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 Abstract—This paper presents a TCM scheme that uses a new 
expanded 16-Dimensional Constant Envelope Q2PSK 
constellation along with a simple convolutional encoder of rate 
2/3. An effective gain of 2.67 dB over uncoded CEQ2PSK is 
achievable with low complexity, and without suffering from 
constellation expansion penalty. Larger coding gains are easily 
achieved with encoders of higher rates.  In addition, an optimal 
hardware implementation of the required decoders is described. 

Keywords—Multidimensional constellation, constant envelope, 
constellation expansion, trellis coded modulation, quadrature-
quadrature phase shift keying. 

I. INTRODUCTION 

Trellis-coded modulation schemes with multidimensional 
signals allow for performance improvement over classical two-
dimensional constellations. For example, in [1], [2] it was 
claimed that TCM systems with lattices of four-, eight-, or 16- 
dimensions achieve decent coding gains of 2 dB, 3 dB, or 6 
dB, respectively, over two-dimensional lattices but with a loss 
due to constellation expansion.  Indeed, the disadvantage of the 
constellation expansion required to introduce coding 
redundancy in standard TCM is the reduction of the minimum 
squared Euclidian distance (MSED) between points for a given 
energy level, or the increase of modulation level and energy for 
a given MSED [3].  

In [4], Saha and Arbor reported a set of signals that uses two 
data shaping pulses and two carriers which are pair-wise 
quadrature in phase to create a spectrally efficient four 
dimensional (4-D) signal set called Quadrature-Quadrature 
Phase Shift-Keying (Q2PSK).    

Acha and Carrasco [5] and Saha [6] utilize Saha’s standard 
4-D Q2PSK constellation for their TCM systems along with 
convolutional encoders of different rates.  These schemes, 
however, achieve some gains at the cost of data rate. In 
addition to the rate cost paid for using these schemes, and the 
care required in order to avoid catastrophic error propagation 
[5], some of the Q2PSK trellis codes proposed by Saha, Acha 
and Carrasco do not have constant envelope. Their constant 
envelope TCM systems are obtained by further reducing the 
data rate by half. 

During recent years, some work has been done in design of 
multidimensional signal sets that allow TCM to be 
implemented without constellation expansion penalty [3], [7], 
i.e., without increasing the modulation level.  Kaminsky, Ayo 
and Cartwright’s multidimensional TCM schemes of [3] are 
based on QPSK signals of even dimensions of eight and above. 
This family of constant envelope constellations is generated by 
concatenating n QPSK points or n QPSK points rotated by 45 
degrees (n ≥ 4) without any constellation expansion loss. In 
[7], a 16-D signal set with constant envelope was generated by 
concatenating four CEQ2PSK signals from Saha’s or four 
CEQ2PSK signals from Cartwright’s 4-D constellation. 
Therefore, the same idea of [3] is followed in [7] to introduce 
redundancy for coding without increasing the modulation level 
while preserving average and peak energies constant.   

Here, we use the constellation we proposed in [7] to 
implement a simple multidimensional TCM system that uses a 
convolutional encoder of rate 2/3 to achieve an asymptotic 
coding gain of 3 dB over uncoded CEQ2PSK. Because 
nonlinear channels require constant envelope signals, this 16-D 
CEQ2PSK-TCM system is a good option in channels that 
require non-linear power amplifiers.  Larger coding gains are 
easily achieved with this constellation by using higher-rate 
encoders. 

Additionally, a hardware detector (based on the demodulator 
described in [8]) for the 4-D CEQ2PSK discovered by 
Cartwright is proposed here.  The complete implementation of 
the TCM system is also given. 

