
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

Electrical Engineering Faculty Publications Department of Electrical Engineering 

9-2011 

A Further Look at the 'Reactance of a Parallel RLC Circuit' A Further Look at the 'Reactance of a Parallel RLC Circuit' 

Kenneth V. Cartwright 
The College of the Bahamas 

Edit J. Kaminsky 
University of New Orleans, ejbourge@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/ee_facpubs 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Cartwright, K. and E. Kaminsky, “A further look at the “Reactance of a parallel RLC circuit,” Latin-American 
J. Phys. Educ., vol.5, no. 3, Sept. 2011, pp. 505-508. 

This Article is brought to you for free and open access by the Department of Electrical Engineering at 
ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/ee_facpubs
https://scholarworks.uno.edu/ee
https://scholarworks.uno.edu/ee_facpubs?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uno.edu%2Fee_facpubs%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

Lat. Am. J. Phys. Educ. Vol.5, No. 3, Sept. 2011 505 http://www.lajpe.org 

 

A further look at the “Reactance of a parallel RLC 
circuit” 
 

 
Kenneth V. Cartwright

1
 and Edit J. Kaminsky

2 

1
School of Mathematics, Physics and Technology, College of The Bahamas, 

 P.O. Box N4912, Nassau, Bahamas. 
2
Department of Electrical Engineering, EN 809A Lakefront Campus, University of New 

Orleans, New Orleans, LA 70148, USA.  

 

E-mail: kvcartwright@yahoo.com 

 

(Received 23 June 2011; accepted 29 September 2011)   

 

 

Abstract 

We show that the maximum impedance of the parallel combination of a resistor ,R an inductor L and capacitor ,C  

studied in a previous paper can be found analytically, without using calculus. In fact, we show that the maximum 

impedance of this parallel combination is just the value of the resistor R  and occurs when the driving frequency  is 

equal to 1/ .o LC   These results were only demonstrated graphically in the aforementioned paper. We also 

provide PSpice simulations which verify the theoretical predictions. 
 

Keywords: Parallel RLC circuit, Maximum impedance, PSpice simulation. 

 

 

Resumen 
Demonstramos que la impedancia máxima de la combinación en paralelo de una resistencia R, un inductor L, y un 

capacitor C, estudiado en una publicación reciente puede ser calculada analíticamente sin usar cálculo. De hecho, 

mostramos que la impedancia máxima de esta combinación en paralelo es simplemente el valor de la resistencia R y 

ocurre cuando la frequencia de conducción   es igual a 1/ .o LC   Estos resultados fueron demostrados sólo 

gráficamente en tal publicación. Proveemos también simulaciones en PSpice que verifican las predicciones teoréticas.  

 

Palabras Clave: Circuito RLC en paralelo, Impedancia máxima, Simulaciones PSpice. 

 

PACS: 01.40.Fk, 01.40.Ha, 84.30.Bv                                                                                                       ISSN 1870-9095 

 

 

 

I. INTRODUCTION 
 

Ma et al. studied the interesting parallel RLC circuit of Fig. 

1 in [1], for two specific cases: (i) 1 2 0R R   and 3R R  

and (ii) 1 2 3R R R R   . On the other hand, Cartwright et 

al. [2] recently studied the circuit of Fig. 1 in detail for 

1 2, 0R R R   and 3 .R    

 

 

R2 

L 
  

 

R1 

C 

R3 

 
FIGURE 1. Schematic diagram of the parallel RLC circuit studied 

in [1] and [2]. 

 

In this paper, we are concerned with case (i) studied by the 

authors of [1], where they showed how the impedance 

magnitude Z as seen by the source varied with the angular 

frequency of the source voltage. In fact, they plotted the 

normalized impedance /Z R as a function of the normalized 

angular frequency / ,o    where 1/ ,o LC   for 

various values of the dimensionless parameter given by 

/ / .L C R   For convenience, we reproduce their graph 

here in Fig. 2. 
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FIGURE 2. Relationship between the normalized impedance 

magnitude /Z R  and the normalized frequency / o    for 

the circuit of Fig. 1.  

 

 

From Fig. 2, it appears that when 1/ ,o LC    the 

impedance magnitude Z is a maximum with value .R  This 

result was apparently unexpected as the authors state [1, p. 

163], “It is surprising to see that regardless of the  values, 

/jZe R
 reaches to 1 when 1  ”. Actually, as we show 

in this paper, this result could be predicted mathematically 

without the use of calculus, which should be of benefit to 

the student who has not yet had the opportunity to study 

calculus. Furthermore, we show that the theoretical results 

given in Fig. 2 could in fact be obtained by PSpice 

simulation, which is a popular electrical and electronic 

circuits simulation software package that is widely used by 

electrical engineers and some physicists. The latest demo 

version can be freely obtained from [3]. 

 

 

II. DERIVATION OF Z FOR THE CIRCUIT OF 

FIGURE 1 
 

The complex impedance ˆ iZ Ze   of the circuit of Fig. 1 

for case (i) is given by  
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Eq. (1) can also be rewritten as 
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Hence, using Eq. (2), the normalized impedance becomes  
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Note that Eq. (3) can be used to generate the curves in Fig. 

2. However, neither Eq. (2) nor Eq. (3) is given in [1], so it 

is not quite clear what method the authors of [1] used to 

produce their curves; they likely simply plotted the 

magnitude of their Eq. (3). 

