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Intrinsic chaos in a dc field biased quantum heterostructure

A. Jason McNary® and Ashok Puri
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

(Received 17 July 1996; accepted for publication 23 May 1997

A closed, quantum, double barrier, GaAs/AlGaAs heterostructure is made chaotic by adding a
nonlinear potential termg({Q(t)), to the time-dependent Scitiager equation, and the dynamical
behavior of an electron cloud moving in the heterostructure biased by a dc electric field is examined
numerically. Using phase-space diagrams, power spectrums, and Lyapunov exponents, both
qualitative and quantitative measures of the chaos in the system were taken. In general, for all values
of a, the nonlinearity parameter, the Lyapunov exponanincreases as the applied dc fiefs],
increases. However, for values af<1.376, we notice a sharp drop i for the value ofB
=—9.2x 10’ V/m corresponding to an average dc voltage-a085 eV in the central well. This

first order type transition to high values ®ffor «>1.376 corresponds to a similar increase in the
mean charge trapped in the heterostructure and in the average nonlinear potential in the central well
for that dc field. This behavior is attributed to the fact that ®=1.376 and 8=—9.2

X 10" V/m, the field effects dominate, but fer>1.376, the nonlinearity term dominates. @97
American Institute of Physic§S0021-8977)07616-F

I. INTRODUCTION trapped charge in biased structures. This article will examine
the chaotic characteristics of GaAs/AlGaAs structures for

Multiple barrier heterostructures are rapidly gaining several applied dc fields for different strengths of the nonlin-

popularity in device applications today. Among the manyearity in the well. The phase-space diagram and power spec-

uses are frequency multipliers, multistable memory, diodgrum will be examined as qualitative indicators along with

lasers, and high speed analog to digital convertédse of  the Lyapunov exponent for a quantitative analysis of the

the most useful heterostructures is the GaAs/Gal,As  system.

heterostructure where the GaAs layer has a narrower band

gap than the Ga ,Al,As. Currently, it is possible to fabri-

cate structures with thicknesses of 7.5 A for layers of GaAs.

With such minute widths, quantum devices are becominqI MODEL SYSTEM

commonplace. For example, Fowler and Dattaal. have '

both independently proposed a quantum interference rigyre ya) depicts our model system’s potential profile

transistor’ _ _ which is a traditional double-barrier heterostructure con-
In resonant tunneling structures, such as transistors angdineq by infinite barriers at both ends. Upon applying a dc

diodes, it is necessary to apply an external electric field tg)i55 1o only the inner well, the barrier shifts down, allowing

bias the structure properly. One of the major reasons for thig,, easier tunneling in one direction as shown in Fig)1in

is that the application of a strong electric field reduces thg, model, a cloud of electrons propagates in the biased het-

characteristic timer=#/JE of the structure with/E being  grostructure potential profile, and the motion of the cloud is

the width of the transmission probability for the linear case gpproximated as a mean field using a Hartree-like equation.

With the appropriate choice of the external electric field, onerpe incoming electrons to the central well region are sub-

can cut the characteristic time of the system in Adfhe  jected to a repulsive mean field potential arising from the

increase in the operating frequency of the heterostructurgharge build-up in the welly,. Thus the complete potential,

makes it more desirable for devices. Thus the electric field I%S shown in F|g 1, consists of a Se'f-consistent' time depen_

a very important parameter in quantum devices. dent, nonlinear term in the central well. The nonlinearity
In previous work, it has been noted that an unbiase@reates a nondissipative system that mixes in some regions of

double barrier potential well in a closed system exhibitsits phase space. This causes the system to exhibit chaotic

chaos as an intrinsic property of the w&fiCharge accumu- pehavior during its evolution as has been shown in the unbi-
lates in the well created by the two barriers and creates gsed case.

