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Abstract 

 
 

Early transition-metal oxyhalides, (MCl)LaNb2O7 (M = V, Cr) have been prepared by ion 

exchange of layered perovskite hosts, ALaNb2O7 (A = Li, Rb), with anhydrous metal halides, 

MCl2. These compounds contain low-valent metals (M2+) that are receptive to oxidation. 

Thermogravimetric analysis (TGA) shows oxygen uptake at low temperatures (< 500 °C) and 

subsequent X-ray powder diffraction indicates that the host structure is maintained upon 

oxidation. Also through EDAX of the starting material and products, it has been found that there 

is a loss of chlorine upon oxidation. Thorough characterization of oxidation products will be 

presented and the ramifications of this chemistry on low-temperature topotactic formation of 

metal-oxide layers within perovskite hosts will be discussed 
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Introduction 

   
Perovskite compounds have been extensively studied in the past decade due to the great 

potential of the developmental properties of their structures.  At the heart of their unique 

properties is their lattice geometry that consists of an octahedral interstice. These structures 

consist of 12-coordinated A+2 atoms on the corners of a cube, octahedral oxygen ions on the 

faces, and tetrahedral B+4 ions in the center.1 The structure is capable of incorporating a large 

number of rare ores such as tantalum and niobium.2   The general chemical formula for an oxide 

perovskite is ABO3.3 The name comes from the mineral CaTiO3 which exhibits this structure. 

The following is the structure of CaTiO3 : 4 

 

 

Figure 1:  CaTiO3 

In this structure the calcium ions reside at the corners of the unit cell, while the titanium 

ion sits in the center of the cell surrounded by the oxygen ions located in the middle of each of 

the six planes.5 In this example, the central cation is the titanium ion, which causes a net dipole 

moment when it is displaced.6 This displacement of the central cation is what gives the 

perovskites their interesting properties.7                                                                                                                     
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The physical properties of perovskite materials are diverse, including ferroelectric, 

piezoelectric, and superconducting properties that attract much interest in the material science 

field.8 The perovskite structure accommodates most of the metallic ions in the periodic table and 

a significant number of different anions.9 The majority of the perovskite compounds are oxides 

or fluorides, but the perovskite structure is also known for the heavier halides, sulfides, hydrides, 

cyanides, oxyfluorides and oxynitrides.10  These structures have the property that the central 

atom does not have contact with its coordination neighbors. This gives the structure the property 

of ferroelectricity. Possibly related to the structure's ferroelectricity is that many superconductors 

have the perovskite structure.11  

Superconductors are materials that have no resistance to the flow of electricity. Not only 

have the limits of superconductivity not been reached, but also the theories that explain 

superconductor behavior are constantly under review.12 The 1-2-3 superconductor has a structure 

similar to the perovskite structure and has an observed superconductivity at 93 K. The resulting 

unit cell consists of three stacked cubic unit cells; it is considered to be orthorhombic rather than 

cubic, having an almost square base but rectangular sides.13 

 

Figure 2:  YBa2Cu2O7-x   
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The development and research of this and many other pervoskite structures may lead to 

superconductors functioning at even higher temperatures, perhaps above 200K.14  

 Dion-Jacobson layered pervoskites have become of great interest due their topochemical 

manipulations, ion exchange, 15 and intercalation properties .16 These A-site ordered compounds 

are of general formula A’[A n-1 Bn O 3n+1] where A’ = alkali metal, A= rare earth or alkali earth 

metal  and B= transition metal and n= the number of perovskite layers.17,18  The structures of  

Dion-Jacobson layered compounds are composed of two-dimensional slabs of corner-shared 

octahedra with the arrangement dependent upon the size of the A’ cations in the inter-slab 

region.18  They contain A-site ordered cations and only one sheet of inter-slab A-cations..  A 

typical structure of these compounds is shown below: 19 

 

Figure 3: Structure of Dion-Jacobson compounds 
 
The lower inter-slab alkali metal density promotes ion exchange compared to Ruddlesden-

