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Abstract—The authors present theoretical performance analy-
sis and simulation results for Quadrature-Quadrature Phase Shift
Keying (Q2PSK), Constant Envelope (CE) Q2PSK, and trellis-
coded 16D CEQ2PSK in ideal bandlimited channels of various
bandwidths. The performance of receivers with and without
channel estimation is reported. Spectral analysis is presented for
each system, in addition to MSK and expanded uncoded 16D
CEQ2PSK. We show that the effects of bandlimiting are most
severe for Q2PSK. Knowledge of the channel information aids 4D
CEQ2PSK the least. Only 6.8 dB of SNR is needed for the TCM
system for a bit error rate of 10−5 for the narrowest channel
bandwidth studied here, if the receiver has knowledge of the
channel.

Index Terms—Q2PSK, CEQ2PSK, bandlimited channel, spec-
tral efficiency, multidimensional TCM, constant envelope.

I. INTRODUCTION

The search for appropriate classes of signals and methods to

mitigate medium disturbances has driven much of communica-

tions research. Researchers have investigated the performance

of different sets of signals on a variety of channels which

are limited in transmission power and available spectrum. In

classical uncoded modulation systems, an increase in trans-

mission efficiency might be accomplished by increasing the

dimensionality of the signal space (see [1] and references

therein).

Over the last few decades, authors have shown interest in a

four-dimensional (4D) modulation scheme proposed by Saha

and Birdsall in [2]: Quadrature-Quadrature Phase Shift Keying

(Q2PSK). Because Q2PSK uses the space more efficiently

than conventional QPSK and Minimum Shift Keying (MSK),

Q2PSK provides increased spectral efficiency [3]–[6]. Indeed,

Q2PSK and its variants have been considered by several

authors because of the attractive possibility of spectral and

power efficiency [4]–[16].

Q2PSK is reported to achieve 4 bits per modulation interval

but lacks constant envelope which is a desired feature for

nonlinear channels such as the satellite path [14]. If parity

check coding is imposed at the input of the Q2PSK modulator,

4D Constant Envelope Quadrature-Quadrature Phase Shift

keying (CEQ2PSK) is obtained [2, 3, 17] at the cost of a

reduction in the information rate to 3 bits per modulation

interval.

Westra et al. reported multilevel forms of Q2PSK in [7] to

increase the effective data throughput. Saha and El-Ghandour

introduced differential phase Q2PSK in [8], and Korn and

Wei analyzed the performance on mobile satellite channels

in [10]. Offset Q2PSK, which attains lower peak to average

power ratio than Q2PSK, was presented in [15]. In [17],

two 16D constellations that use four consecutive signalling

intervals of CEQ2PSK were introduced: an unexpanded 16D

CEQ2PSK constellation of 4096 signal points and an expanded

16D CEQ2PSK constellation of 8192 points. The unexpanded

constellation has an information rate of 12 bits per 16D

interval while the expanded constellation may be used to

transmit 13 bits per 16D interval or to incorporate error

correction coding [13].

Various implementations of Q2PSK combined with band-

width efficient coding techniques such as Multidimensional

Trellis Coded Modulation (MTCM) [18] have been presented

[14, 19, 20]. In contrast to the conventional MTCM imple-

mentations, Quinteros et al. [13] used a technique proposed

by Kaminsky in [21, 22] to obtain a 16D TCM CEQ2PSK

system that suffers no loss due to constellation expansion.

Most recently, [16] used the same technique with a 32D

CEQ2PSK constellation.

In this paper, we further analyze the performance of 4D

Q2PSK in [3] and also present analysis for 4D CEQ2PSK and

a trellis encoded 16D CEQ2PSK system in the bandlimited

additive white Gaussian noise (AWGN) channel. In particular,

we assume ideal filters of baseband bandwidth 0.6
T

and 1
T

,

where 2T is the 4D symbol interval (i.e., the bit interval, Tb is

T/2) with perfect knowledge of the phase. In our simulations,

we implement a receiver that assumes knowledge of the

channel and one that doesn’t (i.e., the receiver uses reference

pulses which are not bandlimited). A discrete implementation

of a finite-length maximum likelihood detector is employed

in all cases; this is equivalent to the hardware detector in

[11], optimum when no Inter-Symbol Interference (ISI) and

no Cross-ISI (CISI) are present. In addition, we briefly present

spectral analysis of all these systems.