self-consistent potential that leads to the nonlinearity in the A packet of electrons is created in the wide wel,,
system. The transient behavior of the charge trapped in thgnd it is launched towards the central well. The charge
well has been shown to be chaotic with the chaos increasingapped by resonance in the central well generates a reaction
as the nonlinearity increase®ecause heterostructures mustfield which modifies the time evolution of the system. We
have an electric field applied to be used in device applicaassume a decoupling of longitudinal and transverse degrees
tions, it is even more important to study the behavior of theof freedom of the system. This is a common assumption
made in tunneling phenomena, and it allows us to treat the
present address: Department of Physics, University of California, RiverProblem as one dimensional, easing the calculations in the
side, CA 92507. problem?-®
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@) wheree is the electron charge is the areal number density
of the incident electrons, an@ is the capacitance per unit
area of the heterostructure. The nonlinearity parameier,
can be varied to reproduce phenomenologically the response
of the medium to the charge trapped in the well and to the
characteristics of the incident group of electrditse areal
density. ng can be varied by changing the doping levels in
the heterostructure. By this methad,can be controlled ex-
perimentally.

The potential profile/(x) is considered for two different
cases. In the first, there is no external field applied.

1a),
v v v V(X) =Vl Xo,(X) + Xb,(X) ]+ Vil x5,(¥) + x5,(0], (4)

whereV, and V; are positive constant§.e., the height of
barriersb;, b,, andB;, B,). This is the structure that is
®) investigated in Ref. 5. When the electric field is applied, the
‘ profile takes on the shape given [yig. 1(b)]

—] V(X) = Vol xb,(X) + Xb,()]+ Vil xa,(X) + Xg,(X)]
B, b b B, +Vaxb, wy.b,(X) + Vaxw,(X), )
1 V2
with
Vo=eB(X—Xy) (6)
and
Vi=epBX;. )
W w ) Xk is the first point andx, is the last point of the double

barrier heterostructure is the electron charge3 gives the
slope of the external field, and agajinis the characteristic
FIG. 1. Model potential structure of a three-well, double-barrier heterostructheta function. The external field varies from zero+d 8.4
ture for (a) the unbiased case arth) the dc biased case. X 10° V/m, but all applied fields are between the orders of
—10-—10° V/Im. For an average value of applied field,
such asB=—9.2x10’ V/m, the beginning of the second

We used the same model system as Rasal,* and the barrier,b,, is approximately 0.170 eV lower than the begin-
mathematical description of the unbiased structure is giveRiNg Of the first barrier,b,. For the same field,Vs

by =-0.268eV. For the applied field ofg=-18.4
X 10" VIm, the beginning ob, has shifted down 0.340 eV
p IYOY —1% 9 2W(x,1) VOO andV; is —0.535 eV.
gt 2m  ox? The barriersb; andb, are made of AlGaAs and have a

height .3 eV and width 24, with a;=0.529 A. The outer
Jr‘YQ('[)XWz]\P(X’t)‘ (1) wells, w; andwg, are fabricated of GaAs and are 1180
V(x) is the potential profile of the heterostructure.is a wide. The external barriers are constructed of doped GaAs

theta function withy,, =1 inside the wellw,, andy,, ~and have a width of8,=B,=440a, with a heightV

—0 elsewhere. The nonlinear tel@(t) is defined by =0.9eV. This is_, sufficient to completely confine the elec-
tron cloud, creating a closed system.

The initial wave packet is a Gaussian with a width
=110a, and momentunk, that corresponds to the resonant

o ) ) . i energy of the unbiased double barrieg=.15 eV. Thus our
and it is weighted by a nonlinear coefficieat, This allows initial wave function has the profile

us to adjust the strength of the nonlinearity without adjusting

the shape of our potential profile. The nonlinear coefficient, 1 4 1/x—x9\?

a, is inversely proportional to capacitance per unit area and V(x,0= W exp— 2 —) +ikox
directly proportional to the areal number density of the inci- ) . )
dent electrons, i.e., the nonlinear coupling will be greater if & 1S Placed in the middle of the well, to insure that there

Q)= fw [P (x,0)[*dx )

. (8

greater number of electrons are incident. Thus is zero charge density initially inside the double barrier. It is
worth elaborating here that E¢8) suggests that the wave