Popper compounds  of general formula A2’[A n-1 Bn O 3n+1]  which consist of an extra slab of 

inter-slab A-cations.20  The coordination of these inter-slab A’-cations varies with the ionic 

radius of the alkali  metal. 21  This coordination increases from 4-fold for Li and Na, 6- fold for 

K, to 8-fold for Rb and Cs. Therefore the Li , Na, and K  members occupy only 50% of the 

crystallographic A sites, while the Cs and Rb members are eight fold coordinated to the apical 
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oxygens of the Nb(Ta)O6 octahedra with all the A sites occupied. 22   The double-layered 

pervoskites used for this research are RbLaNb2O7 and LiLaNb2O7. 

 The ability of  Dion-Jacobson compounds to be topochemically manipulated to achieve 

thermodynamically stable compounds has aroused great interest.  A topochemical reaction is a 

reaction driven by the crystal structure rather than by the chemical nature of the reactants. 23 

These compounds have been the subject of many investigations because of the ease in which ion 

exchange or intercalation occurs. 24   Ion exchange and intercalation are low temperature methods 

that are known to generate metastable compounds. These reactions are often reversible. 25  In ion 

exchange reactions,  there is a weakly bonded species that can be substituted by another species.  

In intercalation reactions, there are ions or molecules being inserted within the layers.26 

The Dion Jacobson compounds have been demonstrated to coexchange both cations and 

anions to form (MX)LaNb2O7 compounds where M= first row transition metal and X = halide , 

usually, Cl. 27  In this research, early transition-metal oxyhalides, (MCl)LaNb2O7  (M = V, Cr) 

have been prepared by ion exchange of the layered perovskite hosts, ALa Nb2O7 (A = Li, Rb), 

with anhydrous metal halides, MCl2.
 28 These compounds contain low-valent metals (M

2+
) that 

are receptive to oxidation. The synthesis and structural characterization upon oxidation of  these 

(MCl)La Nb2O7 (M = V, Cr) will be presented.   
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Experimental 

 
 
Synthesis of RbLaNb2O7 and LiLaNb2O7 
 

The Dion Jacobsen perovskite host compound, RbLaNb2O7, was synthesized from 

Rb2CO3 (Alfa, 99%),  La2O3 (Alfa, 99.99%) ,and Nb2O5 (Alfa, 99.9985%),  by the following 

reaction: 

½  Rb2CO3 + ½  La2O3 + Nb2O5 →  RbLaNb2O7  +  ½  CO2 

Reaction 1 

A 25 % molar excess of  Rb2CO3 was used in order to accommodate for the loss of Rb2O due to 

volatilization.  La2O3 was heated  for 24 hours at  1050° C   in order to remove any carbonates or 

water impurities. The reactants were grinded and placed in a porcelain crucible and heated for 24 

hours at 1050° C.  It was then reground and heated for an additional 24 hrs at 1050 °C. The 

product was washed with distilled water and acetone to remove any excess impurities and dried 

at 100 °C for 10 hours.  X-ray diffraction was used to confirm the presence of the desired 

product.  Once RbLaNb2O7 was made an ion exchange reaction was performed on RbLaNb2O7 in 

order to make another similar perovskite host, LiLaNb2O7.  20, 29 

 
RbLaNb2O7 + LiNO3   →   LiLaNb2O7  + RbNO3 

Reaction 2 

      RbLaNb2O7  and  anhydrous LiNO3, in a 10:1 molar ratio, were grinded and placed in a 

porcelain crucible and heated for 24 hours at 300 °C.29 The product was washed with warm 

distilled water and acetone in order to remove excess RbNO3  from the compound. After the 
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product was dried at 100 °C for 12 hours, x-ray diffraction was used to confirm the ion exchange  
 
of the rubidium with lithium in the host compound.  The following x-ray diffraction pattern  
 
shows RbLaNb2O7 and LiLaNb2O7 : 

 

Figure 4:  X-ray scan of RbLaNb2O7 and LiLaNb2O7 

 

All powder x-ray diffraction data collected for this and further experiments were taken on a 

Philips X-Pert PW 3020 MPD X-ray diffractometer.  It contains a graphite monochromator and 

Cu Kα radiation with a wavelength of 1.5418 Ǻ. A step-scanning mode was used between 5 and 

95°  at 2θ  with a 10 s count time. 

