University of New Orleans ScholarWorks@UNO

Electrical Engineering Faculty Publications

Department of Electrical Engineering

7-1983

Maximum minimum reflectance of parallel-polarized light at interfaces between transparent and absorbing media

R. M.A. Azzam University of New Orleans, razzam@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/ee_facpubs Part of the Electrical and Electronics Commons, and the Physics Commons

Recommended Citation

R. M. A. Azzam, "Maximum minimum reflectance of parallel-polarized light at interfaces between transparent and absorbing media," J. Opt. Soc. Am. 73, 959-962 (1983)

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Maximum minimum reflectance of parallel-polarized light at interfaces between transparent and absorbing media

R. M. A. Azzam

Department of Electrical Engineering, University of New Orleans, Lakefront, New Orleans, Louisiana 70148

Received January 24, 1983

The pseudo-Brewster angle ϕ_{pB} , of minimum reflectance \mathcal{R}_{pm} for the parallel (p) polarization, of an interface between a transparent and an absorbing medium is determined by $\operatorname{Im}\{(\epsilon - u)[1 - (1 + \epsilon^{-1})u]^2\} = 0$, where ϵ is the complex ratio of dielectric constants of the media and $u = \sin^2 \phi_{pB}$. It is shown that, for a given value of the normal-incidence amplitude reflectance |r|, there is an associated normal-incidence phase shift, $\delta = \delta_{mm}$, that leads to maximum minimum parallel reflectance, \mathcal{R}_{pmm} . We determine δ_{mm} , \mathcal{R}_{pmm} , ϕ_{pBmm} as functions of |r|. We find that, as |r| increases from 0 to 1, δ_{mm} decreases from 90° to 0, $\mathcal{R}_{pmm}/|r|^2$ increases from 0 to 1, and the associated ϕ_{pBmm} decreases from 45° to 0, all monotonically.

1. INTRODUCTION

Perhaps the most striking feature of the reflection of a plane wave of monochromatic light (or any other electromagnetic radiation) at an interface between two transparent media is the complete extinction of the reflected wave at a certain angle of incidence, the Brewster angle¹ ϕ_B , when the incident light is parallel (*p* or TM) polarized. If ϵ_0 and ϵ_1 are the dielectric constants at a given wavelength of the media of incidence and refraction, respectively, ϕ_B is given by

$$\phi_B = \tan^{-1} \epsilon^{1/2},\tag{1}$$

where

$$\epsilon = \epsilon_1 / \epsilon_0. \tag{2}$$

When the medium of refraction is absorbing (and ϵ becomes complex), the reflectance of the interface for incident ppolarized light is nonzero at all angles of incidence but reaches a minimum at the so-called pseudo-Brewster angle² ϕ_{pB} . In this Letter we derive a new equation for ϕ_{pB} in terms of complex ϵ . The correct relation, which replaces Eq. (1), between ϕ_{pB} and the complex relative refractive index

$$N = N_1 / N_0 = \epsilon^{1/2}$$
 (3)

was first found by Humphreys-Owen³ after it had eluded others for many years.⁴

Subsequently we present and analyze a condition of maximum minimum parallel reflectance for interfaces between transparent and absorbing media. We were led to this condition by the following reasoning. Let

$$r = |r|e^{j\delta} \tag{4}$$

be the interface normal-incidence complex reflection coefficient. For a given value of the amplitude reflectance, |r| = constant, the oblique-incidence parallel reflectance \mathcal{R}_p goes to zero at exact Brewster angles $\phi_B(0)$ and $\phi_B(\pi)$ when the normal-incidence phase shift δ equals 0 and π , respectively. This represents light reflection from opposite sides of a given interface between two transparent media; in this case, $\phi_B(\pi) = 90^\circ - \phi_B(0)$. When $\delta \neq 0$ or $\delta \neq \pi$, \mathcal{R}_p reaches a nonzero

minimum \mathcal{R}_{pm} at a pseudo-Brewster angle ϕ_{pB} . If we allow δ to vary continuously from 0 to π with |r| = constant, \mathcal{R}_{pm} must go from 0 (at $\delta = 0$) to a maximum \mathcal{R}_{pmm} at a certain $\delta = \delta_{mm}$ and back to 0 (at $\delta = \pi$). The subscript mm denotes maximum minimum here and throughout.

The condition of maximum minimum parallel reflectance is verified by direct computation assuming different values of |r|. \mathcal{R}_{pm} and ϕ_{pB} are determined as functions of δ and |r|, and \mathcal{R}_{pmm} , δ_{mm} , and ϕ_{pBmm} are computed and plotted versus |r|.

We adopt the $e^{j\omega t}$ time dependence and the Nebraska (Muller) conventions.⁵ At normal incidence the reflection coefficients for the p and s polarizations differ in sign, i.e., $r_s = -r_p = r$.

