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Abstract—This paper presents new visualization techniques for
4D Quadrature-Quadrature Phase Shift Keying (Q2PSK), Saha’s
Constant Envelope (CE) Q2PSK, and Cartwright’s CEQ2PSK in
ideal bandlimited channels. The signal diagrams analyzed are:
time-signal eye patterns for 4D passband signals, 2D complex
trajectory diagrams of baseband signals, and time-signal eye
patterns for the 1D outputs of the baseband matched filter. These
methods may be applied to other multidimensional modulation
systems to obtain insight into the effects of noise, interference,
and channel filtering.

Index Terms—Q2PSK, CEQ2PSK, bandlimited channel, con-
stant envelope, signal trajectory diagram, eye diagram, visual-
ization.

I. INTRODUCTION

Shannon proposed geometrical representations of signals in
[1], where he discussed the association of information signals
with Euclidean spaces, resulting in an understanding of the
relationship between visual indicators and the performance
of digital communications systems. Since then, effort has
been devoted by other researchers to connect the multidimen-
sional geometric representations to communication systems’
waveforms and to visually represent these high-dimensional
constellations in lower-dimensional spaces.

In this paper, we discuss new visualization methods for 4D
Q2PSK systems; in particular, we analyze Q2PSK [2, 3] and
CEQ2PSK [4–6] systems with no channel bandlimitation as
well as with ideal channel filters of baseband bandwidth 0.6

T
and 1

T , where 2T is the 4D symbol interval.
In [7, Fig.1], Saha and El-Ghandour present a 4D Q2PSK

signal space diagram where the four dimensions are decoupled
into two 2D sub-spaces associated with the hal-cosine and
the half-sine pulses; the diagram shows the decoupled phase
points of Q2PSK around each pulse axis. Similarly, in [8,
Fig. 2.5] Cilliers describes a visualization of Q2PSK where
the signal constellations points are plotted around a frequency
axis. Cilliers also discusses two graphical representations of
the projection of the 4D Q2PSK hypercube onto 3D cubes
([8, Figs. 2.10, 2.11]). These latter four representations aid in
visualizing 4D systems, but provide no insight or information
about the transmitted or received signals; our visualization
work, on the other hand, aids the understanding of the dele-
terious effects of noise and interference. Drakul and Biglieri
[9, Figs. 2, 3] portray all pulses vs. time for one signaling

interval and also eye patterns (see [9, Figs. 5, 7]) for an 8D
Constant Envelope modulation Scheme (8D-CEMS). Malan
shows in [10, Fig. 6.2] a complex 2D baseband envelope
diagram of a 4D Direct Sequence Spread Spectrum (DSSS)
signal to portray amplitude and phase distortions caused by a
bandlimited channel.

Our first visualization method, the time-signal eye pattern,
consists of portraying the set of all possible 4D passband
filtered signals versus time; we choose to display times from
−T to T , to show the entire 4D signaling interval, using
the minimum carrier frequency. The second method is a 2D
complex trajectory diagram in which the baseband in-phase
and in-quadrature signals are plotted versus each other with
time as a parameter. The third method represents the output
of the matched filter (before the sample and hold operation)
for each of the 4 components, versus time, for times between
0 and 2T , to show the decision time in the middle.

The rest of this paper is organized as follows: The first
section is a brief review of Q2PSK and Saha’s and Cartwright’s
CEQ2PSK. Next, in Section III, we present the visualization
methods used. Results are presented and discussed in Section
IV. Concluding remarks and proposals for future work are
given in Section V, followed by cited references.

II. REVIEW OF 4D Q2PSK

In this section, we summarize Q2PSK, Saha’s CEQ2PSK,
and Cartwright’s CEQ2PSK.

