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FINDING THE EXACT MAXIMUM IMPEDANCE 

RESONANT FREQUENCY OF A PRACTICAL PARALLEL  

RESONANT CIRCUIT WITHOUT CALCULUS 
 

Kenneth V. Cartwright, College of The Bahamas; Elton Joseph, College of The Bahamas; Edit J. Kaminsky, University of New Orleans 

                                        

Abstract  
 

A practical parallel resonant circuit has a resistor in series 

with an inductor, and that combination is in parallel with a 

capacitor. For such a circuit, it is well known that there are 

two possible definitions for the resonant frequency: (i) the 

resonant frequency ,pf which is the frequency at which the 

phase of the total impedance is zero, and (ii) the resonant 

frequency
m

f , which is the frequency that achieves maxi-

mum magnitude of the total impedance. To find the latter 

traditionally requires calculus. However, in this paper, the 

authors show how
m

f
 
can be found exactly without using 

calculus. By modifying a formula that is given as an approx-

imation to 
m

f  in a popular technology textbook, an im-

provement in the accuracy of the approximation was 

achieved. Furthermore, a novel expression for the exact 

maximum impedance, as a function of / / .Q L C R= was 

derived. This has been approximated by previous authors 

as 2RQ for 10.Q ≥  However, in this report, the authors show 

that this approximation has a percentage error less than �2% 

for 5,Q ≥ and less than −10% for 2.Q ≥ Furthermore, it can 

be shown that the maximum impedance is also accurately 

approximated by ( )2 21R Q Q+ , which has an excellent 

percentage error performance, even for 1,Q = with a percen-

tage error of only −4% for this value, and less than −0.6% 

for 1.5.Q ≥  Finally, the authors used PSpice simulations to 

verify their results. 

 

Introduction 
 

The parallel resonant circuit of Figure 1 is used in many 

technology texts. However, the parallel resonant circuit of 

Figure 2 is of more concern in practice. This is because it is 

virtually impossible to build a coil without resistance, which 

is represented by the resistor R  in Figure 2. Hence, Figure 2 

represents a practical parallel resonant circuit, whereas Fig-

ure 1 depicts the ideal case.  
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Figure 1. An ideal parallel resonant circuit 
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Figure 2. A practical parallel resonant circuit 

 

Boylestad [1] is one technology author who considers 

Figure 2 in detail. He identifies two possible definitions for 

the resonant frequency:  

(i) the resonant frequency
pf , which is the fre-

quency at which the phase of the impedance of 

Figure 2 is zero, and  

(ii) the resonant frequency
m

f , which is the fre-

quency for which the magnitude of the imped-

ance is a maximum.  

For completeness, 
2

1
1p of f

Q
= − , where

1

2
of

LCπ
=

 

was used in this report. Also, the derivation of 
pf

 
does not 

require calculus and is the same as that used by Boylestad 

[1]. On the other hand, the conventional method of finding 

mf  requires calculus [2]. However, the purpose of this paper 

is to show how this can be done without calculus. Interes-

tingly, the authors found no engineering technology author 

who provided an exact equation for
m

f .  Boylestad [1] uses 
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2

1
1

4
m of f

Q
= − . However, as shown here, this equation is 

actually an approximation to the exact maximum impedance 

resonant frequency, mf , which is derived here.  

 

Furthermore, using the equation for the maximum imped-

ance resonant frequency, a novel expression for the exact 

maximum impedance magnitude, as a function of Q can be 

derived. This has been previously approximated by other 

authors as 2RQ for 10.Q ≥  However, the authors show that 

this approximation is useable for smaller Q values: indeed, 

the aforementioned approximation has a percentage error 

less than −2% for 5,Q ≥ and less than −10% for 2.Q ≥ Ad-

ditionally, it can be demonstrated that the maximum imped-

ance is better approximated by ( )2 21 .R Q Q+
 
In fact, this 

approximation has an excellent percentage error perfor-

mance: for 1.5Q ≥ it is less than −0.6% and for 1Q = the 

percentage error is only −4%. Furthermore, the authors used 

PSpice simulations to confirm their results. 

In the discussion above, the observant reader would real-

ize that the definition of Q was neglected, which is the 

quality factor of the coil. In this paper, in order to get results 

consistent with Walton’s [2], / / .Q L C R=  was used.  