The rest of this paper is organized as follows:  In Section II, 
a review of CEQ2PSK constellations and their decoders –
including presentation of our new hardware detector for 
Cartwright’s CEQ2PSK – is presented.  Section III presents the 
set-partitioning into eight sets required for the novel 16-D 
expanded CEQ2PSK constellation. Section IV discusses the 
TCM system implementation, and Section V reports the 
development of the TCM decoder. Results, including Monte 
Carlo simulations of the system proposed in this paper are 
presented and discussed in Section VI. Finally, in Section VII, 
conclusions are drawn and future work is mentioned, followed 
by references.   

A Trellis-Coded Modulation Scheme with a 
Novel Expanded 16-Dimensional Constant 

Envelope Q2PSK Constellation 
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II. REVIEW OF THE CONSTANT ENVELOPE Q2PSK 
CONSTELLATIONS  

In this section we discuss separately the two 4-dimensional 
constant envelope Q2PSK constellations, and the expanded 16-
dimensional Q2PSK constellation. 

A. 4-D Constant Envelope Quadrature-Quadrature Phase 
Shift-Keying (CEQ2PSK) 
In what follows, we review Saha’s original 4-D CEQ2PSK [9] 
and the 4-D CEQ2PSK, discovered by Cartwright [7]. An 
optimal decoder for the former was presented in [8] and a 
similar hardware decoder for the latter is proposed here. 
1) Saha’s 4-D CEQ2PSK  
Quadrature-Quadrature Phase Shift-keying (Q2PSK) and 
Constant Envelope Q2PSK (CEQ2PSK) signal sets were 
introduced by Saha and Birdsall in [9]. 

The four dimensional non-constant envelope Q2PSK may be 
defined as 

∑
=

=
4

1

)()()(
i

iiq tstatS ,                               (1) 

where the four signals {ai(t)},, i = 1, …, 4, each of duration 2T, 
are the original binary data streams, and the modulating signal 
set {si (t )}, i = 1, …, 4, is defined as follows [9]: 

 s1(t) = cos(πt/2T)cos(2πfct), |t| ≤ T                     (2a) 

          s2(t) = sin(πt/2T)cos(2πfct), |t| ≤ T                  (2b)                             

s3(t) = cos(πt/2T)sin(2πfct), |t| ≤ T                     (2c) 

                     s4(t) = sin(πt/2T)sin(2πfct), |t| ≤ T.                    (2d) 

The carrier frequency, fc, should be n/(4T) where n ≥ 2, and T 
is the time duration of 2 bits.  

In order to obtain constant envelope, Saha and Birdsall 
introduced an encoder of rate 3/4 that accepts three information 
serial input streams {a1(t), a2(t), a3(t)}, and generates a code 
word {a1(t), a2(t), a3(t), a4(t)} such that the first three bits in 
the codeword are the information bits and the fourth is an odd 
parity check bit [9]. Therefore, the eight possible transmitted 
signals for the original CEQ2PSK are S1 = [a, a, b, -b] and S2 = 
[a, -a, b, b], where a, b are either +1 or −1 [8]. It is also 
mentioned in [9] that CEQ2PSK is achieved at the expense of 
the information transmission rate which is reduced from 2/T to 
3/(2T). 

To obtain the maximum achievable performance of 
CEQ2PSK an optimal detector is needed. In [8], Cartwright and 
Kaminsky presented a CEQ2PSK hardware detector that 
reaches the performance of CEQ2PSK predicted in [9]. This 
decoder uses five hard-limiters, four adders, four absolute 
value circuits, two inverters, and a decision function that 
activates a trigger for a four-pole double-throw switch.  