2. NEW DERIVATION FOR THE PSEUDO-BREWSTER ANGLE ϕ_{pB} OF AN INTERFACE WITH KNOWN ϵ

The simplicity of the following derivation of the pseudo-Brewster angle $\phi_{\rm pB}$ in terms of the complex relative dielectric constant $\epsilon = \epsilon_1/\epsilon_0$ of an interface, compared with that of Ref. 3, results from stating the condition of minimum parallel reflectance in terms of the complex amplitude-reflection coefficient r_p instead of the real intensity reflectance

$$\mathcal{R}_p = |r_p|^2. \tag{5}$$

Thus, if we write

$$r_p = |r_p| e^{j\delta p} \tag{6}$$

at any angle of incidence ϕ and take the derivative with respect to ϕ (indicated by a prime superscript) of the natural logarithm of both sides, we get

$$p'/r_p = (|r_p|'/|r_p|) + j\delta_p'.$$
 (7)

The condition for minimum parallel reflectance is that

$$\mathcal{R}_{p}' = 0, \tag{8}$$

or, equivalently,

© 1983 Optical Society of America

$$2|r_p||r_p|' = 0 (9)$$

if Eq. (5) is used. Because $|r_p| \neq 0$ at any angle of incidence when ϵ is complex, Eq. (9) requires that

$$|r_p|' = 0.$$
 (10)

With $|r_p| \neq 0$, the condition for minimum \mathcal{R}_p takes its most convenient form when Eq. (10) is substituted into Eq. (7), namely,

$$\operatorname{Re}(r_p'/r_p) = 0.$$
 (11)

Equation (11) locates the pseudo-Brewster angle, $\phi = \phi_{pB}$.

To proceed from Eq. (11), we must write r_p as a function⁶ of ϵ and ϕ :

$$r_p = (1 - X)/(1 + X),$$
 (12)

$$X = (\epsilon - \sin^2 \phi)^{1/2} / \epsilon \cos \phi. \tag{13}$$

Differentiation of Eqs. (12) and (13) gives

$$r_p'/r_p = -2X'/(1-X^2)$$
$$= \frac{2\epsilon(1-\epsilon)\sin\phi}{(\epsilon-\sin^2\phi)^{1/2}(\epsilon^2\cos^2\phi-\epsilon+\sin^2\phi)}.$$
 (14)

By substituting Eq. (14) into Eq. (11) and by using the convenient change of variable

$$u = \sin^2 \phi, \tag{15}$$

we obtain

$$\operatorname{Re}\left[(\epsilon - u)^{1/2} \left(1 - \frac{\epsilon + 1}{\epsilon} u\right)\right] = 0.$$
(16)

In reaching Eq. (16) we used the fact that, if $\operatorname{Re}(rz) = 0$, where r and z are real and complex, respectively, $\operatorname{Re}(1/z) = 0$.

For a given complex ϵ (of a given interface), the *u* that satisfies Eq. (16) determines the pseudo-Brewster angle

$$\phi_{\rm pB} = \sin^{-1} u^{1/2}. \tag{17}$$

In the special case when ϵ is real (i.e., for an interface between two transparent media), Eq. (16) has the following solution⁷ for u:

$$u = \epsilon/(\epsilon + 1). \tag{18}$$

From Eqs. (18) and (15), we get

$$x = u/(1-u) = \tan^2 \phi,$$
 (19)

which is the correct Brewster law, as expected.

An alternative preferable form of the equation for the pseudo-Brewster angle is

$$\operatorname{Im}\left[\left(\epsilon-u\right)\left(1-\frac{\epsilon+1}{\epsilon}u\right)^{2}\right]=0. \tag{20}$$

To obtain Eq. (20) from Eq. (16) we used the fact that, when Re z = 0, Im $z^2 = 0$.

Equation (20) can be used to prove the existence of the pseudo-Brewster angle for any interface, i.e., for any given ϵ . We write Eq. (20) as Im[F(u)] = 0. A solution of this equation for u (hence for the pseudo-Brewster angle) exists if the trajectory of F(u) in the complex plane, as u increases from 0 to 1, intersects the real axis. Such intersection is guaranteed because the end points of this trajectory, $F(0) = \epsilon$ and F(1) = $\epsilon^{-1} - 1$, lie on opposite sides of the real axis for any complex ϵ .

