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Frequency-mixing detection (FMD) of polarization-modulated light
R. M. A. Azzam

Division of Hematology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center,
Omaha, Nebraska 68105

and Electrical Materials Laboratory, College of Engineering, University of Nebraska, Lincoln, Nebraska 68588
(Received 17 February 1976)

When a light beam whose polarization and intensity are weakly modulated at a frequency c0
m passes through a

periodic analyzer of frequency COa(aCtm) and the transmitted flux is linearly detected, the resulting total signal
St consists of two components: (i) a periodic baseband signal Sbb with harmonics of frequencies
nwja (n = 0,1,2,...) and (ii) an amplitude-modulated-carrier signal 6Smc with center (carrier) frequency c)m and
sideband frequencies at cam 4 ncoa(n = 1,2,...). In this paper we show that the average polarization of the beam
is determined by a limited spectral analysis of Sbb, whereas the polarization and intensity modulation are
determined by a limited spectral analysis of B S,,,, or the associated envelope signal S Se, where
5Smc = 8Scoscoat. The theory of this frequency-mixing detection (FMD) of polarization modulation is
developed for an arbitrary periodic analyzer. The specific case of a rotating analyzer is considered as an
example. Applications of FMD include the retrieval of information impressed on light beams as polarization
modulation in optical communication systems, and the automation of modulated ellipsometry, AIDER (angle-
of-incidence-derivative ellipsometry and reflectometry), and modulated generalized ellipsometry.

I. INTRODUCTION

Consider a beam of totally polarized light propagating
in the z direction, and let Ez and E_ be the complex
amplitudes of the projections of the electric vector along
two transverse mutually orthogonal directions x and y,
xyz being a right-handed Cartesian coordinate system,
The beam is characterized by its total intensity

I= EX E+Ey E , (1E)

and its ellipse of polarization, specified completely by
the complex number

X = Ey/Ez = tanb eJA, (2)

where A and ip represent the relative phase and arc-
tangent of the relative amplitude of the y and x compo-
nents, respectively. We assume that the beam is both
intensity and polarization modulated such that

I= T+ 1, (3a
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Yb=z b+6 b, A= +6A, (3b)

and that the modulation is small:

| 611I | << 1 ,1|601| 1 6A1 < -7/12 . (4)

I and (p, A) represent the quiescent intensity and polariza-
tion of the beam, respectively; 61 and (6p, 6A) repre-
sent the associated intensity and polarization modula-
tion. For simplicity, we further assume that the mod-
ulation is sinusoidal with time t and of frequency cm
<< wopt, where w opt is the optical frequency. There-
fore we can write

6X=6Xcoswmt, X=1, 0, and A (5)

where the caret indicates the amplitude of a sinusoidal
quantity.

In this paper we describe a frequency-mixing tech-
) nique for the simultaneous detection of the five param-
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FIG. 1. A light beam of polarization (*, A) and intensity (I)
that are weakly modulated at a frequency wm is transmitted
through an analyzer A one or more of whose parameters ac is
periodically swept at a frequency wa. The interaction between
the modulated beam and the periodic analyzer results in fre-
quency mixing that is borne in the intensity variations of the
light leaving the analyzer. The latter intensity variations are
detected by a linear polarization-independent photodetector D,
giving an electrical signal "D(or St). By spectral analysis of
St (Fig. 3), the average polarization as well as the polariza-
tion and intensity modulation of the beam can be determined.
xyz represents a reference Cartesian coordinate system with
the z axis along the direction of propagation of the light beam.

eters that describe the sinusoidally modulated totally
polarized light beam, namely, 4, A; 64, 6A, and 1/I .

II. PRINCIPLE OF FREQUENCY-MIXING DETECTION
(FMD)

When a beam of totally polarized light, described by
the three parameters I, 0, and A, passes through an
arbitrary polarization analyzer A, Fig. 1, the trans-
mitted intensity It can generally be expressed as

t=If( ', A, cr) , (6)

where the function! and its arguments a, (j= 1, 2, ....
k) are characteristic of the particular chosen analyzer.
When the photodetector is linear, the detected signal
9D can be written as

9D = C't

=cIf(N, A, co,) , (7)

where c is a multiplier that depends on the detector.
Perturbations (61, 64, 6A) of the intensity and polariza-
tion parameters of the beam produce a corresponding
perturbation 69, of the detected signal:

6gD = (agD /aI) I+ (asD/la4) 64'+ (agD /a A) 6 A. (8)

By use of Eq. (7), Eq. (8) becomes

6g" = CI[ [ (60/) + go 60 + f, 6A] 9

where

fg = af/ao , fi = af/a . (10)

