
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-17-2010

A Framework Supporting Development of Ontology-Based Web A Framework Supporting Development of Ontology-Based Web

Applications Applications

Shireesha Tankashala
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Tankashala, Shireesha, "A Framework Supporting Development of Ontology-Based Web Applications"
(2010). University of New Orleans Theses and Dissertations. 103.
https://scholarworks.uno.edu/td/103

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/103?utm_source=scholarworks.uno.edu%2Ftd%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A Framework Supporting Development of Ontology-Based Web Applications

 A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

by

Shireesha M Tankashala

G.Narayanamma Institute of Technology, India, 2006

December 2010

 ii

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to my major professor Dr. Shengru Tu for his

belief and substantial support throughout my work. It has been a wonderful experience to

work under his guidance.

I would like to thank Dr.Adlai Depano and Dr.Golden Richard III for being a part of my

thesis committee.

Lastly, I would like to thank my friends and family for their love and support throughout.

 iii

Table of Contents

ABSTRACT ... v

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND .. 3

2.1 Ontology ... 3

2.1.1 Definition ... 4

2.1.2 Ontology Representation Languages ... 4

2.1.3 Structure of the Ontology ... 6

2.2 Overview of Jena2 .. 8

2.3 Ontology Editors ... 8

2.4 Ontology query languages .. 10

CHAPTER 3 THE FRAMEWORK .. 13

3.1 Framework Overview ... 13

3.2 Framework Architecture ... 13

3.3 Framework Components ... 14

3.3.1 OntAccess .. 15

3.3.2 Controller ... 15

3.3.3 Tree-View Browser .. 17

3.3.4 QueryProcessor .. 19

3.3.5 The Servlet classes ... 20

3.3.6 Utility class .. 21

CHAPTER 4 FRAMEWORK IMPLEMENTATION .. 22

4.1 Jena Model Creation ... 22

4.2 Build a Tree ... 22

4.3 Display the Tree .. 24

4.4 Process the Ontology Data .. 27

4.5 Process Queries ... 29

CHAPTER 5 APPLICATIONS OF THE FRAMEWORK ... 32

5.1 Study Guide Producer ... 32

5.2 METOC data entry forms ... 34

5.3 Google Maps Mashup ... 37

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 40

Reference .. 41

VITA ... 42

 iv

Table of Figures

Figure 2. 1 A Sample RDF .. 5

Figure 2. 2 A Sample OWL file .. 7

Figure 2. 3 Protégé Interface ... 10

Figure 2. 4 An Example SPARQL Query.. 11

Figure 2. 5 A Comparison of SPARQL and DL queries .. 12

Figure 3. 1 Framework Architecture ... 14

Figure 3. 2 Framework Component Diagram ... 14

Figure 3. 3 Flowchart for drillDown ... 17

Figure 3. 4 Three different views of the tree ... 18

Figure 3. 5 Right panel of the Tree-view Browser .. 19

Figure 3. 6 Servlet classes in the Framework Component Diagram (not grayed) 21

Figure 4. 1 code for creation of tree .. 23

Figure 4. 2 drilldown method code ... 24

Figure 4.3 Root tree tag .. 25

Figure 4.4 Tree node name tag .. 25

Figure 4.5 Tree expand handle .. 26

Figure 4.6 Tree Formation .. 26

Figure 4.7 Tree nodes Indentation .. 27

Figure 4. 8 Schema declaration using Annotations ... 28

Figure 4. 9 The generated XML .. 29

Figure 4. 10 JAXB methods .. 29

Figure 4. 11 Jena classes for Query Execution ... 29

Figure 4. 12 Comparison of SPARQL and SPARQL-DL queries for pizza ontology 31

Figure 5. 1 Left Panel of the Tree-view Browser .. 33

Figure 5. 2 METOC Ontology .. 35

Figure 5. 3 METOC data entry forms ... 36

Figure 5. 4 Individuals list for the class „Province‟ of Mondial Ontology .. 38

Figure 5. 5 An example Google Maps Mashup... 39

Figure 5. 6 Javascript code to generate a Google Map ... 39

 v

ABSTRACT

We have developed a framework to support development of ontology based Web

applications. This framework is composed of a tree-view browser, an attribute selector, the

ontology persistence module, an ontology query module, and a utility class that allows the

users, to plug-in their own customized functions. The framework supports SPARQL-DL

query language. The purpose of this framework is to shield the complexity of ontology from

the users and thereby ease the development of ontology based Web applications. Having high

quality ontology and using this framework, the end-users can develop Web applications in

many domains. For example, a professor can create highly customized study guides; a

domain expert can generate the Web forms for data collections; a geologist can create a

Google Maps mashup. We have also reported three ontology-based Web applications in

education, meteorology and geographic information system.

Keywords

Ontology,

Framework,

Jena,

OWL/RDF,

SPARQL-DL

 1

CHAPTER 1 INTRODUCTION

Significant efforts have been invested in establishing ontologies in many areas such as Music,

Biology, Geography and so on. Ontologies are vital for applications that use search engines

and merge data from a wide range of communities. XML schemas alone are inadequate and

unreliable for data exchange between automated systems because of their lack of semantics.

The Semantic Web addresses this issue making it easy for applications that integrate

information over the Internet by customizing tagging features of XML and the compliant

approach of RDF to represent data.

A number of ontology browsers are available on the market. Among the tools for managing

ontologies, Protégé has been the most widely used. These tools can serve the need of end

users for information retrieval. On the other hand, the application programming interfaces

(API) such as “Jena 2” provides the ultimate capability for manipulating ontologies through

programming. This is a powerful tool for programmers to develop applications involved in

ontologies; Jena 2 requires a good understanding of ontology internals and advanced Java

programming skills.

In this project, we have developed a framework that helps users to develop ontology-based

Web applications in a light-weighted way. This framework is composed of a tree viewer of

the ontology, an attribute selector, the ontology persistence module, and a utility class that

allows the users to plug-in their own customized functions. Having a high-quality ontology

and using this framework, a professor can create highly customized study guides or topics

targeted tests; a trainer can assemble accurately tailored reading materials for a just-in-time

 2

training course; a domain expert can generate the Web forms for data collections. With a

graduate assistant or a student programmer, using the associated Java API can create many

more features.

