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ABSTRACT 

 

                     The main objective of this research work is to apply the discontinuous 

Galerkin method to a classical partial differential equation to investigate the properties of 

the numerical solution and compare the numerical solution to the analytical solution by 

using discontinuous Galerkin method. This scheme is applied to 1-D non-linear 

conservation equation (Burgers equation) in which the governing differential equation is 

simplified model of the inviscid Navier-stokes equations. In this work three cases are 

studied. They are sinusoidal wave profile, initial shock discontinuity and initial linear 

distribution. A grid and time step refinement is performed. Riemann fluxes at each 

element interfaces are calculated. This scheme is applied to forward differentiation 

method (Euler’s method) and to second order Runge-kutta method of this work. 
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CHAPTER 1 

 
 

1. INTRODUCTION: 
                                        

                 Burgers equation is a non-linear conservation equation of second order that 

contains a flux term. The numerical solution of the unsteady Navier –Stokes (NS) 

equation is challenging problem for computational fluid dynamics that requires careful 

mathematical and numerical formulation. As a simplified model of the Navier-Stokes 

equation, the one-dimensional viscous Burgers equation represents many of the 

properties of NS equations, such as non-linear convection and viscous diffusion, leading 

to shock waves and boundary layers. Burgers equation is used in computational fluid 

dynamics as a simplified model for turbulence, boundary layer behavior, shock wave 

formation, and mass transport.  

     In this work one-dimensional inviscid Burgers equation is studied. Many of the 

research developments for numerical solutions have been developed within the context of 

one-dimensional equations before attempting to apply the methods to high dimensional 

problems. Numerical methods can be applied to a two-dimensional equation by using 

operator-splitting method in which the two-dimensional problem is divided into a 

sequence of two separate one-dimensional problems. This approach uses upwind 

differentiating in inertia term and convective term of the inviscid Burger’s equation, 
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which requires the methods such as flux vector splitting or Godunov’s discretization 

method. 

    This thesis work presents solutions to the inviscid Burgers equation using 

discontinuous Galerkin method (DGM). We have developed numerical solutions for 

initial conditions including sinusoidal wave profile, initial shock discontinuity and initial 

linear distribution and have compared them to analytical solutions. Forward 

differentiation and second order Runge-kutta methods are applied to develop the 

numerical solutions for inviscid Burgers equation. 

    There are several methods to develop the numerical solutions for inviscid 

Burgers equations. They are the finite element method, the finite difference method and 

the finite volume method. In this present work discontinuous Galerkin finite element 

method is used for 1-D inviscid Burgers equation. The Riemann problem is solved at the 

interface of each element. The Riemann problem is defined as a hyperbolic equation with 

discontinuous initial conditions.  

    This research work deals with solving the one-dimensional non-linear 

conservation equation using an explicit discontinuous Galerkin finite element method 

based on a Godunov’s scheme. The flux at the interface of each element is solved by the 

Riemann problem. Boundary conditions are applied to the solution of the one-

dimensional inviscid Burgers equation. Investigated properties of numerical solutions and 

comparison of these solutions with analytical solutions are documented. 
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CHAPTER 2 
 
 
2.  LITERATURE REVIEW: 
                                       

                   The technical value of the computational fluid dynamics has become 

undisputed as it has been providing wide applications in evaluating numerical solutions 

for fluid engineering problems. A capability has been established to compute flows that 

can be investigated experimentally only at reduced Reynolds number, or at greater cost, 

or not at all, such as the flow around a space vehicle at re-entry, or a loss-of-coolant 

accident in nuclear reactor. Furthermore, modern computational fluid dynamics has 

become indispensable for design optimization, because many different configurations can 

be investigated at acceptable cost and in short time.  

                    Fluid dynamics is a classic discipline. The physical principles governing the 

flow of simple fluids and gases such as water and air have been understood since the 

times of Newton. However numerical simulations have become essential in developing 

engineering analysis and design of the hydraulic systems to overcome the limitations of 

some flow fields such as, modeling of tunnels and big hydraulic flow fields. 

                    Burgers equation is similar to transport equation except that the convective 

term is now nonlinear. Burgers equation was used as simple model of turbulence in an 

extensive study by Burgers (1974). Cole (1951) showed that the Burgers equation could 

be transformed into the diffusion equation.  Kazuo Ito (1994) developed a globally 

existing solution to the inviscid Burgers equation with a nonlocal term. It is shown that 
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the inviscid Burgers equation, with a nonlocal nonlinear term admits smooth global 

solutions for certain initial data which is smooth and nondecreasing. Burgers equation is a 

very suitable model for testing computational algorithms for flows where severe 

gradients or shocks are anticipated. This computational algorithm, facilitated by Cole-

Hopf  transformation, which allows exact solution of Burgers equation to be obtained for 

many combinations of  initial and boundary conditions. Fletcher (1983a) provided many 

examples of the use of Burger’s equation. Explicit schemes, implicit schemes have been 

developed to the propagation of shock wave governed by the viscous Burgers equation. 

Fletcher (1984) obtained a solution for the one-dimensional Burgers equation with a 

shock-like internal layer by using Galerkin spectral methods that shows global 

oscillations for a nine-term Legendre polynomial solution. Basdevant (1986) obtained 

solutions for 1-D Burgers equation for spectral tau and collocation methods based on 

Chebyshev polynomials. Burger’s equation has been used to demonstrate various 

computational algorithms for convection-dominated flows.                    

