University of New Orleans [ScholarWorks@UNO](https://scholarworks.uno.edu/)

[Electrical Engineering Faculty Publications](https://scholarworks.uno.edu/ee_facpubs) **Department of Electrical Engineering**

12-1975

Design of film-substrate single-reflection linear partial polarizers

R. M.A. Azzam University of New Orleans, razzam@uno.edu

A.-R. M. Zaghloul

N. M. Bashara

Follow this and additional works at: [https://scholarworks.uno.edu/ee_facpubs](https://scholarworks.uno.edu/ee_facpubs?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Electrical and Electronics Commons](http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Physics Commons](http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

R. M. A. Azzam, A.-R. M. Zaghloul, and N. M. Bashara, "Design of film-substrate single-reflection linear partial polarizers," J. Opt. Soc. Am. 65, 1472-1474 (1975)

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [scholarworks@uno.edu.](mailto:scholarworks@uno.edu)

Design of film-substrate single-reflection linear partial polarizers*

R. M. A. Azzam,[†] A.-R. M. Zaghloul, and N. M. Bashara

Electrical Materials Laboratory, College of Engineering, The University of Nebraska, Lincoln, Nebraska 68508 (Received 13 June 1975)

The results of a preceding paper **[J.** Opt. Soc. Am. 65, 1464,(1975)] are viewed from a different angle as providing the basis for the design of film-substrate single-reflection linear partial polarizers (LPP), which also operate as reflection optical rotators. The important characteristics of a comprehensive set of discrete designs of SiO₂-Si LPP's at $\lambda = 6328$ Å are shown graphically.

Index Headings: Polarization; Reflection; Films; Silicon.

We have determined the conditions under which a filmsubstrate system preserves the state of linear polarization of light of arbitrary azimuth that is obliquely reflected from such a system.' We were interested in the implication of this observation as a basis of anew method of polarizer-surface-analyzer null ellipsometry (PSA-NE). However, the results of Ref. 1 can be considered differently, as providing a design procedure for film-substrate single-reflection linear partial polarizers. We further discuss this point in this paper.

A linear partial polarizer (LPP) differentially attenuates two orthogonally linearly polarized electric-field components of a light wave, without shifting the phase of one component with respect to the other. $²$ An example</sup> of a transmission LPP is a plane-parallel slab of a linearly dichroic material. In this paper, we consider film-substrate reflection LPP's, in which case the linear polarizations parallel (p) and perpendicular (s) to the plane of incidence are the components that experience different attenuations. Strictly speaking, the foregoing definition of a LPP includes only film-substrate designs that give a reflection phase difference $\Delta = 0$, but excludes those for which $\Delta = \pi$. A film-substrate system that gives $\Delta = \pi$ acts as a combination of a half-wave retarder (HWR) and a LPP. For simplicity and generality, we will consider both cases $\Delta = 0$ and $\Delta = \pi$ together, keeping in mind the aforementioned distinction. Note that the p - and s-suppressing film-substrate reflection polarizers represent limiting cases of the LPP, in which one field component (p or s, respectively) is entirely extinguished upon reflection.

The LPP $(\Delta=0)$ or the LPP + HWR $(\Delta=\pi)$ acts also as a reflection optical rotator, which adds to the practical importance of such a device. Thus, if θ_i and θ_r are the azimuth angles of the linearly polarized incident (i) and reflected (r) light, we can easily prove that

$$
\tan \theta_r = \pm \cot \psi \tan \theta_i, \qquad (1)
$$

where the + and - signs correspond to $\Delta = 0$ and $\Delta = \pi$, respectively. From Eq. (1), it is evident that the optical rotation $(\theta_r - \theta_i)$ is a function of the azimuth of the incident polarization θ_i and the ellipsometric angles ψ and Δ , where Δ is either 0 or π . Figure 1 shows the optical rotation $(\theta_r - \theta_i)$ computed from Eq. (1) as a function of ψ when $\theta_i = 45^\circ$ for both cases of $\Delta = 0$ and $\Delta = \pi$.

The most important parameter that describes the

operation of a reflection LPP is the ellipsometric angle ψ , the square of whose tangent or cotangent gives the extinction ratio (e.r.) of the device,

$$
e.r. = \tan^2 \psi, \quad 0 \le \psi \le 45^\circ,
$$

$$
e.r. = \cot^2 \psi, \quad 45^\circ \le \psi \le 90^\circ.
$$
 (2)

To design a LPP (or a LPP + HWR) of a given ψ from a film-substrate system with known optical properties

FIG. 1. Rotation $(\theta_x - \theta_i)$ of plane of polarization of light upon reflection from a linear partial polarizer, as a function of ψ for $\Delta=0$ and $\Delta=\pi$; $\theta_i=\pi/4$.