Compared to Protégé, our framework does not support making changes of ontology; the

recommendation is to use Protégé. Compared to Jena 2, our framework is far less capable.

In fact, our framework has been constructed using Jena 2. However, our framework does

not require extensive Java programming skills; the design of the Web application has been

done for the users.

This thesis is organized as follows: Chapter 2 deals with the background knowledge of the

project. The concepts and definitions of Ontology, OWL, Jena, and Protégé 4 are presented.

Chapter 3 presents the framework introduction; the architecture and advantages of the

framework have been discussed. The design of various components of the framework has

been presented in detail. Chapter 4 describes the implementation details of the framework.

The implementation of all the framework components has been discussed in detail. Chapter 5

presents examples on how to use the framework to build Ontology based Web applications.

Three such Web applications are presented. Chapter 6 discusses the conclusions and future

directions for our work.

 3

CHAPTER 2 BACKGROUND

The Semantic Web is an evolving development of the World Wide Web in which the

semantics of information and services on the web are defined, making it possible for the web

to understand and satisfy the requests of people and machines to use the web content[eureka

08]. It is a place where intelligent decisions can be made. To accomplish this, we need to

build intelligence into the system, a formal description of concepts and their XML

representations in a machine-readable way is required. This can be done using the Web

Ontology Language.

2.1 Ontology

An ontology is a formal explicit specification of a shared conceptualization for a domain of

interest [4]. The concept of Ontology can be better understood by considering the example

given in the article [8]- It is difficult for a computer to select a dress for you, as it doesn't

understand your taste and what you are not supposed to wear. It might pick a shirt with

stripes and checks together. Hence, it is difficult for a computer to make a choice without

human‟s assistance. Ontology can define certain concepts for computer, such as hats, shoes,

socks, styles, sizes, and other related information, and how they all fit together. The computer

would then be able to analyze these concepts, and recommend a better choice of dress.

 4

2.1.1 Definition

The dictionary definition of Ontology is – “a branch of metaphysics relating to the nature and

relations of being a particular theory about the nature of being or the kinds of existence”. This

definition is derived from philosophy. The Artificial Intelligence community defines

Ontology as a formal explicit specification of a shared conceptualization for a domain of

interest. Specification of conceptualization means that ontology is a description of the

concepts and relationships that can exist for an agent or a group of software agents.

In the context of knowledge sharing, ontology includes definitions of terms or the vocabulary

for a particular domain. It is also referred to as „Knowledge Base‟

2.1.2 Ontology Representation Languages

Ontology is expressed in a logic-based language, so that detailed, accurate, consistent, sound,

and meaningful distinctions can be made among the classes, properties, and relations [iisa09].

In order to be machine understandable, the ontologies should be expressed formally. A

number of languages have been developed for the Semantic Web. The construction of these

languages meets a number of requirements [5]:

 Have a compact syntax.

 Be highly intuitive to humans.

 Have a well-defined formal semantics.

 Be able to represent human knowledge.

 Have the potential for building knowledge bases.

 Have a proper link with existing web standards to ensure interoperability.

 5

The Resource Description Framework (RDF) is a standard for the web metadata that the

World Wide Web Consortium (W3C) developed. It is a language for describing any web

resource such that it provides interoperability between applications that exchange

machine-understandable information on the web. Figure 2.1 is an example of how a resource

is represented using RDF. The description of the resource is identified by the URI

http://www.myblog.com. The properties, such as creator title, creator is defined in the

http://purl.org/dc/elements/1.1 namespace.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.myblog.com">

<dc:creator>Adam</dc:creator>

<dc:title>Ontology Overview</dc:title>

<dc:description>Technology blog</dc:description>

<dc:date>10-15-2010</dc:date>

</rdf:Description>

</rdf:RDF>

Figure 2. 1 A Sample RDF

We could just take all the information and represent it as RDF, but we need a way for the

computer to be able to make inferences. For example, say person „X‟ lives in New Orleans,

and a person „Y‟ lives in Baton Rouge. We know that New Orleans is in Louisiana, and that

Baton Rouge is in Louisiana. But there is nothing about RDF that allows the computer to

make the inference that „X‟ and „Y‟ live in the same state. Web Ontology Language (OWL)

is an application of RDF that provides a way to encode this information so that a computer

can make these inferences.

OWL makes it possible to describe a wide variety of concepts and relationships. The more

options a language offers, the harder it is to write Inference software that allows for it all.

OWL solves this problem by offering three different levels of OWL:

 6

 OWL Full is the most expressive of the three levels. We can define classes

on-the-fly, use classes as properties and individuals, and build ontologies that are not

necessarily decidable, meaning that a program might not have enough information to

answer all questions suggested by the data.

 OWL DL: The DL stands for description logic has much of the expressiveness of

OWL Full, but requires ontologies to be decidable. It also requires all classes to be

explicitly defined, and has certain restrictions on some of OWL's more advanced

features.

 OWL Lite is a subset of OWL. It is used for simpler ontology that does not require

all of the expressiveness of the language. A valid OWL Lite ontology is also a valid

OWL DL and OWL Full ontology, and a valid OWL DL ontology is also a valid

OWL Full ontology.

2.1.3 Structure of the Ontology

The ontology should be written such that the machines can interpret it unambiguously and

used by software agents. In order to achieve this proper syntax and formal semantics for the

OWL are required. A typical OWL ontology begins with a namespace declaration that

provides a means to interpret identifiers and thus make the ontology presentation much more

readable. For example, a namespace declaration (xmlns:owl

="http://www.w3.org/2002/07/owl#") says that in the ontology document, elements prefixed

with owl: should be understood as referring to things drawn from the namespace called

“http://www.w3.org/2002/07/owl#”.

 7

The next element is the Ontology header, which is a collection of assertions about the

ontology grouped under an owl:Ontology tag. This includes tags such as comments, version

control and inclusion of other ontologies.

The primary purpose of ontology is to classify things in terms of semantics. This can be

achieved through the use of classes and subclasses, and their instances or individuals.

A class in OWL is a classification of individuals into groups, which share common

characteristics.

