University of New Orleans [ScholarWorks@UNO](https://scholarworks.uno.edu/)

[Electrical Engineering Faculty Publications](https://scholarworks.uno.edu/ee_facpubs) **Department of Electrical Engineering**

9-2013

Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface

Rasheed M.A. Azzam University of New Orleans, razzam@uno.edu

Follow this and additional works at: [https://scholarworks.uno.edu/ee_facpubs](https://scholarworks.uno.edu/ee_facpubs?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Electrical and Computer Engineering Commons](http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Optics Commons](http://network.bepress.com/hgg/discipline/204?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

R. M. A. Azzam, "Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface," J. Opt. Soc. Am. A 30, 1975-1979 (2013)

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [scholarworks@uno.edu.](mailto:scholarworks@uno.edu)

Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a flection coefficients of *p*- and
at the pseudo-Brewster angle
dielectric–conductor interface

R. M. A. Azzam

Department of Electrical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA (razzam@uno.edu)

> Received July 23, 2013; revised August 15, 2013; accepted August 16, 2013; posted August 16, 2013 (Doc. ID 194457); published September 10, 2013

The complex Fresnel reflection coefficients r_p and r_s of p- and s-polarized light and their ratio $\rho = r_p/r_s$ at the pseudo-Brewster angle (PBA) $φ_{pB}$ of a dielectric–conductor interface are evaluated for all possible values of the complex relative dielectric function $\varepsilon = |\varepsilon| \exp(-j\theta) = \varepsilon_r - j\varepsilon_i$, $\varepsilon_i > 0$ that share the same ϕ_{pB} . Complex-plane trajectories of r_p , r_s , and ρ at the PBA are presented at discrete values of ϕ_{pB} from 5° from 0° to 180°. It is shown that for $\phi_{pB} > 70$ ° (high-reflectance metals in the IR) r_p at the PBA is essentially pure negative imaginary and the reflection phase shift $\delta_p = \arg(r_p) \approx -90^\circ$. In the domain of fractional optical constants (vacuum UV or light incidence from a high-refractive-index immersion medium) $0 < \phi_{p}$ $< 45^{\circ}$ and r_p is pure real negative $(\delta_p = \pi)$ when $\theta = \tan^{-1}(\sqrt{\cos(2\phi_{pB})})$, and the corresponding locus of ε in the complex plane is obtained. In the limit of $\varepsilon_i = 0, \varepsilon_r < 0$ (interface between a dielectric and plasmonic medium) the total reflection phase shifts δ_p, δ_s , $\Delta = \delta_p - \delta_s = \arg(\rho)$ are also determined as functions of ϕ_{pB} . © 2013 Optical Society of America

OCIS codes: (120.5700) Reflection; (240.0240) Optics at surfaces; (240.2130) Ellipsometry and polarimetry; (260.0260) Physical optics; (260.3910) Metal optics; (260.5430) Polarization. <http://dx.doi.org/10.1364/JOSAA.30.001975>

1. INTRODUCTION

A salient feature of the reflection of collimated monochromatic p (TM)-polarized light at a planar interface between a transparent medium of incidence (dielectric) and an absorbing medium of refraction (conductor) is the appearance of a reflectance minimum at the pseudo-Brewster angle (PBA) ϕ_{pB} . If the medium of refraction is also transparent, the minimum reflectance is zero and ϕ_{pB} reverts back to the usual ϕ_{pB} . If the medium of refraction is also transparent, the minimum reflectance is zero and ϕ_{pB} reverts back to the usual Brewster angle $\phi_B = \tan^{-1} n = \tan^{-1} \sqrt{\epsilon_r}$. The PBA ϕ_{pB} is determined by the complex relative dielectric function mum reflectance is zero and ϕ_{pB} reverts back to the usual
Brewster angle $\phi_B = \tan^{-1} n = \tan^{-1} \sqrt{\epsilon_r}$. The PBA ϕ_{pB} is determined by the complex relative dielectric function
 $\varepsilon = \varepsilon_1/\epsilon_0 = \varepsilon_r - j\varepsilon_i$, $\varepsilon_i > 0$, w complex permittivities of the dielectric and conductor, respectively, by solving a cubic equation in $u = \sin^2 \phi_{pB}$ [[1](#page-4-0)–[5](#page-4-1)]. Measurement of ϕ_{pB} and of reflectance at that angle or at normal incidence enables the determination of complex ε [[1,](#page-4-0)[6](#page-4-2)–[9](#page-4-3)]. It is also possible to determine ε of an optically thick absorbing film from two PBAs measured in transparent ambient and substrate media that sandwich the thick film [[10\]](#page-4-4). Reflection at the PBA has also had other interesting applications [[11,](#page-4-5)[12\]](#page-4-6).