However, it should be noted that other authors might use 

2 / .p pQ f L Rπ=  Hence, the reader needs to exercise caution 

when reading the literature. Fortunately, using 

2

1
1p of f

Q
= − , it is easy to show that there is a simple 

relationship between the two, i.e., 2 1.pQ Q= +
 
Clearly, for 

large values of , .p pQ Q Q≈  

 

The authors would also like to point out that for most 

practical situations in electrical engineering or engineering 

technology, such as communication systems, 10,Q ≥ as 

pointed out by Beasley and Miller [3]. Also, electrical engi-

neering technology textbooks generally analyze the circuit of 

Figure 2 quite well for 10.Q ≥ However, there are practical 

systems in electrical engineering technology for which 

10.Q <
 
For example, the ultra wideband FM demodulator 

[4] requires a practical parallel resonant circuit with 

2.5.Q =
 
Also, traffic detection loops have the equivalent 

circuit of Figure 2, where Q values can be as low as 5, ac-

cording to Klein et al. [5]. Hence, it might be important that 

electrical engineering technologists understand the circuit of 

Figure 2 for low values of Q as well. In this paper, the au-

thors show how the practical parallel resonant circuit of Fig-

ure 2 can be analyzed, even by the electrical engineering 

technology student who has not yet had the opportunity to 

study calculus.  

 

Impedance of the Practical Parallel 

Resonant Circuit 
 

In this section, an expression for the impedance of the cir-

cuit in Figure 2 is derived. In order to do this, many authors, 

including Boylestad [1], first convert Figure 2 to an equiva-

lent parallel RLC circuit. However, in this paper, the authors 

follow Walton [2] and work directly with Figure 2. Indeed, 

the impedance of this circuit is given by 

 

( )

2 2

2

1

1 1

  .
1

R j L
R j Lj C

Z
j RC j LCR j L

j C

R j L

j RC LC

ω
ωω

ω ωω
ω

ω

ω ω

+
+

= =
+ ++ +

+
=

− +

               (1)        

 

From equation (1), the magnitude of the impedance is easily 

found to be  

 

 
( ) ( )

2 2

22 2

( )
.

1

R L
Z

RC LC

ω

ω ω

+
=

+ −

                            (2) 

 

In principle, it is possible to find the maximum impedance 

resonant frequency mf  
from equation (2) using calculus. 

However, the math is less tedious if mf  
is found from the 

square of equation (2), i.e., from 

 

 

( ) ( )

2 2
2

22 2

( )
.

1

R L
Z

RC LC

ω

ω ω

+
=

+ −

                            (3)  

 

Furthermore, as with Walton [2], it will be convenient to 

write equation (3) in terms of the square of the normalized 

frequency x , which is defined to be 

 

 

2

2

2

0

.
1

x LC

LC

ω ω
ω

ω

� �
� �� �
� �= = =� �
� �� �
� �
� �

  (4) 

 

Substituting equation (4), 
2

/ ,x LCω = into equation (3) 

yields 
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( )

22
2

2

2 2
22

1

.

(1 ) 1

LxLx RR
R CCZ

R Cx R Cx
x x

L L

� �
++ � �

� �
= =

+ − + −

          (5) 

 

Recall that the quality factor of the coil is (by definition) 

0 1
.

L L
Q

R R C

ω
= =

 

Hence, 

 

2

2 0

2
.

L L
Q

R R C

ω� �
= =� �
� �

                      (6) 

 

Substituting equation (6) into equation (5) gives 

 

( )

( )2

2

22
2

1

1

x
Q

x

xQR
Z

−+

+
= .                    (7) 

Multiplying both the numerator and denominator of equation 

(7) by Q
2
 results in 

 
 

 

( )
22

222
2

)1(

1

xQx

xQQR
Z

−+

+
= .             (8) 

Finally, dividing both sides of equation (8) by 2
R  gives 

 

   

( )

( )
( )

( )

2 22

2 2 2

2 2

2 2 2 2

2

2 2

1

(1 )

1
      

2 1

1
      .

2 1/ 1

Q Q xZ
S

R x Q x

Q Q x

Q x Q x Q

Q x

x Q x

+
= =

+ −

+
=

− − +

+
=

− − +

             (9)            

 

Note that in equation (9), S is defined as ,

2

2

2

R

Z

R

Z
= i.e., 

the square of the magnitude of the normalized impedance. 