We show that for very narrow channels the use of channel

estimation aids the 16D TCM system more than the others and

that knowledge of the channel is more important for Q2PSK



than for its 4D constant envelope counterpart at all bandwidths.

Losses due to finite channel bandwidth are most severe for

Q2PSK. At the narrowest bandwidth considered here, 0.6/T ,

the gain of the 16D TCM system is 2 dB at a probability of bit

error of 10−5. Furthermore, we show that the performance of

Saha’s bit-by-bit suboptimum detector [3] may be considerably

improved upon with little increase in complexity.

The rest of this paper is organized as follows: In Section II,

brief descriptions of Q2PSK, CEQ2PSK, and 16D CEQ2PSK

are presented. In Section III we describe the channel model,

followed in Section IV by discussion of the receiver and

the signals therein. Analysis of the probability of error in

bandlimited channels with finite ISI and CISI is given in

Section V, along with presentation of the spectral analysis.

Results are given in Section VI. Conclusions and suggestions

for further work are given in Section VII, followed by cited

references.

II. BRIEF REVIEW OF Q2PSK

In this section, we briefly discuss the following constella-

tions: 4D Q2PSK [2], Saha’s 4D CEQ2PSK [3], Cartwright’s

4D CEQ2PSK [17], and both unexpanded and expanded 16D

CEQ2PSK [13].

A. 4D Q2PSK

The 4D Q2PSK modulation technique was introduced in [2]

and uses the following transmitted signal:

Sq(t) =

4
∑

i=1

bi(t)si(t), (1)

where bi(t), i = 1, . . . , 4, is the value of the original bit i of

duration T/2 prior to the the serial to parallel conversion and

of duration 2T after [2], and the passband modulating signal

set {si(t)}, i = 1, . . . , 4, is:

s1(t) = p1(t) cos(2πfct), |t| ≤ T (2a)

s2(t) = p2(t) cos(2πfct), |t| ≤ T (2b)

s3(t) = p1(t) sin(2πfct), |t| ≤ T (2c)

s4(t) = p2(t) sin(2πfct), |t| ≤ T , (2d)

with orthogonal half-sinusoidal pulses p1(t) = cos(πt/2T )
and p2(t) = sin(πt/2T ), for |t| ≤ T , and 0 otherwise. The

carrier frequency, fc, should be n
4T

with n ≥ 2, and T is

the duration of 2 bits. There are 16 symbols that form this

non-constant envelope signal set with efficiency of 4 bits per

modulation interval.

Using the baseband equivalent model for (1), the kth trans-

mitted Q2PSK signal is represented as:

Sk(t) = b1,kp1(t− 2kT ) + b2,kp2(t− 2kT ) +

−j[b3,kp1(t− 2kT ) + b4,kp2(t− 2kT )]. (3)

B. 4D CEQ2PSK

In [2] and [17], two constant envelope 4D constellations

were introduced, each with an MSED of 8 for unit energy:

Saha’s CEQ2PSK and Cartwright’s CEQ2PSK, respectively.

Constant envelope is obtained by using a rate-3/4 block

encoder at the input of the Q2PSK modulator, where the fourth

output bit is an odd parity check bit [2]. Three information

input bits {b1, b2, b3} generate code words {b1, b2, b3, b4}
such that the eight possible transmitted signals for Saha’s

CEQ2PSK are S1 = [a, a, b,−b] and S2 = [a,−a, b, b]. For

Cartwright’s CEQ2PSK, we have S1r = [0,
√
2a,

√
2b, 0] and

S2r = [
√
2a, 0, 0,

√
2b]. In both cases, a, b are either ±1. In

order for the envelope to be constant, b1b2 + b3b4 = 0.

C. 16D CEQ2PSK

1) Unexpanded 16D CEQ2PSK: In [17], two 16D constel-

lations were produced by concatenating either four consecutive

CEQ2PSK symbols from Saha’s constellation or four consecu-

tive CEQ2PSK from Cartwright’s constellation. Each of these

16D signal sets contains 4096 constant envelope points and

has an MSED of 8 for unit energy.

2) Expanded 16D CEQ2PSK: The expanded 16D

CEQ2PSK constellation is the union of the two 16D

CEQ2PSK in subsection 1) above, and has 8192 points; the

expanded constellation has twice as many points as either

unexpanded 16D CEQ2PSK constellation but still maintains

an MSED of 8. There are 16 points (i.e., an error coefficient

of 2 when normalized to 2D) at the second smallest squared

distance of 9.373 which slightly degrades the performance

over the unexpanded constellation, particularly for low SNR

[17]. In [13], this expanded constellation was used to allow

1 bit of redundancy per 16D to be introduced through a

convolutional encoder in a TCM system. This 16D TCM

CEQ2PSK system is also studied here. Improved probability

of error performance is achieved while maintaining constant

envelope with a slight increase in system complexity.