Let a periodic sweep be applied to the analyzer A
such that one or more of its parameters a (j = 1, 2,...,
k) become oscillatory with time. Consequently, f [Eq.
(6)] and its derivativesfo andf, [Eqs. (10)] become
periodic functions of time, with (fundamental) frequency
w,, that can be expanded into their Fourier series:

fAf = Ho+ Al sin(ca t+ OA)I+fA2fsin(2 wat+ OA2)+..
(1 ic)

With the periodic sweep applied to the analyzer and
with the beam modulation assumed zero, the detected
signal (to be called the baseband signal) is given by

Sbb='4'Dj.on =cT[fo+fisin(wat+0j)
cWmof f

+fa2sin(2wat+ 02)+ ° ° (12)

as can be obtained by direct substitution from Eq. (hla)
into Eq. (7). Beam modulation (61, 6p, and 6A) gene-
rates a small signal 6S',, in the detector output that is
superimposed on the baseband signal of Eq. (12):

6Smc = 6gD I ok oan = 6Se coscm t ,

Wmon

(13a)

6Se= cT{[fo+fiSin(wt+ A)+asin(2(1+a)+ *
+ [go +gibesinta I+ 0 1) + fb2 sin (2w, I+ 02)+°°° 6

+ [fioo+fol sin(wa1+O, )+f asin(2wat+Oa)+* ]64'

+ [fo+ fj sin (wot +O1) +fA2sin (2wa1+OAS01) + ..]6A}
(13b)

Equations (13) are obtained by substituting 6I, 6kb, and
6A from Eq. (5), andf, fi, andf, from Eqs. (11), into
Eq. (9). 6Smc, Eq. (13a), represents a carrier of fre-
quency wm (the beam-modulation frequency) which is
amplitude modulated by a periodic envelope signal 6Se,
Eq. (13b), of (fundamental) frequency oa (the periodic-
sweep frequency). The total detected signal when the
modulated beam passes through the periodic analyzer
is obtained by adding Eqs. (12) and (13a):

St= Sbb + 6 Smc - (14)

The frequency spectrums of St is shown schematical-
ly in Fig. 2. It consists of (1) the baseband spectrum
of Sbb [Eq. (12)] with frequencies 0, o,,, 2 wa, . .o. and
(2) the modulated-carrier spectrum of 6Sm. [Eqs. (13)]
with frequencies mo .,m c Wao ± wm ± 2wa, * .*

In the following we show how the average (quiescent)
polarization (I, A) and beam-modulation parameters

2/I, A6, 6) can be determined from the spectral
analysis of the baseband signal Sbb and the modulated-
carrier signal 6 Smc, respectively. All of the charac-
teristics of the periodic analyzer are considered known,
including the functionsf, fi, fN and their Fourier
series.

A. Determination of hi and a from Sbb

Let se denote the amplitude of the Fourier component
of frequency co of the signal S, and let ?7. be the ampli-
tude of that component normalized to so (the dc com-
ponent of S), i. e.,

77. = s. /sO . (15)

From measurements of the dc component Sb and the
amplitudes of (the first) two nonzero harmonics2 of Sbb,
say Sw and sba (p, q integers a 1), we obtain n7p,1

flQ". From Eq. (12) we also have

=JfO+fiS'll(Wa1+01)+f2sill(2&al+02)+" * (11a) (16)76Waj = JO #, 'noa = f q/f° -

For a given periodic analyzer, the functions and its

736 J. Opt. Soc. Am., Vol. 66, No. 7, July 1976

fo=foo+folsin(Wat+001)+fO2sin(2Wat+002)+"- I (1 lb)
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FIG. 2. Frequency spectrum of the baseband (Sbb) and modulated-carrier (6S,,.,) components of the total detected signal St. film
is the light-modulation frequency and wa is the frequency of the periodic analyzer.

Fourier components f, are known (or can be determined).
p and A are arguments of the functionsf, and Eqs.
(16) provide two equations that can be solved 3 for T and A.