2) Cartwright’s 4-D CEQ2PSK  
In [7], a new set of eight 4-D symbols that is also valid for 
CEQ2PSK was introduced. This new set has the same energy 
and distribution of squared distances as the original CEQ2PSK 

constellation from [9]. Cartwright’s symbols may be defined 
by an orthogonal transformation of Saha’s constant envelope 
symbols. Let R4 be the 4-D rotational operation [10]:  ܴସ = ቂܴ 00 ܴቃ,                                       (3) 
where R  is  ܴ = ൤cos (45°) െsin (45°)sin (45°) cos (45°) ൨.                         (4) 

Because the eight possible transmitted 4-D signals for 
Cartwright’s constellations are generated by rotating the 
component 2-D signals, the new CEQ2PSK points, S1r and S2r, 
corresponding to Saha’s S1 and S2 are: ଵܵ௥ = ܴସ ଵܵ,                                                 (5) ܵଶ௥ = ܴସܵଶ,                                            (6) 
or ଵܵ௥ = ሾ0, √2ܽ, √2ܾ, 0ሿ and ܵଶ௥ = ሾ√2ܽ, 0,0, √2ܾሿ, where 
a,b are either +1 or −1.  The proof that these eight symbols are 
also valid for CEQ2PSK is given in [7]. 

We now discuss the implementation of the optimal hardware 
detector for Cartwright’s constellation.  Fig. 1 depicts the block 
diagram of our proposed detector which closely resembles the 
receiver in [8], but uses a different decision function F(·), gains 
of magnitude √2, and requires four multipliers which may be 
implemented as electronic switches, if so desired.   

The received signal (ݐ)ݎ is the transmitted signal (ݐ)ݏ 
corrupted by additive white Gaussian noise (AWGN) ݊(ݐ) 
with power spectral density No: 

(ݐ)ݎ                                 = (ݐ)ݏ +  (7)                             (ݐ)݊
The block F(·) in Fig. 1 calculates መ݀  as in (8):  መ݀ = ଵଶ ሾsgn(ݓ െ (ݕ + 1ሿ ,                             (8) 

and therefore determines the estimated symbol መܵ = [â1, â2, â3, 
â4].  The values of w and y are given by (9) and (10), 
respectively: w = |a1r | + |a4r |,                                        (9)    y = |a2r | + |a3r |,                                       (10) 
and {air}, i = 1, …, 4 are the outputs of the correlation 
detectors.   
 If a member of S1r is transmitted, y = 2√2 and w = 0, but 
when a member of S2r is transmitted, w = 2√2 and y = 0. 
Therefore, when a member of S1r has been transmitted w <y 
and መ݀ = 0, but when w > y, a member of the S2r has been 
transmitted and መ݀ = 1. The output symbol, then, is obtained 
from (9): መܵ = መ݀ መܵଶ௥ + ൫1 െ መ݀൯ መܵଵ௥.                            (11) 

Our optimum hardware decoder is a direct implementation 
of                              â1r =  √2 sgn(a1r) መ݀                              (12a) 

                 â2r =  √2 sgn(a2r) (1 െ መ݀)                 (12b)                                                  â3r = √2sgn(a3r) (1 െ መ݀)                      (12c) 
     â4r = √2 sgn(a4r) መ݀,                              (12d) 

which follows from (11).  
In order to verify the performance of the demodulator, 

Monte Carlo simulations were performed and compared with 
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the optimum hardware detector published in [8]; these results 
are presented in Section VI.  

B. Novel 16-D Expanded CEQ2PSK Constellation 
If four consecutive 4-D points from either Saha’s or 
Cartwright’s CEQ2PSK constellation are taken together, a 16-
D signal is obtained. In this way, two sets of 4096 16-D 
symbols each, Sa for Saha’s or Sb for Cartwright’s, are formed.  
The expanded constellation, V, is defined as the union of these 
two constellations: 
                                 ܸ = ሼܵ௔ ∪ ܵ௕ሽ.                                     (13) 
 Our expanded 16-D CEQ2PSK signal set is therefore formed 
in a way similar to Kaminsky, Ayo and Cartwright’s expanded 
constellation of [3], but with different constituent signal points. 
Peak energy, average energy, and minimum squared Euclidian 
distance (MSED) is maintained while doubling the size of the 
constellation, so this set of 16-D symbols is obtained without 
any constellation expansion penalty. Because the four 
consecutive 4-D symbols must come from one or the other 4-D 
CEQ2PSK constellation, the set-partition for the TCM system 
cannot be performed exactly as is done when the expanded 
constellation is formed by the Cartesian product of the 
constituent constellations, as in [1]. In the next Section we 
present the set partition for the 16-D expanded constellation V. 