III. CHANNEL MODEL

Most transmission media alter the transmitted signals in

some way, especially when the channel has limited bandwidth

[23]. In this section, we define the simple ideal bandlimited

additive white Gaussian noise (AWGN) channel we use in our

analysis and simulations, and show the effects of bandlimiting

on Q2PSK and CEQ2PSK.

Forney and Ungerboeck defined the ideal bandlimited chan-

nel with flat frequency response within baseband bandwidth

B in [1]. The signal s(t) passes through a dispersive channel

with impulse response h(t) and zero-mean AWGN n(t). The

received signal is:

r(t) = s(t) ∗ h(t) + n(t), (4)

with h(t) given by:

h(t) =
sin(2πBt)

πt
. (5)

We consider two channel bandwidths, defined in baseband

(one-sided) as: B1 = 1
T

and B2 = 0.6
T

, where 2T is the 4D

signal interval. When the pulses p1(t) and p2(t) of (2) pass

through the channel in (4, 5), they suffer from the combined

effects of intersymbol interference (ISI), cross intersymbol

interference (CISI) [5], and noise. If pi,k denotes pulse pi at

time 2kT , i.e., pi(t − 2kT ), ISI is caused by pi,j interfering
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Fig. 1. Filtered (continuous line) and unfiltered (dashed line) cosine and sine
pulses. a) p1 and p1f (t), B1. b) p2 and p2f (t), B1. c) p1 and p1f (t), B2.
d) p2 and p2f (t), B2 (with B1 = 1/T , B2 = 0.6/T ).

with pi,k, j 6= k and i = 1, 2, and CISI is caused by p1,j
interfering with p2,k or p2,j interfering with p1,k, for any j, k.

The effects of filtering are shown in Fig. 1 for two bandwidths

of interest, where the filtered pulses are denoted with the

subscript f , and are given by (14) and (15) in the Appendix.

In our performance analysis, we assume that only one past

and one future symbol interfere with the current symbol being

detected. A total of 83 % of the energy in the half-sine pulse

and 99 % of the half-cosine pulse are within a bandwidth of

0.6/T ; of this energy, 99 % and 99.8 %, respectively, is within

the interval from −3T and 3T (i.e., from k = −1 to 1).

IV. COHERENT RECEIVER

At the receiver, the passband received signal is coherently

detected in the correlation receiver by multiplying it by the

cosine and sine carriers and by the half-cosine and half-sine

pulses and then integrating and dumping. In baseband, the

receiver ideally separates the real parts from the imaginary

parts, and the cosine pulses from the sine pulses by multiplying

the filtered signal sf (t) = Re{sf (t)} + j Im{sf (t)} by the

original pulses p1(t)− jp2(t) if no knowledge of the channel

is available, or by the filtered pulses p1f (t) − jp2f (t) if the

channel is known. Due to ISI and CISI, the tails of the

interfering past and future pulses affect the pulses currently

being detected. Considering only the truncated sequence [24]

of length equal to three signaling intervals (k = −1, 0, 1) and

ignoring the noise for now, the signals at the input of the

receiver, corresponding to the current signaling interval being

detected (|t| ≤ T ) are:

sf (t) =

1
∑

k=−1

[b1,kp1f (t− 2kT ) + b2,kp2f (t− 2kT )+

+ j (b3,kp1f (t− 2kT )− b4,kp2f (t− 2kT ))] ,

(6)

where p1f and p2f are the filtered pulses shown in Fig.

1 and defined in (14, 15) in the Appendix, and bi,k, i =
1, . . . , 4 represents bit i at time (t − 2kT ); for example,

b2,−1 is the value of the second component of the 4D vector

[b1(t + 2T ) b2(t + 2T ) b3(t + 2T ) b4(t + 2T )], i.e., the

TABLE I
MAGNITUDE OF THE COEFFICIENTS IN (7) FOR TWO CHANNEL

BANDWIDTHS FOR Q2PSK AND SAHA’S CEQ2PSK.