!-- OWL Class Definition - Plant Type -->

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#planttyp

e">

<rdfs:label>The plant type</rdfs:label>

<rdfs:comment>The class of all plant types.</rdfs:comment>

<owl:Class>

<!-- OWL Subclass Definition - Flower -->

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#flowers"

>

<!-- Flowers is a subclassification of planttype -->

<rdfs:subClassOfrdf:resource="http://www.linkeddatatools.com/plants#

planttype">

<rdfs:label>Flowering plants</rdfs:label>

<rdfs:comment>Flowering plants, also known as angiosperms

</rdfs:comment>

</owl:Class>

Figure 2. 2 A Sample OWL file

Figure 2.2 is an example of how classes and subclasses are declared in OWL. Individuals in

OWL are related by properties. There are two types of property in OWL:

 Object properties (owl:ObjectProperty) relate individuals (instances) of two OWL

classes.

 Datatype properties (owl:DatatypeProperty) relates individuals (instances) of OWL

classes to literal values.

 8

2.2 Overview of Jena2

Jena is an open source sematic web framework that provides a java API to extract data from

and write to RDF or OWL. In Jena, ontology is treated as a model, more specifically

OntModel that allows the ontology to be manipulated programmatically, with methods to

create classes, property restrictions, and so forth. The Jena framework creates an additional

layer of abstraction that translates the statements and constructs of the Semantic

Web into Java artifacts, such as classes, objects, methods and attributes [9]. These reduce

the effort needed for programming Semantic Web applications.

The Jena OWL API provides classes and methods to navigate through the ontology, identify

resources and retrieve them from the model. Every resource is identified with URI; this

makes the knowledge sharing process extremely easy. In Jena, the subject of a statement is a

Resource, the predicate is represented by a Property, and the object is either another Resource

or a literal value. The framework also covers methods for validating ontology.

Jena not only supports persistence of OWL or RDF data as files, but also has an

API for database backend. It supports different SQL databases from different vendors.

Jena supports querying the ontology through its API, or through SPARQL query

language. ARQ is a query engine for Jena that supports the SPARQL RDF Query Language.

There are other query engines available in the market that can be integrated easily with jena.

2.3 Ontology Editors

Ontology editors are used to build, inspect, browse and edit ontologies. Since ontologies may

be notoriously hard to build, a tool should provide intelligent assistance in ontology

construction and evolution [3]. There are many Ontology Editors available in the market for

 9

RDF and OWL. We used Protégé Ontology editor for this project as it is a free, open source

ontology editor and knowledge-base framework. In Protégé, the ontologies can be exported

into a variety of formats including RDF(S), OWL, and XML Schema. Protégé supports

multiple design panes for ontology development including classes and property design,

construction of both restriction and disjoint function, comment and definition sections.

Protégé‟s various design panes or the tabs are shown in the Figure 2.3. The first tab is

the Classes tab that view used to browse ontologies. On this tab, the ontology is shown as an

expandable tree on the editor and the Members of a class selected by the user is shown on the

right. In the tree view, classes that are indented and below a class are called the “sub classes”,

whereas the class above is the parent. The classes that are related by the properties are called

“range classes”. The classes tab permits editing of the ontology. The users can drag and drop

classes to reorganize the hierarchy, create and rename classes. The values for attributes of

classes can also be directly edited. The other tabs in the Protégé editor are the properties,

forms, and instances tab. The slots tab enables users to view and edit all slots in an ontology;

the instances tab displays all instances associated with the classes; and the forms view

permits users to customize the layout of the elements on display forms.

 10

Figure 2. 3 Protégé Interface

The Protégé OWL plugin[] allows for the development of OWL ontologies using its rules,

syntax of the OWL language including its support for reasoning. The backend ontology

language rule and syntax control mechanisms ensure a hassle free development and

maintenance of the required syntax for the ontology and design for proper communication of

its knowledge with other systems.

2.4 Ontology query languages

The Ontology query languages are used to retrieve information from the Ontologies.

SPARQL (Simple Protocol And RDF Query Lanuguage) is a language for querying RDF

data. The syntax is similar to SQL. Figure 2.4 is an example of a SPARQL query.

Line 1 in the Figure 2.4 defines namespace prefix. In this query, we are looking for

resources ?name and ?id participating in triples with predicates foaf:name and foaf:id and

 11

want the subjects of these triples. Lines 3-4 use the prefix „foaf‟ defined in line 1 to express

the RDF to be matched. The variables in the SPARQL syntax begin with „?‟.

1. PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2. SELECT ?name ?id WHERE {

3. ?x foaf:name ?name .

4. ?x foaf:id ?id . }

Figure 2. 4 An Example SPARQL Query

Predefined filter constraints such as regex, isLiteral etc., can be added to the query. The result

of the query can be modified using clauses similar to SQL clauses such as, ORDER BY,

DISTINCT, OFFSET, LIMIT. There are four different query forms as listen below:

 Select - returns the list of values of variables for the query

 Construct- returns an RDF graph constructed by the variables in the query

 Describe- returns an RDF graph describing the resources that were found

 Ask- returns a boolean value indicating whether the query pattern matches or not

SPARQL is RDF-based query language and it is harder to use it with respect to OWL-DL.

SPARQL-DL is the best possible solution; it is a subset of SPARQL for which we use

OWL-DL based semantics. SPARQL-DL is more expressive than existing DL query

languages and can be implemented without too much effort on top of existing OWL-DL

reasoners.

A SPARQL-DL query consists of one or more query atoms such as Type, SubClassOf,

SubPropertyOf and so on. For example, consider a query in the Figure 2.5. It is a comparison

of SPARQL and DL syntaxes for the LUBM dataset [15].

 12

Give me all graduate students (?X) that are some how related to some course

(?W). We also want to know what kind of the relation (?Y) they are related

with and what is the kind of the course (?Z).

SPARQL-DL Abstract syntax:

Type(?X, ub:GraduateStudent), PropertyValue(?X, ?Y, ?W), Type(?W, ?Z),

SubClassOf(?Z, ub:Course)

SPARQL syntax:

SELECT ?X ?Y ?W ?Z WHERE {

?X rdf:type ub:GraduateStudent .

?X ?Y ?W .

?W rdf:type ?Z .

?Z rdfs:subClassOf ub:Course . }

Figure 2. 5 A Comparison of SPARQL and DL queries

 13

CHAPTER 3 THE FRAMEWORK

3.1 Framework Overview

There are several products on the Web for analyzing and processing ontologies. However,

they require the users to be a specialist in the field of ontologies in order to understand their

internal organization and be able to analyze or process the information in the ontology. In this

project, we have developed a framework that helps the users who know little about the

ontology model to develop ontology-based Web applications. The advantages of the proposed

solution are listed below:

 The complexity of ontology is shielded from the users.