 

 

III. NON-CALCULUS DERIVATION OF THE 

MAXIMUM Z FOR THE CIRCUIT OF FIGURE 

1 
 

Now that a mathematical expression has been determined in 

Eq. (3) for the impedance, we can show how its maximum 

value with respect to  can be obtained, without calculus.  

We begin by rewriting Eq. (3) as 
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From Eq. (4), it is clear that /Z R is maximized when its 

denominator is minimized, which happens when 
2

21 



 
  
 

is minimized, i.e., when 1,   as we expected 

from Fig. 2. Furthermore, substituting 1  into Eq. (4) 

shows that the maximum value of /Z R  is one, again as we 

expected from Fig. 2.  

 

 

IV. ANOTHER APPROACH 

 
Rather than deriving Eqs. (1-4), there is a more intuitive 

approach to showing that the maximum impedance is R and 

occurs when 1,  as we show in this section. 
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    At the resonant frequency 1/ ,o LC   it is well-

known that the impedance of the inductor/capacitor 

combination is infinite. Hence, at this frequency, when the 

inductor/capacitor combination is placed in parallel with the 

resistor, there will be just be a resistor in parallel with an 

open circuit, i.e., the total impedance will just be the value 

of .R  However, at any other frequency, the impedance of 

the parallel combination of the inductor/capacitor 

combination will look like an inductive or capacitive 

reactance with magnitude of ,L C

C L

X X
X

X X



where

LX L  

and  
1
.CX C


  When this combined reactance is placed in 

parallel with the resistor, the impedance magnitude of the 

total combination is 
2 2

RX

R X

which is lower than R for 

finite X. 

 

 

 

V. PSPICE SIMULATED RESULTS 

 
To confirm the theoretical results of Fig. 2, PSpice 

simulations were performed using the PSpice circuit shown 

in Fig. 3. Note that we choose the source as a current source 

rather than a voltage source, but because we are simulating 

impedance seen by the source, it makes no difference. Also, 

in this section, we will be using the PSpice notation for 

voltages and currents in the circuit of Fig. 3. Indeed, the 

impedance Z seen by the current source is V(I1:+)/I(I1), 

where V(I1:+) is the PSpice voltage at the positive terminal 

of the ac current source and I(I1) is the PSpice current 

supplied by the current source. On the other hand, the 

normalized impedance Z/R seen by the current source is 

given by V(I1:+)/I(I1)/R3. However, R3=V(I1:+)/I(R3), 

where I(R3) is the PSpice current through R3. Hence, the 

normalized impedance /Z R  is given by the ratio of 

V(I1:+)/I(I1) to V(I1:+)/I(R3), i.e., I(R3)/I(I1). This is what 

we plot in Fig. 4 on the ordinate, for the same   values of 

Fig. 2. 

    For the simulations of Fig. 4, we choose to make 

1mH and 1.013 F:L C    hence, / 2 5kHz,o of    as 

verified in Fig. 4. Also, we use the PSpice AC Sweep 

function to vary the frequency from 10 Hz to 25,000Hz, so 

that the normalized frequency will vary from 1/500 to 5, as 

given in Fig. 4. 

     Note Fig. 4 was not created by PSpice; rather, we 

imported the PSpice simulated data into Matlab. We found 

that this gave us a more readable graph. 
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rvalue = 1000 

 
 

FIGURE 3. PSpice schematic diagram of the parallel RLC circuit 

used in the simulations.  
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FIGURE 4. Plot of the simulated normalized impedance Z/R = 

I(R3)/I(I1) as a function of normalized frequency / of f .  

 

 

Furthermore, we use the fact that 3 / / .R L C   Hence, we 

vary 3R to achieve the desired  value as given in Table I 

below. In fact, this is the purpose of the PSpice 

PARAMETERS statement in Fig. 3. We use this statement 

along with the Parameter Sweep function in PSpice to plot 

the graph of Fig. 4. (Note the rvalue under the 

PARAMETERS can be set to any value; here, we choose to 

set rvalue=1000 ). 
 

 
TABLE I. R3 values needed to achieve desired  values. 

Desired  value Corresponding R3 value 

0.5 62.84  

0.8 39.27  

1 31.42  

1.2 26.18  

1.5 20.95  
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From Fig. 4, it is clear that the simulated results do indeed 

confirm the theoretical results of Fig. 2. 

 

 

VI. CONCLUDING REMARKS 

 
We have shown that the maximum impedance of the 

parallel circuit of Fig. 1 can be determined mathematically 

without calculus. In fact, we have determined that the 

maximum value of the normalized impedance magnitude 

/Z R  is one, and occurs when 1,   as the authors of [1] 

stated, based upon the graphical results of Fig. 2. 

Furthermore, we provided PSpice simulations in Fig. 4 

which confirm the theoretical results of Fig. 2. The 

advantage of the PSpice simulations is that no complex 

circuit equations had to be derived to obtain the results in 

Fig. 4. 
Finally, we would like to comment on the difference of 

terminology of this paper and that of [1]. 

Clearly, as many (if not most) authors do, we are 

defining complex impedance to be 

ˆ ,iZ Ze R iX   where resistance R is the real part of the 

complex impedance, whereas the reactance X  is the 

imaginary part of complex impedance. Furthermore, we 

have defined the impedance Z to be the magnitude of the 

complex impedance ˆ.Z  

On the other hand, the authors of [1] have defined the 

reactance to be 
iZe 

 or indeed just Z throughout the text. 

However, at the top of Fig. 2 and Fig. 4 of [1], they refer to 

Z/R as being the impedance. 

The reader needs to be mindful of this difference in 

terminology between our papers. 
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