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Direct relation between Fresnel's interface reflection
coefficients for the parallel and perpendicular polarizations

R. M. A. Azzam
Department of Electrical Engineering, School of Engineering, University of New Orleans, Lakefront, New Orleans, Louisiana

70122
(Received 11 December 1978)

We have found a significant relation, r. = r, (r, -cos20)/(1 - r cos24), between Fresnel's inter-
face complex-amplitude reflection coefficients rp and r, for the parallel (p) and perpendicular (s)
polarizations at the same angle of incidence +. This relation is universal in that it applies to reflection
at all interfaces between homogeneous isotropic media collectively and, of course, throughout the
electromagnetic spectrum. We investigate the properties of this function, r p = f (r, ), and its inverse,
r, = g (rn ), as conformal mappings between the complex planes of r5 and rp . A related function,
p = (r, -cos24)/(1-rr cos240), which is a bilinear transformation, is also studied, where
p = rp Ir, isthe (ellipsometric) ratio of reflection coefficients. Several previously described reflection
characteristics come out readily as specific results of this work. Simple explicit analytical and graph-
ical solutions are provided to determine reflection phase shifts and the dielectric function from
measured p and s reflectances at the same angle of incidence. We also show that when rp is real,
negative, and in the range -1 • rp < -tan 2(4 -45%), r, is complex and its locus in the complex
plane is an arc of a circle with center on the real axis at sec24 and radius of I tan24 I. Under these
conditions, we also find the interesting result that I r, I = Jrp 1/2.

1. INTRODUCTION

The reflection of a monochromatic electromagnetic plane
wave at the planar interface between two linear homogeneous
and isotropic media is governed by the well-known Fresnel
coefficients. For the two linear polarizations parallel (p or
TM) and perpendicular (s or TE) to the plane of incidence,
these coefficients are given by'

e cosb - (e - sin2¢,)112

p ecoso + (e - sin2 )1/2  (1)

coso - (E - sin2 tk)1/2 2

cosk + (e - sin2o)1/2' (
where 0 is the angle of incidence and e is the ratio of the di-
electric function of the medium of refraction to that of the
medium of incidence. We assume the ejwt time dependence
and p and s directions as in the Nebraska (Muller) conven-
tions. 2

In this paper we find a direct relation between rp and rs at
the same angle of incidence k, study its properties, and give
one of its applications. This complements earlier work on the
transformation of the Fresnel coefficients between normal and
oblique incidence. 3

HI. RELATION BETWEEN rp AND r5

To relate rp and r, we eliminate e between Eqs. (1) and (2).
In terms of

x = (e -sin2,)112

Eqs. (1) and (2) become

cosO (X2 + sin2k) - x

r cos4 (X2 + sin 2o) + x

r, = (coso - x)/(cosk + x).

Equation (6) is the desired direct relation between Fresnel's
interface complex-amplitude reflection coefficients r, and r,
for the p and s polarizations at the same angle of incidence4

k. Significantly, this relation is independent of the two media
that define the interface and applies, of course, throughout
the entire electromagnetic spectrum. Although Eqs. (1) and
(2), hence Eq. (6), are valid generally when both media are
absorbing and 0 is complex, we will assume hereafter that the
medium of incidence is transparent and that k is real.

At normal incidence, 0 = 0, and at grazing incidence, k =
900, Eq. (6) reduces to rp = -r, and rp = r, respectively, as
expected. When t = 450, Eq. (6) reduces to rp = r2, a result
which is also known to be true for this special case.5' 6' 7

Equation (6) predicts Brewster's condition, namely that rp
can become zero; this occurs when

r, = cos2o,

which is a simple expression for the nonzero reflection
coefficient for the s polarization at the Brewster angle
(k = kB)-

The partial derivative of Eq. (6) with respect to rS,

(3)

(4)

(5)

From Eq. (5), x = cos(1 - r,)/(1 + rs), which we substitute
into Eq. (4) to obtain

rp = r,(r, - cos2o)/(1 - rs cos2o). (6)

rp

FIG. 1. Domains of all permissible values of Fresnel's interface reflection
coefficients r, (left) and rp (right) for the s and p polarizations.
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as a conformal mapping' 0 between the complex planes of r,
and rp. 1

