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Abstract 
The maximum and minimum gains (with respect to frequency) of third-order low-pass and high-pass filters are derived 

without using calculus. Our method uses the little known fact that extrema of cubic functions can easily be found by 

purely algebraic means. PSpice simulations are provided that verify the theoretical results. 

 
Keywords: Filters, Maximum and minimum without calculus, PSpice simulation. 

 

 

Resumen 
Derivamos las ganancias máxima y mínima (con respecto a la frecuencia) de filtros de tercer orden de paso bajo y de 

paso alto sin usar cálculo. Nuestro método utiliza el hecho poco conocido que los extremos de funciones cúbicas 

pueden encontrarse fácilmente con métodos puramente algebraicos. Verificamos los resultados teoréticos con 

simulaciones en PSpice. 
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I. INTRODUCTION 
 

Third-order filters are common in electronics, and for a 

subgroup of third-order filters, two important features are 

the maximum and minimum of the magnitude responses 

(gains) attainable by the filters, whether they are low-pass or 

high-pass filters. Conventionally, the mathematical 

expressions for these extrema values are found with 

calculus, or indeed simply stated without derivation. 

However, this puts the curious student who has not yet had 

the chance to study calculus at a disadvantage. Presently, he 

or she has no choice but to accept the equations for the 

maximum and minimum gains without any understanding as 

to their origins. Fortunately, as we show in this paper, it is 

straightforward to derive these maximum and minimum 

gains without calculus. To do this, we use the little known 

fact that extrema of cubic functions can be found through 

algebraic means alone [1, 2, 3, 4]. Furthermore, PSpice 

simulations will be used to verify the theoretical equations. 

(PSpice is a popular electrical and electronic circuits 

simulation software package that is widely used by 

electrical engineers and some physicists. The latest demo 

version can be freely obtained from [5]). 

 

II. GAIN OF THIRD-ORDER FILTERS 

 
In this section, the gain of third-order filters is given. 

 

A. Low-Pass Filter 

 

The transfer function of a general third-order low-pass filter 

is given by 

 

3 2
( ) ,

d
T s

s as bs c


  
                         (1) 

 

where , , ,a b c d are constants and       with        

and   is the angular frequency of the applied sine-wave. For 

example, the transfer function of a third-order 1-dB 

Chebyshev low-pass filter with cut-off frequency of 1 rad/s 

is given by (pg.13 of [6]) 

 

3 2

0.4913
( ) .

0.9883 1.2384 0.4913
T s

s s s

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          (2) 
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The gain of the third-order low-pass filter is simply the 

magnitude of Eq. (1), i.e.,  

 

   
2 2

2 2 2

( ) .
d

T

a c b



  



    

           (3) 

 

A sketch of Eq. (3) is shown in Fig. 1, for the subgroup of 

third-order low-pass filters in which we are interested, 

where the following are clearly identified: 

 

(i) maximum gain,          ,  

(ii) the frequency at which the maximum gain 

occurs,     ,  

(iii) minimum gain,          , and 

(iv) the frequency at which the minimum gain 

occurs,     .  

 

 

 
FIGURE 1. Magnitude response (gain)        of a third-order 

low-pass filter with ripple in the pass-band. 
 

 

 

B. High-Pass Filter 

 

The transfer function of a general third-order high-pass filter 

is given by 

 
3

3 2
( ) ,

ds
T s

s as bs c


  
                         (4) 

 

For example, the transfer function of a third-order 1-dB 

Chebyshev high-pass filter with cut-off frequency of 1 rad/s 

can be derived from Eq. (2) by using the low-pass to high-

pass transformation method, i.e., replacing s with 1/s (see 

Example 8.5.1 of [7]) to get 

 

3 2

3

3 2
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( )

1 1 1
0.9883 1.2384 0.4913

      .
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s s s

s
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     

       
     


  

 (5) 

 

The gain of the third-order high-pass filter is the magnitude 

of Eq. (4), i.e.,  

 

   

3

2 2
2 2 2

( ) .
d

T

a c b




  



    

        (6) 

 

A sketch of Eq. (6) is shown in Fig. 2, for the subgroup of 

third-order high-pass filters in which we are interested, 

where, again, (i) through (iv) are clearly identified: 

 

 

 
FIGURE 2. Magnitude response (gain)        of a third-order 

high-pass filter with ripple in the pass-band. 