 A programmer can extend the framework to build more complex Web applications

and significantly reuse the existing design and code.

3.2 Framework Architecture

The framework design has been based on the MVC design pattern. Under MVC, an

application is seen as having three distinct parts. The Model represents the problem domain.

The output to the users is represented by the View. And the controller accepts input from the

user and instructs the model and view to perform actions based on that input.

The flow control of the framework is quite simple: When a request comes in to load the

ontology, the Controller initiates the Ontology Model class. The Model object consists of the

entire internal structure of the ontology. The controller then uses a java program to convert

the data from the Model object to a tree node. Finally, the view component displays the

ontology in a tree structure. This view is for users to navigate in a tree representing the

 14

ontology structure. The user may use the other features in the framework for further

processing.

Figure 3. 1 Framework Architecture

3.3 Framework Components

The framework consists of six major components as shown in Figure 3.2 in which the

component Tree-View Browser represents the “View”; the Servlet components, the

QueryProcessor and the controller class represent the “Controller”; OntAccess represents the

“Model” in the MVC design pattern. The components are discussed in detail in the following

sub sections.

Figure 3. 2 Framework Component Diagram

 15

3.3.1 OntAccess

The OntAccess class has been written based on the Jena Ontology API[16]. It consists of

methods for creation of ontology model from owl files, and to access various features of the

ontology. A summary of these methods in the OntAccess class is given in Table 3.1. As

discussed in the section 2.2, in order to create a Jena model of the ontology, the OntModel

class is used. The OntModel creation code is written in the constructor of the OntAccess class.

Therefore, instantiation of the OntAccess class loads the ontology into an OntModel object.

Using this object, various methods have been defined in the OntAccess classes for accessing

the internal structures of the ontology.

Method Summary

void loadModel(String uri, boolean local)

Reads into the model object the RDF at input param uri. The Boolean param

specifies if the uri is a path to the local ontology file or a remote file.

String[] getSubClasses(OntClass c)

Returns an array of sub classes local names for the given class.

OntClass[] getRangeClasses(OntProperty p)

Returns an array of declared Range classes for the given property.

String[] getAttributes(OntClass c)

Returns an array of data properties local names for the given class.

List getIndividuals(OntClass c)

Returns a list of instances or the Individuals for the given class.

OntProperty[] getObjProperties(OntClass c)

Returns an array of object properties for the given class.

OntClass createOntClass(String uri)

Retrieves the resource with the given URI and thus returns the OntClass.

Table 3.1 OntAccess Methods Summary

3.3.2 Controller

The Controller class contains the method to build a tree structure of the ontology. When a

 16

request to load ontology comes from the tree-view browser, the controller class instantiates

the model object and uses it to build the ontology tree object. The code for building the tree

object is written in a recursive method named drillDown.

We used the Jenkov JSP Tree Tag library[11] to build the tree structure. The tag library

consists of a tree model API, and the tree tags to display the tree model in the JSP page. First

a root tree node and the parent node for the root Ontology class is created and it is passed to

the drillDown method. The “object properties” of the root ontology class, which is the current

tree node, are obtained. For each object property, the declared Range class list is fetched. The

list is then iterated and for each Range Class, a tree node instance is created and added to the

parent. The newly created tree node is passed to the recursive call of the drillDown method.

This loop will terminate when the leaf node is reached or when a predefined level limit is

reached.

Once the iteration of the object properties is done, the sub classes for the current tree node are

obtained. For each sub class, a corresponding tree node is created and added to the parent.

The newly created tree node is passed to the recursive call of the drillDown method. The

method will terminate when the entire tree structure is built. The tree object is then set in

session so that it can be accessed by the Jsp, which displays the tree.

 17

Figure 3. 3 Flowchart for drillDown

3.3.3 Tree-View Browser

The advantage of the tree-view browser over many ontology tools currently available in the

market is that it displays not only the subclasses in the hierarchy, but also the relationships

that connect to other classes in the same tree view. In the Figure 3.4, the “S” nodes denote the

subclasses; the “R” nodes denote the range classes (the classes connected through a

relationship). Initially when the ontology is loaded, both the sub classes and the range classes

are displayed. The user may view either sub classes or range classes only by unchecking the

corresponding checkbox above the tree. Figure 3.4 is an example of this feature of the

 18

framework. The figure presents three different views of the same ontology tree; a tree with

both sub classes and range classes; a tree with only sub classes; a tree with only range classes.

Figure 3. 4 Three different views of the tree

The check box associated with each node allows the user to select the class. Clicking on a

class name, the attributes and the related information will be displayed on the right pane of

the viewer. The Attributes section lists the Data Properties; the Related Information section

displays the comments of the Ontology Class as shown in the Figure 3.5.

Having the class hierarchy displayed, the user performs a concept-based search (Vieira,

2009). Having the relationships displayed along with the “hierarchy”, the user performs a

concept-based and workflow-based search at the same time. This is more informative to the

viewer who is not familiar to the given ontology, compared to Protégé that represents the

relationships view in a view (property view), and separated from the class hierarchy.

The "Generate" button shown at the bottom of the tree (Figure 3.4) is the controller that can

trigger an action according to the applications. A typical action is to generate an XML file

that records the selection of classes by the user, which will be the metadata of the follow-up

processing.

 19

Figure 3. 5 Right panel of the Tree-view Browser

There is a section for SPARQL-DL query on the right panel. SPARQL-DL is an expression

language for querying OWL ontologies. It is significantly more expressive than existing DL

query languages and can still be implemented without too much effort on top of existing

OWL-DL reasoners [1]. More about SPARQL-DL is discussed in section 3.3.4.

The tree-view browser is implemented using the JSP technology. More details on how it is

implemented is discussed in Section 4.3

3.3.4 QueryProcessor

Query answering is a crucial inference service for ontology-based systems. The ability to

combine queries about the schema (classes and properties) and the data (individuals) brings

new challenges to query answering [2]. SPARQL-DL is a rich query language for OWL-DL

ontologies and has a simpler syntax compared to SPARQL.