                   Explicit MacCormack scheme has been applied to two-dimensional Burgers 

equation. Through the Runge-Kutta marching scheme it is possible to obtain stable 

solutions with even higher values of Courant number than MacCormack scheme. Courant 

and Friedrichs (1948) developed numerical methods for inviscid Burgers equation. The 

exact solution of the nonlinear inviscid Burgers equation is found using the Cole-Hopf 

transformation. Whitham (1974) developed numerical schemes for quasilinear form of 

conservation law equations.  

                   The Finite element method is a numerical analysis technique for obtaining an 

approximate solution for a wide range of engineering problems. The finite element 
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method first appeared in the 1950’s as a technique for handling the problems in solid 

mechanics. Later on it was developed for fluid dynamics problems. Turner, Martin, and 

Topp (1956) had applied this method to aircraft structural analysis. Finite element 

methods have been applied to fluid flow problems steady-state heat conduction, potential 

flow in ideal fluids, nuclear engineering and aeronautical engineering problems. 

                    The appearance of discontinuities even when starting from smooth initial 

data is a generic situation for non-linear hyperbolic PDE’s were shown. To define what is 

meant by a solution in such cases, the concept of weak solutions was introduced, which 

involved integrating the discontinuous solution over some domain. This suggests that it 

might be advantageous to construct a numerical method, which involves an integration 

step. A case also exists where a large class of PDE’s of practical interest is derived from 

conservation laws in which a direct expression of the quantity being conserved might 

prove useful in numerical algorithm. To evaluate a conserved quantity an integration step 

is again required. 

                    In recent years, several numerical schemes have been developed. These 

schemes are satisfying hyperbolic conservation laws, montonicity preserving, hydraulic 

phenomenon and shock capturing properties. 

                     Reed and Hill (1973) initially introduced the discontinuous Galerkin method 

as a technique to solve neutron transport problems. However, the technique lay dormant 

for several years and has only become popular as a method for solving fluid dynamics or 

electromagnetic problems. The DGM is somewhere between a finite element and a finite 

volume method and has many good features of both the methods. The use of DGM is 

uncommon in applications, but they rest on a reasonable mathematical basis for low-
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order cases and have local approximation features that can be exploited to produce very 

efficient schemes especially in parallel multi processor environment. The result of typical 

mathematical formulations that has influenced the development of many numerical 

schemes suggests discontinuous Galerkin methods. The local nature of the DGM requires 

communications of the solution only along sub-domain boundaries at each time step. DG 

method is only applied to a convective term in fully hyperbolic system of equations. 

                   One reason for renewed interest in DGM is the advent of parallel 

computation. The decomposition of large –scale problems into several computational 

components that can be handled simultaneously by multiple processors, makes possible 

significant improvements in the efficiency with which large hyperbolic systems can be 

resolved.  

                    Cockburn, Karnidakis and Shu (2000) introduced higher order schemes for 

hyperbolic equations in one and two-dimensions. Cockburn and Shu (1998) introduced 

the system of ordinary differential equations resulting from discontinuous Galerkin 

spatial approximation is marched in time using a multi-stage Runge-Kutta scheme. They 

have applied DG method with explicit Runge-kutta methods for the time discritisation to 

conservative hyperbolic systems. They also introduce the concepts of characteristic 

decomposition and splitting of element boundary fluxes and local projection limiters for 

resolving sharp gradient, such as shocks, without oscillations.  

            In addition, many interesting wave phenomenon in fluids are considered using 

examples such as acoustic waves, the emission of air pollutants, magneto hydrodynamic 

waves in the solar corona, solar wind interaction with the planet Venus, and ion-acoustic 

solutions. 
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                   Hydraulic conservation laws play a central role in mathematical modeling in 

several distinct disciplines of science and technology. Application areas include 

compressible, single (and multiple) fluid dynamics, shock waves, meteorology, elasticity, 

magneto hydrodynamics, relativity, and many others. The successes in the design and 

application of new and improved numerical methods of the Godunov type for hyperbolic 

conservation laws in the last twenty years have made a dramatic impact in these 

application areas. This method a cover very wide range of topics, such as design and 

analysis of numerical schemes, applications to compressible and incompressible fluid 

dynamics, multi-phase flows, combustion problems, astrophysics, environmental fluid 

dynamics, and detonation waves. 

                   The following description reveals different schemes and methods invented on 

numerical solutions of computational fluid dynamics.  

                    The method of upwinding explicit depends on directional descretization of 

the flux derivatives. After several extensions of second –order accuracy techniques, 

implicit time integrations have been developed.  

       The method of Lax –wendroff is second-order accurate and has led to a 

family of variants when applied to non-linear systems, characterized by their common 

property of being space centered, reducing to three-point central schemes in one-

dimension, explicit in time and derived form a combined space and time discretization. 

                     Runge-Kutta methods were proposed by Shu and Osher (1988). Runge-

Kutta methods are mainly appreciated for their high-order of accuracy. There are many 

Rung-Kutta schemes. Using Runge-Kutta time stepping in finite-element algorithm gives 
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good results in developing numerical solutions. Runge-Kutta methods can be used to 

obtain time-marching scheme. 
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CHAPTER 3 

