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JOSA LETTERS 

Maximum minimum reflectance of parallel-polarized light at 
interfaces between transparent and absorbing media 

R. M. A. Azzam 

Department of Electrical Engineering, University of New Orleans, Lakefront, New Orleans, Louisiana 70148 

Received January 24,1983 
The pseudo-Brewster angle φPB, of minimum reflectance Rpm for the parallel (p) polarization, of an interface be­
tween a transparent and an absorbing medium is determined by Im{(e — u)[l — (1 + ε-1)u]2} = 0, where e is the com­
plex ratio of dielectric constants of the media and u = sin2φPB- It is shown that, for a given value of the normal-in­
cidence amplitude reflectance \r\, there is an associated normal-incidence phase shift, δ = δmm, that leads to maxi­
mum minimum parallel reflectance, Rpmm. We determine δmm, Rpmm, φpBmm as functions of \r\. We find that, 
as \r\ increases from 0 to 1, δmm decreases from 90° to 0, Rpmm/\r\2 increases from 0 to 1, and the associated φPBmm 
decreases from 45° to 0, all monotonically. 

i . INTRODUCTION 

Perhaps the most striking feature of the reflection of a plane 
wave of monochromatic light (or any other electromagnetic 
radiation) at an interface between two transparent media is 
the complete extinction of the reflected wave at a certain angle 
of incidence, the Brewster angle1 φβ, when the incident light 
is parallel (p or TM) polarized. If ε0 and ε1 are the dielectric 
constants at a given wavelength of the media of incidence and 
refraction, respectively, φβ is given by 

where 

When the medium of refraction is absorbing (and e becomes 
complex), the reflectance of the interface for incident p -
polarized light is nonzero at all angles of incidence but reaches 
a minimum at the so-called pseudo-Brewster angle2 φpB. In 
this Letter we derive a new equation for φPB in terms of com­
plex ε. The correct relation, which replaces Eq. (1), between 
φPB and the complex relative refractive index 

was first found by Humphreys-Owen3 after it had eluded 
others for many years.4 

Subsequently we present and analyze a condition of maxi­
mum minimum parallel reflectance for interfaces between 
transparent and absorbing media. We were led to this con­
dition by the following reasoning. Let 

be the interface normal-incidence complex reflection coeffi­
cient. For a given value of the amplitude reflectance, | r | = 
constant, the oblique-incidence parallel reflectance Rp goes 
to zero at exact Brewster angles φB(0) and φB(π) when the 
normal-incidence phase shift δ equals 0 and π, respectively. 
This represents light reflection from opposite sides of a given 
interface between two transparent media; in this case, φB (π) 
= 90° — φB (0). When δ ≠ 0 or δ ≠ π, Rp reaches a nonzero 

minimum Rpm at a pseudo-Brewster angle φPB- If we allow 
δ to vary continuously from 0 to π with \r\ = constant, Rpm 
must go from 0 (at δ = 0) to a maximum R p m m at a certain δ 
= δm m and back to 0 (at δ = 7r). The subscript mm denotes 
maximum minimum here and throughout. 

The condition of maximum minimum parallel reflectance 
is verified by direct computation assuming different values 
of \r \. Rpm and φpB are determined as functions of δ and \r\, 
and Rpmm , δmm, and φPBmm are computed and plotted versus 

We adopt the ejωt time dependence and the Nebraska 
(Muller) conventions.5 At normal incidence the reflection 
coefficients for the p and s polarizations differ in sign, i.e., rs 

= -rD = r. 

2. NEW DERIVATION FOR THE PSEUDO-
BREWSTER ANGLE ΦPB OF A N INTERFACE 
WITH KNOWN ε 

The simplicity of the following derivation of the pseudo-
Brewster angle ΦPB in terms of the complex relative dielectric 
constant ε = ε1/ε0 of an interface, compared with that of Ref. 
3, results from stating the condition of minimum parallel re­
flectance in terms of the complex amplitude-reflection coef­
ficient rp instead of the real intensity reflectance 

Thus, if we write 

at any angle of incidence φ arid take the derivative with respect 
to φ (indicated by a prime superscript) of the natural loga­
rithm of both sides, we get 

