ofF(t)5d(t), all the
boundary data considered resulted in strong discontinuities3

in u. For the telegraph equation, which is of second order,
strong discontinuities are jump discontinuities which occur
in u, or ux andut .

VI. DISCUSSION

~1! If dispersion is present in any solution of the tele-
graph equation, it can occur in only one of the two possible
forms corresponding tokÞ0. Furthermore, for smallt
~time!, the solutionu(x,t) is approximately independent ofk
~Fig. 2!.

~2! In every case of boundary data considered, thek
50 curve was found to lie above thek.0 curve and below
the k,0 curve, with thek,0 curve having the greatest de-
viation from the nondispersive (k50) curve~Fig. 3!. Thus it
is clear that the presence of dispersion influences the magni-
tude of u(x,t) and that these influences are opposite and
unequal for the two forms of dispersion.

~3! For pulse-type boundary data dispersion causes a tail,
extending fromx50 to the trailing edge of the pulse, to form
~see Figs. 3–8!. Thus, dispersion causes overall pulse width
to increase with propagation distance.

~4! Decreasing~increasing! the elastic coefficientb in-
creases~decreases! the area under the dispersive tail and the
area under the pulse. In contrast, decreasing~increasing! the
damping coefficientr decreases~increases! the area under
the tail and increases~decreases! the area under the pulse
~see Fig. 4!.

~5! For rectangular pulse data, the leading edge of the
pulse suffers greater attenuation than the trailing edge~Fig.
5!. Hence depending on the detector, the initial pulse mag-
nitude, and the propagation distance involved, a rectangular
pulse could appear to arrive later than it would if dispersive
effects were not present and thedetectedpulse width may
appear less than the initial~input! pulse width.

~6! Figures 5–8 show that, fork,0, there is no signifi-
cant qualitative difference between transmission line propa-
gation of analog and digital pulses and the propagation of
theses pulses in an infinite, homogeneous and isotropic con-
ducting medium.

~7! Due to the formation of the dispersive tail and the
different detection methods used in digital and analog sys-
tems, the analysis presented here generally supports the no-
tion that digital transmission techniques are preferred over
those of analog in a dispersive media. However, our analysis
suggests that the dispersive tail can reduced if the carrier
frequency is an integer multiple of the modulation frequency
~Fig. 8!.

~8! With the exception ofF(t)5d(t), all the boundary
data considered produced strong discontinuities inu, i.e.,
jump discontinuities inu, or in ux andut as given in Tables
I and II. These discontinuities propagate at the phase velocity

TABLE I. Discontinuities inu: Impulsive, Heaviside, and Gaussian inputs.

F(t) d~t! u~t! u(t)e2m2t2

Wave front x5t x5t x5t
S_@u# ` e2rx/2 e2rx/2

S_@ut# ` ` `
S_@ux# ` ` `

TABLE II. Discontinuities inu: Rectangular and sinusoidal pulse inputs.

F(t) M @u(t)2u(t2p)# @u(t)2u(t2p)#sin(pt/p)

Wave front x5t x5t2p x5t x5t2p

S_@u# Me2rx/2 Me2rx/2 0 0

S_@ut# ` `
p

p
e2rx/2

p

p
e2rx/2

S_@ux# ` `
2p

p
e2rx/2

2p

p
e2rx/2
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and decay exponentially overx with attenuation coefficient
r /2.

~9! The magnitude of the discontinuity occurring in the
solution~or its derivatives! of the telegraph equation is inde-
pendent of both the dispersion coefficientk and elastic coef-
ficient b; the discontinuity for both cases ofkÞ0 occurs only
in the first ~nonintegral! part of the solution.

VII. CONCLUSIONS

Our analysis demonstrates that the tail produced by the
dispersive part of the solution is a major reason why digital
transmission is generally preferred over conventional analog
transmission. Digital detectors employ a threshold value to
determine high and low signal strength~voltage!. Thus, as-
suming the setting of the digital detector’s threshold value
allows for attenuation of the leading edge of the pulse and
the presence of the dispersive tail, they are far less suscep-
tible to the effects of dispersion. Analog detectors, however,
sense an arriving wave form in a continuous manner; disper-
sive effects are incorporated with the input wave form in
producing the output. The result, of course, is degradation of
the reproduced signal~i.e., degraded output!. However, our
work suggests that for special values of the carrier and
modulation frequencies the tail associated with an analog
signal can be reduced. Furthermore, when small-time inter-
vals are considered, our findings show that dispersion has
little influence on the propagating signal.

We have shown~see Tables I and II! that the criterion of
Boley14 permits the determination of the propagating jumps,
at a given location, without having to obtain the time-domain
solution of the governing equation. This could prove useful
to designers of digital systems which operate in dispersive
media. The signal strength at both the leading and trailing
edges of rectangular pulse data andreceivedpulse width can
be determined easily using Boley’s method, and without any
knowledge of the time-domain solution.

Although electrical signal propagation down copper
transmission cables may, due to the advent of optical fibers,
soon become a thing of the past, there is still a great deal to
be learned in the area of bioelectromagnetic theory. The ax-
ons or long tendril portions of nerve and muscle cells behave
much like marine cables.1 An important difference, however,
is that the leakage conductance in nerve axons is nonlinear.1

Nevertheless, in cases where the leakage conductance can be
linearized, an analysis similar to the one presented here
could provide much insight into the workings of such bio-
logical ‘‘transmission lines.’’
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APPENDIX: Large s expansions of transform domain
solutions

For impulsive data:

L–~u!5exp@2sx2rx/2#F12
kx

2s
1

k2x2

8s2 2¯ G . ~A1!

For Heaviside unit step data:

L–~u!5exp@2sx2rx/2#F1

s
2

kx

2s2 1
k2x2

8s3 2¯ G . ~A2!

For Gaussian data:

L–~u!5exp@2sx2rx/2#F1

s
2

kx

2s22
2m2

8s3 1¯ G . ~A3!

For rectangular pulse data:

L–~u!5M exp@2sx2rx/2#F1

2
2

kx

2s2 1
k2x2

8s3 2¯ G
2M exp@2s~x1p!2rx/2#

3F1

2
2

kx

2s2 1
k2x2

8s3 2¯ G . ~A4!

For sinusoidal pulse data:

L–~u!5
p

p
exp@2sx2rx/2#F 1

s22
kx

2s3 1S x2k2

8
2

p2

p2 D 1

s4

1¯ G1
p

p
exp@2s~x1p!2rx/2#

3F 1

s22
kx

2s3 1S x2k2

8
2

p2

p2 D 1

s4 1¯ G , ~A5!

and

L–~ut!5
p

p
exp@2sx2rx/2#F1

s
2

kx

2s2 1S x2k2

8
2

p2

p2 D 1

s3

1¯ G1
p

p
exp@2s~x1p!2rx/2#

3F1

s
2

kx

2s2 1S x2k2

8
2

p2

p2 D 1

s3 1¯ G , ~A6!

where Eq.~A6! was determined from Eq.~A5! using the
relation

L–~ut!5sL–~u!. ~A7!
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