For light reflection at any angle of incidence ϕ the complexamplitude Fresnel reflection coefficients (see, e.g., [<u>13]</u>) of the
 p and *s* polarizations are given by
 $r_p = \frac{\varepsilon \cos \phi - (\varepsilon - \sin^2 \phi)^{1/2}}{\varepsilon \cos \phi + (\varepsilon - \sin^2 \phi)^{1/2}}$, (1) p and s polarizations are given by

ations are given by
\n
$$
r_p = \frac{\varepsilon \cos \phi - (\varepsilon - \sin^2 \phi)^{1/2}}{\varepsilon \cos \phi + (\varepsilon - \sin^2 \phi)^{1/2}},
$$
\n(1)

$$
\varepsilon \cos \phi + (\varepsilon - \sin^2 \phi)^{1/2}
$$

$$
r_s = \frac{\cos \phi - (\varepsilon - \sin^2 \phi)^{1/2}}{\cos \phi + (\varepsilon - \sin^2 \phi)^{1/2}}.
$$
(2)

All possible values of complex $\varepsilon = (\varepsilon_r, \varepsilon_i)$ that share the same ϕ_{pB} are generated by using the following algorithm [[8](#page-4-8),[14\]](#page-4-9):

$$
\varepsilon_r = |\varepsilon| \cos \theta, \qquad \varepsilon_i = |\varepsilon| \sin \theta,\tag{3}
$$

$$
|\varepsilon| = \ell \cos(\zeta/3),
$$

\n
$$
\ell = 2u \left(1 - \frac{2}{3}u\right)^{1/2} / (1 - u),
$$

\n
$$
\zeta = \cos^{-1}\left[-(1 - u)\cos\theta/\left(1 - \frac{2}{3}u\right)^{3/2}\right],
$$

\n
$$
u = \sin^2\phi_{pB},
$$

\n
$$
0 \le \theta \le 180^\circ.
$$

\n(4)

As θ is increased from 0° to 180°, the minimum reflectance $|r_p|_{\rm min}$ at a given ϕ_{pB} increases monotonically from 0 to 1 $[15]$ $[15]$ and also as is evident in Fig. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ of Section $\frac{2}{3}$.

In this paper, loci of all possible values of complex $r_p = |r_p|\exp(j\delta_p)$, $r_s = |r_s|\exp(j\delta_s)$, and $\rho = r_p/r_s =$ $|\rho| \exp(j\Delta)$ at the PBA are determined at discrete values of In this paper, loci of all possible values of cc
 $r_p = |r_p| \exp(j\delta_p)$, $r_s = |r_s| \exp(j\delta_s)$, and $\rho = r_p$
 $|\rho| \exp(j\Delta)$ at the PBA are determined at discrete val
 ϕ_{pB} from 5° to 85° in equal steps of 5° and as $\theta = -\arg(\theta)$ ϕ_{pB} from 5° to 85° in equal steps of 5° and as $\theta = -\arg(\varepsilon)$ covers the full range $0^{\circ} \le \theta \le 180^{\circ}$. These results are presented in Sections [2](#page-2-1), [3,](#page-2-2) and [4,](#page-3-0) respectively, and lead to interesting conclusions. In particular, questions related to phase shifts that accompany the reflection of p - and s-polarized light at the PBA (e.g., [\[12](#page-4-6)]) are settled. Section [5](#page-3-1) summarizes the essential conclusions of this paper.

2. COMPLEX REFLECTION COEFFICIENT OF THE p POLARIZATION AT THE PBA

Figure [1](#page-2-0) shows the loci of complex r_p as θ increases from 0° to 180° at constant values of ϕ_{pB} from 5° to 85° in equal steps of 5°. All constant- $φ_{pB}$ contours begin at the origin $O(θ = 0)$ as a common point, that represents zero reflection at an ideal Brewster angle, and end on the 90° arc of the unit circle in the third quadrant (shown as a dotted line) that represents total reflection $|r_p| = 1$ at $\theta = 180^\circ$ ($\varepsilon_i = 0, \varepsilon_r < 0$). A quick conclusion from Fig. $\underline{1}$ $\underline{1}$ $\underline{1}$ is that for $\phi_{pB} > 70^{\circ}$ (high-reflectance metals) r_p at the PBA is essentially pure negative imaginary, total reflection
conclusion fro
metals) r_p at t
and $\delta_p \approx -90^\circ$.