 
3.1 PROPERTIES OF HYPERBOLIC EQUATION: 

                    The term hyperbolic equation refers to members of a specific class of partial 

differential equations. The most representative examples of this class are the partial 

differential equations that describe wave phenomena. In essence, the study of hyperbolic 

equations and the mathematical investigation of wave phenomena can be thought of as 

one and the same thing. A wave is a disturbance that propagates. The wave equation is a 

differential equation, which describes a harmonic wave passing through a certain 

medium. The equation has different forms depending on how the wave is transmitted, and 

in what medium. A system of quasi-linear partial differential equations, which expresses 

the conservative form of the physical conservation laws, will be hyperbolic, if the 

homogenous parts of the quasi-linear partial differential equations admit wave like 

phenomena. Wave phenomena are that oscillation cannot be particularly large. If we 

write the mathematical formulae that govern the propagating wave phenomena and 

describe the properties of wave phenomena, then the phenomena that conform to partial 

differential equations are known as hyperbolic equations. If partial differential equations 

allow the solution for damped waves then the system is known as parabolic. If the system 

of partial differential equations allows diffusion phenomena then the system of equations 

is known as elliptic. 
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3.2 MATHEMATICAL FORMULATION: 
                               

                    The main objective of this study is to develop a numerical solution for a 1-D 

inviscid Burgers equation by using discontinuous Galerkin method. 

                     Burgers equation is a non-linear conservation equation, that possess readily 

computable exact solutions for many combination of initial and boundary conditions. For 

this reason it is an appropriate model equation on which various computational 

techniques can be tested. This feature has been exploited for one-dimensional Burger’s 

equation. 

                    We consider a 1-D convection term in Burgers equation to develop 

numerical solution.  

Following assumptions are made to derive the invisicid Burgers equation. 

                 1. The flow is unsteady 1-D conservation equation. 

                 2. Fluid is incompressible and inviscid. 

                 3. Velocity distribution is in x-direction as 1-D equation. 

Standard form of viscous Burgers equation is  

     (1)             2

22

2 x
uu

xt
u

∂
∂

=
∂
∂

+
∂
∂ υ   

where   υ   is  viscosity. 

                 By considering the above assumptions, if the viscous term dropped from 

equation (1)  the result is the inviscid Burgers’ equation. 

                The  inviscid  Burgers equation is a scalar conservation law  with quadratic flux 

function.The standard form of this equation is,  
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   (2)                    0
2

2

=
∂
∂

+
∂
∂ u

xt
u  

In quasi-linear form of equation (2) is 

   (3)               0=
∂
∂

+
∂
∂

x
uu

t
u  

         The nonlinearity in equation (2) allows discontinuous solution to develop. In the 

literature of hyperbolic equations, the inviscid problem (2) has been widely used for 

developing both theory and numerical methods. 

Equation (2) can be written as  

  (4)                     0=
∂
∂

+
∂
∂

x
f

t
u  

Where the flux is arbitrary function of velocityu and is denoted as )(uf . Consider the 

flux function 
2

2uf = and consider ),( txuu =  as the dependent variable. 
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3.3 PHYSICAL PROBLEM: 
      

                    In this work we resolved velocity distribution for inviscid Burgers flow by 

using discontinuous Galerkin method. With this velocity distribution we developed 

numerical solution for sinusoidal wave profile, initial shock discontinuity and initial 

linear distribution. Those physical descriptions are mentioned below. 

 

1. Sinusoidal wave profile: 

                    The time evaluation by sinusoidal wave profile is the good test case for 

unsteady flows with shock information and propagation.  

 
 

                      











><

≤≤+

=
Lxxu

Lxu
L
xA

xg
o

,0

0sin

)(

0

π

 

The formation of shock is given by the following relations. 

For t >> st  the shock moves at speed 

Where st  is time of shock formation. 

Shock speed  is given by, 

C = tBu /2/10 +   

and has an  intensity of velocity  

][u = tB /  

Where 
2
B is the area under the sinusoidal curve, which remains constant. 
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B =2
π
ALdxuxg

L 4])([
0

0 =−∫  

 

The expansion part takes on a linear shape asymptotically, 

),( txu
t
x

≈          Bttuxtu +<< 00  

 
So that the amplitude decreases as t ,∞→ while the shock velocity decreases, both at a 

rate t/1∝  if 00 =u .This solution is illustrated in fig.1.  

 
 
 
 
 
 
 
                                                                                                                                tB /                              
                                                                                                                       C        
                                                                                                                        
 
 
 
 

 
 
 
 
                                                                                                                Bttuo +                                        
                        
Fig.1 Solution for Burgers equation from an initial sinusoidal distribution. 
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2. Initial shock discontinuity: 

                    This test case can be applied to steady and unsteady computations. This 

phenomena is provided by an initial discontinuous distribution 









=>

=<
==

0,0

0,0
)()0,(

txu

txu
xgxu

R

L

 

Shock propagating speed C  = 2/)( RL uu +  with unmodified intensity ][u  = RL uu − . 

If LR uu = the shock is stationary then this form is simple, although non-linear, test case 
for steady-state methods. This solution is illustrated in Fig.2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.2 Burgers solution for a propagating discontinuity. 
 
 

3. Initial linear distribution: 

                     Any initial distribution with 0)(' <xg between Lu and Ru  will lead to the 

same shock structure for large times. For instance, a linear distribution is illustrated in 

fig.3.This formulation will lead to the solution shown in fig.3, where the characteristics 

are also indicated. The shock is formed at a time given st  is shown below. 

Luu =  uL       t

u = uR uR 

u 

x 
x = 0

(uL +uR)t/2 

t=0 
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and at the position    RsLss utLutx .. +==  

The solution is therefore, for stt >  
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This solution is illustrated in Fig.3 
 
 
                                                                                                   
                       
 
 
 
 
 
 
 
 
                                                                                                                                     
 
                                                                                                                                           
                                                                                                    
 
 
 
Fig.3   Shock formation from an initial linear distribution. 
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CHAPTER 4 
 
 
4. NUMERICAL FORMULATION: 
                           

                     Historically, many of the fundamental ideas of numerical solutions were 

first developed for the special case of compressible gas dynamics (the Euler equations), 

for applications in aerodynamics, astrophysics, detonation waves, and related fields 

where shock waves arise. Burger’s equation and the shallow water equations have played 

an important role in development of these methods. 