 

Synthesis of (MCl)LaNb2O7 

The RbLaNb2O7 and LiLaNb2O7 pervoskites were used as the host compounds in order to 

prepare (MCl)LaNb2O7  by an ion exchange reaction. The ion exchange reaction between the 

anhydrous transition metal halide and the double-layered perovskite can be shown as follows in 

figure 5: 29  
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Figure 5: Ion-exchange Reaction 

where A is the alkali metal (Li, Rb) and M is the transition metal (V, Cr) and X is the halide (Cl).  

The specific reaction for making (CrCl)LaNb2O7 and (VCl)LaNb2O7  is shown as follows: 

 

RbLaNb2O7  + MCl2 → (MCl)LaNb2O7  + RbCl 
Reaction 3 

 

The metal chloride has to be anhydrous in order to prevent the oxidation of the transition metal.30 

In this case the transition metals used are vanadium and chromium. It was found that the CrCl2 is 

extremely moisture sensitive compared to the VCl2, therefore careful attention was given to 

prevent these compounds from having exposure to air. The host compound and the metal 

chloride are combined in a 1:2 molar ratio.  The mixture is ground and pressed into a pellet in an 

argon filled dry box.  It is then sealed in an evacuated Pyrex tube and placed in a tube furnace for 

thermal treatment for approximately 6 to 14 days depending on the reactants. The products were 

washed in distilled water and/or absolute ethanol depending on the metal and dried at 100 °C  for 

24 hours. X-ray data were then obtained in order to tell if successful reactions occurred.  

   (CrCl)LaNb2O7  was prepared from LiLaNb2O7 using CrCl2 according to the following 

reaction 31:   
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 LiLaNb2O7  + CrCl2 → (CrCl)LaNb2O7  + LiCl 

Reaction 4 

Some of the starting material and unreacted CrCl2 still existed in the final product according to 

the x-ray data. The following reaction was also attempted to make  (CrCl)LaNb2O7 :  

RbLaNb2O7  + CrCl2 → (CrCl)LaNb2O7  + RbCl 

Reaction 5 

Initial attempts to prepare (CrCl)LaNb2O7  from RbLaNb2O7 were unsuccessful with the 

products consisting of unreacted starting materials.  These attempts were made with x-ray data 

taken at various time periods between 6 to 14 days with little or no signs of a completed reaction 

after 2 weeks. A sample of the x-ray data from these attempts are shown below: 

 

 

 

 

 

 

 

 

 

 

Figure 6: X-rays of  (CrCl)LaNb2O7  and RbLaNb2O7 

 

The x-ray diffraction pattern for  (CrCl)LaNb2O7  contained the same peaks as RbLaNb2O7, 

which confirmed the unsuccessful reaction.  
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A variation in the temperature, time, and molar ratios were investigated in order to form a 

pure  (CrCl)LaNb2O7  product from LiLaNb2O7 and CrCl2. So far the best final product was 

achieved in 6 days at 420°C in a 1:2 molar ratio. At higher temperatures the reaction was faster 

but the product was contaminated with secondary phases. When the molar ratio of LiLaNb2O7 

and CrCl2 was increased to 1:3 the product mainly consisted of the unreacted starting materials.  

The estimated unit cells for (CrCl)LaNb2O7 and the starting compound LiLaNb2O7 obtained from  

the x-ray data are shown in the following table: 

 

Table 1:  Unit cells for (CrCl)LaNb2O7 

 

As shown in the above table, there is a slight expansion in the unit cell in going from  

LiLaNb2O7 to (CrCl)LaNb2O7 which contributes to the at least some of the reaction had taken 

place with the chromium cations being inserted between the apical oxygens of the perovskite 

blocks as was shown in figure 3.  