Ill. MAPPING OF rs ONTO rp

2 In the Nebraska (Muller) conventions,2 r, is restricted to
the inside and boundaries of the upper-half of the unit circle
in the complex r5 plane, and, consequently from Eq. (6), rp is
limited to the interior and boundary of the full unit circle in

0 the complex rp plane, Fig. 1. For every value of r, only one
o Al0 1 value of rp is obtained from Eq. (6), but not vice versa. There

is one-to-one correspondence between points in the domains
of all permissible values of r, and rp shown in Fig. 1 except for

(b) points along the real axis.

Figure 2 shows mapping by the complex analytic function
rp = f(rj) of Eq. (6) of angularly equispaced straight lines
through the origin of the r, plane (lines of equal reflection
phase shift for the s polarization &= arg r5 = 0, 156, 300, ....

(a)

-0.75 -0.50 -0.25 n.00
RE FAP)

0.25 0. 0 0.75 5.00

FIG. 2. Mapping of r, onto rp according to the complex analytic function
rp = r, (r, - cos2o)/(1 - r cos2o) when 0 = 300. The angularly equis-
paced straight lines through the origin 0, 1, 2_ . . , 12 in the r, plane rep-
resent lines of equal reflection phase shift for the s polarization, 6, = argr,
= 0, 150, 300, ... , 1800 respectively and their images in the rp plane are
marked by the same numbers. Points that are images of one another are
also marked by the same letters. (This notation applies to the following
figures as well.) As r5 scans straight line 3, for example, from the origin
Oto Uon the unit circle in the r, plane, rp scans curve 3 from the origin 0
to U on the unit circle in the rp plane, in the direction of the indicated ar-
rows.

t = (-rs cos2o + 2r, -cos2sk)/(1 - r, cos20),2
or,

vanishes when8

r, = sec2p - tan2o =-tan(o - 45o).

(8)

(9)

Substitution of this value of ri into Eq. (6) gives

rp =-(sec2o - tan2o)2 = -tan 2(0 - 450) = -ri. (10)

The reader can verify that Eqs. (9) and (10) give the Fresnel
coefficients for reflection at interfaces between transparent
media such that the angle of refraction is 45°. Because
orp/or, = (brp/6) (of/br,), it follows that brp/&E = 6rpIv
= 0, where E = v

2 and v is the complex relative refractive index.
This result is in agreement with what we have found before
in Ref. 9.

In the following section we investigate Eq. (6) more fully

-5.C0 -0.75 -0.50 -D.25 0.00
RE IRP)

0.25 0.50 0.75 1.00

FIG. 3. Mapping of ri onto rp according to the complex analytic function
rp = ri (r, - cos2o)/(1 - r0 cos2o) when 0 = 300. The equispaced
semicircles centered on the origin 1, 2, 3, . . ., 10 in the r, plane represent
lines of equal amplitude reflectance for the s polarization, I rj = 0.1, 0.2,
0.3, . . ., 1.0 respectively and their images in the rp are marked by the same
numbers. The images in the rp plane of semicircles 1, 2 lie entirely below
the real axis, while the images of semicircles 3 to 10 are one-full-revolution
spirals. As rs traces semicircle 6, for example, from Sto Fin the ri plane,
rp traces spiral 6 from S to F in the rp plane, in the direction of the indicated
arrows.
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1800) onto the rp plane, for an angle of incidence 0 = 300.
Here, and in other figures, lines and points that are images of
one another are marked by the same numbers and letters re-
spectively, and arrows indicate directions in which lines are
traced. Mapping of points along the real axis of the r, plane
onto the rp plane requires special attention. Such points
represent reflection of electromagnetic radiation at interfaces
between transparent media. When r, moves along the posi-
tive real axis from the origin 0(r, = 0) to M (r, = -tan(O-45 0)
= 0.268) to B (r, = cos2o = 0.5), rp moves along the negative
real axis from O(rp = 0) to M (rp = -tan 2 (0 - 450) = -0.072)

and back to B which coincides with the origin 0. The reversal
of the direction of motion of rp at the point M is consistent
with the fact that orp/ar, = 0 at that point [see the discussion
associated with Eqs. (9) and (10)J. M represents refraction
at 450 while B represents reflection at the Brewster angle at
interfaces between transparent media. If r, moves from B
to Al(r, = 1), or from 0 to A2(r, = -1), r, moves from 0 to
Al,2(rp = 1). It is evident that two values of r, produce the
same value of rp.