" e(ny) 3) function is normalized to unity, thus the problem is treated as

c a one electron problem. Our problem consists of a group of
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FIG. 2. Phase space plots far=1.2 and the dc fields ofa) =0, (b) B=—4.6x10, (c) B=—9.2x 10/, (d) B=—18.4x10" V/m.

electrons that are created in the large well and are launched Because the output is a single time series that is the
towards the embedded layers of the heterostructure. An exacbmposition of several factors, it is important to reduce the
treatment of the problem is complicated due to the fact thasystem to as small a state space as possible while still keep-
this is a many body problem. Therefore the following as-ing the features of the system. Because the wavefunction,
sumptions are made: ¥ (x,t), depends on the continuous space coordinatthe
c\fariables span an infinite dimensional phase space. However,

1) We assume a decoupling between the longitudinal an N . .
D Ping 9 |F|has been shown that an infinite dimensional system might

transverse degrees of freedom. This common assumptiohave a finite dimensional attractdfor our system, several
in tunneling problems reduces the equation to one di- : Y ’

mension and allows the factorization of the wave func_parameters affect the behavior of the trappeq charge. Among
tion. Thus the experimental setup we have in mindthem are nonlinearity parameter, mean incident energy,
places all the electrons in longitudinal symmetry potential barrier height, well width, and applied dc electric

(2) We assume the electrons in the group are uncorrelate(ﬁ'.eld' In the |ntgrest of 5|mp!|fy|ng the dynamics of j[he SYs-
This corresponds to a wave function as the product o em, we have fixed everything exceptand the applied dc

single particle states. field, B. The reason for this is that depends on the doping

(3) Finally, we assume a single particle moving in the mearPf the well and is not easily known upon the manufacturing
field of the rest of the electrons, resulting in a Hartree-Of the heterostructure. It should, however, be measurable by

like equation for our model. According to Theorem 5.7 matching the response of the electron build-up in the central
of Ref. 7 by Spohn, this approximation is justified be- well with the theoretical values. The applied dc field is also

cause we have a large number of electrons in our systeny2/i€d to study the effects of biasing on the motion of the
electrons in the heterostructure.

The numerical technique used to solve the nonlinear,
time dependent Schdinger equation is given in detail in A Phase space plot
Ref. 4. This is solved independently for each electron which  Because the output is a single time series, the phase
is treated as moving in a mean field dependent on the posgpace for the attractor was constructed@ft) vs Q(t— 7)
tion of the rest of the electrons. where 7, the reconstruction time, is 100 a.u. This time was
chosen both for continuity with the previous worknd be-
cause it is large enough to be measured experimentally using
subpicosecond optical techniques described by éteal

The numerical integration over the central wel,, Figures 2 and 3 show plots of the phase space in two
gives the amount of trapped char@&t) vs timet.*® The  dimensions. Figure 2 illustrates the interesting phenomena
time step used in computation is the atomic unit of timethat occurs for low values of; in this case,a=1.2. The
(1a.u=4.83x10 1"s), and the output is every tenth time applied fields arega) zero, (b) —4.6x 10" V/m, (c) —9.2
step. x 10" V/m, and(d) —18.4x 10’ V/m. As the applied field

IIl. NUMERICAL RESULTS
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FIG. 3. Phase space plots far=3 and the dc fields ofa) =0, (b) B=—4.6x10’, (c) B=—9.2x 10, (d) B=—18.4x10" VIm.