A. Q2PSK

Q2PSK [2] is a 4D modulation scheme defined by:

S(t) = a1p1(t) cos(ωct) + a2p2(t) cos(ωct)+

+ a3p1(t) sin(ωct) + a4p2(t) sin(ωct),
(1)

where {ai}, i = 1, ... , 4, are ±1, the half-cosine and half-sine
pulses, p1(t) and p2(t), are given by (2), the carrier angular
frequency, ωc, is nπ/2T , with n ≥2, and T is the duration of
2 bits.

pj(t) = cos

(
πt

2T
− (j − 1)π

2

)
, |t| ≤ T, j = 1, 2. (2)

Eq. (1) may also be represented as

S(t) =A(t) cos (ωct+ θ(t)) , (3)



where the amplitude and phase are given, respectively, by (4)
and (5):

A(t) = (2 + (a1a2 + a3a4) sin(πt/T ))
1/2

, (4)

θ(t) = tan−1
(
a3 cos(πt/2T ) + a4 sin(πt/2T )

a1 cos(πt/2T ) + a2 sin(πt/2T )

)
. (5)

Equivalently, we could use a baseband model for (1) in
which the kth transmitted Q2PSK signal is:

Sk(t) = a1,kp1(t− 2kT ) + a2,kp2(t− 2kT ) +

−j[a3,kp1(t− 2kT ) + a4,kp2(t− 2kT )]. (6)

The real part of (6) is the in-phase component, I, and the
imaginary part corresponds to the quadrature-phase, Q. There
are 16 4D symbols that form this non-constant envelope
Q2PSK signal set. Saha’s Q2PSK points are listed on the
left side of Table I; we have separated the eight points that
have constant envelope (listed in the bottom) from the other
eight. The fourth component of the top eight Q2PSK vectors
is a4 = a1a2/a3 while for the bottom eight, this component is
a4 = −a1a2/a3. For the top 8 points the phase is piecewise-
constant with values θ(t) ∈ {±45◦, ±135◦}; the bottom 8
points have phase values that increase or decrease piece-wise
linearly.

TABLE I
4D Q2PSK POINTS.
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B. CEQ2PSK

In [4] and [5], respectively, two 4D constant enve-
lope constellations were introduced: Saha’s CEQ2PSK and
Cartwright’s CEQ2PSK. Constant envelope is obtained at the
expense of a reduction in the transmission rate, by ensuring
that a4 = −a1a2/a3. Each set has eight 4D symbols and
makes A(t) in (4) a constant value equal to

√
2 [5]. The orig-

inal two CEQ2PSK constelations are those listed on the bottom
half of Table I as having magnitude

√
2. Notice that there are

two constellations of Cartwright-type symbols: Cartwright’s

original constellation presented in [5], listed on the bottom
right corner of Table I, and another we are presenting here for
the first time, listed on the top right corner of this same table.
This constellation also has constant envelope with A(t) =

√
2,

for all t, but has piece-wise constant phase, while Cartwright’s
original CEQ2PSK constellation has piecewise-linear phase.

III. VISUALIZATION METHODS

In this Section we explain our three graphical representa-
tions used to visualize the signals of interest. Our work was
motivated by the lack of insight into the effects of noise and
interference provided by previous multidimensional signal dia-
grams. The methods described in this Section allow us to better
understand the effects of filtering on the 4D transmitted signals
in passband, the in-phase and quadrature 2D components in
baseband, and the the individual 1D components at the output
of the matched filter.

A. Time-signal eye patterns for 4D passband signals

The time-signal eye pattern is obtained by plotting (1) or
(3) with ωc = π/T , or the channel-filtered version of these,
for all combinations of possible 4D signals, versus time. Any
other allowed carrier frequency may be chosen, but no further
insight about the modulated signals is obtained by doing this.
These signals are presented on the same graph over a period
of 2T –the length of one 4D symbol– showing a complete
4D signaling interval from −T to T . Notice that (1) and (3)
depend on [a1 a2 a3 a4] which for CEQ2PSK is a subset of the
possible Q2PSK vectors (see Table I). By using this method,
the amplitude and phase of the passband signal are shown
graphically for all times.