III. EXPANDED 16-D CEQ2PSK CONSTELLATION PARTITION  

TCM schemes require a proper set-partitioning of the 
constellation in order to increment the free distance of the 
code. In this section we show how the constellation V is 
partitioned into the eight subsets required by our simple TCM 
encoder.  We use {Ai}i =1, …, 4 to denote the four subsets formed 
from ܵ௔ and {Bi}i =1, …, 4 for the 16-D CEQ2PSK points from ܵ௕. 
The MSED within V is 8, but the intra-subset MSED within 

{Ai} or {Bi} is increased to 16. This allows us to achieve an 
asymptotic gain of 3 dB with just 8 subsets and a simple 8-
state convolutional encoder of rate 2/3.  To achieve larger 
gains, further partitioning is needed, along with a trellis with 
more states. 

First, each family Sa  and Sb is partitioned independently by 
using the method of Wei [1], as follows: The 4-D constituent 
points of the set Sa (the eight original CEQ2PSK signals of Saha 
[9]) {S1 ∪ S2} can be partitioned into eight sublattices named 
1,2,4,8,14,13,11,7 (to correspond to their binary values). The 
same is true for { S1r ∪ S2r }, the constituent 4-D points of the set 
Sb, but the eight sublattices are named 1r,2r,4r,8r,14r,13r,11r,7r. 
Now we have 16 4-D  sublattices  with  MSED  of  8;  these  
are  shown  in  Table I. 

Next, we group these 16 4-D sublattices into 8 groups of 
antipodal signals.  These groups are called Qi for Saha’s and Qir for Cartwright’s signals, and i = 1, …, 4. Table II shows 
these groups. At this point, we have reduced the number of 
sublattices from 16 to 8, and we have increased the MSED 
within Qi and Qir to 16. Each Q group has two 4-D signals. 

We now form the 8-D types by concatenating two 4-D Qi or 
two 4-D Qir  to obtain 32 8-D types with MSED of 8. These 32 
types are defined as Qij = [Qi, Qj] and Qijr  = [Qir,Qjr], i, j = 1, …, 
4. We now proceed to group the Qij and Qijr  into eight 8-D sets 
Wi and Wir of 16 points each, such that the intra-set MSED is 
equal to 16. This grouping is shown in Table III. 

To proceed further, from the W  types we construct the 16-D 
sublattices by concatenating two 8-D types: Wij = [Wi,Wj], and Wijr = [Wir,Wjr], i, j =1,…,4. These 32 16-D sublattices have 
MSED of 16 and 256 points each.   

Finally, these 16-D Wij and Wijr  sublattices are grouped into 
the eight subsets {Ak},{Bk}, k = 1, …, 4. Table IV shows how 
the Wij and Wijr are grouped. These subsets still have MSED of 
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A3 
A2 A4 B1 B3 B2 B4

W12 W23 W34 W41

z0=1

{A1,A2,A3,A4} U  {B1,B2,B3,B4}

z0=0

z1=0 

z2=0 
z2=1

z1=1 z1=1z1=0 

z2=0 z2=0 z2=0z2=1 z2=1 

b8=0 

b9=0 b9=0

b8=1

A1  

W11 W44 W22 W33 

b8=0 

b9=0 b9=0 

b8=1 

b9=1 b9=1 b9=1b9=1 

Fig. 2:  Partition of the 16-D Constant Envelope Q2PSK constellation V. 

16-D ڮڮ
16, contain 1024 points each, and they are required for the 
TCM system that uses a convolutional encoder of rate 2/3.  
Fig. 2 shows a tree diagram of the set partitioning.   