                    In recent years a powerful class of numerical methods has been developed 

for approximating solutions, including both linear and non-linear conservation laws. 

These equations describe a wide range of wave propagation and transport phenomena 

arising in nearly every scientific and engineering discipline. Several applications are 

being made along with mathematical theory of hyperbolic equations. Recently developed 

high-resolution FEM (Finite Element Methods) techniques provide an excellent learning 

environment for understanding wave-propagation phenomena and finite element 

methods. 

                    DGM (Discontinuous Galerkin Method) in FEM has wide applications even 

it is uncommon in use. The DG method has reasonable mathematical basis for low order 

cases and local approximation features produce very efficient schemes. 

                   The mathematical theory of nonlinear hyperbolic problems is beautiful, and 

the development and analysis of finite element methods requires a good interplay 
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between this mathematical theory, physical modeling, and numerical analysis, so that 

finite element methods can be developed for nonlinear conservation laws. 

 

4.1 Finite Element method: 

                   The basic concept of the finite element method is that a body or structure may 

be divided into smaller elements of finite dimensions called finite elements.  It is 

important to insure that the numerical techniques conserve the physical quantities such as 

mass, momentum, charge and energy. Finite element methods have also been developed 

to solve integral equations. Consequently, it is often preferable to use a finite-element 

method rather than a finite difference method in which n
iu  is considered as an 

approximation to the average value of ),( txu  over a element rather than a point wise 

value ofu . This average value is the integral of u over the cell divided by its length. The 

spatial divergence (derivative) terms are expressed as a surface integral of fluxes that are 

approximated with the use of solutions at two adjacent finite-elements. The value ),( txu  

will be approximated by its average value over the thj  numerical element at the 

time tntn ∆= , 

dxtxu
x

u
ij

ij

x

x
n

j

n
j ),(1 1,

,

∫
+

∆
≅  

Where ijijj xxx ,1, −=∆ + , the index i  and 1+i  corresponds to left and right interfaces of 

the thj  element respectively. 
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4.2 Applying DG method to 1-D nonlinear Burgers flux equation: 

                     Galerkin’s method uses the set of governing equations in the development of 

an integral form. It is usually presented as one of the weighted residual methods. 

Discontinuous Galerkin method is well suited for large-scale time-dependent 

computations in which high accuracy is required. Its compact formulation can be applied 

near boundaries without special treatment, which greatly increases the robustness and 

accuracy of any boundary condition implementation. DG method can be combined with 

explicit time-marching methods, such as Runge-Kutta. One of the disadvantages of the 

method is its high storage and high computational requirements. In the Galerkin method, 

the weighting functions jw  are chosen from basis function. 

Here DG method is defined by choosing a weight function w , this is denoted as shown 

below, 

(5)       
x

w
xxww j

jj ∂

∂
−+= )(0,   

Where  
2

1,, ++
= ijij xx

x  is the average length of thj  element. 

The weight functions are chosen as the approximating functions. 

And velocity u  function over the thj  element is 

(6)         += 0,jj uu
x

u
xx j

∂

∂
− )(  

Where 0,ju is the average velocity of thj  element and 
x

u j

∂

∂
 is linear slope of thj  element. 

Multiplying the equation (4) with test or weight function on both sides and integrates 

over an thj  element. Then the equation (4) becomes, 
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(7)        ∫
+

=
∂
∂

+
∂
∂1,

,

0)(
ij

ij

x

x

wdx
x
f

t
u  

 

4.3 1-D Discontinuous Galerkin finite element method: 

                    In this research work discontinuous Galerkin finite element scheme is based 

on the discrete equations, which are constructed by expressing the integral conservation 

law on a discrete set of elements. Mathematical formulation for Burgers equation by 

using FEM based on integral form instead of differential equation. High resolution finite 

element methods that have provided to be very effective for computing discontinuous 

solution. A fundamental tool in the development of the discontinuous Galerkin finite 

element method is the Riemann problem, which is simply the hyperbolic equation 

together with discontinuous initial data. Since PDEs to continue away from 

discontinuities, one possible approach is to combine an FEM in smooth regions with 

some explicit procedure for tracking the locations of discontinuities. According to DG 

procedure techniques integrate the differential conservation law given in equation (7) 

over an jth  element 1,, +≤≤ ijij xxx . That can be shown below in equation (8). A finite 

element model of a problem gives piecewise approximation to the governing equations. 

The basic premise of finite element method is that a solution region can be analytically 

modeled or approximated by replacing it with an assemblage of discrete elements. 1-D 

mesh with nodes and cell nomenclature shown in fig.4. 
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 Expansion of equation (8) becomes, 
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We can use this equation (9) to develop an explicit time-marching algorithm. 
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Fig.4. 1-Dimensional Finite element mesh. 

Where i  and 1+i are the thj  element left and right interfaces respectively. 

Equation (9) can be written as, 
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Substitute all the above equations (11), (12), and (13) into equation (10)  
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  Then the equation (10) becomes, 
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Where Riemann’s flux can be denoted as ),( ,,1
n

ij
n

ij
RR

i uuff −= , ),( ,1,1
n
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n
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RR

i uuff ++ = . 