In Fig. [1](#page-2-0) the constant- ϕ_{pB} contours of r_p for $0 < \phi_{pB} < 45^\circ$ spill over into a limited range of the second quadrant of the complex plane and each contour intersects the negative real axis. In [A](#page-4-10)ppendix A it is shown that θ at the point of intersection, where $\delta_p = \arg(r_p) = \pi$, is given by the remarkably simple formula

$$
\theta(\delta_p = \pi) = \tan^{-1}\left(\sqrt{\cos(2\phi_{pB})}\right).
$$
 (5)

A graph of this function of Eq. (5) is shown in Fig. [2.](#page-2-4)

The locus of complex ε such that $\delta_p = \arg(r_p) = \pi$ at the PBA [as determined by Eqs. (3) (3) (3) – (5)] falls in the domain of fractional optical constants and is shown in Fig. [3.](#page-2-5) The end points (0, 0) and (1, 0) of this trajectory correspond to ϕ_{pB} = 0 and 45°, respectively. At $\varepsilon = (0.6, 0.3)$, a point that falls exactly on the curve very near to its peak, $\phi_{pB} = 37.761^{\circ}$.

For small PBAs, $\phi_{pB} \leq 5^{\circ}$, the upper limit on $|\varepsilon|$ is calculated from ℓ of Eq. ([4](#page-1-1)), $|\varepsilon| = \ell \leq 0.0153$, and represents the domain of so-called epsilon-near-zero (ENZ) materials [[16\]](#page-5-1).

Negative real values of
$$
\varepsilon
$$
 at $\theta = 180^\circ$ [14] are given by

$$
\varepsilon = \varepsilon_r = -\frac{1}{2} \tan^2 \phi_{pB} [1 + (9 - 8 \sin^2 \phi_{pB})^{1/2}] \tag{6}
$$

and represent light reflection at an ideal dielectric–plasmonic medium interface. The corresponding total reflection phase shift δ_p as $\theta \to 180^\circ$ (at the end point of each contour in Fig. [1\)](#page-2-0)

Fig. 1. Complex-plane trajectories of r_p at discrete values of the PBA ϕ_{pB} from 5° to 85° in equal steps of 5° as $\theta = -\arg(\varepsilon)$ covers the full range $0^{\circ} \le \theta \le 180^{\circ}$.

Fig. 2. Graph of the function of Eq. [\(5](#page-2-3)). Both ϕ_{pB} and θ are in degrees.

Fig. 3. Locus of all possible values of complex ε such that $\delta_n =$ $arg(r_p) = \pi$ at the PBA.

is obtained from Eqs. (1) and (6) (6) (6) and is plotted as a function of is obtained from Eqs. (1) and (6) and is plotted as a function of ϕ_{pB} in Fig. $\frac{4}{5}$ $\frac{4}{5}$ $\frac{4}{5}$. In Fig. $\frac{4}{5}$ δ_p increases monotonically from −180° is obtained from Eqs. (1) and (6) and is plotted as a function of ϕ_{pB} in Fig. 4. In Fig. $\frac{4}{5}$ δ_p increases monotonically from -180° to -90° as ϕ_{pB} increases from 0° to 90° . The initial rise o with respect to ϕ_{pB} is linear for $\phi_{pB} < 20^\circ$ and then transitions to saturation at $\phi_{pB} > 70^{\circ}$, in accord with Fig. [1.](#page-2-0)

In Fig. $\underline{5} \delta_p$ $\underline{5} \delta_p$ $\underline{5} \delta_p$ is plotted as a function of θ for ϕ_{pB} from 10° to 40° in equal steps of 10° . Vertical transitions from $+180^{\circ}$ to -180° are located at θ values that agree with Eq. ([5\)](#page-2-3).

