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The trajectory of the polarization state of a monochromatic light beam after it passes through a fixed linear
polarizer and a rotating linear retarder of arbitrary retardance D is determined on the Poincaré sphere. The
three-dimensional figure-8 contour is shown to be the line of intersection of a right-circular cylinder with the
sphere. The cylinder is parallel to the polar (s3) axis, touches the sphere at the equator (at the point that
represents the linear polarization transmitted by the fixed polarizer), and has a radius r 5 sin2(D/2). Projec-
tions of the trajectory in the coordinate planes of the normalized Stokes parameter space (s1 , s2 , s3) are also
determined. © 2000 Optical Society of America [S0740-3232(00)02411-X]

OCIS codes: 260.5430, 120.2130, 120.4640, 230.0230.

The combination of a linear polarizer and linear re-
tarder is a versatile optical system that is commonly used
for polarization-state generation (PSG) and polarization-
state detection1–4 (PSD). Rotation of these elements
around the light beam axis creates a variable elliptic po-
larizer or analyzer. The retardance (differential phase
shift) D of the retarder is often selected as quarter wave
(D 5 90°). This choice is essential for complete PSG, to
produce all possible polarization states (including the
right- and left-circular polarizations) that correspond to
all points on the surface of the Poincaré sphere.5–7 How-
ever, it has been shown recently8 that for PSD, other
choices of D may be optimal (D 5 132°).

When the polarizer is set at a fixed azimuth and the re-
tarder is rotated, the point that represents the emergent
polarization state in PSG (or the elliptic analyzer in PSD)
traces a three-dimensional, nonplanar, figure-8 contour
on the Poincaré sphere. A sketch of such a contour on
the Poincaré sphere for a rotating quarter-wave retarder
(QWR) appears in an early paper by Rajagopolan and
Ramaseshan.9 A computer-generated family of such
curves, for different values of D, are presented by Sabatke
et al.8 Stereographic projections of the QWR contour
onto a tangent (complex) plane are given by Azzam
et al.3,10

In this communication, the exact nature of this contour
is determined as the line of intersection of a right-circular
cylinder with the Poincaré sphere. The cylinder axis is
parallel to the polar (s3) axis, touches the sphere at the
equator (at the point that represents the linear polariza-
tion transmitted by the fixed polarizer), and has a radius
r 5 sin2(D/2). (Thus r 5 0, 1/2, and 1, when D 5 0, p/2,
and p, respectively.) Normal projections of the trajectory
in the coordinate planes of the normalized Stokes param-
eter space are also determined.

Figure 1 shows a PSG system that consists of an ideal
linear polarizer with transmission-axis azimuth P and a
linear retarder of retardance D and fast-axis azimuth C.
P and C are measured from the x axis of a transverse xy

reference coordinate system for a monochromatic light
beam traveling in the direction of the z axis. When the
polarizer is fixed, we set P 5 0 for simplicity and without
loss of generality. With the Stokes–Mueller calculus,1,3

the normalized Stokes parameters of the output light are
obtained as

s0 5 1, s1 5 cos2 2C 1 sin2 2C cos D,

s2 5 sin 2C cos 2C~1 2 cos D!, s3 5 sin 2C sin D.
(1)

The normalized Stokes vector s 5 (s1 , s2 , s3) is of unit
length, and its tip traces a figure-8 contour on the Poin-
caré sphere as the retarder is rotated (and C is changed)
for a given D. To reveal the nature of this contour, the
normalized Stokes parameters s1 and s2 are rewritten in
the following form

s1 5 cos2~D/2! 1 sin2~D/2!cos 4C, (2a)

s2 5 sin2~D/2!sin 4C. (2b)

C is readily eliminated between Eqs. (2a) and (2b) so that

@s1 2 cos2~D/2!#2 1 s2
2 5 sin4~D/2!. (3)

Equation (3), which represents the normal projection of
the contour in the equatorial (s1 , s2) plane, is that of a
circle with center at

~s1 , s2! 5 @cos2~D/2!, 0#, (4)

and radius of

r 5 sin2~D/2!. (5)

It follows that the trajectory of the polarization state at
the output of the fixed-polarizer rotating-retarder system
of Fig. 1 is the line of intersection with the Poincaré
sphere of a right-circular cylinder whose axis and radius
are given by Eqs. (4) and (5), respectively.