These two fluxes are evaluated at i  and 1+i  interface. This Riemann flux with nodal and 

cell nomenclature is shown in fig.5 
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Fig.5  Schematic representation of Reimann flux. 
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4.4 Explicit forward differencing in time (Euler’s method): 

                     Here explicit forward differencing scheme in time is applied in equation 

(14). Velocity distribution and change of velocity with respect to distance at each 

interface of an thj element can be approximated from these equations. 

                    Discrete the system in space using the DG method with first order 

polynomial, and discretize in time using explicit forward differencing technique. Then 

the equation (14) becomes, 
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Expand the equation (15) and divide with jx∆ on both sides. 

Then the equation becomes, 
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On expanding equation (16), average velocity and linear slope of thj  element at time 
level )1( +n  are derived as follows. 
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Where time averages of the flux at each interface can be given as 

dttxuf
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                    For hyperbolic problem information propagates with finite speed, so it is 

reasonable to first suppose that we can obtain 
nR

if  and 
nR

if 1+  based on the on the values of 

),( ,,1
n

ij
n

ij uuf −  and ),( 1,,
n

ij
n

ij uuf +  respectively which are called as numerical flux 

functions. Numerical Riemann fluxes of Burgers equation at each interface are 

approximated by Godunov’s scheme.  

Piece wise constant approximation is shown in fig.6 

 

 

Fig.6. Piecewise constant distribution at t = (n+1) ∆t 
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4.5 Runge-Kutta method: 

                     Runge-Kutta methods are mainly appreciated for their high-order of 

accuracy. There are many Runge-kutta methods. Here we are approaching explicit 

scheme in second order RK method in time to obtain the solution. This method was 

proposed by Shu and Osher. 

Two steps are involved in applying second order Runge-Kutta discontinuous Galerkin 

method (RKDGmethod) 

1. Discretize in space using the DG method with first order polynomial. 

2. Discretize in time using a second order Runge-Kutta time scheme. 

In RK method Riemann problem needs piecewise constant variation at time levels in a 

time-marching solution. It is shown fig.7. 

 

Fig.7. 2ND order Runge-Kutta Piecewise constant distribution  
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4.5.1   First step of Runge-Kutta method: 

                    First step Runeg-Kutta method is applied at intermediate time level 1+n /2 

into the equation (14). Thus the velocity distribution and velocity variation with respect 

to distance equations at time level n+1/2 can be derived. In first step Runge-Kutta 

method, equation (14) will be written as shown below. 
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Expand the equation (20) and divide the equation with jx∆  on both sides. 

Then the equation becomes, 
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On expanding the equation (21), average velocity and linear slope of thj  element at 

intermediate time level ( 2/1+n ) are derived as follows. 

Those are, 
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4.5.2   Second step of Runge-Kutta method: 

                    Second step Runeg-Kutta method is applied at time level 1+n into the 

equation (14). In second step Runge-Kutta method discretisation of system in space, and 

discretisation in time can be shown as below. 
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Expand the equation (25), and divide the equation by jx∆  on both sides. 

Then the equation becomes, 
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On expanding equation (26), average velocity and linear slope of thj  element at time 
level )1( +n  are derived as follows. 
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Numerical fluxes of Burger’s equation at each interface are approximated by Godunov’s 

scheme. 
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4.6 Godunov’s method: 

                    Godunov’s method is only first order accurate. Higher order schemes like 

Lax-Wendroff type schemes, such as MacCormack’ schemes are second order and show 

spurious wiggles near discontinuities. Here we focus on first order accurate methods for 

non-linear equations, in particular the upwind method for advection and for hyperbolic 

systems. This is the non-linear version of Godunov’s method, which is the fundamental 

starting point for methods for nonlinear conservation laws. Finite element methods are 

derived on the basis of the integral form of the conservation law, a starting point that 

turns out to have many advantages. 

                    Godunov introduced a method to resolve numerical solutions of hyperbolic 

equations where the cell averages of the solution of the system of equations at time level 

nt are to be assumed to be piecewise constant. So that we can approximate the cell 

averages at next time level 1+nt  with the known value of cell average at time level nt . This 

time step of length can be denoted as nn ttt −=∆ +1 . Thus we can obtain the cell average at 

time level 1+nt  from equation (10).  

                   Godunov’s method indicates the Riemann problem’s existence in the 

solution. The Riemann problem can be solved at each interface by the technique of 

piecewise constant solution like one time level to next time level. So that local Riemann 

problem at each element interface can be solved analytically. Therefore, the local 

solutions at each element interface are the exact solutions to the conservation laws of 

hyperbolic equation subject to the given discontinuous initial conditions. 
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                    However we cannot evaluate the time integrals on the right-hand side of the 

equations (9) and (10) exactly, since ),( txu i  and ),( 1 txu i+  varies with time along each 

edge of the element, and we don’t have the exact solution to work with. 

 

4.7 Riemann Problem: 

                    This method is named after German mathematician G.F. Bernard Riemann 

who first attempted its solution in 1858. The Riemann problem was initiated and solved 

for one-dimensional Euler equations of isentropic flow in gas dynamics by Riemann in 

1860. Riemann’s solutions reveal the elementary waves of isentropic flow shock waves 

and rarefaction waves. The Riemann problems lend themselves to a direct analytic 

solution of the unsteady, one dimensional Euler equations. The Riemann problems are 

Cauchy problems for non-linear conservation laws with scale invariant initial data. They 

describe the phenomena of wave-front interaction. The corresponding Riemann solutions 

are important both theoretically and computationally as building blocks of general 

solutions.  