 

Maximum Impedance Resonant  

Frequency 
 

Now that it has been established how the magnitude of the 

impedance of the practical parallel circuit is changing with 

frequency, one is in a position to find the frequency at which 

the maximum impedance magnitude occurs. The conven-

tional way of doing this is with calculus; however, as stated 

earlier, the purpose of this paper is to show how this can be 

done without calculus, which will now be addressed in this 

section. 

 

In order to find the maximum of equation (9) without cal-

culus, by using the authors’ method, equation (9) will have 

to be manipulated into the form 

2
,

Ay
S

By Cy D
=

+ +
where , , ,A B C D are constants, i.e., do 

not depend upon the square of the normalized frequency, ,x  

whereas y  is indeed a function of .x  

To do this, let
2

1
.y x

Q
= +

 

Hence, equation (9) becomes 

 

2

2

2

2 2 2

2

2

2 4 2 2 4

2

2

2 2

1
1

1 1 1
2 1

  
2 1 1 2 1

2 1

  .
1 2

2 1

 

Q y
Q

S

y y
Q Q Q

Q y

y y y y
Q Q Q Q Q

Q y

y y
Q Q

� �
− +� �� �

� �
=
� � � �� �

− − − − +� � � �� �� � � �� �
� � � �� �

=
� �

− + − − − + +� �� �
� �

=
� �

− + + +� �� �
� �

    (10)  

Note that equation (10) is now in the required form, from 

which the maximum value of equation (10) is easily found 

without calculus, as will now be shown. 

 

Equation (10) must first be rewritten as 

 
2

2

2

2

2

2

2 2

2
1

1
2

   = . 

2
1

2 1
2 1 2

Q
S

Q
y

y Q

Q

Q
y

y Q Q

=

+
� �

+ − +� �� �
� �

� �
+� �

� �� �
− + + − +� �� � � �

� �� �
� �
� �

       (11) 

 

However, equation (11) can be written as 

,
a

S
b c

=
+

   (12) 
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where, 
2

2
2

2 2

2
1

2 1
, and 2 1 2 .  

Q
a Q b y c

y Q Q

� �
+� �

� �� �
= = − = + − +� �� � � �

� �� �
� �
� �

For equation (12), please note the following:

 

(i) a  is a positive number that is not a function of 

frequency, 

(ii) c is a positive number for 1/ 2Q >  (please see 

Appendix A for a proof of this) that is not a 

function of frequency, and 

(iii) b is a non-negative number, i.e., 0,b ≥  and is a 

function of frequency. 

 

Hence, to maximize equation (12) with respect to frequen-

cy only requires that b is properly chosen ( a and c are in-

dependent of frequency). In fact, to maximize equation (12) 

with respect to frequency requires that the denominator of 

equation (12) be minimized, and in order to do the latter 

requires that 0b =  as c is a positive number. However, 

 

 

2

2

2
1

0
Q

b y
y

� �
+� �

� �
= − =� �
� �
� �
� �

 

requires that 
2

2
1y

Q
= +

 

or 

2 2

2 1
1 .x

Q Q
= + −   

 

Therefore,  
2 2

2 2
0 0

1 2
1.m mf

f Q Q

ω

ω

� � � � −
= = + +� � � �

� � � �
             (13) 

 

Solving equation (13) gives the maximum impedance reso-

nant frequency as 

  
2 2

1 2
1.m of f

Q Q

−
= + +                   (14) 

 

Fortunately, equation (14) is the same expression that is de-

rived with calculus as given by Walton [2]. 

 
Furthermore, in order for equation (14) to be valid, one 

must have
2 2

1 2
1 0

Q Q

−
+ + ≥ . Hence, 2 1 .6436,Q ≥ − =

 

as shown in Appendix B. This is fortunate because in deriv-

ing equation (14) without calculus earlier, it was assumed 

that 0.5.Q >  Therefore, this assumption has not imposed 

any limitation on the derivation. (By the way, for .6436Q ≤ , 

0,mf = as can be easily verified by plotting equation (9)).    

 

Approximations to the Maximum Im-

pedance Resonant Frequency 
 

A. Approximations to the Maximum Im-

pedance Resonant Frequency, Equation 

(14) 
 

For large values of
 
Q, it is possible to simplify equation 

(14) because
2

2

Q
is quite a bit smaller than 1 and  

 
2 2 4

2 1 1
1 1 .