Figure 2 shows the cylinder–sphere intersection for
QWR (D 5 90°). For this retardance value the cylinder
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radius is half the sphere radius and the intersection con-
tour passes through the north and south poles of the
sphere, which correspond to the right- and left-circular
polarizations, respectively. The grid of longitudes and
latitudes on the Poincaré sphere represent the equiazi-
muth and equiellipticity contours, respectively.3 It is in-

teresting to note that the line of intersection represents
the locus of all polarization states with equal azimuth and
ellipticity angles, i.e., equal longitude and latitude on the
sphere.

Figure 3 shows the normal projection of Fig. 2 in the
equatorial (s1 , s2) plane. The circle of intersection of the
cylinder with the equatorial plane is represented by Eq.
(3), where D 5 90°.

For completeness, we also determine the two remaining
projections of the trajectory of output states in the (s1 , s3)
and (s2 , s3) coordinate planes. Elimination of C between
these normalized Stokes parameter pairs in Eqs. (1) gives

Fig. 1. Polarization-state generator that consists of a linear po-
larizer and linear retarder. P and C are the orientation angles
of the transmission axis of the polarizer and the fast axis of the
retarder, respectively, relative to the reference x direction.

Fig. 2. Locus of the polarization state of light leaving a fixed-
polarizer rotating-retarder system (Fig. 1) is represented by the
line of intersection of a right-circular cylinder with the Poincaré
sphere. The diameter of the cylinder is half the diameter of the
sphere for QWR (D 5 90°).

Fig. 3. Normal projection of Fig. 2 on the (s1 , s2) coordinate
plane, where (s1 , s2 , s3) are the normalized Stokes parameters.

Fig. 4. Normal projection of Fig. 2 on the (s1 , s3) coordinate
plane. The trajectory of the polarization states shown in Fig. 2
also lies on a parabolic cylinder parallel to the s2 axis.

Fig. 5. Normal projection of Fig. 2 on the (s2 , s3) coordinate
plane showing a head-on view of the figure-8 contour.
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s3
2 5 @2 cos2~D/2!#~1 2 s1!, (6)

s3
4 2 ~sin2 D!s3

2 1 @4 cos2~D/2!#s2
2 5 0. (7)

Equation (6) shows another interesting result, namely,
that the trajectory of output states is also the line of in-
tersection of a parabolic cylinder parallel to the s2 axis
with the Poincaré sphere. Equation (7) is that of the pro-
jected figure-8 contour in the (s2 , s3) plane.

Figures 4 and 5 represent the two normal projections of
Fig. 2 in the (s1 , s3) and (s2 , s3) coordinate planes, re-
spectively, and show the projected parabola and figure-8
contours for D 5 90°.

The foregoing results apply equally when the direction
of propagation of light in Fig. 1 is reversed and the system
functions as an elliptic analyzer or polarimeter. In this
case the normalized Stokes parameters are those of the
input elliptic polarization state of maximum transmission
through the system for given orientations of the optical el-
ements.

In conclusion, a detailed analysis of the fixed-polarizer
rotating-retarder optical system has been presented.
The three-dimensional figure-8 locus of (output or input)
polarization states characteristic of this common system
is shown to be the line of intersection of the Poincaré
sphere with a right-circular cylinder whose axis is paral-
lel to the polar axis of the sphere and whose radius is
equal to the squared sine of half the retardance of the ro-
tating retarder. These results complement those ob-
tained by others8–10 concerning this locus.

ACKNOWLEDGMENT
I thank Paul Herrington for his assistance with the
graphics.

The author’s e-mail address is razzam@uno.edu.

REFERENCES
1. D. Clarke and J. F. Grainger, Polarized Light and Optical

Measurement (Pergamon, New York, 1971).
2. R. M. A. Azzam, ‘‘Photopolarimetric measurement of the

Mueller matrix by Fourier analysis of a single detected sig-
nal,’’ Opt. Lett. 2, 148–150 (1978).

3. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Po-
larized Light (North-Holland, Amsterdam, 1987).

4. P. S. Hauge, ‘‘Recent development in instrumentation in el-
lipsometry,’’ Surf. Sci. 96, 108–140 (1980).
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