IV. TCM SYSTEM IMPLEMENTATION  
Our multidimensional TCM system uses one of Ungerboeck’s  
feedback  convolutional encoders from [11]. It has rate 2/3 and 
constraint length 3 and is shown in Fig. 3.  Remember that our 
TCM system has a CEQ2PSK modulator over four consecutive 
modulation time intervals, each of duration 2T. 
 Fig. 4 depicts the complete 16-D CEQ2PSK-TCM system. 
Two of the 12 bits of information, (b10, b11), arriving every four 
signaling intervals enter the convolutional encoder to produce 

Table I:  The 4-D CEQ2PSK points  S1 ∪ S2 Saha’s  S1r ∪ S2r Cartwright’s1 -1  -1  -1   1 1r 0 -√2 -√2 02 -1  -1   1  -1 2r 0 -√2 √2 04 -1   1  -1  -1 4r -√2 0 0 -√28 1  -1  -1  -1 8r √2 0 0 -√214 1   1    1  -1 14r 0 √2 √2 013 1   1  -1    1 13r 0 √2 -√2 011 1  -1   1    1 11r √2 0 0 √27 -1   1   1    1 7r -√2 0 0 √2
Table II: Grouping of the 4-D constituent points into sets of antipodal 

signals 
        Saha’s Q       Cartwright’s Qr  ܳଵ = ሼ1; 14ሽ   ܳଵ௥ = ሼ1௥; 14௥ሽ   ܳଶ = ሼ2; 13ሽ   ܳଶ௥ = ሼ2௥; 13௥ሽ   ܳଷ = ሼ4; 11ሽ   ܳଷ௥ = ሼ4௥; 11௥ሽ ܳସ = ሼ8; 7ሽ ܳସ௥ = ሼ8௥; 7௥ሽ 

Table III: 8-D groups W 
Saha’s W Cartwright’s Wr ଵܹ = ሼܳଵଵ; ܳଶଶ; ܳଷଷ; ܳସସሽ ଵܹ௥ = ሼܳଵଵ௥; ܳଶଶ௥; ܳଷଷ௥; ܳସସ௥ሽଶܹ = ሼܳଵଶ; ܳଶଷ; ܳଷସ; ܳସଵሽ ଶܹ௥ = ሼܳଵଶ௥; ܳଶଷ௥; ܳଷସ௥; ܳସଵ௥ሽ ଷܹ = ሼܳଵଷ; ܳଶସ; ܳଷଵ; ܳସଶሽ ଷܹ௥ = ሼܳଵଷ௥; ܳଶସ௥; ܳଷଵ௥; ܳସଶ௥ሽସܹ = ሼܳଵସ; ܳଶଵ; ܳଷଶ; ܳସଷሽ ସܹ௥ = ሼܳଵସ௥; ܳଶଵ௥; ܳଷଶ௥; ܳସଷ௥ሽ 

Table IV: Final grouping of the 16-D CEQ2PSK signals 

three coded bits (z0, z1, z2). The output of the convolutional 
encoder selects one of the eight subsets obtained in Section III, 
Ak or Bk. Two other uncoded bits (b8, b9) select one of the Wij 
or Wijr types from within the selected group.  Fig. 2 shows the 
mapping of these five bits to some of the 16-D subsets. 

Finally, the rest of the information bits (b0 through b7) select 
one of the 256 points from within the selected 16-D Wij or Wijr 
types. The selected signal (ݐ)ݏ is transmitted.  In the next 
Section we discuss the required decoding for the modulation 
scheme aforementioned.  

V. TCM DECODING  
In our TCM system, the received signals, corrupted by noise, 
are decoded by using a soft-decision maximum-likelihood 
sequence decoder [12]. We use the Viterbi decoding  algorithm 
[13], [14] to search the trellis and find the most likely paths, 
given the received sequence of subsets.  The trellis is shown in 
Fig. 5 with the subset assignment given in the usual top-down 
fashion. Because our convolutional encoder has a constraint 
length of 3 and rate 2/3, a decoding depth of 24 was used in the 
decoder implementation [14].  