B. 2D complex trajectory diagrams for 4D baseband signals

With this method we look at the baseband version of the 4D
modulated signal in the complex plane by showing parametric
plots of the trajectories of the in-phase component versus
the quadrature-phase component of the signal in (6), or a
filtered version of it as shown in (6) of [11]. Effectively, the
2D complex trajectories are polar diagrams of the magnitude
in (4) and the phase in (5) –or, again, filtered versions of
these– with time as a parameter. The trajectory diagram clearly
shows distortions caused by the ISI created by the bandlimited
channel.

C. Time-signal eye pattern for the 1D outputs of the baseband
matched filter

The baseband receiver, consisting of a bank of two pairs
of matched filters, separates the real parts (in-phase) from the
imaginary parts (quadrature-phase) and also the half-cosine
pulses from the half-sine pulses. We also use time-signal eye
diagrams to show each component of the baseband signals at
the output of the matched filter. All possible signals for each
component are superimposed, for a single signaling interval.
The four signals at the output of the matched filter, if the



channel has infinite bandwidth, are:

yk(t) = akp1(t) ∗ h1(t) + ak+1p2(t) ∗ h1(t)
= aky

′
11(t− T ) + ak+1y

′
12(t− T ), (7a)

ym(t) = am−1p1(t) ∗ h2(t) + amp2(t) ∗ h2(t)
= −am−1y′12(t− T )− amy′22(t− T ), (7b)

for k = 1, 3, m = 2, 4, and y′ij given in (8). The matched-
filter impulse responses are h1(t) = p1(T − t) and h2(t) =
p2(T − t), with pj(t) given in (2).

y′ij(t) =
(−1)
2

(i−1)(j−1)
cos

[
π

2

(
t

T
− |i− j|

)]
(2T − |t|)+

+
T

π
sin

(
π|t|
2T

)
|3− i− j|, |t| ≤ 2T, (8)

for i, j = 1, 2.
The open parts of the time-signal eye patterns occur around

decision time T . For Saha’s signals there is a single eye, while
for Cartwrights’ there are two, as three levels are possible.
The horizontal eye opening relates to the phase and shows the
sensitivity to sampling instant shifts (i.e., synchronization). In
addition, the amplitude distortion at the sampling time –which
relates directly to the modified geometry of the 4D signals with
ISI– also becomes obvious.

IV. VISUALIZATION RESULTS

In this section we present and discuss the results of our
visualization analysis of Q2PSK signals.

A. Time-signal eye patterns for 4D passband Q2PSK

Figure 1 portrays the time-signal eye patterns for the three
4D passband systems of interest. The columns correspond,
respectively, to Q2PSK, Saha’s CEQ2PSK, and Cartwright’s
original CEQ2PSK. The rows represent the bandwidth limita-
tion: for the plots on the top row there is no channel filter,
while the second and third rows have channels bandlimited to
1
T and 0.6

T , respectively, where 2T is the 4D symbol interval.
We see in a) the 16 traces of all possible Q2PSK 4D symbols,
with symbol transitions occurring at times 0 and 2T and
possible phase changes of 0, ±90◦ and ±180◦, as stated in
[2]. For the filtered Q2PSK signals there are 4096 traces on
the 4D passband time-signal eye patterns because we assume
that one past, one present, and one future symbol affect the
current symbol, and each one of these has 16 possible values.
If one compares a) to b) and c), it becomes clear that amplitude
distortion is introduced by the bandlimited channels. The
possible values of the signals with ISI are no longer just ±1
at −T , 0, and T , and many new phase changes occur.