(VCl)LaNb2O7  could be prepared from RbLaNb2O7  and VCl2 according to the following 

reaction19:  

                     RbLaNb2O7  + VCl2 → (VCl)LaNb2O7  + RbCl                                                             

Reaction 6 

Like (CrCl)LaNb2O7, some of the starting materials and unreacted metal halide still 

existed in the final product in attempting to synthesize (VCl)LaNb2O7.  The best final product 

 a c
(CrCl)LaNb2O7  3.8129 Å 11.1961 Å

LiLaNb2O7 3.7556 Å 10.0598 Å
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was achieved in 7 days in a 1:2 molar ratio. A sample of the x-ray data for (VCl)LaNb2O7  is 

shown below in figure 7: 

 

 

 

 

 

 

 

 

 

 

Figure 7: X-rays of  (VCl)LaNb2O7.and RbLaNb2O7 

 

The reaction was attempted in an argon filled dry box with the reactants being grinded 

and pressed into pellets and left as a powder.  Both forms of the reactants were evacuated and 

sealed in separate Pyrex tubes and heated in a tube furnace at various reaction times and 

temperatures.  The above x-ray shows similar results obtained at 420°C  in 7 days for both the 

powder and pellet forms of the reactants to obtain (VCl)LaNb2O7 . Both samples were washed 

with distilled water and ethanol and dried at 100 °C for ~ 12 hours.  The estimated unit cells 

obtained for (VCl)LaNb2O7  and the starting compound RbLaNb2O7  from x-ray data are shown 

in the following table: 
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 a c 

(VCl)LaNb2O7 3.8783 Å 11.5561 Å 

RbLaNb2O7 3.6057 Å 10.6525 Å 

 

Table 2: Unit cells for  (VCl)LaNb2O7.and RbLaNb2O7 

 

Table 2 shows that there is a slight expansion in going from  RbLaNb2O7  to 

(VCl)LaNb2O7.   This contributes to that at least part of the reaction took place within the 

compound.  (VCl)LaNb2O7  was also attempted to be made from LiLaNb2O7 in the following 

reaction: 

LiLaNb2O7  + VCl2 → (VCl)LaNb2O7  + LiCl 

Reaction 7 

This produced results similar to what has been presented with best results occurring at  420°C  in 

6 days. 

The stability and oxidizing ability of these compounds were studied using 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).   The 

(CrCl)LaNb2O7 and (VCl)LaNb2O7 compounds underwent TGA and DSC under an oxygen 

atmosphere.  A TA Instruments Thermal Analyst-200 system was used with a temperature range 

varying between 25 to 800 °C.  Also Energy Dispersive Spectroscopy, EDS, was also used to 

further characterize the TGA data. The ability of the (MCl)LaNb2O7  compounds to 

accommodate additional species within the pervoskite layers were also tested.   

The use of reductive intercalation of various metals such as Na, K, and Cs was performed 

on the best attained (CrCl)LaNb2O7 and (VCl)LaNb2O7 compounds.  These reactions were 

performed using a 1:10 ratio of the  (MCl)LaNb2O7  compounds and the metals. They were 
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prepared in a way to allow the metal to never actually touch the (MCl)LaNb2O7  compound in an 

argon filled dry box. The reactions took place in evacuated and sealed Pyrex tubes and 

underwent thermal treatment with allowed reaction times varying from 24 hours to 3 days. 

Also a chlorine treatment on these compounds at room temperature was also performed 

using a continuous flow of chlorine to the to (MCl)LaNb2O7 compounds with allowed reaction 

times varying between  1 to 24 hours.  The chlorine treatment was done to test the ability of the 

(MCl)LaNb2O7 compounds to accommodate additional chlorine within the pervoskite layers.   