2Q Q Q
+ ≈ + −                    (15) 

 

Equation (15) follows from the well-known fact that 
2

1 1
2 8

a a
a+ ≈ + − , if a is small. Indeed, the smaller a is, 

the more accurate the approximation becomes. Likewise, the 

larger Q
 
is, the more accurate equation (15) becomes. 

  

Substituting equation (15) into equation (13) gives an excel-

lent approximation to the square of the maximum impedance 

resonant frequency, i.e., 
2

4
0

1
1 .

2

m

Q

ω

ω

� �
= −� �

� �
             (16) 

 
Hence, from equation (16), the maximum impedance reso-

nant frequency is well approximated by  

 

4

1
1 .

2
m of f

Q
= −           (17) 

 

It is interesting that Boylestad [1], in his equation (20.32), 

equation (20.44), and Table 20.1, gives the maximum im-

pedance resonant frequency as 

  

2

1
1 .

4
m of f

Q
= −          (18) 

It is not known how this equation was derived, as no deriva-

tion for this is given in his text; however, it is clearly an ap-

proximation to the exact value equation (14). It might be that 

this is simply a typographical error, with 24Q inadvertently 

being used in place of 42Q .  
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In the subsection below, the authors show that equation 

(17) is a substantially more accurate approximation to equa-

tion (14) than equation (18) is for Q values that are normally 

of interest. 

  

B. Accuracy of the Approximations to the 

Maximum Impedance Resonant Frequency 
 

Now that two approximations to the maximum impedance 

resonant frequency have been established, the natural ques-

tion is how accurate is each approximation. To answer this 

question, the percentage error of equations (17) and (18), 

plotted in Figure 3, is defined by  

 

Approximation Equation (17) or Equation (18)
-1 100%.

Exact Equation (14)

errorP

� �
= � �
� �

      (19) 

 

From Figure 3, it is clear that the percentage error for equa-

tion (17) is substantially smaller than that of equation (18) 

for Q values that are normally of interest. Indeed, the higher 

the Q, the more accurate is the approximation for equations 

(17) and (18) for 1.41.Q ≥  
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Figure 3. Percentage error of the approximations for equations 

(17) and (18) to the true maximum impedance resonant fre-

quency given by equation (14) 
 

Interestingly, equation (18) is more accurate than equation 

(17) for a limited range and actually improves as Q
 
is lo-

wered over that range, which is upper bounded by 1.41.Q =  

The percentage error of equation (18) is actually zero when 

equation (14) equals equation (18), or 
3

1.0607.
2 2

Q = ≈   

Finding the Impedance Magnitude at 

the Three Resonant Frequencies 
 

Now that equations for the three resonant frequencies 

,p mf f and of have been established, they can be used  

along with equation (9) to find the actual impedance magni-

tudes at these frequencies. Note that 
o

f is being referred to 

as a resonant frequency, as it is the resonant frequency of 

Figure 2 when 0;R =  indeed, for this case, .p m of f f= =
 

A. Impedance Magnitude at 
1

.
o

LC
ω =

 
When the frequency of the source is 1/ ,o LCω ω= =  

1x = ; hence, from equation (9), the magnitude of the im-

pedance is given by 

( )2 21 .
o

Z R Q Q= +                    (20) 

 

For large 2 2,1 .Q Q Q+ ≈  Hence, equation (20) becomes 

2.
o

Z RQ≈
  

            (21) 

B. Impedance Magnitude at the Zero-Phase 

Resonant Frequency, 
2

1
1 .

p o
Q

ω ω= −  

 

When the source frequency is the zero-phase resonant fre-

quency, i.e., 
2

1
1 ,p o

Q
ω ω= −

21 1/x Q= − , and the magni-

tude of the impedance is again found from Equation (9) to be 

 

2 2

2

2

2

2 2

4

2

2 4

2

1
1 1

1 1
1 1 1

     
1 1

1

     .

p

Q Q
Q

Z R

Q
Q Q

Q
R

Q
Q Q

RQ

� �� �
+ −� �� �� �� �

� �� �
=

� �� �
− + − −� �� �� �� �

� �� �

=

− +

=

       (22) 

 

Comparing equation (22) to equation (20) shows that the 

magnitude of the impedance at the zero-phase resonant fre-

quency is always smaller than that at ,oω i.e., 
p o

Z Z< . 