B1 = 1

T
B2 = 0.6

T

ĉ1 or ĉ3 ĉ2 or ĉ4 ĉ1 or ĉ3 ĉ2 or ĉ4 N1 N2

0.989543 0.778107 0.975659 0.687676 128 16

0.992196 0.783469 0.979426 0.699171 256 32

0.994848 0.788830 0.983194 0.710665 128 16

0.994905 0.887331 0.987154 0.820393 256 32

0.997557 0.892692 0.990921 0.831888 512 64

1.000209 0.898053 0.994688 0.843383 256 32

1.000266 0.996554 0.998648 0.953111 128 16

1.002918 1.001915 1.002416 0.964605 256 32

1.005571 1.007276 1.006183 0.976100 128 16

coefficient of the sine pulse p2 on the cosine carrier, from the

previous 4D signaling interval (the immediate past symbol).

We wish to show the output of the correlation receiver. To

concisely write the expression for these output values, we use

the following notation: Let Pi,j(r, s) =
T
∫

−T

pi(t−r)pj(t−s)dt.

We also let j = 2− imod2, l = i− (−1)i, and i = 1, . . . , 4.

The coefficients at the output of the receiver, including (finite)

ISI and the CISI are given by (7):

ĉi = bi,−1Pj,j(0,−2T ) + bi,0Pj,j(0, 0)+

+ bi,1Pj,j(0, 2T ) + bl,−1Pj,3−j(0,−2T )+

+ bl,1Pj,3−j(0, 2T ).

(7)

Given a single past, present, and future symbol, we can

easily enumerate the resulting coefficients, which are ±1
for the unfiltered channel. For the receiver without channel

information, these are shown in Table I for the two channel

bandwidths we use; the negative value for each is also possible.

The numbers listed under the last two columns, N1 and N2,

indicate the number of occurrences of each for Q2PSK and

Saha’s CEQ2PSK, respectively; there are a total of 4096

sequences of length 3 in the former, and 512 in the latter.

V. PERFORMANCE ANALYSIS

We describe performance of the Q2PSK systems based on

probability of error versus SNR and spectral efficiency. We

discuss each separately.

A. Probability of Bit Error

We quickly derive the probability of error for the Q2PSK

systems in this section. We assume AWGN with (one sided)

PSD N0 in each component. If no bandlimiting occurs, such

that there is no ISI/CISI, the probability of bit error may be

written as [1]:

Pbe = KdQ

(

√

γc
2Eb

No

)

, (8)

where Kd is the error coefficient normalized per two dimen-

sions, and γc is the coding gain given by (9):



TABLE II
PARAMETERS OF (8,9) FOR THE Q2PSK SYSTEMS OF INTEREST.

4D 4D unexpanded expanded

Q2PSK CEQ2PSK 16D CEQ2PSK 16D CEQ2PSK

d2
0

4 8 8 8

d2min 4 4 4 4
R 1 3/4 3/4 13/16
Rb 1 1 1 1

γc 1 3/2 3/2 13/8
Kd 2 3 3 3

γc =
d2o
d2min

R

Rb

, (9)

where d0 and dmin are the minimum distances between points

in the coded and uncoded constellations, respectively; Rb is the

rate in information bits per dimension of the uncoded system

and R is the rate of the coded system, again in information

bits per dimension [1]. The values of these are shown in Table

II for the four systems we discuss here.

A bit error is committed when the interference and noise

cause the transmitted bit to cross the zero-threshold. The

probability of bit error, Pbe, for filtered (finite length) Q2PSK

and CEQ2PSK is given by (10):

Pbe =

9
∑

n=1

P (r < 0 |ĉi)P (ĉi) =

9
∑

n=1

P (n < −ĉi)P (ĉi)

=

9
∑

n=1

P (ĉi)Q

(

ĉi
σ

)

=

9
∑

n=1

P (ĉi)Q

(
√

2

N0

ĉi

)

,

(10)

where r is the appropriate component of the received signal,

the coefficients are those listed in Table I, and P (ĉi) is

N1/2048 for Q2PSK and N2/256 for CE Q2PSK. Notice that

the probability of error is higher for the second and fourth

components of the 4D vector than for the first and third; this is

due to the significantly wider bandwidth of the half-sine pulse,

p2(t), compared to the half-cosine pulse p1(t). Equations (8,

10) assume the received components are independent; this is

never true for the fourth bit of CEQ2PSK, and is not strictly

true for any of these systems due to ISI and CISI. Nonetheless,

we show in Section VI that (10) is accurate for all SNR of

interest.