 20

We used the SPARQLAS toolkit to transform the queries to SPARQL. The transformed

queries are then processed using the Pellet engine. In order to interact with Pellet, we used the

Jena API.

The QueryProcessor class, processes the queries in two steps-

 First, it transforms the SPARQL-DL query request string to SPARQL query using the

SPARQLAS tool kit.

 Second, it processes the SPARQL query using pellet engine and Jena API.

Writing SPARQL queries for OWL ontologies is very technical and requires significant

studies. SPARQLAS is toolkit that allows users to query using SPARQL-DL syntax. These

queries are translated into SPARQL queries that can be executed in a SPARQL engine. Thus,

the users do not have to care about mapping OWL to RDF graphs. SPARQLAS convertor

comes as a standalone application or a Webservice. We have used the standalone version to

integrate with our project.

3.3.5 The Servlet classes

The primary purpose of the Servlet classes is to process the requests from the tree-view

browser. They are responsible for handling all the requests. The three servlets used in the

framework are shown in the Figure 3.6 (not grayed). When a request comes in to load an

ontology, the ControllerServlet class forwards the request to Controller class. The Controller

class builds the Ontology tree structure and returns to the servlet class. The ControllerServlet

redirects the response to the tree-view browser.

The QueryServlet class handles the SPARQL-DL query requests. It interacts with the

 21

QueryProcessor class to process the queries. The response or the result set of the query is

formatted properly and sent to the tree-view browser.

Figure 3. 6 Servlet classes in the Framework Component Diagram (not grayed)

After the user browses the ontology using the tree-view browser, he/she can select some of

the ontology classes for further processing. This can be done by checking the checkbox next

to the class name in the tree and clicking on the Generate button. The ProcessServlet class is

invoked when the request is submitted (on „Generate‟ button click). It invokes the required

methods from the Utility class depending on the requirements and the application.

3.3.6 Utility class

The Utility class has methods to process the user selected ontology data. It has methods to

generate an XML or PDF file for a given input. It also has methods to convert XML to java

object or HTML. The user can customize the class and add more methods based on the

requirement. The implementation and usage of the class is discussed in Chapter 4.

 22

CHAPTER 4 FRAMEWORK IMPLEMENTATION

The Framework supports the users to create their ontology-based Web applications with four

capabilities as listed below:

1. Creating a Jena model from OWL files.

2. Parse through the ontology and build a tree structure.

3. Display the tree to the user using tag library.

4. Process the user selected data.

The implementation of the above capabilities is discussed in the following sections.

4.1 Jena Model Creation

This step is implemented in the OntAccess class. Jena supports several different ways of

constructing the ontology model. The simplest way to create a model is to

call ModelFactory.createOntologyModel(). This delivers a plain ontology model, stored

in-memory that does no inference and has no special ontology interface. Then we have to

load the ontology document in the Ontology model using the read method in the OntModel

class. By default, when an ontology model reads an ontology document, it will also locate

and load the document's imports. The model now contains the entire ontology document. The

next step is to parse through the model and create a tree object.

4.2 Build a Tree

To build the tree structure from the Model object, we use the Jenkov Tree library[11]. The tag

library consists of a tree model API, and the tree tags to display the tree model in the JSP

page. In order to build a tree structure using this library we need to build the tree model and

 23

store it in the session. Tell the tree tags in what session variable the subject tree is stored.

We follow the algorithm given in Figure 3.4 to build the tree. This is implemented in the

Controller class. First, a tree instance is created (line 1 in figure 4.1). The tree instance

contains information about what nodes are expanded and selected. This information is not

kept in the tree nodes.

1. ITree tree = new Tree();

2. OntClass c = onto1.createOntClass(nodeName);

3. ITreeNode root =new

TreeNode(c.getLocalName(),c.getLocalName(),"root");

4. ITreeNode display = drilldown(c,root);

5. tree.setRoot(display);

Figure 4. 1 code for creation of tree

Second, a root tree node or the parent node is created and it is passed to the drilldown method

where the children are added to the tree (lines 2-4). createOntClass is a method in OntAccess

class which creates a OntClass object for a given resource name. Finally the tree instance is

told that the root node is the root of the tree to be displayed (line 5).

The algorithm given in Figure 3.4 is implemented in the method named drilldown. Figure 4.2

is the code for the drilldown method. The “object properties” of the root ontology class,

which is the current tree node, are obtained using the getObjProperties method in the

OntAccess class (line 1). The object „onto1‟ in the code refers to an instance of OntAccess

class. The methods in the OntAccess are discussed in section 3.3.1. For each object property,

the declared Range classes list is fetched (lines 3-5). The list is then iterated and for each

Range Class, a tree node instance is created and added to the parent (lines 7-15). The newly

created tree node is passed to the recursive call of the drillDown method (line 16). This loop

will terminate when the leaf node is reached.

 24

1. OntProperty[] properties = onto1.getObjProperties(c);

2. if (properties.length != 0) {

3. for (int i = 0; i < properties.length; i++) {

4. visitedProperty.put(properties[i], 1);

5. OntClass[] classes = onto1.getRangeClasses(properties[i]);

6. if (classes.length != 0) {

7. for (int j = 0; j < classes.length; j++) {

8. if (classes[j] != null && !root.getId().contains(

9. classes[j].getLocalName())) {

10. ITreeNode childone = new TreeNode(root.getId()

11. + "/" + classes[j].getLocalName() + "("

12. + properties[i].getLocalName() + ")", "("

13. + properties[i].getLocalName() + ") "

14. + classes[j].getLocalName(), "rangeClass");

15. root.addChild(childone);

16. drilldown(classes[j], childone);

17. }}}}

18. }

19. OntClass[] subClasses = onto1.getSubClass(c);

20. if (subClasses.length != 0) {

21. for (int i = 0; i < subClasses.length; i++) {

22. if (subClasses[i] != null) {

23. ITreeNode child1 = new TreeNode(root.getId() + "/"

24. + subClasses[i].getLocalName(), subClasses[i]

25. .getLocalName(), "subClass");

26. root.addChild(child1);

27. drilldown(subClasses[i], child1);

28. }}}

29. return root;

Figure 4. 2 drilldown method code

Once the iteration of object properties is done, the sub classes for the current tree node are

obtained (line 19). For each sub class, a corresponding tree node is created and added to the

parent (lines 20-26). The newly created tree node is passed to the recursive call of the

drilldown method (line 27). The tree object is then set in session.