However, for large values of Q, these are very close in val-
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ue, i.e., .
p o

Z Z≈   

 

It should also be noted that many authors, including Boy-

lestad [1], use equation (22) as the approximation for the 

maximum impedance magnitude when 10.Q ≥ However, 

equation (20) is bigger than equation (22) for all values of Q. 
Hence, equation (20) might be a better approximation to the 

exact maximum impedance magnitude, especially for low Q 

values. Indeed, this is the case as verified below.  

 

C. Maximum Impedance Magnitude,
max

Z : 

Impedance at the Maximum Impedance Resonant 

Frequency, 
2 2

1 2
1

m o
Q Q

ω ω= − + +  

 
From equation (12),

 
the maximum impedance magnitude, 

max ,S  occurs for 0;b = hence,  

 
2

max

2 2

2

2

2

4

2 2

2 1
2 1 2

      
1 1

2 2 2

     .
2 2 2 1

a Q
S

c

Q Q

Q

Q
Q Q

Q

Q Q Q

= =

+ − −

=

+ − −

=
+ − −

    

         (23) 

 

Using 
2 2

max max
/ ,S Z R= equation (23) becomes  

 

2

max 2 2

1
.  

2 2 2 1
Z RQ

Q Q Q
=

+ − −
    (24) 

 

To the authors’ knowledge, the expression in equation 

(24) has never appeared in the open literature before. Inte-

restingly, for large values of ,Q  

2

2 2

2 1
2 1 1 ,Q Q Q

Q Q

� �
+ = + ≈ +� �� �

� �  

and so the denominator 

under the square root sign of equation (24) becomes unity. 

Thus, for large values of ,Q
2

max
;Z RQ≈

 
hence, 

max
.

p o
Z Z Z≈ ≈  

 

 

D. Accuracy of the Approximations to the 

Maximum Impedance Magnitude 
 

Now that the approximations of equations (20) and (22) 

have been established to the exact maximum impedance, 

given by equation (24), the accuracy of each should be 

tested. This can be done by computing the percentage error, 

given by     

 

Approximation Equation (20) or Equation (22)
-1 100%.

Exact Equation (24)

errorP

� �
= � �
� �

      (25) 

These percentage errors are plotted in Figure 4. 
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Figure 4. Percentage error of the maximum impedance magni-

tude estimates. Clearly, equations (20) and (22) always underes-

timate the true maximum impedance magnitude. Furthermore, 

equation (20) is a better approximation than equation (22) for 

all Q values of interest 
 

As mentioned earlier, equation (22) is used to approximate 

the maximum magnitude of the impedance for 10.Q ≥
 

However, Figure 4 shows that equation (22) has a percen-

tage error of less than −2% for 5,Q ≥ and less than −10% 

for 2.Q ≥
 
Hence, equation (22) can be used for very small 

Q values with a tolerable percentage error. Furthermore, 

equation (22) has the advantage of being the simplest ap-

proximation. 

 

On the other hand, equation (20) has excellent percentage 

error performance, even for 1,Q = with a percentage error of 

only −4%, whereas for 1.5,Q ≥  the percentage error is less 

than −0.6%.  
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Verification through PSpice  

Simulations  
 

In this section, PSpice is used to verify the authors’ de-

rived equations. For all simulations, the authors 

used 10 FC µ=  and 25.33 H;L µ= (see Figure 2); hence, 

10 Hz.of k=  Due to space limitations, 

2 / / / ,oR f L Q L C Qπ= = was chosen for only two Q val-

ues, as listed in Table 1. 

 
Table 1. R values needed to achieve desired Q values for the 

circuit of Figure 2 

Desired Q Value Corresponding R Value ( )Ω  

1.5 1.06103 

3 0.53051 

 
For all of the simulation plots of this section, the ampli-

tude of the voltage across the practical parallel circuit is 

plotted, i.e., the voltage across the capacitor, divided by the 

magnitude of the current source, which is 1A, the magnitude 

of the impedance seen by the current source. 

 

Furthermore, the PSpice simulation data was exported to 

Matlab for actual plotting; it was found that this would allow 

for more readable graphs. Another advantage is that Matlab 

can then be used to search for the maximum impedance 

point, with great precision. In fact, this is how the PSpice 

simulated values given in Tables 2(a) to 3(b), were found.  