Differential Scanning Colorimetry (DSC) was also performed on the (MCl)LaNb2O7 

samples in order to obtain information on their thermal stability. An oxygen and an argon gas 

flow was used on a Netzsch 404S thermal analysis system. Powder samples of the 

(MCl)LaNb2O7 was used and placed in alumina pans.  The samples were heated at a rate of      

10° C per minute. 
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Results and Discussion 
 
 
 Studies were done on the (CrCl)LaNb2O7  and (VCl)LaNb2O7  compounds in order to see 

if oxygen can be inserted within the layers of these compounds without the collapse of the 

overall structure.  Thermogravimetric Analysis (TGA) was used in order to measure the change 

in weight of the compound as a function of temperature under an oxygen gas flow.  The 

compound was heated from room temperature to 800 °C at a rate of 10 °C  per minute with a 

continuous flow of oxygen to the compound.  The following is a sample of a TGA for the  

(CrCl)LaNb2O7  compounds.  

(CrCl)LaNb2O7
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Figure 8: TGA for (CrCl)LaNb2O7   
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As shown in the TGA data there is initially a small decrease in weight upon heating which may 

be due to a loss of water within the compound. The compound then maintains a steady weight 

until about 270 °C where it then starts to gain weight. Finally at 500 °C the compound has a 

steady weight loss due to the decomposition of the compound.  This is supported by the XRD 

data taken at the end of the TGA experiment.  

EDS, Energy Dispersive Spectroscopy, was used to try to determine what was 

contributing to the weight changes of the compound in the TGA results.  EDS results were taken 

of the (CrCl)LaNb2O7 compound before and after the TGA experiment. Also, isotherm TGAs 

were done at 300, 400, 500, and 600 °C in order to obtain a better understanding of what is 

happening in the chromium system upon heating under a oxygen gas flow.  The following shows 

the chromium and chlorine content in the compound to the EDAX results at room temperature an 

and after each isotherm TGA at the various temperatures:  

Figure 9:  Chromium and Chlorine content in (CrCl)LaNb2O7 
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The results show a significant loss in chlorine from the starting compound at room 

temperature with only ~5% of chlorine left in the compound upon completion of the isotherm 

TGA at 600°C.  A possible explanation for this is that the oxygen is replacing the chlorine within 

the host structure. The chromium content decreased slightly in comparison to the content at room 

temperature and at 300° C.  The chromium content was around the same amount for each of the 

isotherm TGAs at  300, 400, 500, and 600 °C  when one takes into account possible error.  These 

are promising results indicating that the host structure is being maintained throughout the TGA 

experiments.  The following is the proposed reaction for the insertion of oxygen in the 

(CrCl)LaNb2O7  compound: 

(CrCl)LaNb2O7  +  x/2 O2 →    (CrOxCl1-y) LaNb2O7   +  y/2 Cl2 
Reaction  8 

 
 
It is also possible that the following reaction could also be occurring: 

 
(CrCl)LaNb2O7  +  x/2 O2 →    (CrOx) LaNb2O7   +  ½ Cl2 

Reaction  9 

In reaction 9, the oxygen has taken the place of all the chlorine within the compound.   The EDS 

results favors reaction 8. 

The vanadium system produced a much different TGA than the one for the chromium 

system as shown below: 
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Figure 10: TGA of (VCl)LaNb2O7 

 

There is a significant decrease in weight upon heating of the (VCl)LaNb2O7 until 380 °C. This 

decrease is then followed by a significant increase until the decomposition of the compound at 

550 °C.  EDS results show a depletion of all the chlorine in the  (VCl)LaNb2O7  after the TGA. 

The following is the proposed reaction for this system: 

 

(VCL)LaNb2O7  +  x/2 O2 →    (VOx)LaNb2O7+  ½ Cl2  

Reaction 10 

   It was also noticed in the EDAX results a lost of vanadium in the compound upon 

heating. Isotherm TGAs at 300, 400, 500, and 600 °C were done in order to get a better 

understanding of what is happening in the vanadium system upon heating. EDAX were taken of 

each compound after each TGA experiment.  The following shows the vanadium and chlorine 

content in the compound according to the EDAX results after each TGA: 
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Figure 11: Vanadium and Chlorine content in (VCl)LaNb2O7   

 

There is a loss of vanadium and chlorine in the compound as the temperature was increased.  