B. Determination of 5I/I, 6i , and 6A from 5Smc

1. Special case

We deal first with the special case of a periodic ana-
lyzer for which the function f and its derivatives fo
andfe are all in phase. Under such conditions, the
Fourier components off, f,, andf, that have the same
frequency are also in phase. Consequently,

O9,,= 0,A,= o, for all n, (17)

which allows Eqs. (13) to be rewritten as

6S. = cI[ fo(61/I) + foo 60 + f, 0 6A] COs5w t

+ cT [fn(6Z/1)+ftfn4 60+ fn, 6A] sin(nwat+ in);
n=1

xcoswmt . (18)

From Eq. (18), the amplitudes of the carrier and nth-
order sidebands of 5S., are given by

Wm= (60 + foo 60 + fo 6A] v (19)

A= 2CY [f,(2/l) + fin .+ fan]
From measurements of the dc component s' of St (or
Sbb), and the amplitudes of the carrier semb¢W and (the
first) two nonzero sidebands of cSm,, say Stm,: a,
smc fq (p, q integers a 1), we determine the normal-
ized amplitudes th.m, 

7
?wm*1Skwa P, ?wm qwa [using the defini-

tion of Eq. (15)]. By use of Eqs. (19), and with so
= cifo [Eq. (12)], we get

71O.m (60/)+ (fo/>o) 60 + (fAa/fo) 6A,

7aq m*pwJa =VP fO)( I/)+ (fOP IfO) F v7J) If.pf),A (20)

2t7w -ffiwoa =(f If'/>)( / ) + ( I~ do #>o) i ( fa q If.)

These three equations can be solved for the three un-
knowns4 6Z7I, -\ and 6A, which represent the desired
modulation parameters. In the left-hand side of Eqs.
(20), the 77's are quantities to be measured; in the
right-hand side, the coefficients of 62/I, 6p, and a are
calculated for the given periodic analyzer.

2. General case

The periodic functions f, f., andef are not in phase
so that Eqs. (17) are not satisfied. From Eqs. (13) it
is evident that measurements of the amplitudes of the
carrier and two different-order sidebands of 65Smc, nor-
malized to the dc component of St, are sufficient to
determine jig, 6, and 6O However, the equations
in this case become nonlinear (quadratic), making the
simultaneous solution for the modulation parameters
difficult,

An alternative procedure for measuring the modula-
tion parameters is to employ envelope detection to ob-
tain 6Se, Eq. (13b). The dc component and the (first)
nonzero p harmonic of 6 Se are given by

se= cI fo(6I/ +to 60 + fAo A],

sP,^,= c7[f,,(6 7 /T)sin(po,,t+ 0p)+fx.psin(pwta+ O5a)64P

+ fApsin(pwa t+ OAp) A] (21)

where the time dependence has been retained in the
latter expression of spL,, From measurements of
s0 , s', and the amplitudes Sp",av Ss" of the cosine and
sine components of s' ,, we obtain the normalized
amplitudes 77e, ije, and ?7ep' [see Eq. (15)]. By use of
Eqs. (21), and with s,=clf, [Eq. (12)], we get

71= (f1/ siOo/f60+ (fso/f f)t 4

7pec, =: (fpsin9p/f0)(6I/I)+ (fopsine pfO60

+ (fl, sinO6p/fo) 6A I (22)

11S=(f"coso'lf')('6I/I1)+ (fopcosSooo/fd 60

+ (fAPcosGAP/fo)•6

Equations (22) can be solved for the three modulation
parameters 4 6i/I, 6p, and 6A. The left-hand side of
Eqs. (22) represent quantities to be measured, whereas
the coefficients of 61/I, 6b, and 6A in the right-hand
side represent quantities that can be calculated for a
given periodic analyzer. In the above detection scheme,
the envelope signal 6Se is to be phase locked with the
periodic sweep applied to the analyzer.

Figure 3 is a block diagram of the general scheme
that we propose for the detection of the average polar-
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As can be seen from Eqs. (26), in the case of a rotating
analyzer each of the periodic functionsf, fg, andf,
consists only of a constant term (equal to zero for fm)
plus a single spectral component of frequency wao

The average polarization (T, A) of the modulated
beam is determined not in terms of the normalized
amplitudes of two different harmonics as suggested by
Eqs. (16), but rather by the normalized amplitudes
of the cosine and sine components of the same spectral
component of frequency w,. Instead of Eqs. (16), we

- X~T A, a now have

%aj =fi sinai/ fo, re." = fi cosol /f, . (27)

FIG. 3. A block diagram of the electronic signal-processing
units needed for frequency-mixing detection of polarization-
modulated light. The output St of the photodetector (Fig. 1) is
divided by the signal divider SD into two equal signals. One
signal passes through channel I that consists of the low-pass
filter LPF (of cutoff frequency wc - 10w, where wa is the
periodic-analyzer frequency) and the spectral analyzer SAL.
The output of channel I determines the average polarization of
the beam p, A-. The second signal passes through channel II
that consists of the band-pass filter BPF (of center frequency

Wnc=,,,, the light-modulation frequency, and bandwidth Aw
-20tOa), the amplitude-modulation (or envelope) detector AMD,
and the signal analyzer SA2. The output of channel II deter-
mines the intensity- (W1/M and polarization-modulation
(6l, 6A) parameters of the beam. SW, 6S,. and 6S, are the
baseband, modulated-carrier, and envelope signals, respec-
tively.

ization (, a) and modulation parameters (61/I, $ and
;') of the light beam.