FIG. 2. Angle of incidence ϕ at which a SiO₂-Si film-substrate system operates as a linear partial polarizer for λ =6328 Å, shown as a function of ψ for $\Delta = 0$ and $\Delta = \pi$. ϕ_p and ϕ_s are the $p-$ and s-polarizing angles of incidence for total p and s suppression, respectively.

at a given wavelength, we follow the procedure explained in association with Eqs. (25) and (26) of Ref. 3 (see Sec. III of Ref. 1). The same procedure has recently been put in an easy-to-follow step-by-step format in connection with the design of reflection retarders.4 By use of $\rho = +\tan \psi$ ($\Delta = 0$), or $\rho = -\tan \psi$ ($\Delta = \pi$), steps 2-5 of Ref. 4 can be applied without change for the design

FIG. 3. Least SiO₂ film thickness d required to make a SiO₂-Si system operate as a linear partial polarizer at λ = 6328 Å, shown as a function of ψ for $\Delta = 0$ and $\Delta = \pi$. d_{p} and d_{s} are the least $p-$ and s-polarizing film thicknesses for total p and s suppression.

and 3.

of LPP. The purpose of the design is to determine the angle of incidence ϕ and the least film thickness d that make the film-substrate system operate as a LPP, that has the prescribed value of ρ (= $\pm \tan \psi$).

Tables I and Π of Ref. 1 document a comprehensive set of discrete designs of $SiO₂$ -Si film-substrate singlereflection LPP and LPP + HWR at $\lambda = 6328$ Å. In these tables, the primary design parameter ψ assumes values from 0° to 90° in steps of 5° and Δ is allowed both values of 0° (LPP) and π (LPP + HWR). Figure 5 of Ref. 1 shows the relation between the angle of incidence ϕ and least film thickness d for operation of the $SiO₂$ -Si filmsubstrate system as a LPP or a LPP + HWR at λ = 6328 Å. The relation assumes the form of two sepa-

FIG. 5. Parallel reflectance \mathfrak{R}_{p} for the designs of Figs. 2 and 3.

FIG. 6. Perpendicular reflectance \mathfrak{R}_e for the designs of Figs. 2 and 3.

rate branches: a high-psi branch (HPB) d_H and a lowpsi branch (LPB) d_L .

To gain a clear view of the design information given in Tables I and II of Ref. 1, we present it graphically in Figs. 2-6. Figure 2 shows the angle of incidence ϕ at which the $SiO₂$ -Si film-substrate system acts as a LPP $(\Delta = 0)$ or LPP + HWR $(\Delta = \pi)$ of a given value of ψ at λ = 6328 Å. Figures 3 and 4 show the associated least film thickness d , and film-thickness period D_{ϕ} . Figures 5 and 6 give the parallel (p) and perpendicular (s) reflectances \mathfrak{R}_{p} and \mathfrak{R}_{s} , respectively. The graph for each of the quantities ϕ , *d*, D_{ϕ} , \mathcal{R}_{p} , and \mathcal{R}_{s} as a function of the device parameter ψ in Figs. 2-6 is split into two branches: one for low ψ ($0 \leq \psi \leq 45^{\circ}$) and the other for high ψ (45° $\leq \psi \leq 90$ °).

The reflectances $\mathfrak{R}_{\mathfrak{d}}$ and $\mathfrak{R}_{\mathfrak{g}}$ are important performance parameters; they determine the absolute attenuation of the incident light upon reflection from the device. ⁵

The film-thickness period D_{ϕ} , or any integral multiple of it, can be added to the least film thickness d to generate a new LPP with the same ψ . The higher thicknesses permit additional flexibility when a device is physically realized.

The permissible-thickness bands (PTB) of Fig. 6 of Ref. 1 specify where the $SiO₂$ film thickness should lie for a $SiO₂$ -Si system to operate as a LPP or LPP + HWR at $\lambda = 6328$ Å. The graphical construction shown in Fig. 8 of Ref. 1 can be used to determine the angles of incidence at which a film-substrate system with known film thickness can operate as a LPP or LPP $+$ HWR. The concepts and procedures that govern the design of film-substrate linear partial polarizers are similar to those for the design of film-substrate retarders⁴, both are special cases of the same general design scheme.³ In summary, we have shown that the results of Ref. 1 can be profitably considered from a different perspective as applicable to the design of film-substrate singlereflection linear partial polarizers.

*Supported by the National Science Foundation.

- ^tAlso with the Division of Hematology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Neb. 68105.
- 'R. M. A. Azzam, A. -R. M. Zaghloul, and N. M. Bashara, J. Opt. Soc. Am. 65, 1464 (1975).
- D. Clarke and J. F. Grainger, *Polarized Light and Optical Measurements* (Pergamon, New York, 1971), p. 91.
- ${}^{3}R$. M. A. Azzam, A.-R. M. Zaghloul, and N. M. Bashara, J. Opt. Soc. Am. 65, 252 (1975).
- $⁴$ A. -R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara,</sup> J. Opt. Soc. Am. 65, 1043 (1975).
- 5 The absolute attenuation (or net reflectance \Re) is a function of \mathfrak{R}_{p} , \mathfrak{R}_{s} and the polarization of the incident light.