The condition for minimum parallel reflectarice is that 

or, equivalently, 
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if Eq. (5) is used. Because \rp\ ≠ 0 at any angle of incidence 
when e is complex, Eq. (9) requires that 

With \rp\ ≠ 0, the condition for minimum Rp takes its most 
convenient form when Eq. (10) is substituted into Eq. (7), 
namely, 

Equation (11) locates the pseudo-Brewster angle, φ = ΦPB. 
To proceed from Eq. (11), we must write rp as a function6 

of ε and φ: 

Differentiation of Eqs. (12) and (13) gives 

By substituting Eq. (14) into Eq. (11) and by using the con­
venient change of variable 

we obtain 

In reaching Eq. (16) we used the fact that, if Re(rz) = 0, where 
r and z are real and complex, respectively, Re(l/ε) = 0. 

For a given complex ε (of a given interface), the u that 
satisfies Eq. (16) determines the pseudo-Brewster angle 

In the special case when ε is real (i.e., for an interface between 
two transparent media), Eq. (16) has the following solution7 

for u: 

From Eqs. (18) and (15), we get 

which is the correct Brewster law, as expected. 
An alternative preferable form of the equation for the 

pseudo-Brewster angle is 

To obtain Eq. (20) from Eq. (16) we used the fact that, when 
Re z = 0, Im z2 = 0. 

Equation (20) can be used to prove the existence of the 
pseudo-Brewster angle for any interface, i.e., for any given ε. 
We write Eq. (20) as Im[F(u)] = 0. A solution of this equation 
for u (hence for the pseudo-Brewster angle) exists if the tra­
jectory of F(u) in the complex plane, as u increases from 0 to 
1, intersects the real axis. Such intersection is guaranteed 
because the end points of this trajectory, F(0) = ε and F(1) = 
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ε-l — 1, lie on opposite sides of the real axis for any complex 
ε. 

If we substitute 

where 

and εi is negative in the Nebraska (Muller) conventions,5 Eq. 
(20) can be expanded to give a cubic equation in u: 

with coefficients 

Use of Eqs. (21c) and multiplication by a common factor lead 
to the following equivalent set of coefficients: 

where | ε|2 = ε r
2 + εi-2. Equation (22), with coefficients given 

by Eqs. (24), becomes identical to the corresponding cubic 
equation derived by Hymphreys-Owen3 when the substitution 
ε = N2 = (n — jk)2 is made. 

3. CONDITION OF MAXIMUM MINIMUM 
PARALLEL REFLECTANCE 

In terms of the complex normal-incidence reflection coeffi­
cient, │ r│ ejδ, the complex relative dielectric constant ε of the 
interface is given by 

For a given value of the normal-incidence amplitude reflec­
tance, \r\ = 0.1, 0.2, . . . , 0.9, we let the associated normal-
incidence phase shift δ take values from 0 to 180° in equal 
steps of 1°. ε is computed from Eq. (25) and the coefficients 
of the cubic equation are determined by Eqs. (24). The cubic 
Eq. (22) is solved explicitly and exactly,8 and only one real root 
is always found in the interval 0 ≤ u ≤ 1, from which the 
pseudo-Brewster angle φPB is calculated by using Eq. (17). 
Figure 1 shows φPB as a function of δ with \r\ as a parameter 
marked by each curve. As we have already noted in Section 
1, for a given \r\, δ = 0 and δ = 180° represent the limiting 
cases of internal and external reflection, respectively, at a 
dielectric-dielectric interface, with associated exact Brewster 
angles that sum to 90°. 

In Fig. 1 all curves appear to pass through a common point, 
which leads to the interesting conclusion that a pseudo-
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Fig. 1. Pseudo-Brewster angle φPB as a function of the normal-in­
cidence reflection phase shift δ for different constant values of the 
normal-incidence amplitude reflectance, \r\ = 0.1,0.2,..., 0.9, as a 
parameter. Both δ and φps are in degrees. 

Figures 1-3 can be used as nomograms for approximate 
calculation9 of complex e from measured ΦPB and Rpm. For 
example, such data locate a point in Fig. 3 from which \r\ can 
be read by interpolation. Next, | r | and φPB locate a point in 
Fig. 1; hence the normal-incidence phase shift δ is determined. 
Finally, from |r |e jδ, ε is calculated by using Eq. (25). Of 
course, nomograms with larger numbers of curves can be 
computer generated for higher accuracy. Alternatively, the 
approximate ε can be improved by numerical iteration to 
minimize the difference between the measured and computed 
(φpB, R p m ) . 