Results for Saha’s and Cartwright’s original CEQ2PSK
are portrayed on the second and third columns of Fig. 1,
respectively. Because d) and g) show the signals without
bandlimitation, there are 8 traces displayed. The symbol
transitions again occur at time 0 and 2T and we also have
possible abrupt changes in phase at those times. The possible
phase shifts are still 0, ±90◦ and ±180◦, as they were for
Q2PSK. Because e), f), h) and i) depict signals with ISI,

there are 512 traces when the memory is truncated to three
symbols. When Cartwright’s original CEQ2PSK is used, the
possible values of the unfiltered 4D signal at time T are 0 and
±
√
2; clearly, the 4D Euclidean distances at that time are equal

for Saha’s and Cartwright’s constellations, but at time T the
minimum distance has been reduced from 2 to

√
2 while the

maximum distance has been increased from 2 to 2
√
2. Again,

multiple new phase angles are now present.

B. 2D complex trajectory diagrams for Q2PSK signals

Figure 2 shows the complex trajectory diagrams for the
systems of interest. Notice that both the amplitude and phase
information of the 4D signals are shown with time as a param-
eter, by plotting the in-phase component vs. the quadrature-
phase. Because time is not shown, the abrupt phase changes
of the unfiltered signals are only easily seen in Fig. 2 a),
i.e., for Q2PSK. On the other hand, the constant envelope is
obvious for the CEQ2PSK unfiltered systems shown in d) and
g). It is also clear that the complex trajectory diagram for
Cartwright’s CEQ2PSK is a 45◦ rotation of the diagram for
Saha’s CEQ2PSK; as noted in [5], Cartwright’s constellation
is obtained by performing two 2D rotations of 45◦ on Saha’s
4D points. Using this visualization method we readily see that
the ISI-distorted CEQ2PSK signals are no longer of constant
envelope and may even be zero at certain instants.

C. Time-signal eye patterns of the 1D baseband matched filter
outputs for Q2PSK

The time-signal eye pattern at the output of the matched
filter helps visualize the signal geometry because the shifted
coefficients ĉi that arise from the signal with ISI become clear
at time T , the sampling time of the sample-and-hold device at
the receiver. The possible values of (7a) and (7b) are plotted
on the first row of Fig. 3; a) and d) correspond to Q2PSK and
Saha’s CEQ2PSK, while g) and j) are for Cartwright’s original
CEQ2PSK. We computed the values of these coefficients using
(7) from [11] and list them in Table II for Cartwright’s original
constellation at the two bandwidths of interest to us, and on
Table I of [11] for Saha’s constellation. These coefficients are
the possible values at t = T when the ISI is truncated to three
signaling intervals. The numbers listed in the last column, N ,
indicate the number of occurrences of each coefficient in the
new geometry; there are a total of 512 signal points.

The vertical (amplitude) and horizontal (time) eye openings
at the output of the matched filter are listed in Table III for the
systems discussed in this paper, both filtered and unfiltered;
we also show the percentage decrease in the length of the eye
opening in each direction, as it is this reduction in the size
of the eye that helps us visualize the likelihood of detection
errors. We define the vertical aperture, VA, as the minimum
1D distance between possible amplitudes at sampling time T .
The horizontal aperture, HA, for unfiltered signals is defined
as the length of time between signal crossings (excluding
those with 0-amplitude crossing). When the signals are filtered,
we measure the corresponding minimum distance. Both VA
and HA are indicated with arrows on Fig. 3. The amplitude



Fig. 1. Time-signal eye patterns for 4D passband signals. Q2PSK: a) unfiltered, b) filtered at B1, c) filtered at B2. Saha’s CEQ2PSK: d) unfiltered, e)
filtered at B1, f) filtered at B2. Cartwright’s CEQ2PSK: g) unfiltered, h) filtered at B1, i) filtered at B2. B1 = 1/T,B2 = 0.6/T .

TABLE II
MAGNITUDE OF THE COEFFICIENTS FOR TWO CHANNEL BANDWIDTHS

FOR CARTWRIGHT’S CEQ2PSK.