Another family of δ_p -versus- θ curves for ϕ_{pB} from 45° to 85° in equal steps of 5° is shown in Fig. [6.](#page-3-4) For $\phi_{pB} > 45^{\circ}$ the δ_p versus- θ curve first exhibits a minimum then reaches saturation as $\theta \to 180^\circ$. The saturated value of δ_p is a function of ϕ_{pB} and is shown in Fig. [4.](#page-3-2)

3. COMPLEX REFLECTION COEFFICIENT OF THE s POLARIZATION AT THE PBA

Figure [7](#page-3-5) shows the loci of complex r_s as θ increases from 0° to 180° at discrete values of ϕ_{pB} from 5° to 85° in equal steps of 5°. All curves start on the real axis at $\theta = 0$, $r_s = \cos(2\phi_{pB})$, which is the s amplitude reflectance at the Brewster angle of a

the interface between a dielectric and plasmonic medium in the limit as $\theta \to 180^{\circ}$ ($\varepsilon_i = 0, \varepsilon_r < 0$) are plotted as a functions of ϕ_{pB} . All angles are in degrees.

Fig. 5. Family of δ_p versus θ curves for ϕ_{pB} from 10° to 40° in equal steps of 10°. Both θ and δ_p are in degrees.

Fig. 6. Family of δ_p versus θ curves for ϕ_{pB} from 45° to 85° in equal steps of 5°. Both θ and δ_p are in degrees.

Fig. 7. Complex-plane contours of r_s at discrete values of the PBA range from 0° to 180° .

dielectric–dielectric interface [\[17](#page-5-2)], and terminate on the upper half of the unit circle (dotted line) that represents total reflection $r_s = \exp(j\delta_s)$ at $\theta = 180^\circ$ ($\varepsilon_i = 0, \varepsilon_r < 0$). The associated total reflection phase shift δ_s along the dotted semicircle is a function of ϕ_{pB} as shown in Fig. [4](#page-3-2).

Although we are locked on the PBA, all possible values of complex r_s (within the upper half of the unit circle) are generated at that angle. This is not the case of complex r_p at the PBA (Fig. [1](#page-2-0)) which is squeezed mostly in the third quadrant of the unit circle. Recall that the unconstrained domain of r_p for light reflection at all dielectric–conductor interfaces is on and inside the full unit circle [\[17](#page-5-2)].

4. RATIO OF COMPLEX REFLECTION COEFFICIENTS OF THE p AND s POLARIZATIONS AT THE PBA

The ratio of complex p and s reflection coefficients, also known as the ellipsometric function $\rho = \tan \psi \exp(j\Delta)$ [[13\]](#page-4-7),
is obtained from Eqs. (1) and (2) as
 $\rho = r / r = \frac{\sin \phi \tan \phi - (\varepsilon - \sin^2 \phi)^{1/2}}{r}$ (7) is obtained from Eqs. (1) and (2) as the ellipsometric function
d from Eqs. (1) and (2) as
 $\rho = r_p/r_s = \frac{\sin \phi \tan \phi - (\sin \phi \tan \phi)}{\sin \phi \tan \phi + (\cos \phi \tan \phi)}$

d from Eqs. (1) and (2) as
\n
$$
\rho = r_p/r_s = \frac{\sin \phi \tan \phi - (\varepsilon - \sin^2 \phi)^{1/2}}{\sin \phi \tan \phi + (\varepsilon - \sin^2 \phi)^{1/2}}.
$$
\n(7)

Figure [8](#page-4-11) shows loci of complex ρ as θ increases from 0° to 180° at constant values of ϕ_{pB} from 5° to 85° in equal steps of 5° . All contours begin at the origin O (as a common point that represents the ideal Brewster-angle condition of $r_p = 0$ at $\theta = 0$), then fan out and terminate on the 90° arc of the unit circle in the second quadrant of the complex plane (dotted line), so that $\rho = \exp(j\Delta)$ at $\theta = 180^\circ$ ($\varepsilon_i = 0, \varepsilon_r < 0$). The differential reflection phase shift $\Delta = \delta_p - \delta_s + 360^\circ$ at $\theta = 180^\circ$ decreases monotonically from 180 $^{\circ}$ to 90 $^{\circ}$ as ϕ_{pB} increases from 0° to 90° as shown in Fig. [4](#page-3-2).

5. SUMMARY

The Fresnel complex reflection coefficients r_p, r_s and their ratio $\rho = r_p/r_s$ are evaluated at the PBA ϕ_{pB} of a dielectric–conductor interface for all possible values of the complex relative dielectric function $\varepsilon = |\varepsilon| \exp(-j\theta) = \varepsilon_r - j\varepsilon_i$, $\varepsilon_i > 0$. ents r_p , r_s and their
BA ϕ_{pB} of a dielec-
alues of the complex
 $j\theta$) = ε_r - $j\varepsilon_i$, ε_i > 0.