 

 

 

III. DETERMINING THE MAXIMUM AND 

MINIMUM GAINS OF THIRD-ORDER FILTERS 

WITHOUT USING CALCULUS 
 
Now that the gains of third-order low-pass and high-pass 

filters have been stated, we can show how the maximum 

and minimum gains can be determined without using 

calculus. We will use the following fact that is traditionally 

established with calculus, but which is easily verified by 

purely algebraic means [1, 2, 3, 4], as shown in the 

Appendix. 

Fact: Suppose   3 2 ,f x Ax Bx Cx D   
 

then the 

minimum or maximum value of  f x
 
occurs when x is a 

root of 
2 23 2 ,  . .,  3 2 0.Ax Bx C i e Ax Bx C        
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A. Low-Pass Filter 

 

From Eq. (3), the square of the gain of the third-order low-

pass filter is  

 

   

   

2
2

2 2
2 2 2

2

6 2 4 2 2 2

2
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  (7) 

 

where 2 2 2 2, 2 , 2 ,  and .x B a b C b ac D c           

Clearly, the minimum/maximum value of Eq. (3) or Eq. 

(7) occurs when the denominator of Eq. (7) is a 

maximum/minimum value, i.e., at the solutions of 

2 2
0.

3 3

B C
x x  

 
Hence, 

 

 

2

min max

3
.

3
or

B B C


  
   (8) 

 

Note that we must have 2 3B C  in order for there to be a 

maximum and minimum gain. 

Substituting Eq. (8) into Eq. (7) gives the square of the 

maximum or minimum gain of the third–order low-pass 

filter. 

 

 

B. High-Pass Filter 

 

From Eq. (6), the square of the gain of the third-order high-

pass filter is  
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Letting 2x  ,  2 22 /B b ac c  ,  2 22 / ,C a b c   and 

21/ ,D c  we get 

 
 

2

2

3 2
( ) .

d c
T x

x Bx Cx D


  
                    (10) 

Clearly, the minimum/maximum value of Eq. (6) or Eq. (9) 

occurs when the denominator of Eq. (10) is a 

maximum/minimum value, i.e., at the solutions of 

2 2
0.

3 3

B C
x x  

 
Hence,  

 

min max
2

1
.

3

3

or

B B C

 
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  (11) 

 

Note again that we must have 2 3B C  in order for there to be 

a maximum and minimum gain. 

Substituting Eq. (11) into Eq. (9) gives the square of the 

maximum or minimum gain of the third–order high-pass 

filter.  

 

 

 

IV. PSPICE SIMULATIONS 

 
In this section, we will use PSpice simulations to verify the 

equations for the extrema of the gains and the frequencies at 

which they occur for the third-order low-pass and high-pass 

filters. 

 

 

A. Low-Pass Filter 

 

For the low-pass filter example used in Eq. (2), 

0.9883, 1.2384, 0.4913,a b c    and .d c  Hence, 

1.500B    and 0.5625.C   So, from Eq. (8), 

min max 0.86605or 
 

rad/s (137.84 mHz) or 0.50000 rad/s 

(79.577 mHz). Furthermore, substituting these values into 

Eq. (7) and taking the square root gives 

max min
( ) 1.0000

or
T   (0 dB) or 0.89124 (-1.0000 dB). 

To check these theoretical values, a PSpice simulation of 

the third-order Chebyshev 1.0 dB low-pass filter was done 

using the diagram shown in Fig. 3. 

 

   

 

FIGURE 3. PSpice implementation of a third-order Chebyshev 

1.0 dB low-pass filter with cut-off frequency of 1 rad/s. 

 

IN OUT

V1
1Vac R1

1k

0 0

Vo

NUM=0.4913

DENOM=s*s*s+.9883*s*s+1.2384*s+.4913
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Upon completion of the simulation, the PSpice magnitude 

response was plotted in Fig. 4, using 1000 points per 

decade. From this figure, it is clear that (i) Eq. (2) is in fact 

the transfer function of a third-order Chebyshev 1.0 dB low-

pass filter; otherwise, the magnitude response would be 

different from that observed, and (ii) the theoretical values 

are very close to the simulated values given in the graph, as 

summarized in Table I. 

 
 

 

 

TABLE I. Comparison of theoretical and PSpice simulated values. 

 

Parameter Theoretical Value  Simulated Value 

cutofff  159.155 mHz 159.218 mHz 

minf  
79.577 mHz 79.686 mHz 

maxf  
137.84 mHz 137.53 mHz 

min
( )T   -1.0000 dB -1.0000 dB 

max
( )T   0 dB 4.3350x10-4 dB 

 

      
FIGURE 4. PSpice magnitude response (gain in dB) of a third-order Chebyshev 1.0 dB low-pass filter, as simulated with Fig. 3. 

