University of New Orleans ScholarWorks@UNO

Electrical Engineering Faculty Publications

Department of Electrical Engineering

10-1982

Explicit determination of the complex refractive index of an absorbing medium from reflectance measurements at and near normal incidence

R. M.A. Azzam University of New Orleans, razzam@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/ee_facpubs Part of the Electrical and Electronics Commons, and the Physics Commons

Recommended Citation

R. M. A. Azzam, "Explicit determination of the complex refractive index of an absorbing medium from reflectance measurements at and near normal incidence," J. Opt. Soc. Am. 72, 1439-1440 (1982)

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Explicit determination of the complex refractive index of an absorbing medium from reflectance measurements at and near normal incidence

R. M. A. Azzam

Department of Electrical Engineering, University of New Orleans, Lakefront, New Orleans, Louisiana 70148

Received May 21, 1982

Measurement of reflectance at normal incidence \mathcal{R} and its fractional change $\Delta \mathcal{R}/\mathcal{R}$ caused by a change of the angle of incidence from 0 to a small angle ϕ ($\phi \leq 20^{\circ}$) permits explicit determination of both the refractive index n and extinction coefficient k of an isotropic absorbing medium. The medium of incidence (ambient) is assumed to have a known refractive index (e.g., =1 for vacuum or air), and the incident light is either p or s linearly polarized.

A variety of reflectance methods¹⁻¹² is available to determine the complex refractive index N = n - jk of an absorbing medium. Few of those methods^{5,6,9,10} provide explicit solutions for n and k in terms of the measured reflectances. In this Letter we propose a new method that provides simple, direct, and explicit determination of n and k in terms of the intensity reflectance measured at normal incidence \mathcal{R} and the fractional change of such reflectance $\Delta \mathcal{R}/\mathcal{R}$ that results from a given change of angle of incidence from 0 to ϕ , where ϕ is a small angle ($\leq 20^\circ$).

Figure 1 shows the normal-incidence reflection of light by the planar interface between a transparent ambient of known refractive index N_0 and an absorbing substrate (mirror) of complex refractive index N_1 to be determined. Both media are assumed to be homogeneous and isotropic. The mirror can be rotated about an axis z in its surface through the point of reflection by a known angle ϕ . The incident light is linearly polarized with its electric vector vibrating either parallel or perpendicular to the rotation axis. (These are the conventional s and p polarizations, respectively.) A complex reciprocal relative refractive index defined by

$$N_r = N_0 / N_1 = n_r + jk_r$$
 (1)

is more readily determined first by using the proposed method. Of course, once N_r is found, N_1 is given by

$$N_1 = N_0 / N_r = n_1 - jk_1.$$
(2)

The signs of the imaginary parts in Eqs. (1) and (2) are consistent with the Nebraska (Muller) conventions.¹³

The first equation to be used is¹⁴

$$\frac{\Delta r_{\nu}}{r_{\nu}} = \pm N_r \phi^2, \tag{3}$$

which gives the fractional change of Fresnel's complex interface reflection coefficient for the ν polarization (+ for $\nu = s$ and - for $\nu = p$) that results from changing the angle of incidence from 0 to ϕ , where ϕ is a given small angle. The measurable fractional change of intensity reflectance, $\Delta \mathcal{R}_{\nu}/\mathcal{R}_{\nu}$, is related to $\Delta r_{\nu}/r_{\nu}$ by

$$\Delta \mathcal{R}_{\nu}/\mathcal{R}_{\nu} = 2 \operatorname{Re}(\Delta r_{\nu}/r_{\nu}), \qquad (4)$$

where Re means the real part of. Substitution of Eq. (3) into Eq. (4) and use of Eq. (1) give

$$|\Delta \mathcal{R}_{\nu}/\mathcal{R}_{\nu}| = 2n_r \phi^2. \tag{5}$$

Equation (5) readily determines n_r :

$$n_r = |\Delta \mathcal{R}_{\nu} / \mathcal{R}_{\nu}| / 2\phi^2. \tag{6}$$

 $(\text{If } | \Delta \mathcal{R}_{\nu}/\mathcal{R}_{\nu}|, \text{ measured at various values of small } \phi, \text{ is plotted versus } 2\phi^2, \text{ the slope of the resulting straight line gives a precise estimate of } n_r.) Subsequently, <math>k_r$ is found from the normal-incidence reflectance

$$\mathcal{R}_{\nu} = |(1 - N_r)/(1 + N_r)|^2 \tag{7}$$

or

$$\mathcal{R}_{\nu} = \left[(1 - n_r)^2 + k_r^2 \right] / \left[(1 + n_r)^2 + k_r^2 \right]. \tag{8}$$

Equation (8) gives

$$k_r = \left[2n_r \left(\frac{1+\mathcal{R}_{\nu}}{1-\mathcal{R}_{\nu}}\right) - (n_r^2 + 1)\right]^{1/2}.$$
 (9)

Equations (6) and (9) show explicitly how the complex reciprocal relative refractive index, $N_r = n_r + jk_r$, is determined from the normal-incidence reflectance \mathcal{R} and its fractional change $\Delta \mathcal{R}/\mathcal{R}$ caused by changing incidence from normal to a small angle ϕ . The substrate complex refractive index N_1 is calculated from N_r and the known refractive index N_0 of the ambient (usually air, $N_0 = 1$) by using Eq. (2).