Figure 3 shows how a family of equispaced semicircles

(c)

'-1.00 -0.75 -0.50 -0.25 a.0 0.25 0.50 0.75 1.00 -0.25 0.00
RE IRP]

FIG. 4. Mapping of r, onto rp according to the complex analytic function rp = r -(r -cos2o)/(1 - r, cos2A) when 0 = 150, 300, 450, 600, 750. The or-
thogonal families of straight lines and semicircles through and around the origin in the r, plane are mapped onto orthogonal sets of curves in the rp plane.
The orthogonal sets that correspond to q = 300 are obtained from the superposition of Figs. 2 and 3. To identify individual curves use Figs. 2 and 3 as
a guide. (Continued on p. 1010.)
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FIG. 4. (continued).

centered on the origin in the r, plane (lines of equal amplitude
reflectance for the s polarization Ir, I = 0.1, 0.2, 0.3,. . . , 1.0)
are mapped by Eq. (6) onto the rp plane, at the same angle of
incidence 0 = 300 as in Fig. 2. Semicircles 1 and 2 have images
that lie entirely below the real axis of the rp plane. We can
show that this actually applies to all semicircles with radii Irs I
< OM = Itan(( - 450)l = 0.268. Semicircles 3 to 10, for
which Ir, I > Itan(G - 450) 1, have images in the rp plane that
are one-full-revolution spirals. The spiralling takes place
around the point M.

The superposition of Figs. 2 and 3 produces orthogonal
families of curves in the r8 and rp planes. This is shown in Fig.
4 for five angles of incidence including 300 (,p = 150, 300, 450,
60°, 75°). Orthogonal sets of curves for 0 = 450 + 0 and k =
450 - 0 are mirror images of one another with respect to the
real axis. Figure 4 gives as complete a picture of the mapping
properties of Eq. (6) as is graphically possible. It provides
useful nomograms that can be used to obtain quick estimates
of the complex reflection coefficient rp for given values of r5,
by locating in the rp plane the point of intersection of the two
contours representing I I = constant and argrs = con-
stant.

IV. INVERSE TRANSFORMATION: MAPPING OF
rp ONTO r,

Equation (6) can be inverted easily to give r, as a function
of rp:

r. 2 cos2q5 (1 -rp) + (rp + 1 cos220(1-rp2)2. 112'1
The inverse function, rs = g(rp), Eq. (11), is double-valued;
for every rp there are two values of r, that correspond to the
two values of the square root. However, because r, is limited
to the upper-half of the unit circle, values of rs with negative

imaginary parts are rejected. It follows that Eq. (11) gives two
physically acceptable values of r, only if rp is real.