Fig. 6 shows a simplified block diagram of the decoder used 
in our 16-D CEQ2PSK-TCM system. The noisy signal, r(t),  
goes simultaneously to the decoders for Saha’s and 
Cartwright’s CEQ2PSK, but without implementing the 
hardlimitting operations. These soft 16-D output symbols are 
the input to the VA decoder.  

The mapping from input symbols to output bits is performed 
as follows: First, the VA estimates the most likely of the state 
transitions and the corresponding subset for that transition after 
24 16-D intervals of modulation; therefore, by using the state 
transitions and the subset, the two information bits (b10,b11) can 
be decoded. Finally, the other 10 bits are obtained by using a 
look-up table of 1024 rows, corresponding to the 1024 symbols 
in the estimated subset.  

 

Saha’s A Cartwright’s B ܣଵ = ሼ ଵܹଵ; ଶܹଶ; ଷܹଷ; ସܹସሽ ܤଵ = ሼ ଵܹଵ௥; ଶܹଶ௥; ଷܹଷ௥; ସܹସ௥ሽܣଶ = ሼ ଵܹଶ; ଶܹଷ; ଷܹସ; ସܹଵሽ ܤଶ = ሼ ଵܹଶ௥; ଶܹଷ௥; ଷܹସ௥; ସܹଵ௥ሽܣଷ = ሼ ଵܹଷ; ଶܹସ; ଷܹଵ; ସܹଶሽ ܤଷ = ሼ ଵܹଷ௥; ଶܹସ௥; ଷܹଵ௥; ସܹଶ௥ሽ ܣସ = ሼ ଵܹସ; ଶܹଵ; ଷܹଶ; ସܹଷሽ ܤସ = ሼ ଵܹସ௥; ଶܹଵ௥; ଷܹଶ௥; ସܹଷ௥ሽ 

z0

z1

z2

b10

b11

Fig. 3: Convolutional encoder of rate 2/3. 
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VI. RESULTS 

We divide this Section into three parts. First, we discuss the 
results of our proposed hardware detector for Cartwright’s 4-D 
CEQ2PSK constellation, presented in Section II.  Then we 
present the analysis of the gains for our coded 16-D 
CEQ2PSK-TCM system over the uncoded reference CEQ2PSK 
system (Sa or Sb), and the required information about the 
distance distribution of the appropriate constellations.  Finally, 
we present and briefly discuss the simulation results which 
corroborate our analysis. 

A. Results for the Hardware Detector for Cartwright’s 4-D  
Q2PSK Constellation 
Fig. 7 shows the performance of our hardware detector for 
Cartwright’s 4-D CEQ2PSK constellation in terms of 
probability of bit error versus bit signal to noise ratio (Eb/No), 
with Eb the energy per information bit and No the spectral 
density of the Additive White Gaussian Noise (AWGN).  The 
markers indicate simulation results and the line shows the 
theoretical results [8].  Monte Carlo simulations for our 
hardware decoder were run until 50 errors were counted and 
match the results reported in [8] for the standard CEQ2PSK 
signal set detector and also match the theoretical results.  
B. Distance Properties, Coding Gains and Complexity 
Table V lists the smallest twelve squared Euclidian distances 
(SED) of the expanded CEQ2PSK constellation. Table VI 
shows the SED distribution of the partitioned constellation. 
The columns labeled ݀௞ଶ represent the SED, and the values in 
the column named N(dk) are the number of points at SED ݀௞ଶ. 
The MSED for the uncoded constellation (CEQ2PSK) is ݀௨ଶ = 8, and has Nu = 24 points at that distance.  The free 
distance of our simple TCM system is given by the parallel 
transitions in the trellis and is ݀௖ଶ = 16 with an error 
coefficient (in 16-D) of Nc = 76.  These values determine the 
asymptotic gain of the coded system  [11], [12]: ܩ௔ = 10 logଵ଴ ቀௗ೎మௗೠమቁ,       (14) 