 

 
B. High-Pass Filter 

 
For the high-pass filter example used in Eq. (5), 

2.5206, 2.0117, 2.0354 and 1.a b c d     Hence, 

1.499B    and 0.5624.C   So, from Eq. (11), 

min max 1.1547or  rad/s (183.78 mHz) or 2.0001 rad/s (318.33 

mHz). Furthermore, substituting these values into Eq. (9) 

and taking the square root gives 
max min

( ) 1.0000
or

T   (0 

dB) or 0.89108 (-1.0017 dB). 

To check these theoretical values, a PSpice simulation of 

the third-order Chebyshev 1.0 dB high-pass filter was done 

using the diagram shown in Fig. 5. 

Upon completion of the simulation, the PSpice 

magnitude response was plotted in Fig. 6. From this figure, 

it is clear that (i) Eq. (5) is in fact the transfer function of a 

third-order Chebyshev 1.0 dB low-pass filter; otherwise, the 

magnitude response would be different from that observed, 

and (ii) the theoretical values are very close to the simulated 

values given in the graph, as summarized in Table II. 

 

 

 

 

FIGURE 5. PSpice implementation of a third-order Chebyshev 

1.0 dB high-pass filter with cut-off frequency of 1 rad/s. 

 
 

           Frequency

10mHz 30mHz 100mHz 300mHz 1.0Hz

DB(V(Vo))

-24

-20

-16

-12

-8

-4

0

4

(159.21796m,-1.014925)
(79.68638m,-1.000019)

(137.53344m,433.49993u)

IN OUT

V1
1Vac R1

1k

0 0

Vo

NUM=s*s*s

DENOM=s*s*s+2.5206*s*s+2.0117*s+2.0354
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TABLE II. Comparison of theoretical and PSpice simulated 

values. 

 

Parameter Theoretical Value  Simulated Value 

cutofff  159.155 mHz 159.071 mHz 

minf  
318.33 mHz 318.58 mHz 

maxf  
183.78 mHz 183.51 mHz 

min
( )T   -1.0000 dB -0.99981 dB 

max
( )T   0 dB 80.8017x10-6 dB 

V. CONCLUSIONS 
 

We have shown that the minimum and maximum gains of 

third-order low-pass and high–pass filters can be found 

without using calculus. The method uses the little known 

mathematical fact that the extrema of cubic functions can 

be found by purely algebraic methods. Furthermore, 

PSpice simulations were shown to verify the theoretical 

calculations. 

 

 

FIGURE 6. PSpice magnitude response (gain in dB) of a third-order Chebyshev 1.0 dB high-pass filter, as simulated with Fig. 5. 
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APPENDIX 
 

Let  1,r b be the coordinate of one of the extrema of the 

cubic f(x) as shown in Fig. A1. Then, to find an extremum 

of the cubic f(x), we seek the intersection of f(x) with the 

line g(x) = b, with g(x) tangent to f(x) at  1, .r b If the line is 

to be tangent to the curve at  1, ,r b two of the three roots 

 1 1 2,  and r r r of f(x)-b must be coincident [1], as shown in 

Fig. A2. Hence,  

 

 
FIGURE A1. Plot of the function 3 2( )f x Ax Bx Cx D   

intersecting with the line ( ) .g x b Note that the line is tangent to 

the cubic function at the extremum point. 
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FIGURE A2. Vertical translation of the cubic function of Fig. 

A1. Note that there is now a double root of the translated cubic 

( )f x b at the extremum point. 
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   
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  (A1) 

 

(Note that the necessity of 

   
23 2

1 2
Ax Bx Cx D b A x r x r       was also 

proven by purely algebraic means in Eq. (1) of [3]). 

Equating coefficients of Eq. (A1) gives: 

  2 1
2 ,A r r B                                (A2) 

 

  1 2 1
2 ,Ar r r C                               (A3) 

 
2

1 2
.Ar r D b                                  (A4) 

 

From Eq. (A2), 

 

 2 1
2 .

B
r r

A
  

 
 
 

                              (A5) 

 

Using Eq. (A5) in Eq. (A3) and simplifying yields the 

desired equation: 

 

 
2

1 1
3 2 0.Ar r B C                             (A6) 
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