Figure 5 shows mapping by the complex analytic function
rS = g(rp) of Eq. (11) of angularly equispaced straight lines
through the origin of the rp plane (lines of equal reflection
phase shift for the p polarization 6p = argrp = 0, 150, 300, ....
3450) onto the r, plane when the angle of incidence ' = 300.
The origin rp = 0 represents two physically distinguishable
situations: (i) Reflection from interfaces in the limit when
the two media on opposite sides of the interface become the
same; in this case, we also have r, = 0, and the situation is
represented by the point 0. (ii) Reflection at the Brewster
angle in which case r, = cos2k, and this instance is represented
by the point B. Thus the origin of the rp plane has two sep-
arate image points in the r, plane one is O(r, = 0) and the
other is B (r, = cos2k). When rp moves along the positive real
axis of the rp plane from the origin to Al its two distinct im-
ages in the r, plane move in opposite directions along the
segments of the real axis from B to Al (r, = 1) and from 0 to
A, (r, = -1). If rp moves along the negative real axis of the
rp plane from the origin to M (rp =-tan 2 (0 - 450) = -0.072)
its two images in the r, plane move in opposite directions on
the segments of the real axis from B to M (r, = -tan(o - 45)
= 0.268) and from 0 to M. Further movement of rp along the
negative real axis of the rp plane from M to A2 generates the
curve MA2 in the r, plane. The interesting conclusion follows
immediately that the reflection coefficient of the p polariza-
tion can become real and negative while, at the same time, the
reflection coefficient for the s polarization is complex. This
result, which is readily obtained from the present study, was
recently arrived at in a different way.'2 In the appendix, we
prove that the curve MA2 in Fig. 5 is in fact an arc of a circle
with center on the real axis at sec20 and radius of I tan2o I.
This appendix gives other new information that supplements
the results of Ref. 12.

In Fig. 5, straight lines that start from the origin and ter-
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(a)
p polarization, I rp I = 0.1, 0.2,. .. , 1.0) are mapped by Eq. (11)
onto the rs plane.

tions
00

P = rp/r. (12)

is significant because it can be determined experimentally

-i .00

A,

FIG. 5. Inverse mapping of r, onto r, according to the complex analytic
function r5 = (1/2) cos2o(f1 - rp) + ( + ('/1) cos

2
20(1 - rp)

2
] 1/2 when i

= 30°. The angularly equispaced straight lines through the origin 0, 1, 2,
... , 23 in the rp plane represent lines of equal reflection phase shift for
the p polarization, 3p = arg rp = 0, 150, 300 .... 3450 respectively and
their images in the r, plane are marked by the same numbers. The images
in the r, plane of straight lines, 1, 2, . . ., 11 in the upper half of the rp plane
all originate from the point B (r, = cos2o = 0.5), while the images of straight
lines 13, 14, . . ., 23 in the lower half of the rp plane a!l pass through the
origin 0. The segment MA2 of the negative real axis of the rp plane is
imaged onto circle arc MA2 in the r5 plane. MA2 divides the upper half of
the unit circle in the r, plane into two domains, one to its right and the other
to its left, that correspond to the upper and lower halves of the unit circle
in the rp plane respectively.

minate on the unit circle in the upper half of the rp plane (0
< arg rp < 180°) are mapped onto curves that all originate
from the same point B and terminate on (the arc A1 A2 of) the
unit circle in the r5 plane. The remaining straight lines
through the origin in the lower half of the rp plane (180° < arg
rp < 360°) are mapped onto a separate set of curves that
originate from the point 0 and terminate on (the arc A2 A1 of)
the unit circle in the r, plane. Thus the upper and lower
halves of the unit circle in the rp plane are mapped onto the
subdomains of the upper half of the unit circle in the r, plane
to the right and to the left, respectively, of the circle arc
MA 2.

Figure 6 shows how a family of circles centered on the origin
in the rp plane (lines of equal amplitude reflectance for the

- i .00 -D. 75 -0.50 -0.25 0 00 0.25 0.50 0. 75 S 1.00FRE (RS)

FIG. 6. Inverse mapping of rp onto r, according to the complex analytic
function r5 = (1/2) coso(1 - rp) + [rp + (1/4) cos2 2q(1 - rp)2 "12 when /
= 30°. The equispaced circles centered on the origin 1, 2, 3, . . ., 10 in
the rp plane represent lines of equal amplitude reflectance for the p po-
larization I rp I = 0. 1, 0.2, 0.3, . . ., 1.0 respectively and their images in the
rj I plane are marked by the same numbers.
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The superposition of Figs. 5 and 6 produces orthogonal sets
of curves in the rp and r, planes. This is shown in Fig. 7 for
five angles of incidence including 30° (0 = 150, 300, 450, 600,
75"). The image of a circle I rp = constant in the rp plane is
split into two separate branches in the r, plane when the
condition J r, < tan 2(k - 450) is satisfied. This appears in
Fig. 7 for the cases of 0 = 15° and 0 = 75°. Mirror reflection

0,24 in the imaginary axis of the orthogonal sets of curves for o
= 450 - 0 produces the sets that correspond to k = 450 + 0.
Figure 7 provides useful nomograms for finding r5 for given

3 values of rp.