The incident light is assumed to be either p or s polarized. The method in its present form would not work if the incident light were unpolarized. This is because $\Delta \mathcal{R}_p/\mathcal{R}_p = -\Delta \mathcal{R}_s/\mathcal{R}_s$, so that

$$\Delta \mathcal{R}_u / \mathcal{R}_u = 0 \tag{10}$$

to second order in ϕ (the subscript *u* denotes unpolarized).

 $\Delta \mathcal{R}/\mathcal{R}$ can be accurately determined by a lock-in technique if the mirror is periodically oscillated (e.g., sinusoidally, so that $\phi = \hat{\phi} \sin \omega t$, where $\hat{\phi}$ is a small-amplitude angular excursion) and the modulation of the reflected light intensity $\Delta I/I$ is

Fig. 1. Normal-incidence reflection of light by the interface between a transparent ambient of known refractive index N_0 and an absorbing substrate (mirror) with unknown complex refractive index N_1 . The mirror can be rotated around an axis z in its surface through the point of reflection. p and s are linear-polarization directions perpendicular and parallel to the rotation axis, respectively.

determined. With the intensity of the incident light constant, it is easy to show that

$$\Delta \mathcal{R}/\mathcal{R} = \Delta I/I. \tag{11}$$

The method can be considered as an interesting special case of angle-of-incidence derivative ellipsometry and reflectometry^{15,16} and, more closely, of a method previously described by Hunderi.¹⁷

I am pleased to acknowledge support by the National Science Foundation under grant no. DMR-8018417.

REFERENCES

1. S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis and proposal for new methods based on the Brewster angle," Proc. Phys. Soc. Lond. 77, 949-957 (1961).

- 2. R. Tousey, "On calculating optical constants from reflection coefficients," J. Opt. Soc. Am. 29, 235-239 (1939). 3. I. Simon, "Spectroscopy in the infrared and its use for highly
- absorbing substances," J. Opt. Soc. Am. 41, 336-345 (1951).
- 4. D. G. Avery, "An improved method for measurement of optical constants by reflection," Proc. Phys. Soc. Lond. 65, 425-428 (1952).
- 5. J. Fahrenfort and W. M. Visser, "On the determination of optical constants in the infrared by attenuated total reflection," Spectrochim. Acta 18, 1103-1116 (1962).
- 6. R. Potter, "Analytical determination of optical constants based on the polarized reflectance at a dielectric-conductor interface," J. Opt. Soc. Am. 54, 904–906 (1964).
- 7. W. R. Hunter, "Errors in using reflectance vs angle of incidence method for measuring optical constants," J. Opt. Soc. Am. 55, 1197-1204 (1965).
- 8. H. G. Holl, "Specular reflection and characteristics of reflected light," J. Opt. Soc. Am. 57, 683-690 (1967).
- M. R. Querry, "Direct solution of the generalized Fresnel reflectance equations," J. Opt. Soc. Am. 59, 576-577 (1969).
 T. Hirschfeld, "Accuracy and optimization of the two prism
- technique for calculating the optical constants from ATR data," Appl. Spectrosc. 24, 277–282 (1970).
- 11. D. M. Kolb, "Determination of the optical constants of solids by reflectance-ratio measurements at non-normal incidence," J. Opt. Soc. Am. 62, 599-600 (1972).
- 12. R. M. A. Azzam, "Transformation of Fresnel's interface reflection and transmission coefficients between normal and oblique incidence," J. Opt. Soc. Am. 69, 590-596 (1979); "Direct relation between Fresnel's interface reflection coefficients for the parallel and perpendicular polarizations," J. Opt. Soc. Am. 69, 1007-1016 (1979).
- 13. R. H. Muller, "Definitions and conventions in ellipsometry," Surf. Sci. 16, 14-33 (1969).
- 14. R. M. A. Azzam, "Stationary property of normal-incidence reflection from isotropic surfaces," J. Opt. Soc. Am. 72, 1187-1189 (1982).
- 15. R. M. A. Azzam, "AIDER: angle-of-incidence derivative ellipsometry and reflectometry," Opt. Commun. 16, 153-156 (1976).
- 16. V. M. Bermudez, "AIDER (angle-of-incidence derivative ellipsometry and reflectometry): implementation and application," Surf. Sci. 94, 29-40 (1980).
- 17. O. Hunderi, "New method for accurate determination of optical constants," Appl. Opt. 11, 1572-1578 (1972).