4.3 Display the Tree

When the tree-view browser is loaded, the tree tags retrieve the tree model object that is

 25

stored in the session. The tree tag <tree:tree> is responsible for finding the tree and iterating

the visible nodes. It doesn't do any layout of the tree by itself, nor display any of the data in

the tree model. We have to specify that using specialized tags provided by Jenkov library

such as <tree:nodeMatch>, <tree:nodeIndent>. These tags are placed between the start

<tree:tree> tag and the end </tree:tree> tag. We must specify inside the <tree:tree> tag where

to make the tree nodes available. This is done with the node attribute as shown in Figure 4.3.

<tree:tree tree="ontologyClass" node="tree.node">

</tree:tree>

Figure 4.3 Root tree tag

Now the <tree:tree> tag will store the nodes iterated as a request attribute under the key

"tree.node". The tag <tree:nodeName> displays the name of the iterated tree nodes (Figure

4.4).

<tree:tree tree="ontologyClass" node="tree.node">

..

<tree:nodeName node="tree.node"/>

..

</tree:tree>

Figure 4.4 Tree node name tag

In order to make it look like a tree we should add expand and collapse handles to each visible

node if it has any children. This is done using the <tree:nodeMatch> tag as shown in Figure

4.5.

The Tree Tags does only enable the iteration of the tree nodes in the correct sequence. All

formatting is written between the Tree Tags as plain HTML. In order to break the nodes onto

their own vertical lines the nodes are placed inside a table row (Figure 4.6).

When indenting a node in a tree we need to understand whether to display a blank space (for

leaf node) or a vertical line (if it has children) for each iteration of the indentation. That

 26

means that each node needs to know if it's super nodes has any children following it

vertically. The <tree:nodeIndent> tag iterates the current node's indentation profile (Figure

4.7).

<tree:tree tree="ontologyClass" node="tree.node">

<tree:nodeMatch node="tree.node" hasChildren="true">

<a href="javascript:expandSubmit('<tree:nodeId

node="tree.node"/>');">

</tree:nodeMatch>

Figure 4.5 Tree expand handle

<table cellspacing="0" cellpadding="0" border="0">

<tr>

 <td>

 <tree:nodeMatch node="tree.node" hasChildren="true">

 <a href="javascript:expandSubmit('<tree:nodeId

node="tree.node"/>');">

 </tree:nodeMatch>

 </td>

 <td>

 <tree:nodeName node="tree.node" />

 </td>

 </tr>

 . . .

</table

Figure 4.6 Tree Formation

The indentation information whether it is a vertical line or blank space is made available as a

request attribute under the key "type" as shown in the Figure 4.7. The body of the tag

<tree:nodeIndentVerticalLine> is executed if the indentation is a vertical line. The body of

the tag <tree:nodeIndentBlankSpace> is evaluated if the indentation type is a blank space.

We used the <tree:nodeMatch> and / or the <tree:nodeNoMatch> tags to display appropriate

icons and checkbox next to the node name. In this way the Tree is displayed. The user

 27

browses the ontology and selects some of the ontology classes for further processing. This

can be done by checking the checkbox next to the class name in the tree and clicking on the

Generate button.

<table cellspacing="0" cellpadding="0" border="0">

 <tr><td>

 <tree:nodeIndent node="example.node" indentationType="type">

 <tree:nodeIndentVerticalLine indentationType="type">

 </tree:nodeIndentVerticalLine>

 <tree:nodeIndentBlankSpace indentationType="type">

 </tree:nodeIndentBlankSpace>

 </tree:nodeIndent></td>

<td> . . .</td>

</tr></table>

Figure 4.7 Tree nodes Indentation

4.4 Process the Ontology Data

We have developed the Utility class that has methods to process the user selected ontology

data. The selected class list from the JSP is an instance of a Java Bean SelectedNodesList

(Figure 4.8) that consists of an arraylist of selected node Ids. This object is retrieved by the

Process Servlet. It then invokes the getXmlFromObject method in Utility class by passing the

Arraylist object. We used JAXB(Java Architecture for XML binding) to convert object to xml.

One of the distinct advantages of JAXB is that it allows us to access and process XML data

without having to know XML or XML processing. The parsing is done based on schema or

a set of Java classes that represents the schema. We modified the SelectedNodesList class

using the JAXB Annotations to represent the schema for xml. The Annotation

„@XmlRootElement‟ associates a global element with the schema type to which the class is

mapped. The annotation „@XmlType‟ maps a Java class to a schema type. The code in

 28

Figure 4.8 is java object schema for the xml in Figure 4.9. The xml root element

<SelectedNodesList> is annoted using the @XmlRootElement annotation in java class.

@XmlRootElement(name = "SelectedNodesList", namespace="")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "SelectedNodesList", namespace="", propOrder = {

 "nodeId",

})

public class SelectedNodesList {

 @XmlElement(name = "nodeId", namespace="")

 private ArrayList<String> nodeId;

 public SelectedNodesList(){

 this.nodeId = new ArrayList<String>();

 }

 //setters and getters for nodeId

..

..

}

Figure 4. 8 Schema declaration using Annotations

As we can see in Figure 4.9, there are multiple <nodeId> tags between the

<SelectedNodesList> tag. Hence, the nodeId property is declared as an Arraylist in the java

class.

The next step is to use the JAXB API to perform the marshalling (xml from java object) or

unmarshalling (java object from xml) process. The Marshaller object has properties that can

be set through the setProperty method. For example, we can set the format of the resulting

XML data with line breaks and indentation. Finally, call the marshal method. This method

does the actual marshalling of the content tree. The parameters to the marshal method are the

java object and the output target. The generated xml can be further processed based on the

requirements. The user can add methods or modify existing methods based on the

requirements.

 29

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<SelectedNodesList>

<nodeId>Province</nodeId>

<nodeId>City</nodeId>

<nodeId>BelievedBy</nodeId>

<nodeId>EthnicProportion</nodeId>

</SelectedNodesList>

Figure 4. 9 The generated XML

1. Class[] classes = SelectedNodesList.class;

2. final JAXBContext jc = JAXBContext.newInstance(classes);

3. final Marshaller m = jc.createMarshaller();

4. m.marshal(obj, new File(dir, "sample.xml"));

Figure 4. 10 JAXB methods

4.5 Process Queries

The QueryProcessor class, processes the queries in two steps-

 First, it transforms the SPARQL-DL query request string to SPARQL query using the

SPARQLAS tool kit.