V. SIMPLER TRANSFORMATION: MAPPING OF
r, ONTO p = rp/r,

The ratio of reflection coefficients of the p and s polariza-



-0.75 -0.50 -0.25 0.00
RE IRS)

(a)

1.00

0.25 0.50 0.75 0.00 -0.75 -0.50 -0.25 0.00
RE IRS)

0.25 0.50 0.75 0.00

FIG. 7. Inverse mapping of rp onto r, according to the complex analytic function ri, = (1/2) cos2o(1 - rp) + [rp + (1/4) cos
2

2(1 - rp)2]1/ 2 when tk = 150,
300, 450, 600, 750. The orthogonal families of straight lines and circles through and around the origin in the rp plane are mapped onto orthogonal sets
of curves in the r, plane. The orthogonal sets that correspond to 0 = 300 are obtained from the superposition of Figs. 5 and 6. To identify individual curves
use Figs. 5 and 6 as a guide.

from polarization measurements, i.e. by ellipsometry.1 3 From
Eq. (6) we find that

p = (r, - cos2o)/(1 - r, cos2o). (13)

Equation (13) indicates that p is related to r, via a bilinear

(M6bius) transformation.' 0 r8 and p are both limited to the
upper half of the unit circle in the complex plane.

A bilinear transformation has the distinction of mapping
circles (including straight lines which are degenerate circles)
in the complex plane of one variable onto circles in the com-
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VI. REFLECTION PHASE SHIFTS AND
DIELECTRIC FUNCTION FROM MEASURED P
AND s REFLECTANCES AT THE SAME ANGLE
OF INCIDENCE

In addition to providing new understanding of the behavior
of the fundamental Fresnel reflection coefficients for the p
and s polarizations, and also a unified framework for discus-
sion of several specific reflection characteristics, this paper
leads to other useful practical results. In particular, we pro-
vide simple analytical and graphical methods for determining
reflection phase shifts and the dielectric function from mea-
surements of the interface reflectances of the p and s polar-
izations. This problem has been dealt with before.14

The interface reflectances are defined by

R= Ir1 l 2, 1 = ps. (16)

If we take the squared absolute value of both sides of Eq. (6),
we obtain

R= R, + cos220 - 2R0112 cos2o cosbI
1 + R, cos220 - 2R 11

2 cos2O cosb, (17)

where 6s = arg r, is the reflection phase shift for the s polar-
ization. Equation (17) can be readily solved for 6S:

FIG. 8. Mapping of r, onto p = rp/r, according to the bilinear transfor-
mation p = (r5 - cos24))/(1 - rcos24)) when 4) = 300. Straight lines
through the origin in the r, plane, 6s = argr, = 0, 150, 300, ... , 180°, are
mapped onto arcs of coaxial circles that pass through the points p =
-cos2o and -sec2o (not shown) in the p plane.

plex plane of the other variable. Figure 8 shows how straight
lines through the origin of the r, plane (arg r, = 0, 15°, .. .,
1800) are mapped onto arcs of coaxial circles in the p plane
that pass through the common points p = -cos2'0 inside the
unit circle, and p = -sec240 outside the unit circle (not shown
in Fig. 8). These two points are the images of r, = 0 and r, =

a, respectively.

Figure 9 shows the mapping of semicircles centered on the
origin of the r, plane (Jrs I = 0.1, 0.2,.. . , 1.0) onto semicircles
of coaxial circles in the p plane that enclose the point p =

-cos2o (which is the image of r, = 0).

The superposition of Figs. 8 and 9 produces orthogonal
families of straight lines and semicircles in the r, plane and
orthogonal families of circular arcs and semicircles in the p
plane. This is shown in Fig. 10 for five angles of incidence
including 300 (0 = 150, 30°, 450, 60°, 750). Here also mirror
reflection in the imaginary axis relates the orthogonal sets at
4 = 450 + 0 and 45° -0.