We define the SNR in dB as 10 log10
(

Eb

2σ2

)

, where Eb is the

energy per bit and σ2 is the noise power in each component,

so that SNR=Eb/N0. We use unity bit energy here.

B. Spectral Performance

Van Wyk presented an expression for the baseband power

spectral density (PSD) of coded and uncoded Q2PSK in [25].

If the amplitudes of the waveforms are adjusted to unity,

and using the symbol period Ts = 4Tb = 2T , Van Wyk’s

expression for Q2PSK becomes:

SQ2(f)

T 2
s

=
4
(

1 + 64f 2T 2
b

)

π2

(

cos (4πfTb)

1− 64f 2T 2
b

)2

. (11)
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Fig. 2. PSD for systems of interest.

For CEQ2PSK, due to the introduction of the parity check

bit, Ts = 3Tb = 2T , where the the subscript b now indicates

information bit; hence,

SCEQ2(f)

T 2
s

=
4
(

1 + 36f 2T 2
b

)

π2

(

cos (3πfTb)

1− 36f 2T 2
b

)2

, (12)

which applies to both Saha’s and Cartwright’s CEQ2PSK

constellations.

Finally, for expanded CEQ2PSK we have a 4D symbol

period of Ts =
13Tb

4
= 2T and (12) becomes

Sexp(f)

T 2
s

=
4 + 169f 2T 2

b

π2

(

cos (13πfTb/4)

1− 169f 2T 2
b /4

)2

. (13)

Fig. 2 shows the PSD for the systems of interest, in addition

to MSK and OQPSK. Non-parametrical spectral estimation

was performed using the periodogram method, with 200 spec-

tral averages and using Bartlett windows before performing the

FFT. Simulation results confirmed the derivation above (the

plots of the simulated values are not shown as they overlap

the theoretical lines).

We note that the -3 dB bandwidth of expanded 16D

CEQ2PSK is equal to that of MSK, and is 125 % of Q2PSK’s.

CEQ2PSK has the widest -3 dB bandwidth, and its PSD is

similar to that of Offset QPSK [2], in the sense that the first

null also occurs at normalized frequency of 0.5. The first null

of the expanded constellation is 6
13Tb

= 0.4615
Tb

, 61 % of that

of MSK, while it is 67 % for CEQ2PSK and 50 % for Q2PSK.

Q2PSK has the narrowest main lobe, but the first side lobe

has the same peak energy as those of both CEQ2PSK systems.

MSK’s main lobe is the widest, with considerably lower and

wider sidelobes. The sidelobe peaks derease most slowly for

CEQ2PSK (expanded and unexpanded).

VI. RESULTS

We present simulation results for 4D Q2PSK, Saha’s 4D

CEQ2PSK, and 16D TCM CEQ2PSK for ideal bandlimited
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Fig. 3. BER for Q2PSK, CEQ2PSK and 16D TCM CEQ2PSK systems,
filtered and unfiltered, when receiver has no knowledge of the channel.

channels of baseband bandwidth 1/T and 0.6/T , along with

theoretical performance curves, when available. Unfilled mark-

ers show simulations results obtained counting at least 20 bit

errors.

Fig. 3 shows a comparison of the bit error rates (BER) for

filtered and unfiltered Q2PSK, 4D CEQ2PSK, and 16D TCM

CEQ2PSK at the two bandwidths of interest using no channel

estimation. We see in Fig. 3 that the TCM system provides

about 2 dB of gain over the equivalent uncoded system for

all channel bandwidths, requiring only 7.3 dB in SNR for a

probability of bit error of 10−5 when bandlimited to 0.6/T
baseband bandwidth. We also confirm that Q2PSK requires

about 11.2 dB of SNR for a bit error rate (BER) of 10−5,

as stated by Saha in [3], for a filter of bandwidth 0.6/T ; we

note, however, that Saha used a sixth-order Butterworth filter.

Losses due to finite channel bandwidth are most severe for

Q2PSK.

Figs. 4 and 5 allow us to compare the receivers with

channel knowledge (receiver 2) to those that do not assume

any knowledge of the channel (receiver 1). Fig. 4 shows our

results for a channel bandlimited to 0.6/T while Fig. 5 shows

the same curves for a channel of bandwidth 1/T . The gains

achieved by using channel estimation are clearly shown on the

plots.