III. A SIMPLE EXAMPLE

The theory of Sec. II applies to any type of periodic
analyzer. For the purpose of demonstration, we take
as a specific example a linear analyzer that is rotated
at constant angular speed 2'w. If A is the azimuth of
the transmission axis of the analyzer, measured from
the x axis of the reference Cartesian coordinate system
(see Fig. 1), the functions of Eq. (6) assumes the form

f= (1 + cos2A) + tan2 p(1 - cos2A) + 2 tanm cosA sin2A, (23)

where a constant multiplier (equal to A for an ideal
linear analyzer) has been dropped.5 In Eq. (23), f con-
tains only one parameter, al = A. By partial dif-
ferentiation of Eq. (23), we obtain

f= 2tano sec2 o(1 - cos2A) + 2 sec 2o cosA sin2A,
(24)

fA=- 2 tan4 sinA sin2A .

Because the analyzer is rotating, we substitute

A= 2Wat, (25)

into Eqs. (23) and (24); this gives

f= sec 24'+ (1 - tan 20) coswat+ 2 tan4 cosAsinca t, (26a)

f= 2tan4sec 2 p- 2tan4sec2 p cosw5 t+2sec 24 cosA sincowt,
(26b)

fA =-2tanp sinA sinwa t . (26c)

From Eq. (26a), we get

f 0 = sec 2T, f1 sing = (1 - tan2 _) , f1 cos9 =2tan4'cosA,
(2R)

which can be substituted into Eqs. (27) to give,

nc = (1 - tan2 )/sec2 ij= cos24',

r's = 2tan4 cosA/sec 2 T7= sin2a cos A.

(29a)

(29b)

Equation (29a) readily gives iT; A is obtained subse-
quently from Eq. (29b).6

Becausef, fb, andf, are not in phase, Eqs. (26), the
modulation parameters 910/T, 6A and are obtained
by use of Eqs. (22). In Eqs. (22), we now have p= 1 and
the coefficients on the right-hand side are identified by
Eqs. (28) and by

fhoo= 2 tano sec 3 p, fol singe 1 = -2 tanT sec 2T,

fo1l cosoo 1= 2sec 2T cosA, (30)

fAo= O, fM sin9l = 0, fhi cossk = - 2 tanTsinZ,

which follow from Eqs. (26b) and (26c). Therefore,
Eqs. (22) now read

o = (s2/I) + (2 tan an) ) 6,

W1eJa = (cos 2p) (52/I) + (- 2 tang) 6o",
(31a)

(31b)

71i = (sin2TcosA)( /T)+ (2cosK)60+ (-2tanisinA)6A .

(31c)
Equations (31) are readily solved for the modulation
parameters

,jI =e + 7^ec
I 1 + cos2'

2tan2T

-A = ,+ (sin2TcosZ)(dI/7)+ (2cos)'60
2tan~sini

(32a)

(32b)

, (32c)

where T and A are now known from measurements of
the average polarization, Eqs. (29). The example of
frequency-mixing detection of polarization-modulated
signals by a rotating analyzer is now complete.

IV. APPLICATIONS

In optical communication systems information may
be impressed on the light beam as polarization (and
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intensity) modulation. FMD, as described in this
paper, provides a means of demodulation for the pur-
pose of information retrieval. Although we have as-
sumed that the modulation is sinusoidal, extension to
arbitrary modulation waveforms is straightforward by
decomposing the waveform into its sinusoidal Fourier
components and applying the principle of superposition
in the case of small-level modulation.

The results of this paper have a direct bearing on el-
lipsometry. The discussion of Sec. IIA represents a
unified treatment for the measurement of unmodulated
polarization states of light by means of periodic ana-
lyzers. The case of the rotating analyzer8 -10 was con-
sidered in Sec. III as a simple example. The same
procedure can be applied to the oscillating-analyzer, 11
rotating-analyzer/fixed-analyzer, 12 rotating- com-
pensator/fixed-analyzer, 13 rotating- compensator/ro-
tating-analyzer, 14 and the oscillating-phase compensa-
tor/fixed-analyzer 15 ellipsometers.