Fig. 8. Complex-plane trajectories of the ratio $\rho = r_p/r_s$ at discrete values of the PBA ϕ_{pB} from 5° to 85° in equal steps of 5° as $\theta = -\arg(\varepsilon)$ covers the full range $0^{\circ} \le \theta \le 180^{\circ}$.

Complex-plane loci of r_p , r_s , and ρ at the PBA are obtained at discrete values of ϕ_{pB} from 5° to 85° in equal steps of 5° and as θ increases from 0° to [1](#page-2-0)80°; these are presented in Figs. 1, [7,](#page-3-5) and 8 , respectively. The reflection phase shift δ_p of the p polarization at the PBA is plotted as function of θ in Figs. 5 and <u>[6](#page-3-4)</u> for two different sets of ϕ_{pB} . For $\phi_{pB} > 70^{\circ}$ (e.g., high-reflectance metals in the IR), r_p at the PBA is essentially pure negative imaginary and $\delta_p = \arg(r_p) \approx -90^\circ$. In the domction of θ in Figs. <u>5</u>
For $\phi_{pB} > 70^{\circ}$ (e.g., the PBA is essentially r_p) ≈ -90°. In the domain of fractional optical constants (vacuum UV or light incidence from a high-refractive-index immersion medium) $0^{\circ} < \phi_{p}$ _B $< 45^{\circ}$, and r_p is pure real negative $(\delta_p = \pi)$ at dence from $0^{\circ} < \phi_{pB} <$
 $\theta = \tan^{-1}($ $(\sqrt{\cos(2\phi_{pB})})$. The associated locus of complex ε is shown in Fig. [3](#page-2-5). Finally, the total reflection phase shifts $δ_p, δ_s, Δ = arg(ρ)$ at an ideal dielectric–plasmonic medium interface $(\varepsilon_i = 0, \varepsilon_r < 0)$, are shown as functions of ϕ_{pB} in Fig. $\underline{4}$.

APPENDIX A

By setting $\varepsilon_r = x$ and $\varepsilon_i = y$, the Cartesian equation of a constant- ϕ_{pB} contour (a cardioid [8]) takes the form [10]
 $y^2 = a + (a^2 - bx)^{1/2} - x^2$, (A1) stant- ϕ_{pB} contour (a cardioid [[8](#page-4-8)]) takes the form [\[10](#page-4-4)]

$$
y^2 = a + (a^2 - bx)^{1/2} - x^2,
$$
 (A1)

$$
a = u2(1.5 - u)/(1 - u)2, b = u3/(1 - u)2, u = \sin2 \phi_{pB}.
$$
 (A2)

The locus of complex ε such that $\delta_p = \arg(r_p) = \pi$ at a given The locus of complex ε such that
angle of incidence $\phi = \sin^{-1} \sqrt{u}$ angle of incidence $\phi = \sin^{-1}\sqrt{u}$ is a circle [[18](#page-5-3)] such that $\delta_p = \arg(r_p) = \pi$ at a given

sin⁻¹ \sqrt{u} is a circle [<u>18]</u>
 $y^2 = 2ux - x^2$. (A3)

$$
y^2 = 2ux - x^2.\tag{A3}
$$

Equations ([A1](#page-4-12)) and ([A3](#page-4-13)) are satisfied simultaneously if their
right-hand sides are equal; this gives
 $(a^2 - bx)^{1/2} = 2ux - a.$ (A4) right-hand sides are equal; this gives

$$
(a2 - bx)1/2 = 2ux - a.
$$
 (A4)

By squaring both sides of Eq. $(A4)$ we obtain

les of Eq. (A4) we obtain
\n
$$
4u^2x^2 = (4au - b)x.
$$
\n(A5)

Equation ([A5](#page-4-15)) is obviously satisfied when $x = 0$, and from Eq. [\(A3\)](#page-4-13) one gets $y = 0$ and $\varepsilon = 0$. The more significant
solution of Eq. (A5) is
 $x = (4au - b)/(4u^2)$. (A6) solution of Eq. $(A5)$ is

$$
x = (4au - b)/(4u^2).
$$
 (A6)