The inverse of Eq. (13),

r, = (p +cos2o)/(1 + pcos2,O), (14)

gives rs in terms of p, also as a bilinear transformation. In a
slightly different form Eq. (14) reads

r, = [p - cos2 (900 - 0)]/[1 - pcos2(90 0 
- 4)]. (15)

Equation (15) is identical in form with Eq. (13) and is obtained
from it by switching the variables r, and p and replacing X by
900 - 0. Consequently, Figs. 8-10 describe the inverse
transformation p - r, if, in these figures, we interchange r,
and p and replace 4 by 90°- 0.

Cos 6 = (R2-Rp) + Rs (1 -Rp) coS
2
24)

2 RC' (R, - HP) cos20
(18)

Equation (18) provides a simple explicit solution for the re-
flectiohi phase shift &s in terms of the intensity reflectances
Rp and R, of the p and s polarizations at the same angle of
incidence'5 0. Once &s has been found, the complex relative

F-oo -0.75 -0.50 -0.25 ° S 0! 25Q RE-R sH Rp/JRS) 0
0.50 0.75 1.00

FIG. 9. Mapping of r, onto p = rpIr, according to the bilinear transfor-
mation p = (r, - cos2o)/(1 - rcos2o) when 4) = 300. Semicircles
centered on the origin in the r, plane, I r, I = 0. 1, 0.2, . . , 1.0, are mapped
onto semicircles of coaxial circles that enclose the point p = cos24 in the
p plane.

1013 J. Opt. Soc. Am., Vol. 69, No. 7, July 1979 R. M. A. Azzam 1013
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-0.75 -0.50 -0.25 0.00
RE IRP/RS)

0.25 0.50 0.75 I.00

FIG. 10. Mapping of rs onto p = rpIr, according to the bilinear transformation p = (r, - cos24))/(1 - r, cos2o) when 4) = 150, 30°, 450, 600, 750. The
orthogonal families of straight lines and semicircles through and around the origin in the r, are mapped onto orthogonal circle arcs and semicircles through
and around the point p = - cos2o in the p plane. The orthogonal sets that correspond to <P = 30° are obtained from the superposition of Figs. 8 and 9.
To identify individual curves use Figs. 8 and 9 as a guide.

dielectric function E (the ratio of the dielectric function of the
medium of refraction to that of the medium of incidence) can
be determined from the now-known complex reflection
coefficient r= RSL/2 eI.s by

E sin240 + cos20 [(1 - rs)/(1 + r,)]2, (19)

which follows directly from Eq. (2).

If we take the argument (angle) of both sides of Eq. (13) or
(6), we get

tnA R 1/
2 sinb, sin2242

ta R 12 COS65 (1 + COS2 24)) - R, cos24) (0

where A = argp = P- 6s. Equation (20) gives A, hence 6P
= A + as, after b5 has been obtained from Eq. (18).

Simple nomograms can be constructed that provide

graphical solutions for &, in terms of Rp and Rs. Figure 11
shows one such nomogram in the r, plane for angle of inci-
dence 0 = 600. It consists of two intersecting sets of semici-
rcles, one centered on the origin representing I r, I = constant,
and the other encircling the point r, = cos2tl and representing
IpI = constant. The latter has already been mentioned in
connection with Eq. (15). For given values of Rp and R, we
determine Irs - R1/2 and IjI = (Rp/R,) 1/ 2 and the point of
intersection of the two semicircles that correspond to these
values determine the complex reflection coefficient r,. The
angular polar coordinate of the point of intersection is use

Instead of preprepared nomograms, one can also make one's
own graphical construction to determine &, from Rp and Rs
(or equivalently from Irsi and IpI). From Eq. (13) we
write