If we substitute

$$\epsilon = \epsilon_r + j\epsilon_i, \qquad (21a)$$

$$1/\epsilon = \overline{\epsilon} = \overline{\epsilon}_r + j\overline{\epsilon}_i,$$
 (21b)

where

$$\overline{\epsilon}_r = \epsilon_r / (\epsilon_r^2 + \epsilon_i^2), \quad \overline{\epsilon}_i = -\epsilon_i / (\epsilon_r^2 + \epsilon_i^2)$$
 (21c)

and ϵ_i is negative in the Nebraska (Muller) conventions,⁵ Eq. (20) can be expanded to give a cubic equation in u:

$$\alpha_3 u^3 + \alpha_2 u^2 + \alpha_1 u + \alpha_0 = 0, \tag{22}$$

with coefficients

$$\alpha_0 = -\epsilon_i,$$

$$\alpha_1 = 2\epsilon_i,$$

$$\alpha_2 = -(\epsilon_i + 3\overline{\epsilon}_i),$$

$$\alpha_3 = 2\overline{\epsilon}_i(1 + \overline{\epsilon}_r).$$
(23)

Use of Eqs. (21c) and multiplication by a common factor lead to the following equivalent set of coefficients:

$$\alpha_0 = |\epsilon|^4,$$

$$\alpha_1 = -2|\epsilon|^4,$$

$$\alpha_2 = |\epsilon|^4 - 3|\epsilon|^2,$$

$$\alpha_3 = 2\epsilon_r + 2|\epsilon|^2,$$
(24)

where $|\epsilon|^2 = \epsilon_r^2 + \epsilon_i^2$. Equation (22), with coefficients given by Eqs. (24), becomes identical to the corresponding cubic equation derived by Hymphreys-Owen³ when the substitution $\epsilon = N^2 = (n - jk)^2$ is made.

3. CONDITION OF MAXIMUM MINIMUM PARALLEL REFLECTANCE

In terms of the complex normal-incidence reflection coefficient, $|r|e^{j\delta}$, the complex relative dielectric constant ϵ of the interface is given by

$$\epsilon = \left(\frac{1 - |r|e^{j\delta}}{1 + |r|e^{j\delta}}\right)^2.$$
(25)

For a given value of the normal-incidence amplitude reflectance, $|r| = 0.1, 0.2, \ldots, 0.9$, we let the associated normalincidence phase shift δ take values from 0 to 180° in equal steps of 1°. ϵ is computed from Eq. (25) and the coefficients of the cubic equation are determined by Eqs. (24). The cubic Eq. (22) is solved explicitly and exactly,⁸ and only one real root is always found in the interval $0 \le u \le 1$, from which the pseudo-Brewster angle $\phi_{\rm pB}$ is calculated by using Eq. (17). Figure 1 shows $\phi_{\rm pB}$ as a function of δ with |r| as a parameter marked by each curve. As we have already noted in Section 1, for a given $|r|, \delta = 0$ and $\delta = 180^{\circ}$ represent the limiting cases of internal and external reflection, respectively, at a dielectric-dielectric interface, with associated exact Brewster angles that sum to 90°.

In Fig. 1 all curves appear to pass through a common point, which leads to the interesting conclusion that a pseudo-

Fig. 1. Pseudo-Brewster angle $\phi_{\rm pB}$ as a function of the normal-incidence reflection phase shift δ for different constant values of the normal-incidence amplitude reflectance, $|r| = 0.1, 0.2, \ldots, 0.9$, as a parameter. Both δ and $\phi_{\rm pB}$ are in degrees.

Fig. 2. Minimum parallel reflectance at the pseudo-Brewster angle \mathcal{R}_{pm} as a function of the normal-incidence reflection phase shift δ (in degrees) for different constant values of the normal-incidence amplitude reflectance, $|r| = 0.1, 0.2, \ldots, 0.9$, as a parameter.

Fig. 3. Minimum parallel reflectance \mathcal{R}_{pm} versus the pseudo-Brewster angle ϕ_{pB} (in degrees) for different constant values of the normal-incidence amplitude reflectance, $|r| = 0.1, 0.2, \ldots, 0.9$, as a parameter.

Brewster angle of 45° corresponds to a normal-incidence phase shift that is restricted to a brief interval 99° $\lesssim \delta \lesssim 105^{\circ}$ for 0.1 $\leq |r| \leq 0.9$.

After ϕ_{pB} is calculated for a given ϵ , the associated minimum parallel reflectance \mathcal{R}_{pm} is determined from Eqs. (5), (12), and (13). In Fig. 2 \mathcal{R}_{pm} is plotted versus δ with |r| as a parameter. \mathcal{R}_{pm} equals 0 when $\delta = 0$, $\delta = 180^{\circ}$ (corresponding to extinction of the reflected wave at exact Brewster angles) and reaches a maximum, \mathcal{R}_{pmm} , at a certain phase $0 < \delta_{mm} < 180^{\circ}$. The peak of each \mathcal{R}_{pm} -versus- δ curve is broad.

From the data of Figs. 1 and 2, δ can be eliminated, and \mathcal{R}_{pm} is related to ϕ_{pB} at constant |r|. The results appear in Fig. 3.