                     Here we used exact solutions of the Riemann problem with initial conditions 

which are derived for Godunov’s scheme. 

                    The numerical Riemann flux of inviscid Burgers equation for a Godunov’s 

scheme is   

             2/2
iu         if iu and 1−iu  are both negative 

 
=if {  

              2
1−iu /2         if iu and 1−iu  are both positive 

 
When iu and 1−iu  have opposite signs, one has 
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                  0              if 10 −<< ii uu     (expansion fan) 
 

=if {       2/2
iu         if   10 −>> ii uu  and 0>ic  

                
                 2

1−iu /2         if    10 −>> ii uu  and 0<ic  
 

Where ic  is propagating speed of wave. 

 

4.8 Courant number: 

                   Stability of numerical solution for each studied method was determined by 

Courant number. CFL condition, which is necessary condition that must be satisfied by 

the Godunov’s method if we expect it to be stable and converge solution of the 

differential equation as the grid is refined. This is consequence of CFL condition, named 

after Courant, Friedrichs, and Lewy. It is very important to note that the CFL condition is 

only a necessary condition for stability (and hence convergence). DG method is required 

for lower courant number for stable numerical solution. Courant number is defined as  

                                    C=
x
tu

∆
∆               where C is called Courant number. 

                

                   This equation is called the Courant-Friedrichs-Lewy condition. For all cases, 

the maximum courant number is remained constant for each of the methods. It is an 

important stability criterion for hyperbolic equations. For stable numerical solutions 

courant number must be less than or at most equal to unity. For stability, the numerical 

domain must include the entire analytical domain. Time period depends on courant 

number C where the stability criteria based on courant number for numerical solutions. 

Then numerical solution convergent to the analytical solution. 
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CHAPTER 5 

5. BOUNDARY CONDITIONS: 

                     Boundary conditions should be specified as part of the problem and are 

determined by the physical setup, generally not in terms of the characteristic variables. 

Since the hyperbolic problem is a time-dependent problem for which we need both initial 

data and boundary data. It is not always easy to see what the correct conditions are to 

impose on the mathematical equation. We may have several pieces of information about 

what is happening at the boundary. It often helps greatly to know that the characteristic 

structure is which reveals how many boundary conditions we need and allows us to check 

that we are imposing appropriate conditions for a well-posed problem. 

                    In practice we must always compute on some finite set of grid cells covering 

a bounded domain, and in the first and last cells we will not have the required 

neighboring information. The solution of the problem is determined by specifying the 

boundary and initial conditions. For numerical solutions we need additional boundary 

conditions (numerical boundary conditions) in addition to analytical boundary conditions 

which are also known as physical boundary conditions. These analytical boundary 

conditions are defined as the free number of primitive variable that can be imposed at the 

boundary. This number depends on the signs of the eigen values, which indicates the 

propagation of information along the characteristics. The variables applied at boundaries 

of the domain are transported along characteristics that travel from boundary towards the 

interior domain. These variables are remaining the same during the computation but they 
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change the state of flow by feeding the data from exterior domain. When the computation 

started along the domain the information propagates from interior domain into the other 

boundary, the situation along this boundary will be influenced and modified by the 

computed flow so the variables from one boundary to another through interior domain 

cannot be arbitrarily specified.       

                    One approach is to develop special formulas for use near the boundaries, 

which will depend both on what type of boundary conditions specified and on what sort 

of method we are trying to match. However, in general it is much easier to think of 

extending the computational domain to include a few additional cells on either end, 

whose values are set at beginning of each time step in some manner that depends on the 

boundary conditions and perhaps the interior solution. Those values at each boundary 

provide the neighboring-cell values needed in updating the cells near the physical 

domain. Generally three types of boundary conditions are implemented to solutions. 

• Fixed boundary 

• Periodic boundary 

• Absorbing boundary 

Fixed boundary: 

                     A fixed boundary condition is easiest to implement. For the classical wave 

equation the right (left) traveling wave is set equal to the negative of the left (right) 

traveling wave at the left (right)boundary. For all other equations, we set the function to 

zero at the boundaries. 
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Periodic boundary: 

                     Periodic boundaries are only slightly more difficult to implement. We 

require that the value of the function be calculated as if the ends were tied together. The 

wave at one end point is calculated as if it had the other endpoint as its nearest neighbor. 

This boundary condition is coded by using two extra grid points that have x-coordinates 

just outside the medium. These extra grid points are updated to the values at the opposite 

boundary after every time step but they are not displayed on the screen. 

Absorbing boundary:  

                     An absorbing boundary is the most complicated. Since the fixed boundaries 

for the diffusion equation already absorb or remove mass from the system, absorbing 

boundaries are redundant and have not been implemented for the diffusion equation. 

                     For the classical wave equation, we set the first grid point of the right-

traveling wave or last grid point of the left-traveling wave equal to zero and let the 

propagation algorithm carry these zeros into the medium.  

Boundary conditions summary:  

For all three cases: 

At left boundary, 

0.0)1( =f   

0.1)1( =unew    

0.0)1( =dudxnew  

At right boundary, 

2
),2(

)(
2nelementsue

nnodesf =   
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Nomenclature of these global boundary conditions is shown in below. 

                               

 

Where )1(f   is the flux at 1 interface of  thj  element. 

            )(nnodesf  is the flux at nnodes  interface of  thj  element. 

             )1(u  is the average velocity of thj  element. 

             )(nnodesdudxnew is the slope of the thj  element. 