Ipcos24)l = Jrs - cos2,01/1r, - sec2ol. (21)
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FIG. 11. A nomogram in the complex r, plane for the graphical determination of the reflection phase shift 3s from the measured reflectances R, and Rp
of the s and p polarizations at the same angle of incidence ¢ = 600. The semicircles centered on the origin represent lines of equal amplitude reflectance
for the s polarization I r, I = R112 = 0. 1, 0.2, 0.3, . . ., 1.0, while the semicircles that enclose the point r, = cos2p represent lines of equal ratio of p and
s amplitude reflectances I p I = (RpI/R2)1

2 = 0.1, 0.2, 0.3, . . ., 1.0. The measured reflectances Rs and Rp specify one semicircle from each family and
their point of intersection gives the complex reflection coefficient rs while its angular polar coordinate gives bs = argrs.

According to Eq. (21), the circle in the rs plane that represents
I p I equal to a constant is recognized as the locus of a point r,
that has the ratio of its distances to the two fixed points cos2o
and sec24 on the real axis equal to a constant given by I PI X
I cos20 .. The following procedure to graphically determine
&s becomes evident (see Fig. 12): (i) Mark the points A and B
on the real axis at cos20 (OA) and sec2o (OB) respectively.
(ii) Find the points C and D which internally and externally
divide AB in the same ratio Ipcos2kI = (Rp/Rs)112 lcos2Il.
(iii) Draw a semicircle with CD as a diameter. (iv) Draw a
second semicircle with the origin 0 as center and of radius I r, 1
= Rs 2 . (v) The point of intersection of the two semicircles
P gives the complex reflection coefficient r, and its angular
polar coordinate gives U,.

Similar nomograms and graphical constructions in the
complex p plane can be used to determine A, as the reader can
readily verify.

APPENDIX

We will prove that when rp is real, negative, and in the
range

-1 < rp < -tan 2 (0 - 450), (22)

r8 becomes complex and its locus, for a given angle of incidence
0, is an arc of a circle with center on the real axis at sec20 and
radius of I tan20 1.

It is evident from Eq. (11) that r, becomes complex when
rp is real only if the quantity under the square root is negative.
If we denote such a quality by Q,

Q = rp + (1/4) cos220 (1 -rp)2, (23)

the range of rp values that make Q negative lies between the
roots of the quadratic equation

Q =0. (24)

These roots can be put in the form (after some trigonom-
etry)

rp = -(sec2o F tan24) 2 
= -tan 2 (0 pF 450). (25)

Of the range of rp values between the two roots of Eq. (25),
only the subinterval specified by Eq. (22) is physically
meaningful because I rp I < 1.

With Q negative, Eq. (11) can be rewritten as

r, = x + jy, (26)

-0.25 0.00 0.25
BE IRS)

O D A C B

FIG. 12. A graphical construction that can be readily made and used
in lieu of the nomogram of Fig. 1 1.

FIG. 13. The loci of the complex reflection coefficient for the s polarization
when the reflection coefficient for the p polarization is real and negative
in the range-1 S rp < -tan 2(0 - 450) at several different angles of in-
cidence < = 0, 50, 100, . . ., 90° marked by each curve. Each locus or
curve at a given 0 is an arc of a circle with center on the real axis at sec2o
and radius of Itan2kI. Circle arcs that correspond to k = 450 + 0 and 450
- 0 are mirror images of one another with respect to the imaginary axis
which represents P = 450.
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rp is real negative and r, is complex. From Eq. (29), the in-
tensity reflectances are interrelated by

Rp = R. 2
, (30)

60

55
50

401. 35
-301. 25

20
1 15

10I J . .5
D.OO 0. 1' 0.25 0.38 0.50 0.63 0.75 0.80 I.00

RBS (RPJ

FIG. 14. The reflection phase shift for the s polarization 65, when the
reflection phase shift for the p polarization 5P is equal to ir, as a function
of the absolute value of rp, with the angle of incidence 0 as a parameter
marked by each curve. Mirror reflection with respect to the line o, = 900,
which represents 0 = 450, relate 6, (I rp |) at any pair of angles of incidence
0 = 450 ± 0.

where

x = (1/2) cos2o (1 - rp), y = (-Q)1/2. (27)