B1 = 1
T

B2 = 0.6
T

ĉ1 or ĉ3 ĉ2 or ĉ4 ĉ1 or ĉ3 ĉ2 or ĉ4 N

0 0 0 0 64
0.001915 0.007582 0.005313 0.016256 32
0.003751 0.073442 0.005448 0.085718 64
0.005666 0.081023 0.010759 0.101973 64
0.007582 0.154465 0.016207 0.187691 32
1.403177 1.107992 1.380991 0.988777 16
1.405092 1.181434 1.386439 1.074494 32
1.407008 1.189016 1.391751 1.160212 16
1.408843 1.254875 1.391887 1.090750 32
1.410759 1.262457 1.397199 1.176467 64
1.414509 1.270039 1.402510 1.192723 16
1.412674 1.335899 1.402646 1.262185 32
1.416425 1.343481 1.407958 1.278441 32
1.418340 1.416922 1.413406 1.364158 16

distortions that correspond to the cosine pulses is always
small, while it is considerably larger for the sine pulses. The

sine components are also more prone to timing errors, as
seen by the eye narrowing in the horizontal direction. The
probability of error performance in Additive White Gaussian
Noise (AWGN) channels depends on the minimum Euclidean
distance between 4D points. One must remember that for
Cartwright’s constellation, if the amplitude of one half-cosine
pulse is not 0, the other one is and that the same applies to the
half-sine pulses. This means that, without error correction, the
apertures may be minimum in each of the four components of
Saha’s constellation, while this is not possible in Cartwright’s.

V. CONCLUSIONS AND FURTHER WORK

We have presented visualization aids for 4D Q2PSK, both
constant and non-constant envelope, as well as filtered and
unfiltered. This is an effort to gain insight into the behaviour
of these signals in bandlimited channels. The diagrams shown
help to visualize the causes of the degradation in probability
of error performance when the channel is bandlimited and
therefore ISI is introduced.

Future work will include a thorough evaluation of the
performance of both of Cartwright’s CEQ2PSK constellations
in bandlimited channels and a comparison to Saha’s. More



Fig. 2. 2D complex trajectory diagrams. Q2PSK: a) unfiltered, b) filtered at B1, c) filtered at B2. Saha’s CEQ2PSK: d) unfiltered, e) filtered at B1, f)
filtered at B2. Cartwright’s CEQ2PSK: g) unfiltered, h) filtered at B1, i) filtered at B2. B1 = 1/T,B2 = 0.6/T .

Fig. 3. Time-signal eye patterns of the 1D output of the baseband matched filter. Q2PSK and Saha’s CEQ2PSK: a) unfiltered a1 and a3, b) a1 and a3
filtered at B1, c) a1 and a3 filtered at B2, d) unfiltered a2 and a4, e) a2 and a4 filtered at B1, f) a2 and a4 filtered at B2. Cartwright’s CEQ2PSK: g)
unfiltered a1 and a3, h) a1 and a3 filtered at B1, i) a1 and a3 filtered at B2, j) unfiltered a2 and a4, k) a2 and a4 filtered at B1, l) a2 and a4 filtered at
B2. B1 = 1/T, B2 = 0.6/T .



TABLE III
AMPLITUDE AND TIME APERTURES AT MATCHED FILTER OUTPUT.

Bo =∞ B1 = 1
T

B2 = 0.6
T

Aperture Aperture % decrease Aperture % decrease
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√
2 0.95 32.83 0.80 43.43

HA 0.8T 0.4T 50.00 0.4T 50.00

realistic models of bandlimited and fading channels will be
used.

We will also apply a continuous Morlet wavelet transform to
Q2PSK systems, which shall be used to visualize, simultane-
ously, the time-frequency behavior of the bandlimited signals
and used to develop a wavelet-based receiver that estimates
the phase-shift, ISI, and noise-type of actual channels. The
performance of such receiver is expected to be superior to
the standard matched filter –optimum in AWGN– when other
deleterious effects are introduced by the channel, particularly
in the presence of impulsive and colored noise.
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