FMD makes possible the automation of modulated
ellipsometry1 5 (ME) and modulated generalized ellipsom-
etry 17 (MGE). In ME and MGE, a beam of light of
constant polarization is reflected from or transmitted
through an optical sample that is subjected to a modulat-
ing stimulus, such as temperature, stress, electric,
or magnetic field. Modulation of the sample causes
modulation of the intensity and polarization of the beam
that can be measured by FMD. Consider, for instance,
an isotropic surface that reflects linearly polarized
light of 450 azimuth from the plane of incidence. If a
sinusoidal perturbation is applied to the surface, changes
will occur in its reflectance and ellipsometric parame-
ters; consequently, the reflected light will be both in-
tensity and polarization modulated. Because the inci-
dent light is linearly polarized at 450 azimuth, it can be
readily seen that the Dolarization modulation of the re-
flected light Q and a can be identified with the changes
of the ellipsometric Darameters of the surface. The
intensity modulation 6i/T gives 6R/R, where iR [=(Rp
+Rs)] is the reflectance for unpolarized light. Thus
FMD using any periodic analyzer as described in Sec.
II, e. g., using the rotating analyzer as described in
Sec. III, can be applied to automate modulated ellipsom-
etry.

Another related application of FMD is the automation
of AIDER'8 (angle-of-incidence-derivative ellipsometry
and reflectormetry). In this case, a light beam is oblique-
ly reflected from an angularly vibrating surface and
the state of polarization of the reflected beam is there-
fore modulated. Such modulation can be measured by
FMD using a periodic analyzer (e. g., a rotating analyz-
er); hence the angle-of-incidence derivatives of the re-
flectance and ellipsometric parameters of the surface

can be determined.

Finally, we should mention that the principle of FMD
is applicable to the measurement of polarization mod-
ulation of other electromagnetic waves, even though we
have referred to light waves in particular throughout
this paper.

tTo prevent overlapping between the spectra of Sbb and 6S,,,,
we select the frequency of the periodic analyzer ca to be much
smaller than the beam-modulation frequency w, (e. g.,
Wo.> 1Owa), and restrict w m/w not to equal the ratio of two
integers.

2 Alternatively, we may measure the amplitudes of the cosine
and sine components of one nonzero harmonic of Sbb. This is
the case of the example considered in Sec. III.

3 Dependent on the type of periodic analyzer that we choose,
Eqs. (16) may or may not have an explicit, or a unique, solu-
tion for b and A-.

4This requires, of course, that the three equations be linearly
independent. This is satisfied in general, unless the periodic
analyzer, the chosen harmonics (p, q), and/or the quiescent
polarization (ff, A\) happen to be such that two (or all three)
equations become linearly dependent.

5Such a constant can be absorbed in the multipler c that appears
in Eq. (7).

6 This is in agreement with results to be found in Refs. 8-10.
7See, for example, W. K. Pratt, Laser Communication Sys-

tems (Wiley, New York, 1969).
8P. S. Hauge and F. H. Dill, "Design and Operation of ETA,

an Automated Ellipsometer," IBM J. Res. Devel. 17, 472-
489 (1973).

9D. E. Aspnes, "Effects of Component Optical Activity in Data
Reduction and Calibration of Rotating-Analyzer Ellipsometers,"
J. Opt. Soc. Am. 65, 812-819 (1975).

'OR. M. A. Azzam and N. M. Bashara, "Analysis of System-
atic Errors in Rotating-Analyzer Ellipsometers," 64, 1459-
1469 (1974).

"1R. M. A. Azzam, "Oscillating-Analyzer Ellipsometer," Rev.
Sci. Instrum. 47, (1976) (in press).

12R. W. Stobie, B. Rao, and M. J. Dignam, "Analysis of a
Novel Ellipsometer Technique for Infrared Spectroscopy, " J.
Opt. Soc. Am. 65, 25-28 (1975).

i3 p. S. Hauge and F. H. Dill, "A Rotating-Compensator Fou-
rier Ellipsometer,"Opt. Commun. 14, 431-435 (1975).

14D. E. Aspnes, "Photometric Ellipsometer for Measuring
Partially Polarized Light," J. Opt. Soc. Am. 65, 1274-1278,
1975.

15R. M. A. Azzam, "Alternate Arrangement and Analysis of
Systematic Errors for Dynamic Photometric Ellipsometers
Employing an Oscillating-Phase Retarder," Optik. 45, (1976)
(in press).

16A. B. Buckman and N. M. Bashara "Ellipsometry for Modu-
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17 R. M. A. Azzam, "Modulated Generalized Ellipsometry,"
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