which yields to 3.01 dB because the squared free distance is 
doubled.  However, we also have to take into consideration the 
loss caused by the number of neighbors at MSED [3], [10]; this 
loss normalized to 2-D, λ, is [8]: ߣ = ୪୭୥భబቀಿ೎ಿೠቁ୪୭୥భబ(ଷଶ) ,         (15) 

which gives a loss of 0.33 dB for our code.  The effective gain 
is therefore ߛ௘௙௙ = ௔ܩ  െ ߣ = 2.67 dB. Higher gains are 
possible with encoders of higher rate; the achievable 
asymptotic gains are also listed in Table V. 

Table V: SED of the expanded 16-D CEQ2PSK ݀௞ଶ ܩ௔ (݀ܤ) ݀௞ଶ ܩ௔ (݀ܤ) 
8.000 − 26.343 5.17 
9.373 − 32.000 6.02 

15.029 − 37.657 6.73 
16.000 3.01 40.000 6.99 
20.686 4.13 43.314 7.34 
24.000 4.77 48.000 7.78 

Table VI: SED distribution after set-partitioning 

Subsets Ai  or Bi  ݀௞ଶ ܰ(݀௞ ) 
16 76 
24 192 
32 486 
40 192 
48 76 
64 1 
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Fig. 5: Eight-state trellis and subset to branch assignments used 
for our CEQ2PSK-TCM system. 
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 The decoding complexity of the TCM system presented 
here, as defined by Wei in [1], is 8 = ߚ. 

C. TCM System Simulation Results 

The performance of our multidimensional TCM system was 
corroborated by using Monte Carlo Simulations; 20 errors are 
counted before the simulation stops.  Fig. 8 shows the results in 
terms of bit and symbol error probabilities versus signal to 
noise ratio (SNR) for the reference uncoded 16-D CEQ2PSK 
and the trellis-coded 16-D system that uses the expanded 
CEQ2PSK constellation and decoding depth of 24.  
Comparison of the curves corresponding to the coded and 
uncoded probabilities of symbol error indicates that the 
effective gain of 2.67 is not yet achieved at a SNR of slightly 
over 8 dB; the gain, however, increases with increasing SNR, 
and also with increasing decoding depth.  The gain in bit error 
rate (BER) is slightly less because it cannot be guaranteed that 
a single bit is in error if a symbol is in error; as SNR increases, 
the likelihood of a single bit error per symbol error increases, 
so the bit and symbol probability of error curves tend to merge 
at large SNR. 

VII. CONCLUSIONS AND FURTHER WORK 

The main contribution of this paper was to show the design of 
a TCM system using an expanded 16-D CEQ2PSK 
constellation that allows the introduction of 1 bit of 
redundancy without constellation expansion penalty. We used 
a simple convolutional encoder of rate 2/3 to achieve an 
effective gain of 2.67 dB while maintaining constant envelope 
and without reducing the bandwidth efficiency over the 
uncoded CEQ2PSK reference system.  Considerably higher 
gains may be obtained with the same constellation by using 
more complex encoders.  We also presented a hardware 
detector for Cartwright’s 4-D Q2PSK constellation which was 
shown to be optimum. 

Future work will include an analysis of the actual bandwidth 
efficiency of the system.  The effects of non-linearities in the 
channel will be incorporated into the study, and the 
performance in fading channels will also be evaluated. 
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Fig. 7: Probability of bit  and symbol error vs. Eb/No for our hardware 
detector for Cartwright's 4-D CEQ2PSK Constellation. 

Fig.8: Bit and symbol error probabilities as a function of Eb/No for 
coded and uncoded 16-D CEQ2PSK  systems 
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