Because we are particularly interested in the condition of 
maximum minimum parallel reflectance, the normal-inci­
dence phase shift required to achieve this condition at a given 
│ r │, δmm , was determined. Figure 4 shows δm m as a function 
of │ r │. δm m decreases from 90° to 0 as | r | increases from 0 to 
1. The associated maximum minimum parallel reflectance, 

Fig. 2. Minimum parallel reflectance at the pseudo-Brewster angle 
Rpm as a function of the normal-incidence reflection phase shift δ (in 
degrees) for different constant values of the normal-incidence am­
plitude reflectance, \r\ = 0.1, 0 .2, . . . , 0.9, as a parameter. 

Fig. 4. Normal-incidence reflection phase shift δmm (in degrees) that 
leads to maximum minimum parallel reflectance for a given nor­
mal-incidence amplitude reflectance \r\ plotted here versus \r\. 

Fig. 3. Minimum parallel reflectance Rpm versus the pseudo-
Brewster angle ΦPB (in degrees) for different constant values of the 
normal-incidence amplitude reflectance, \r\ = 0.1, 0.2, . . . , 0.9, as a 
parameter. 

Fig. 5. Ratio of maximum minimum parallel reflectance Rpmm 
normal-incidence reflectance | r |2 plotted as a function of | r \. 

to 

Brewster angle of 45° corresponds to a normal-incidence 
phase shift that is restricted to a brief interval 99° < δ < 105° 
for 0.1 < \r\ <0 .9 . 

After ΦPB is calculated for a given ε, the associated minimum 
parallel reflectance Rpm is determined from Eqs. (5), (12), and 
(13). In Fig. 2 Rpm is plotted versus δ with | r | as a parameter, 
-ftpm equals 0 when δ = 0, δ = 180° (corresponding to extinc­
tion of the reflected wave at exact Brewster angles) and 
reaches a maximum, Rpmm , at a certain phase 0 < δmm < 180°. 
The peak of each Rpm-versus-δ curve is broad. 

From the data of Figs. 1 and 2, δ can be eliminated, and Rpm 

is related to ΦPB at constant \r\. The results appear in Fig. 
3. 

Fig. 6. Pseudo-Brewster angle (in degrees) φPBmm of maximum 
minimum parallel reflectance plotted versus the normal-incidence 
amplitude reflectance \r\. 
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Rpmrn. normalized as a fraction of the normal-incidence in­
tensity reflectance, i.e., R p m m / | r | 2 , is plotted versus \r\ in Fig. 
5. We see that such a fraction increases from 0 to 1 as | r | in­
creases from 0 to 1. Finally, Fig. 6 shows φPBmm, associated 
with Rp m m . versus \r\. φPBmm decreasesmonotonically from 
45° to 0 as |r| is increased from 0 to 1. 

4. SUMMARY 

If \r\ejδ represents Fresnel's complex-amplitude normal-
incidence reflection coefficient at an interface between a 
transparent and an absorbing medium, we find that, for a 
given | r \, the minimum reflectance for the parallel polariza­
tion Rpm at the pseudo-Brewster angle φpB reaches a maxi­
mum, Rp m m , at a certain normal-incidence phase shift δ = 
δmm. As | r | increases from 0 to 1, δm m (for maximum mini­
mum parallel reflectance) decreases from 90° to 0, R p m m / \r \ 2 

increases from 0 to 1, and the associated φPBmm decreases from 
45° to 0, all monotonically. 

These results are obtained after a new form of the equation 
for the pseudo-Brewster angle [Eq. (20)] is derived. The 
condition of maximum minimum parallel reflectance is veri­
fied through a graphical study of Rpm as a function of δ with 
\r\ as a parameter. Furthermore, we plot ΦPB versus δ and 
RPm versus Φ P B , with \r\ as a parameter. These graphs can 
be used as nomograms to determine the complex relative di­
electric constant e of an interface from measured φpB and 
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