 Second, it processes the SPARQL query using pellet engine and Jena API.

The SPARQLAS package consists of a static class Sparqlas2SparqlStandalone . This class

has methods to validate query string and perform the transformation. It has a method named

„transformSparqlasQueryToSparqlFile‟ that takes SPARQL-DL query string as input and

returns SPARQL query string.

// Now read the query file into a query object

Query q = QueryFactory.read(query);

// Create a SPARQL-DL query execution for the given query and model

QueryExecution qe = SparqlDLExecutionFactory.create(q, m);

// We want to execute a SELECT query, do it, and return the //result set

ResultSet rs = qe.execSelect();

Figure 4. 11 Jena classes for Query Execution

 30

The transformed query is then processed using the pellet engine. We have used Jena API to

interact with pellet engine as shown in the Figure 4.11. A Query object for the transformed

query string is created and it is used to create the QueryExecution instance. The query is then

executed by calling the execSelect method on QueryExecution instance. The result set object

is properly formatted using the ResultSetFormatter class and returned to JSP.

Figure 4.12 is an example of SPARQL query output for the pizza ontology[12] using the

SPARQLAS toolkit. Pizza ontology is an example ontology used widely in OWL tutorials. It

is a classification of Pizza and its varieties. The example in Figure 4.12 is to query pizzas that

have some topping with spiciness hot. As we can see, the SPARQL-DL query is very simple

and short compared to the SPARQL query.

 31

All subclasses of pizza that have as topping some topping with spici

ness hot

SPARQL-DL query:

SubClassOf (?x And (Pizza Some (hasTopping And (PizzaTopping Som

e (hasSpiciness Hot)))))

SPARQL query:

PREFIX : <http://www.co-ode.org/ontologies/pizza/pizza.owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX sparqldl: <http://pellet.owldl.com/ns/sdle#>

SELECT DISTINCT ?x WHERE

 { ?x rdfs:subClassOf _:b0 .

 _:b0 rdf:type owl:Class ;

 owl:intersectionOf _:b1 .

 _:b1 rdf:first :Pizza ;

 rdf:rest _:b2 .

 _:b2 rdf:first _:b3 .

 _:b3 rdf:type owl:Restriction ;

 owl:onProperty :hasTopping ;

 owl:someValuesFrom _:b4 .

 _:b4 rdf:type owl:Class ;

 owl:intersectionOf _:b5 .

 _:b5 rdf:first :PizzaTopping ;

 rdf:rest _:b6 .

 _:b6 rdf:first _:b7 .

 _:b7 rdf:type owl:Restriction ;

 owl:onProperty :hasSpiciness ;

 owl:someValuesFrom :Hot .

 _:b6 rdf:rest rdf:nil .

 }

Figure 4. 12 Comparison of SPARQL and SPARQL-DL queries for pizza ontology

 32

CHAPTER 5 APPLICATIONS OF THE FRAMEWORK

The Framework effectively shields the complexity of ontology from the users and eases the

development of ontology applications in various fields. Applications in different domains will

be discussed in this chapter to demonstrate how effectively applications can be developed

using our framework.

5.1 Study Guide Producer

Ontology makes it possible to represent knowledge in a structured way and thus expresses the

classification of a domain clearly. As domain experts create the ontologies, they are more

accurate compared to the Web resources like Wikipedia. Querying an ontology returns

specific and related results as compared to the web search.

Study Guide Producer is an application for professors or students to make customized study

guides. Numerous high-quality ontologies have been defined in the fields of Arts and

Sciences. For example, the gene ontology, a bio-informatics ontology, is a knowledge

repository for the gene and its properties. It has a very informative comments section that is

organized in multiple pieces such as “Definition”, “Comment” and “Examples”.

Using this application, a student or a professor can load an ontology related to his field and

browse through the knowledge hierarchy to understand various concepts and relations. The

event handler of the class nodes has been enabled. Upon clicking on each class node, the

browser will display the definition, synonyms and examples in the comment of this class as

shown in Figure 3.6.

Thus the professor can have an instant preview of the choice. By checking the checkbox

associated to the classes, the professor can select any number of concepts. Finally, by

 33

clicking the “Generate” button, an e-book of the selected terms and related information is

generated in the PDF format. The application can be further enhanced to include review

questions or quiz.

Figure 5. 1 Left Panel of the Tree-view Browser

The advantage of our framework over other ontology tools is that the range classes are shown

along with the sub classes in the tree structure. For example, in Figure 5.1, the classification

of class „Conversion‟, not only shows its sub-divisions (Degradation, Transport etc.) but also

the related topics like PhysicalEntity and Stoichiometry. The relationship parameter is shown

in the brackets. This is a convenient setting for the professors to make a study guide.

 34

5.2 METOC data entry forms

This example came from a project for the training needs of the Meteorology and

Oceanography (METOC) community (Navy, 2009). The weather and ocean data are

utilized by vastly diversified user applications that consume a wide range of METOC data

including gridded forecast model data, climatology, weather effects data, raw satellite data,

space environment and solar, remote-sensed observations, as well as imagery (METOC,

2009).

A basic and critical training need is to assure the data entry personnel to provide the

applications with correct data. Ideally, a set of GUIs would be able to mimic the data entry

scenarios of the in-field tasks of data requests. However, in the METOC community the

requirements of the data vary dramatically from one type of user such as a ship navigator to

another type such as a weather station staff. Furthermore, the data requirements of the same

type of user change when different tasks are carried out. There are simply too many

varieties of data request scenarios. Furthermore, developing highly customized METOC

GUIs is very costly because it is typically difficult for the GUI programmers to understand

the highly specialized METOC terminologies and distinguish synonyms and antonyms in

different contexts for many tasks. We have used our framework to develop an

ontology-based application that automates the generation of highly tailored training GUI

components.

The development of any application using our framework is a two-step process. The first step

is straightforward for any application and we need not modify any code for this step. The

tree-view browser generates the tree and the required information for the chosen owl file. For

 35

this application we just had to write a jsp to display the METOC forms. The ProcessServlet

processes the selected nodes and converts them to Java Bean Objects using JAXB API. The

Bean objects are then iterated and displayed in a tabular format using the JSTL tags.