There was a depletion of all the chlorine within the sample and a lost of ~ 63% of the vanadium 

within the compound during the isotherm TGA at 600 °C.  Due to the EDS results the following 

reaction, 

(VCl)LaNb2O7  +  x/2 O2 →    (VOxCl1-y) LaNb2O7   +  y/2 Cl2 

Reaction 11 

may occur before the decomposition of the compound and the depletion of all the chlorine within 

its structure. Reaction 11 shows that chlorine remains in the (VCl)LaNb2O7 compound which is 

opposite from the data obtained from EDS  after the isotherm TGA at 600 °C. This indicates that 

reaction 10 is the possible overall reaction for the thermogravimetric analysis of (VCl)LaNb2O7. 
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These results, along with the  XRD data, indicates a collapse of the structure of the starting 

(VCl)LaNb2O7 compound. The following shows the XRD data of the compound at room 

temperature and after each isotherm TGA: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: X-rays of (VCl)LaNb2O7 at various temperatures 

 
As the temperature is increased there is a loss of peaks in the XRD data indicating a lost of 

cystallinity within the structure leading to its decomposition.  In the XRD data for the isotherm 

TGA at 600 °C there is a reappearance of peaks possibly due to the formation of new compounds 

such as LaNb2O4 and VNbO4. These results signify that the vanadium system is not a viable 

candidate for oxidative intercalation.  

 Further analysis was done on the chromium and vanadium systems in order to see if other 

species besides oxygen could be inserted within the layers. Thermogravimetric analysis was 

done on the (CrCl)LaNb2O7  and (VCl)LaNb2O7 compounds with argon as the flowing gas.  All 

results produced show a steady decomposition of the structure as the temperature increased.  

Reductive intercalation with the metals Na, K, and Cs produced XRD results that were identical 
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to the starting compound. This indicated that these reactions were unsuccessful demonstrating 

that the is compound unable to accommodate these metals within its structure. Also chlorine 

treatment of the samples for 1, 3, and 6 hours at room temperature of the (CrCl)LaNb2O7  and 

(VCl)LaNb2O7 compounds also produced identical XRD results to the starting compound which 

also indicates that no reaction has taken place. The following figure shows the XRD data for the 

starting compound LiLaNb2O7, (CrCl)LaNb2O7, (CrCl)LaNb2O7 after chorine treatment for 1 

hour, and (CrCl)LaNb2O7 after thermogravimetric analysis to 800°C: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
Figure 13: X-rays of  LiLaNb2O7 and (CrCl)LaNb2O7 after different experiments 
 

These results show identical XRD data for (CrCl)LaNb2O7 before and after chlorine treatment.  

In comparing the XRD results for (CrCl)LaNb2O7 and the same compound after the 

thermogravimetric analysis to 800 °C there is a lost of crystallinity. This indicates a 

decomposition of the (CrCl)LaNb2O7 after the TGA experiment. The DSC measurements for the 
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(MCl)LaNb2O7 compounds showed exotherms at ~ 750 °C. It has been shown that these 

exothermic decompositions indicates that the (MCl)LaNb2O7 compounds are metastable20.  
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Conclusions 
 
 

The ability of Dion-Jacobson compounds to form metal-chloride networks with vanadium 

and chromium within the pervoskite layers are promising. An improvement of synthesizing a 

pure (CrCl)LaNb2O7  and (VCl)LaNb2O7  systems is needed in order to further understand their 

properties and structural changes.   Understanding the principles that control the formation and 

the stabilization of these compounds will allow for further development of new compounds with 

the same properties.  The oxidation chemistry of the chromium system indicates the possibility 

of creating new compounds by the manipulation of the host structure. Also further analysis 

results show the host compound as very sensitive to the species that is trying to be inserted 

within the layers.  This is most likely due to the size of the new species. The expansion of this 

oxidative chemistry to the second row transition metals is a possibility due to properties of the  

(CrCl)LaNb2O7  compound. 
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