Substitution of a and b from Eq. (<u>A2</u>) in Eq. (<u>[A6](#page-4-17)</u>) leads to the simple result
 $x = u/(1 - u).$ (A7) simple result

$$
x = u/(1 - u). \tag{A7}
$$

The associated value of y is then obtained from Eq. $(A3)$ as

ue of *y* is then obtained from Eq. (A3) as

$$
y = u\sqrt{1 - 2u}/(1 - u).
$$
 (A8)

The angle $\theta = \arg(\varepsilon)$ is determined from Eqs. [\(A7\)](#page-4-18) and ([A8](#page-4-19)) by

$$
\epsilon
$$
) is determined from Eqs. (A7) and (A8) by
tan $\theta = y/x = \sqrt{1 - 2u}$. (A9)

Finally, substitution of
$$
u = \sin^2 \phi_{pB}
$$
 in Eq. (A9) gives

$$
\theta(\delta_p = \pi) = \tan^{-1} \left(\sqrt{\cos(2\phi_{pB})} \right).
$$
(A10)

This completes the proof of Eq. [\(5\)](#page-2-3).

REFERENCES

- 1. S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," Proc. Phys. Soc. London ⁷⁷, 949–957 (1961).
- 2. H. B. Holl, "Specular reflection and characteristics of reflected light," J. Opt. Soc. Am. ⁵⁷, 683–690 (1967).
- 3. G. P. Ohman, "The pseudo-Brewster angle," IEEE Trans. Antennas Propag. ²⁵, 903–904 (1977).
- 4. R. M. A. Azzam, "Maximum minimum reflectance of parallelpolarized light at interfaces between transparent and absorbing media," J. Opt. Soc. Am. ⁷³, 959–962 (1983).
- 5. S. Y. Kim and K. Vedam, "Analytic solution of the pseudo-Brewster angle," J. Opt. Soc. Am. A ³, 1772–1773 (1986).
- 6. T. E. Darcie and M. S. Whalen, "Determination of optical constants using pseudo-Brewster angle and normal-incidence reflectance," Appl. Opt. ²³, 1130–1131 (1984).
- 7. Y. Lu and A. Penzkofer, "Optical constants measurements of strongly absorbing media," Appl. Opt. ²⁵, 221–225 (1986).
- 8. R. M. A. Azzam and E. Ugbo, "Contours of constant pseudo-Brewster angle in the complex ε plane and an analytical method for the determination of optical constants," Appl. Opt. ²⁸, ⁵²²²–5228 (1989).
- 9. M. A. Ali, J. Moghaddasi, and S. A. Ahmed, "Optical properties of cooled rhodamine B in ethanol," J. Opt. Soc. Am. B ⁸, 1807–¹⁸¹⁰ (1991).
- 10. R. M. A. Azzam, "Analytical determination of the complex dielectric function of an absorbing medium from two angles of incidence of minimum parallel reflectance," J. Opt. Soc. Am. A ⁶, ¹²¹³–1216 (1989).
- 11. I. H. Campbell and P. M. Fauchet, "Temporal reshaping of ultrashort laser pulses after reflection from GaAs at Brewster's angle," Opt. Lett. ¹³, 634–636 (1988).
- 12. Y. Lv, Z. Wang, Y. Jin, M. Cao, L. Han, P. Zhang, H. Li, H. Gao, and F. Li, "Spin polarization separation of light reflected at Brewster angle," Opt. Lett. ³⁷, 984–986 (2012).
- 13. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
- 14. R. M. A. Azzam and A. Alsamman, "Plurality of principal angles for a given pseudo-Brewster angle when polarized light is reflected at a dielectric-conductor interface," J. Opt. Soc. Am. A ²⁵, 2858–2864 (2008).

- 15. R. M. A. Azzam and E. Ugbo, "Angular range for reflection of ^ppolarized light at the surface of an absorbing medium with reflectance below that at normal incidence," J. Opt. Soc. Am. A ¹⁹, ¹¹²–115 (2002).
- 16. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilonnear-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B ⁷⁵, 155410 (2007).
- 17. R. M. A. Azzam, "Direct relation between Fresnel's interface reflection coefficients for the parallel and perpendicular polarizations," J. Opt. Soc. Am. 69, 1007-1016 polarizations," J. Opt. Soc. Am. (1979).
- 18. R. M. A. Azzam, "Reflection of an electromagnetic plane wave with 0 or π phase shift at the surface of an absorbing medium," J. Opt. Soc. Am. ⁶⁹, 487–488 (1979).