increases, the phase space plot becomes spread out afidased tg3=—18.4x 10" V/m, the system becomes more
mixes over a greater region. However, #=-9.2 chaotic and the frequencies are more evenly distributed in
X 10 V/m, the phase space plot actually contracts and bethe higher region along with a dc spike and a low frequency
comes thinner. Yet as we keep increasing the field, the plogpike. Also in agreement with the phase space plots is Fig. 5,
once again broadens until it becomes much more diffuse¢he power spectrum fow=3. It shows a continual increase
than before as evident in Fig(d. In contrast, Fig. 3 shows in the broadening of the spectrum over the range of applied
the phase space plot far= 3. In this plot, the data continues dc fields. Asp increases, the spectrum begins to resemble
to broaden, showing no signs of ever contracting back to theyhite noise, and for3=—9.2x10" V/m, the only distin-
original form. Thus we already see an implied transition ofguishing feature is one large low frequency ac spike shown
behavior for the system between low and high values.of in Fig. 5(c). However, this feature quickly disappears, leav-
This aspect is further discussed in the last section of thénhg a totally white spectrum wheg is increased to-18.4
article. x 10" V/m [Fig. 5(d)].

B. Power spectrum

The power spectrum of a periodic signal consists just ofc- Lyapunov exponent

a series of peaks at the frequenCieS that make up the Signal. The measure of divergence or convergence of two
Yet chaotic data, IaCking any periOdiC behaVior, should eX'nearby points in phase space is given by the Lyapunov ex-
hibit a continuum spectrum without any well defined peaksponent. Negative or zero exponents are features of fixed
This means the power spectrum can be used to distinguishoint and limit cycle systems. However, diverging trajecto-
between a signal that is just a composite of many frequenries exhibit positive Lyapunov exponents. In phase space,
cies, and one that may be chaotic. Although not a quantitanearly identical states correspond to points in close proxim-
tive indicator of chaos, it can be used as an easy method @} An exponential divergence of these points magnify initial
determining trends in data over a range of parameters.  (ifferences until the trajectories of the points behave quite
The general conclusions from the phase space plots aggfferently. The Lyapunov exponent is a quantitative mea-
reinforced by examining the power spectrums. For a lowsyre of the rate of this divergence. For a system to be defined
value, such as=1.2, there is a clear decrease in whitenesss chaotic, it needs to have at least one positive exponent.

as shown in Fig. 4. Partg) and(b) for fields of 3=zero and The equation for determining the Lyapunov exponant,
B=—4.6x10" VIm, respectively, show a clear whitening of of 5 system is

the data that significantly decreases whegh=—9.2
X 10" V/m as shown in Fig. &). This is seen in the large dc

spike and the large low frequency ac spikes, and the lack of ) = |im E log, ﬂ (9)
power in the higher frequencies. Further, as the field is in- P d(0)
1690 J. Appl. Phys., Vol. 82, No. 4, 15 August 1997 A. J. McNary and A. Puri
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FIG. 4. Power spectrums far=1.2 and the dc fields ofa) 8=0, (b) B=—4.6x 10, (c) B=—9.2X10’, (d) B

In this equationt is the evolution timed(0)

distance between two points on the normalized phase space

is the initial

diagram(Figs. 2 and 3 andd(t) is the distance between the
two points after both have been evolved along their trajecto-

ries by the evolution time.*® For our system,

these distances

-0.24 -0.16L-0.08 0.00 0.08 0.16 0.24

—18.4x10" Vim.

d(0)={[Q(t2) — Q(t) ]*+[Q(t2— 7) — Q(t;— 7-)]2}(1120)

d(t) ={[Q(t,+1) = Q(t; +1) >+ [Q(t+t—7)