 

 

 

 

 

 

 

nnodes1 

 

 )(nnnodesf  
)1(f  

Element 
interface 

Element 
interface 
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CHAPTER 6 

6. RESULTS AND DISCUSSIONS: 

                   This chapter describes the results of numerical solution, analytical solution 

and comparison between them. Numerical solution results are obtained for all three cases 

by applying DG method to 1-D inviscid Burgers equation. A set of additional boundary 

conditions are added to the numerical solution besides physical boundary conditions or 

analytical boundary conditions. 

                   The effects of different parameters on numerical solution are studied. Here 

results of numerical solutions and analytical solutions are obtained by applying different 

grid elements, different time steps and different total times. All results are divided into 4 

sets.                       

                     Set 1 includes the grid independence study. figures8, and 10 the grid is 

refined by dividing the domain equally into 200, 400 and 800 elements for first and last 

cases (sinusoidal wave profile and initial linear distribution) at t=300seconds and 

t=200seconds respectively. In figure 9 the domain of the grid is divided into 80, 160 and 

320 elements for second case (initial shock discontinuity) at t=20seconds for time interval 

of 0.01seconds. Figures 14 and 17 give the comparison between the analytical and 

RKDG numerical solutions for case1 and case3 at 400 elements, and time interval of 0.01 

seconds. Figure 16 give the comparison between the analytical and RKDG numerical 

solutions for case2 at 200 elements, and time interval of 0.01 seconds. Grid refinement 

and courant numbers are listed in table 1. 
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In set 2 figures 15 shows the results obtained at different times for case1 study 

(sinusoidal wave profile) to prove that the solution is asymptotic. This is done at t=150, 

300, and 600 seconds for the grid of 400 elements at time interval 0.01seconds. The 

description is shown in table 2. 

                    Set 3 includes time convergence study for all three cases at different time 

intervals. Figure 11 shows time step convergence study for case1 which is obtained at 

t=300seconds for the grid of 400 elements at different time intervals of 0.01, 0.005, and 

0.001 seconds. Figure 12 shows times step convergence study for case 2 which is studied 

at t=20 seconds for the grid of 160 elements at different time intervals of 0.01, 0.005, and 

0.001 seconds. Figures13 shows time step convergence study for case 3 which is studied 

at t=200seconds for the grid of 400 elements at different time intervals of 0.01, 0.005, 

and 0.001 seconds. The time step convergence and courant numbers are shown in table3.  

                    Set 4 includes the comparison between RKDG numerical solutions and 

Euler’s numerical solutions. Figure 18, 19 and 20 shows comparison between RKDG and 

Euler’s method for each case at the highest time interval of 0.01 seconds. 

                   All plots are plotted to length of the domain vs. velocity.  These results of 

numerical solutions obtained under valid initial and boundary conditions from RKDG 

method and Euler’s method. Numerical solutions are stable up to a maximum courant 

number of 0.08 for case1 and case 3 and 0.32 for case 2. 
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TABLE 1 

 

                             Grid refinement study for case1, case2, and case3 

 
  
 Number of 
elements 

        
       Time t sec 

           
         t∆ sec 

 
 Courant number C 

Case1 
          200 

 
           300 

 
        0.01 

 
          0.02 

 
          400 

 
           300 

 
        0.01 

 
          0.04 

 
          800   

 
           300 

 
        0.01  

 
          0.08 

Case2 
          80 

 
           20 

 
        0.01 

 
          0.08 

 
          160 

 
           20 

 
        0.01 

 
          0.16 

           
          320 

 
           20 

 
        0.01  

 
          0.32 

Case3 
          200 

 
           200 

 
        0.01 

 
          0.02 

 
          400 

 
           200 

 
        0.01 

 
          0.04 

 
          800   

 
           200 

 
        0.01  

 
          0.08 
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                                                         TABLE 2 
 
 
                                           Asymptotic study for case1 
 
        
         Time t sec 

           
         t∆ sec 

 
 Number of 
elements 

 
 Courant number C 

 
           150 

 
        0.01 

 
          400 

 
          0.04 

 
           300 

 
        0.01 

 
          400 

 
          0.04 

 
           600 

 
        0.01  

 
          400   

 
          0.04 
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                                                      TABLE 3 
 
 
                      Time step convergence study for case1, case2, and case3. 
 
           
         t∆ sec 

 
 Number of 
elements 

        
        Time t sec 

 
 Courant number C 

Case1 
        0.01 

 
          400 

 
           300 

 
          0.04 

 
        0.005 

 
          400 

 
           300 

 
          0.02 

 
        0.001  

 
          400   

 
           300 

 
          0.004 

Case2 
        0.01 

 
          160 

 
            20 

 
          0.16 

 
        0.005 

 
          160 

 
            20 

 
          0.08 

 
        0.001  

 
          160  

 
            20 

 
          0.016 

Case3 
        0.01 

 
          400 

 
           200 

 
          0.04 

 
        0.005 

 
          400 

 
           200 

 
          0.02 

 
        0.001  

 
          400   

 
           200 

 
          0.004 
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Figure 8: Case1 (sinusoidal wave profile) problem, grid independence 

                 study. 
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Figure9: Case2 (initial shock discontinuity) problem, grid independence  

                   study. 
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Figure10: Case3 (initial linear distribution) problem, grid independence  

             study. 
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Figure 11: Case1 (sinusoidal wave profile) problem, time step  

                   convergence study. 
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Figure 12: Case2 (initial shock discontinuity) problem, time step  

                   convergence study. 
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Figure 13: Case3 (initial linear distribution) problem, time step  

                   convergence study. 
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Figure 14: Case1 (sinusoidal wave profile) problem, grid convergence 

                 study comparison  with analytical solution. 
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Figure 15: Case1 (sinusoidal wave profile) problem, time study, t =150,  

                   300 and 600seconds, domain of 400elements, t∆ =0.01seconds. 
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Figure16: Case2(initial shock discontinuity)problem, grid convergence 

                 study comparison  with analytical solution. 