Elimination of rp between x and y [where Q is given by Eq.
(23)] gives

(X - sec2o)2 + y2 = tan220, (28)

which is the equation of a circle with center at (sec2o, 0) and
radius of I tan21 1. Of course r8 is restricted to the arc of this
circle between the real axis and the upper half of the unit
circle. Figure 13 shows the locus of r8, when rp is real, nega-
tive, and in the range specified by Eq. (22), for angles of inci-
dence 1 from 50 to 850 in steps of 5°. The limiting cases of
0 = 0 and X = 90° are represented by the points r, = 1 and r,
= -1 respectively.

From Eqs. (26), (27), and (23), we obtain the interesting
result Ir, 12 = -rp, hence

IrS| = Irp 1/2. (29)

Equation (29) indicates that the absolute value of the reflec-
tion coefficient (amplitude reflectance) for the s polarization
is equal to the square root of that for the p polarization, when

no I 4th
Gil
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a relation that may have been thought before to hold only
when the angle of incidence5-7 or the angle of refraction 9 is
450.

For completeness, Fig. 14 gives the reflection phase shift
6, = arg r, as a function of I rp I for different angles of incidence
1 from 50 and 850 in steps of 5°.

The results of this appendix complete an earlier analysis' 2

in which we proved, starting directly from the equations for
the Fresnel coefficients, Eqs. (1) and (2), that rp can be real
while r8 is complex, and in which we also found the conditions
that must be satisfied by the dielectric function e for this to
happen.

'See, for example, M. Born and E. Wolf, Principles of Optics (Per-
gamon, New York, 1975), 5th edition, p. 40.

2R. H. Muller, "Definitions and conventions in ellipsometry," Surf.
Sci. 16, 14-33 (1969).

3R. M. A. Azzam, "Transformation of Fresnel's interface reflection
and transmission coefficients between normal and oblique inci-
dence," J. Opt. Soc. Am. 69, 590-596 (1979).

4 Equation (6) can be cast in the alternative form (r3
2 

- r,)/(r 0 - rrp)
= cos2o. The left-hand-side function of rS, and r, is therefore real
and invariant, at a given angle of incidence 1k, with respect to
changes of media and/or wavelength.

5 R. M. A. Azzam, "On the reflection of light at 450 angle of incidence,"
Opt. Acta 26 (1979), (in press).

6 D. W. Berreman, "Simple relation between reflectances of polarized
components of a beam when the angle of incidence is 45°," J. Opt.
Soc. Am. 56, 1784 (1966).

7S. P. F. Humphreys-Owen, "Comparison of reflection methods for
measuring optical constants without polarimetric analysis, and
proposal for new methods based on the Brewster angle," Proc. Phys.
Soc. Lond. 77, 949-957 (1961).

8The second root of the quadratic equation that results from setting
the numerator of the right-hand side of Eq. (8) equal to zero has
an absolute value greater than 1, hence is physically unaccept-
able.

9R. M. A. Azzam, "Consequences of light reflection at the interface
between two transparent media such that the angle of refraction
is 45°," J. Opt. Soc. Am. 68, 1613-1615 (1978).

°0See, for example, A. Kyrala, Applied Functions of a Complex
Variable (Wiley-Interscience, New York, 1972), Ch. 8.

"The mapping is conformal at all points in the complex plane except
where orp/or, = 0 or a. This excludes the point specified by r, and
rp in Eqs. (9) and (10).

'2 R. M. A. Azzam, "Reflection of an electromagnetic plane wave with
0 or 7r phase shift at the surface of an absorbing medium," J. Opt.
Soc. Am. 69, 487-488 (1979).

13R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized
Light (North-Holland, Amsterdam, 1977).

14 M. R. Querry, "Direct solution of the generalized Fresnel reflectance
equations," J. Opt. Soc. Am. 59, 876-877 (1969).

15When 1 = 450, we have cos21 = 0 and Rp = R 2. This reduces Eq.
(18) to cosb, = 0/0, hence 6, becomes indeterminate, as is expected
in this special case.
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