 

A. Results for Q=1.5 
 

Figure 5 shows a PSpice simulation plot of the magnitude 

of the impedance of the practical parallel circuit for Q=1.5.  
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Figure 5. Magnitude of the impedance of the practical parallel 

circuit of Figure 2 for Q=1.5 

 

For convenience, the simulated results are presented and 

compared to the theoretical results in Tables 2(a) and 2(b). 

 
Table 2(a). Simulated results compared with theoretical results 

for the maximum impedance resonant frequency when Q=1.5 

Maximum Im-

pedance Resonant 

Frequency 

Value Percentage er-

ror compared 

with exact theo-

retical Equation 

(14) 

PSpice simulated 

value 

9643.4 Hz 0.00104% 

Theoretical value 

from Equation (14) 

9643.3 Hz NA 

Approximate value 

with Equation (18) 

9428.1 Hz −2.232% 

Approximate value 

with Equation (17) 

9493.3 Hz −1.555% 

 
Table 2(b). Simulated results compared with theoretical results 

for the maximum impedance magnitude when Q=1.5 

Maximum Im-

pedance Magni-

tude 

 

Value Percentage er-

ror compared 

with exact theo-

retical Equation 

(24) 

PSpice simulated 

value 
2.8852 Ω  0% 

Theoretical value 

from Equation (24) 
2.8852 Ω  NA 

Approximate value 

with Equation (22) 
2.3873 Ω  −17.26% 

Approximate value 

with Equation (20) 
2.8692 Ω  −.5546% 

 

B. Results for Q=3 
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Figure 6. Magnitude of the impedance of the practical parallel 

circuit of Figure 2 for Q = 3 
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Table 3(a). Simulated results compared with theoretical results 

for the maximum impedance resonant frequency when Q=3 

Maximum Im-

pedance Resonant 

Frequency 

Value Percentage er-

ror compared 

with exact theo-

retical Equation 

(14) 

PSpice simulated 

value 

9972.1 Hz 0 % 

Theoretical value 

from Equation (14) 

9972.1 Hz NA 

Approximate valu-

ewith Equation 

(18) 

9860.1 Hz −1.123% 

Approximate value 

with Equation (17) 

9969.1 Hz −0.030% 

 
Table 3(b). Simulated results compared with theoretical results 

for the maximum impedance magnitude when Q=3 

Maximum Im-

pedance Magni-

tude 

Value Percentage er-

ror compared 

with exact theo-

retical Equation 

(24) 

PSpice simulated 

value 
 5.0336 Ω  0% 

Theoretical value 

from Equation (24) 
 5.0336 Ω  NA 

Approximate value 

with Equation (22) 
 4.7746 Ω  −5.145% 

Approximate value 

with Equation (20) 
 5.0329 Ω  −0.0139% 

 

Figure 6 shows a PSpice simulation plot of the magnitude 

of the impedance of the practical parallel circuit for Q=3. 

Again, the simulated results are presented and compared to 

the theoretical results in Tables 3(a) and 3(b).  

 

C. Discussion 
 

Based upon the tables above and other simulations not re-

ported here due to space limitations, the following observa-

tions can be made concerning the maximum impedance fre-

quency: 
1. The theoretical value given by equation (14) and 

the PSpice simulations show excellent agreement. 

2. The approximate theoretical value given by equa-

tion (17) is more accurate than the value from equa-

tion (18) for 1.41Q ≥ . Both of these approxima-

tions improve with increasing Q values. 

 

Furthermore, the following observations can be made con-

cerning the maximum impedance: 

1.   The theoretical value given by equation (24) and the 

PSpice simulations show excellent agreement. 

2.  It is quite apparent that the maximum impedance 

magnitude is in fact well approximated by the im-

pedance magnitude given by equation (20), which 

of course is the impedance magnitude at the reso-

nant frequency, .of  
Additionally, this approxima-

tion improves with increasing Q values. 

 

Conclusion 
 

In this paper, the maximum impedance resonant frequency 

was derived without calculus. In so doing, the authors also 

modified a formula that is given for this in a popular tech-

nology textbook, thereby increasing its accuracy. Further-

more, the authors also found a novel expression for the exact 

maximum impedance. This has been approximated by pre-

vious authors as 2RQ for 10.Q ≥  However, it was shown 

here that this approximation has a percentage error less than 

−2% for 5,Q ≥ and less than −10% for 2.Q ≥
 
It was further 

shown that the maximum impedance is also well approx-

imated by ( )2 21R Q Q+ , which has excellent percentage 

error performance, even for 1Q = , with a percentage error of 

only −4% for this value, and less than −0.6% for 1.5.Q ≥  

Finally, the authors used PSpice simulations to verify their 

results. 