 

 

 

 

 

 



 
 

49

Distance, x, (m)

V
el

oc
ity

,u
,(

m
/s

)

-100 0 100 200 300 400 500 600
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

RKDG solution
Analytical solution

Case 3 grid convergence study
with analytical solution

t = 200 seconds

dt = 0.01 seconds

Number of elements = 400

 

Figure17: Case3(initial linear distribution)problem, grid independence 

                 study comparison  with analytical solution. 
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Figure 18: Case1 (sinusoidal wave profile) problem, comparison  

                   between RKDG and Euler’s solutions. 
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Figure 19: Case2 (initial shock discontinuity)problem, comparison   

                    between  RKDG and Euler’s solutions. 
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Figure 20: Case3 (initial linear distribution) problem, comparison   

                    between RKDG and Euler’s solutions. 
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CHAPTER 7 
 

7. CONCLUSIONS AND DISCUSSIONS: 

                    The Discontinuous Galerkin method is applied to 1-Dimensional inviscid 

Burgers equation for 3 test cases. For all 3 cases the numerical and analytical solutions 

are obtained by applying initial and boundary conditions.  

                    In grid convergence study numerical solutions and comparison of numerical 

solution with analytical solution are presented. Figures 8, 9, 10, 14, 16, and 17 shows that 

the results obtained from RKDG method and analytical solution are independent of grid 

elements. There is no significant change in solutions when the number of elements is 

changed from coarser grid to refined grid. Results obtained from refined grid are more 

accurate than coarser grid. Numerical solutions converge into exact solution. But for 

case1 figure 14 shows that the numerical solution converges at infinite. This phenomena 

is show in figure 15. Therefore the solution is independent of grid. 

                    Fig .15 shows the asymptotic solution for case 1 (sinusoidal wave profile). 

The plot is drawn for different times at t=150, 300, and 600 seconds to show that the 

sinusoidal wave profile is the simple asymptotic situation as the analytical solution 

approaches the numerical solution at ∞→t . This plot shows clear view of approach of 

analytical solution towards numerical solution at t=150, 300 and 600 seconds. As the 

time increases the analytical solution moving close towards numerical solution. Thus the 
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fig.15 can be proved that as the time increases the numerical solution converges to 

analytical solution. 

                    In time convergence study figures 11, 12, and13 shows that the convergence 

of solution under time step refinement. Transient solutions can be obtained under refined 

time step. The stability criterion is studied by courant number. For higher values for 

courant number the solution may blow up. The resulting plots show transient solutions 

and the given boundary conditions are satisfied. 

                    Figures 18, 19, and 20 shows the comparison between RKDG solutions and 

Euler’s solutions where transient solutions are shown from RKDG method than Euler’ 

method even at higher time intervals. Figure 19, 20 clearly show the oscillations of the 

solutions at shock formation for Euler’s method. Finally these results conclude that the 

RKDG method is more stable than Euler’s method.  

                    Developed DG method has been implemented into code. Plots obtained from 

code are compared with analytical solution of the problem. The solutions obtained for 

numerical and analytical methods are almost same and the written algorithm into the code 

for 1-D inviscid Burgers equation is valid. Under grid and time step study all numerical 

solutions converges. So that the implementation of developed DG method into the code 

has been verified and correctly implemented. 

• Grid independence study results show that the solutions are independent of grid as 

there is no significant change in solutions at different grid elements and the 

numerical solutions converge into the analytical solution. But transient results can 

be obtained from refined grid than coarser grid. 
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• Asymptotic study for case1 (sinusoidal wave profile) clearly shows that the 

analytical solution converges the numerical solution at ∞→t  as the sinusoidal 

wave profile case study is simple asymptotic situation. 

• Time step convergence shows that the solutions converge under time refinement. 

Stable solutions are obtained at appropriate courant numbers i.e. stability criteria 

of the solutions depend on courant numbers. If the time interval is increased to 

higher value then the solution may blow up. Therefore results concluded that 

maximum time interval is justified by courant number. Numerical solutions are 

convergent to analytical solutions. 

• Comparison of RKDG solution and Euler’s solution shows that the RKDG 

solutions are more stable and accurate than Euler’s solutions even at allowable 

higher time intervals. 

 

                        

 

                      

 

 

 

 

 

 

 



 
 

56

RECOMMENDATIONS FOR FUTURE WORK 

 

• Future work can be developed for 2-D inviscid Burgers equation. 

•  It can also be studied for viscous Burgers equation to capture some key futures 

of gas dynamics, aerodynamics, astrophysics, detonation of waves and related 

fields where shock waves arise.   

• It can be extended to systems of non-linear hyperbolic equations such as shallow 

water equations and other Euler equations. 

. 
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APPENDIX 

              Discontinuous Galrekin method developed for 1-D inviscid Burgers equation by 

Euler’s method and RKDG method. 
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Equation A2 can be simplified as, 
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By applying the linear test and velocity functions of the discontinuous Galerkin method 

produces integral form of equations are derived as shown in below. 
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 Separate the above equation into matrix from. 
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At each interface of the element flux terms (Riemann flux) can be simplified as, 
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Substitute all equations A4, A5, and A6 in equation A3. 
 
 
Then the discrete system in space will be, 
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