Saha stated in [2] that MSK needs 9.6 dB of SNR to

achieve Pbe = 10−5 when filtered at 0.6/T and, in [3], that

CEQ2PSK requires 10.3 dB using a sub-optimum bit-by-bit

detector. We have shown in Fig. 4 that CEQ2PSK achieves

Pbe = 10−5 at an SNR of 9.3 dB if a sequence detector with

no channel information is used instead, and only 8.8 dB if

channel estimation is performed so that the filtered pulses are

used in the receiver. Cartwright and Kaminsky [11] showed

that an SNR of 8.3 dB is actually needed if the channel is not

bandlimited, which is confirmed in Fig. 3.
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Fig. 4. BER for Q2PSK, CEQ2PSK and 16D TCM CEQ2PSK systems
filtered at 0.6/T with receivers with and without channel knowledge (labeled
receiver 2 and 1, respectively).
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Fig. 5. BER for Q2PSK, CEQ2PSK and 16D TCM systems filtered at 1/T
with receivers with and without channel knowledge (labeled receiver 2 and
1, respectively).

For channel bandwidth of 0.6/T , when TCM is used with

the expanded 16D constellation, we achieve a BER of 10−5

with 7.3 dB if no knowledge of the channel is assumed

(receiver 1) and with only 6.8 dB if knowledge of the channel

(receiver 2) is assumed; the penalty paid for this gain is

increased complexity in the receiver. The same conclusions

are drawn about gains for channels with a bandwidth of 1/T ,

as shown on Fig. 5. Notice, however, that at 1/T Q2PSK gains

less than the TCM system, while at 0.6/T the gain is larger.

The gain due to knowledge of the channel is always smallest

for 4D CEQ2PSK.

Using channel estimation aids the 16D TCM system more

than the 4D uncoded equivalent and knowledge of the channel



is more important for Q2PSK than for its constant envelope

counterpart.

VII. CONCLUSIONS

We have presented the performance of Q2PSK and its vari-

ants CEQ2PSK and 16D TCM CEQ2PSK in ideal bandlimited

channels with and without channel knowledge at the receiver.

We have noted that the effect of bandlimitation to 0.6/T , with

T the 2D signaling interval, results in a needed increase of

between between 1 dB and 1.7 dB in SNR for a BER of

10−5 if no channel estimation is used and around 0.5 dB if

knowledge of the channel is assumed. The best performance

among the systems studied is that of the 16 TCM CEQ2PSK

system which requires less than 6.8 dB of SNR for that BER

in the most severe bandlimitation, but requires a more complex

receiver.

Future work will include simulations of the contant envelope

4D and 16D systems in fading channels and in the nonlinear

satellite channel, where use of constant envelope systems

becomes most important. Use of pulses that have narrower

bandwidth such as those in [5] should also be evaluated

in bandlimited channels. Phase estimation algorithms along

with actual causal bandlimited channel models should be

incorporated. We will also perform the analysis of ISI/CISI

for Cartwright’s CEQ2PSK constellation, which is expected

to be less affected by interference than Saha’s.
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APPENDIX

The expressions for the filtered half-cosine and half-sine
pulses, p1f and p2f are presented here. Convolution of the
channel impulse response h(t) with the Q2PSK pulses yields:

p1f (t) =
1

2π
sin(ωαt) [Ci ((t− T ) (ωα + ωβ))+

−Ci ((t+ T ) (ωα + ωβ)) + Ci ((t+ T ) (ωβ − ωα))+

− Ci((t− T )(ωβ − ωα))] +

+
1

2π
cos(ωαt) [Si((t+ T )(ωβ − ωα)) +

− Si((t− T )(ωβ − ωα)) + Si((t+ T )(ωα + ωβ))+

− Si((t− T )(ωα + ωβ))] .

(14)

p2f (t) =
1

2π
sin(ωαt) [Si((t+ T )(ωα + ωβ))+

− Si((t− T )(ωα + ωβ)) + Si((t+ T )(ωβ − ωα))+

− Si((t− T )(ωβ − ωα))]+

+
1

2π
cos(ωαt) [Ci((t+ T )(ωα + ωβ))+

−Ci((t− T )(ωα + ωβ))− Ci((t+ T )(ωβ − ωα))+

+ Ci((t− T )(ωβ − ωα))] .

(15)

where ωα = π
2T

and ωβ = 2πB, and the cosine and sine
integrals, Ci and Si, are defined in (16):

Ci(x) = −

∞∫

x

cos t

t
dt, Si(x) =

x∫

0

sin t

t
dt. (16)
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