 

Appendix A 
 

In this appendix, the authors show that  
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Rearranging equation (A1) produces 
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Further rearrangement of equation (A2) gives 
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Appendix B 
 

In this appendix, the authors show that  

2 2

1 2
1 0

Q Q

−
+ + ≥ for 2 1 .6436.Q ≥ − =  

 

Beginning with  

 

2 2 2 4

2 4 4 2

2 1 2 1
1 1

2 1 2 1 0.

Q Q Q Q

Q Q Q Q

+ ≥ � + ≥

� + ≥ � + − ≥

 (B1) 

 

Solving equation (B1) gives  

 

 2 4 4 2 2
1 1 .

2 2
Q

+
≥ − ± = − ±   (B2) 

 

However, 2Q must be non-negative, so 2 1 2.Q ≥ − +
 

Hence, 2 1 .6436,Q ≥ − =  as stated previously. 

 

References  
 

[1]  R. L. Boylestad, Introductory Circuit Analysis, 12
th

 

edition, Prentice Hall, 2010.  

[2] A.K. Walton, Network Analysis and Practice, Cam-

bridge University Press, 1987.  

[3]  J. S. Beasley and G. M. Miller, Modern Electronic 

Communication, 9
th

 edition, Prentice Hall, 2008. 

[4]  J. F. M Gerrits, J. R. Farserotu and J. R. Long, “A 

Wideband FM Demodulator for a Low-Complexity 

FM-UWB Receiver,” Proceedings of the 9
th

 European 

Conference on Wireless Technology, 10-12 Septem-

ber 2006, Manchester, UK, pp. 99−102. 

[5]  L. A. Klein, M. K. Mills and D. R. P. Gibson, Chapter 

2, Traffic Detector Handbook: Third Edition-Volume 

I, Report No. FHWA-HRT-06-108, Federal Highway 

Administration. May 2006. Retrieved from 

http://www.fhwa.dot.gov/publications/research/operat

ions/its/06108/02.cfm on 27
th

 Jan., 2011. 

 

Biographies 
 

 KENNETH V. CARTWRIGHT received a B.E.Sc. de-

gree in Electrical Engineering from the University of West-

ern Ontario, London, Ontario, Canada, in 1978; a M.S. de-

gree in Electrical Engineering from Tulane University, New 

Orleans, Louisiana, in 1987; and a Ph.D. degree in Electrical 

Engineering from Tulane University, New Orleans, Louisi-

ana, in 1990. Currently, he is a Professor of Electrical Engi-

neering at the College of The Bahamas. His teaching and 

research areas include analog electronics, control systems, 

and analog and digital communication systems. He has au-

thored/co-authored many papers, which are listed on his 

website http://sites.google.com/site/kvcartwright/. Dr. 

Cartwright may be reached at kvcartwright@yahoo.com.  

 

 ELTON JOSEPH received a B.S.E.T. degree in Electric-

al Engineering Technology from the College of The Baha-

mas (COB), Nassau, Bahamas in 2009. The research for this 

paper was done while he was a student at COB. He has 

worked for the Marine and Environment Science Institute 

located at the College. Currently, he works on environmental 

projects around The Bahamas. His interests include design-

ing ways to make coastal developments more environmen-

tally friendly and sustainable. Mr. Joseph may be reached at 

eltonevey@gmail.com. 

 

EDIT J. KAMINSKY received her B.S. degree in Elec-

trical Engineering, summa cum laude, from the Universidad 

Autónoma de Centro América, Costa Rica, in 1986 and her 

M.S. and Ph.D degrees in Electrical Engineering from Tu-

lane University, New Orleans, Louisiana, in 1987 and 1991, 

respectively. Professor Kaminsky is currently the Depart-

ment Chair of Electrical Engineering at the University of 

New Orleans. Her current research interests are in the areas 

of digital communications, and sonar and signal processing. 

Her publications are listed on her website at 

http://fs.uno.edu/ejbourge. Dr. Kaminsky may be reached at 

ejbourge@uno.edu. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Finding the Exact Maximum Impedance Resonant Frequency of a Practical Parallel Resonant Circuit without Calculus
	Recommended Citation

	TIIJ fall-winter 2010-PDW2-2.pdf