Figures 1–3 can be used as nomograms for approximate calculation⁹ of complex ϵ from measured $\phi_{\rm pB}$ and $\mathcal{R}_{\rm pm}$. For example, such data locate a point in Fig. 3 from which |r| can be read by interpolation. Next, |r| and $\phi_{\rm pB}$ locate a point in Fig. 1; hence the normal-incidence phase shift δ is determined. Finally, from $|r|e^{j\delta}$, ϵ is calculated by using Eq. (25). Of course, nomograms with larger numbers of curves can be computer generated for higher accuracy. Alternatively, the approximate ϵ can be improved by numerical iteration to minimize the difference between the measured and computed $(\phi_{\rm pB}, \mathcal{R}_{\rm pm})$.

Because we are particularly interested in the condition of maximum minimum parallel reflectance, the normal-incidence phase shift required to achieve this condition at a given |r|, δ_{mm} , was determined. Figure 4 shows δ_{mm} as a function of |r|. δ_{mm} decreases from 90° to 0 as |r| increases from 0 to 1. The associated maximum minimum parallel reflectance,

Fig. 4. Normal-incidence reflection phase shift δ_{mm} (in degrees) that leads to maximum minimum parallel reflectance for a given normal-incidence amplitude reflectance |r| plotted here versus |r|.

Fig. 5. Ratio of maximum minimum parallel reflectance \mathcal{R}_{pmm} to normal-incidence reflectance $|r|^2$ plotted as a function of |r|.

Fig. 6. Pseudo-Brewster angle (in degrees) ϕ_{pBmm} of maximum minimum parallel reflectance plotted versus the normal-incidence amplitude reflectance |r|.

 \mathcal{R}_{pmm} , normalized as a fraction of the normal-incidence intensity reflectance, i.e., $\mathcal{R}_{pmm}/|r|^2$, is plotted versus |r| in Fig. 5. We see that such a fraction increases from 0 to 1 as |r| increases from 0 to 1. Finally, Fig. 6 shows ϕ_{pBmm} , associated with \mathcal{R}_{pmm} , versus |r|. ϕ_{pBmm} decreases monotonically from 45° to 0 as |r| is increased from 0 to 1.

4. SUMMARY

If $|r|e^{j\delta}$ represents Fresnel's complex-amplitude normalincidence reflection coefficient at an interface between a transparent and an absorbing medium, we find that, for a given |r|, the minimum reflectance for the parallel polarization \mathcal{R}_{pm} at the pseudo-Brewster angle ϕ_{pB} reaches a maximum, \mathcal{R}_{pmm} , at a certain normal-incidence phase shift $\delta = \delta_{mm}$. As |r| increases from 0 to 1, δ_{mm} (for maximum minimum parallel reflectance) decreases from 90° to 0, $\mathcal{R}_{pmm}/|r|^2$ increases from 0 to 1, and the associated ϕ_{pBmm} decreases from 45° to 0, all monotonically.

These results are obtained after a new form of the equation for the pseudo-Brewster angle [Eq. (20)] is derived. The condition of maximum minimum parallel reflectance is verified through a graphical study of \mathcal{R}_{pm} as a function of δ with |r| as a parameter. Furthermore, we plot ϕ_{pB} versus δ and \mathcal{R}_{pm} versus ϕ_{pB} , with |r| as a parameter. These graphs can be used as nomograms to determine the complex relative dielectric constant ϵ of an interface from measured ϕ_{pB} and \mathcal{R}_{pm} .

ACKNOWLEDGMENT

I am pleased to acknowledge support by National Science Foundation grant no. DMR-8018417 and the assistance of Tracy F. Thonn in carrying out the computations.

REFERENCES

- 1. D. Brewster, "On the laws which regulate the polarisation of light by reflexion," Philos. Trans. 105, 125–130 (1815).
- See, for example, J. M. Bennett and H. E. Bennett, "Polarization," in *Handbook of Optics*, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, New York, 1978), p. 10-11.
- S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," Proc. Phys. Soc. London 77, 949-957 (1961).
- 4. H. B. Holl, "Specular reflection and characteristics of reflected light," J. Opt. Soc. Am. 57, 683–690 (1967); see, in particular, footnote 19.
- R. H. Muller, "Definitions and conventions in ellipsometry," Surf. Sci. 16, 14–33 (1969).
- See, for example, M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 1.5.2.
- 7. The other solution of Eq. (16), $u = \epsilon$, is unacceptable when $\epsilon > 1$ or $\epsilon < 0$. When $0 < \epsilon < 1$, it yields the critical angle of total internal reflection, $\sin^{-1}\epsilon^{1/2}$.
- See, for example, S. M. Selby, ed., Standard Mathematical Tables, 20th ed. (Chemical Rubber, Cleveland, Ohio, 1972), pp. 103– 105.
- 9. This is Method F of Ref. 3.