Figure 5. 2 METOC Ontology

To make the data request training GUI for a task, the METOC engineer (the domain expert)

navigates in the Ontology facilitated by our tree-view browser as shown in Figure 5.2.

Similar to the earlier example, the domain expert selects the nodes of the needed data items

from the tree view by clicking the checkbox associated with each node. Upon the expert

click a class node, all its attributes are displayed in a panel on the right-hand side pane (not

shown in Figure 5.2).

 36

Figure 5. 3 METOC data entry forms

As a result, the identifier of the selected ontology classes as well as the selected attributes of

these classes is recorded in an XML file, which is the metadata of the training GUI Web

application. Upon invoking the training GUI application, the attributes of the selected nodes

are displayed in a tabular format as shown in the Figure 5.3. Once the user fills in and

submits the form, the data is saved as instances of the class in the XML file by the Web

 37

application on the server side.

5.3 Google Maps Mashup

In Web development, a mashup is a Web page or application that uses and combines data,

presentations or functionality from two or more resources to create new services[14]. For

example, we could create a mashup of the earth‟s climate by integrating weather data with

Google Maps interface. There are a number of APIs available in the market to create Google

Maps Mashup. We have used Google‟s API in this application.

This Web application is a mashup that allows the users to query Mondial ontology[13] and

then display the results on GoogleMaps. The Mondial ontology contains geographical data

about countries, cities, rivers, islands, deserts and so on. The initial step of the mashup is to

load the Mondial Ontology in the tree-view browser. The user then browses through the

ontology classes and their individuals as shown in the Figure 5.4.

The next step is to enter the query in the SPARQL-DL query text box. The longitudes and the

latitudes information are fetched and passed to Google Maps API script. The map with the

query results is displayed. Figure 5.5 is an example of fetching all city instances from the

Mondial Europe Ontology.

 38

Figure 5. 4 Individuals list for the class „Province‟ of Mondial Ontology

When the query is submitted, the ProcessServlet class, transforms the query to SPARQL

query and submits to the pellet engine. The implementation of the above step was discussed

in the chapter 3. Jena API has a class called ResultSetFormatter to process the ResultSet of

the SPARQL query. It has methods to turn ResultSet into various forms like xml, RDF

model, plain text, CSV file etc. For this application, the ResultSet was converted to a plain

text and returned to the tree-view browser.

We have written a Javascript function (Figure 5.6) to parse the response text from the

ProcessServlet and create a Google map object. The process of map initialization is handled

in lines 2-7. The parsing of text data to retrieve the latitudes and longitudes is handled in lines

 39

8-12. Finally, the map point creation and rendering is handled in lines 14 and 15.

Figure 5. 5 An example Google Maps Mashup

Figure 5. 6 Javascript code to generate a Google Map

By making use of the different result set format methods in ResultSetFormatter class, more

complex Mashup applications can be developed in this way.

 40

CHAPTER 6 CONCLUSION AND FUTURE WORK

We expect to see more applications showing the utilizations of ontologies by all kind of users

and for diversified purposes. It is certain that numerous utilizations will in turn stimulate a

fast growth of the ontologies themselves. Compared to any other industry, education would

most benefit from the applications of ontologies because knowledge management and

information retrieval are the two central activities in education. In this project, we have

developed a framework to enable programmers and non-programmers to build ontology

based web applications. We have presented three examples demonstrating the applications of

our framework. They are cases for educational materials creation, software component (GUI)

generation, and web publishing. These examples have illustrated the benefit of utilizing our

framework in terms of reduction in development efforts.

 41

Reference

1. Evren Sirin and Bijan Parsia : SPARQL-DL: SPARQL Query for OWL-DL (2007)

2. Petr Kremen, Evren Sirin : SPARQL-DL Implementation Experience (2008)

3. Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen: The

Protégé OWL Plugin: An Open Development Environment for Semantic Web

Applications.

4. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. (1993)

[http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html]

5. J.R.G. Pulido, M.A.G. Ruiz, R. Herrera, E. Cabello, S. Legrand , D. Elliman:

Ontology languages for the semantic web: A never completely updated review (2006)

6. Shireesha Tankashala, Fangfang Liu, Brian Horton, Shengru Tu: An Online Ontology

Navigator for web applications in Education

7. http://weblog.clarkparsia.com/2007/10/26/towards-sparql-dl-evaluation-in-p

ellet

8. http://www.ibm.com/developerworks/xml/tutorials/x-ultimashup4/

9. http://semanticwebbuzz.blogspot.com/2009/10/jena-framework-for-developing-seman

tic.html

10. http://www.obitko.com/tutorials/ontologies-semantic-web/

11. http://jenkov.com/prizetags/index.html

12. http://www.co-ode.org/ontologies/pizza/2007/02/12/

13. http://www.dbis.informatik.uni-goettingen.de/Mondial/

14. http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

15. http://swat.cse.lehigh.edu/projects/lubm/

16. http://jena.sourceforge.net/

http://weblog.clarkparsia.com/2007/10/26/towards-sparql-dl-evaluation-in-pellet
http://weblog.clarkparsia.com/2007/10/26/towards-sparql-dl-evaluation-in-pellet
http://www.ibm.com/developerworks/xml/tutorials/x-ultimashup4/
http://semanticwebbuzz.blogspot.com/2009/10/jena-framework-for-developing-semantic.html
http://semanticwebbuzz.blogspot.com/2009/10/jena-framework-for-developing-semantic.html
http://www.obitko.com/tutorials/ontologies-semantic-web/
http://jenkov.com/prizetags/index.html
http://www.co-ode.org/ontologies/pizza/2007/02/12/
http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://swat.cse.lehigh.edu/projects/lubm/

 42

VITA

Shireesha Tankashala was born in Hyderabad, India. She earned a Bachelor Degree in

Electronics Engineering at G. Narayanamma Institute of Technology, Hyderabad, India. She

was enrolled in the graduate program in Computer Science at the University of New Orleans

in August 2008.

	A Framework Supporting Development of Ontology-Based Web Applications
	Recommended Citation

	An application of meteorological and oceanographic information retrieval system based on Ontology