on the phase space are given by the formula —Q(ty+t—7)]%2 11
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FIG. 5. Power spectrums far=3 and the dc fields ofa) 8=0, (b) B=—4.6x 10/, (c) B=—9.2x10’, and(d) 8= —18.4x 10" V/m.
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Here 7 is the reconstruction time of the attractor in phase
space, and, andt, are initial points in the time series cho- charge stays low for a range ef values before a sharp -
sen such thatl(0) is as small as possible without going Increase to a peak and as_low tap_ermg off afterwards. This is
below the noise scale~<(10~%). due t[O the resonance _bmld-up in the_ heterostructure as a
The distance between two close pointg,andt,, is funct7|on of a, and it is most prominent for3=—9.2
calculated. After the points are evolved by the timethe ~ <10° V/m whose mean charge stays the lowest for the long-
distance is recalculated. The Lyapunov exponent is then dé&St range ofa. This shows that chaos in the system stays
fined as the log of the ratio of the distances scaled by thgorrglated to the mean charge for the value o —9.2
time evolvedt! Because numerically we are dealing with ><10° V/m. In both the mean charge and in the Lyapunov
discrete points instead of a continuum, it is necessary to cagXPonent, the values stay fairly low unil=1.376 when
culate this value as many times as possible to obtain an al0th values go through their transition. Both values stay
erage value for the exponent. In doing this, the first point/arge after that pointFigs. 8 and 9 In addition, for large
t,, is kept and evolved through the entire data set. For everydlues ofa and for all fields, the Lyapunov exponents con-
step, the second poirtt,, is selected such tha(0) is small. ~ Verge to S|m_|lar values around=2.5 as shown in Fig. 7.
The Lyapunov exponent is then calculated for a given evol N€ correlation of the mean charge ands demonstrated
lution time, t. To start the next step, the evolved potpt ~ @gain in Fig. 9 by the settling down to a similar value of
+t is renamed as; . The pointt,+t is discarded and a new Mean charge for all values ¢ and large values of. In
t, is chosen to satisfy the conditions @if0). There is a addition fqrazlo_, asy;tematlc increase in the mean charge
Lyapunov exponent for every dimension of the phase spac&@S @ function of is noticed.
but since only one positive exponent is necessary to show
chaos, only the largest exponent is calculdfed. IV. DISCUSSION
Figure 6 gives quantitative results backing up the trends _ _ )
shown in the phase space plots and power spectrums. For T_here is a general tre_nd in the biased heterostru_cture that
values ofa near to and less than 1.2, we see a large drop i?S 8 increases for a particular value of the chaos in the
the chaos of the system @t=—9.2x10" V/m. This trend
persists all the way down to extremely low values @f
where the Lyapunov exponent is also low for higher values o Lyapunov Exponent &
of B. However, ate=1.376, there is a first-order type tran- —o— Average Nonlinear Potential V
sition where\ jumps to high values, eliminating the dip as
seen in Fig. 7. Figure 8 clearly shows this transition for the
range ofa values between 1.2 and 1.5 for the applied field
value of 8= —9.2x 10" V/m. In addition, Fig. 8 shows the
progression of the average nonlinear potenti@Q(t)), as a
function of a. It shows a first-order type transition that cor-
responds exactly with the jump ik This sudden increase in » -
potential is due to a large increase in the mean charg
trapped in the well caused by resonance effects in the he
erostructure. % o 125 130 135 140 145 150
The behavior of the mean charge in the well is shown in
Fig. 9 for all the fields. The very low applied fields and zero
field cases exhibit only a drop in the mean charge as a fungsc. g. Lyapunov exponent vs « and average nonlinear potentilvs «
tion of a. For values of 3>—4.6xX10" V/m, the mean for the applied dc field o= —9.2x 107 V/m.
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system increases. The mixing that occurs in the phase spacaise the Lyapunov exponent drastically as shown in Figs. 7
is shown forae=3 in Fig. 3 and also in the near even distri- and 8. This relation between nonlinear potential and mean
bution of frequencies in the power spectriffig. 5. It is  charge build-up in the well is shown explicitly as functions
also shown in three of the four fields in the phase space fosf « in Fig. 10. This figure plots the average nonlinear po-
@=1.2 (Fig. 2) and in the same three out of four fields for tential «(Q(t)) and the average charge trapped for four dif-
Fig. 4 which is the power spectrum. A&increases, the well  ferent values of3. For sufficiently high values of;, fluctua-
becomes increasingly off resonant with the mean energy ofons around the average value of charge trapped in the
the initial electron packet. As far as the quantitative resultgjoyble barrier eventually push the nonlinear potential into a
go, the biased heterostructure can be divided into three casggsonant situation with respect to the mean kinetic energy of
Low values ofa(=<1.2) show an initial increase iN, fol-  he glectrons. Once on resonance, the increase in the amount
lowed by a drop in value and subsequent regrowth of they charge trapped in the well keeps the energy level of the

Ly;elpunofv expl)'onen.t as gustrated Ln Fig. 6. TZe intermediat&y o || ot resonance. With the increase in trapped charge, there
values of nonlinearity, 1.2 «<10 show a steady increase in is a greater variance in the nonlinear potential due to its

zl.e L%apl):unc;v expor:ent gaﬂf atura;['lon p0|fr;t zirogmdg.St higher average, and therefore there is an increase Tius,
'9. 7). ~or large vajues o, the nonfinear etiects dominate ﬁg shown in Fig. 6, for values af<1.2, field effects domi-

the heterostructure, and chaos emerges independent of tnate and there is a strong regular oscillation in the charge in

applied field as illustrated by Fig. 7. ) .
Let us first examine the behavior of the heterostructuré[he well as shown in the large ac peaks in the low frequency

as we go from low values af to high values for the applied range i.n Fig. 4c). The tailing behavior of the mean charge in
dc field of 8= —9.2x 10’ V/im. The applied field slants the Fig. 9 is due to the fact that for large the energy levels
well down as shown in Fig.(b), and this lowers the energy have become so broadened that the mean energy of the level
levels inside the well. A3=—9.2x 10 V/m, the lowered IS ONce again off resonant with the _|n|t|al_ kinetic energy of
energy levels provide for an off-resonant situation with re-the electron packétHowever, by this point the nonlinear
spect to the mean kinetic energy of the pulse. This results ifffécts dominate the system, and there is no decrease in
the low mean charge build-up for values @& 1.2 (Fig. 9), Lyapunov exponent corresponding to the slow drop in mean
and it translates into weak chaos for those val(iég. 6).  charge.

The effect of the nonlinear term is to broaden the energy The interesting phenomena in this system for the applied
levels in the well up toward the mean kinetic energy of thedc field of 3=—9.2x 10" V/Im occurs fora values between
Gaussian packet. The values @that cause the peak in the @=1.2 anda=1.5. As shown in Fig. 8, whew increases,
mean charge for a specifigcorrespond to the case when the we have a first order type transition inand in the average
mean energy of the level is in resonance with the averaggonlinear potentialV. To see how the resonance effects
kinetic energy of the incident electron pacRetor a suffi- cause this transition, we examine the amount of charge,
ciently strong nonlinearity, the energy levels get broadene®(t), in the central well as a function of time as shown in
enough that there is sufficient charge trapped in the well td-ig. 11. This clearly shows a transition in the raw data from
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FIG. 10. Average nonlinear potential ws(solid line) and mean charge ws (dashed ling for the applied dc fields ofa) 3=0, (b) B=—4.6x10, (c) B
=-9.2x10°, and(d) B=—18.4x 10" V/m.

a nonresonant to a resonant state for each ofathalues:
1.25, 1.376, 1.377, and 1.475. Far<1.2, this transition for times t>350 000 a.u. But for higher values af, the
does not occur, while for values @f=1.5, this transition transition occurs fot<<100 000 a.u. The sudden decrease in
occurs almost immediately. The transition to resonance oche amount of time to resonance in the well causes the first
curs whenQ(t)=.01, which corresponds to 1% of the total order type transition in the average nonlinear potential and in
charge in the three well heterostructure. It is noted that fothe Lyapunov exponent. Despite the decrease in mean charge

values ofa=<1.376, this transition to resonance happens late,
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FIG. 11. Q(t) vs T for the applied dc field of3=—9.2x 10’ V/m and nonlinearity coefficientss) «=1.25,(b) a=1.376,(c) a=1.377,(d) a=1.475.
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for a=1.5 as shown in Fig. 16), the level broadening mixing® In this manner, the oscillating charge trapped in the
keepsQ(t) on resonance although the resonance is weakdriased heterostructure can be measured experimentally with
due to the increased repulsive potentialadiQ(t)). subpicosecond optical techniques.
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