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Abstract—A hardware detector for constant envelope quadra-

ture-quadrature phase-shift keying (CEQ2PSK) is proposed.  It 
uses appropriate hard decisions; yet, it achieves optimum prob-
ability of bit error performance, unlike the suboptimum detector 
of Saha and Birdsall. This optimum performance is verified 
through Monte Carlo computer simulations.  Additionally, a 
more correct expression is given for the probability of bit error 
performance for CEQ2PSK, which gives the gain over non-
constant Q2PSK as 1.44 dB, rather than the previously published 
value of 1.76 dB. 
 

Index Terms—Quadrature-quadrature phase shift keying, con-
stant envelope, optimum detector, four-dimensional modulation. 
 

I. INTRODUCTION 

UADRATURE-quadrature phase-shift keying (Q2PSK) and 
constant envelope Q2PSK (CEQ2PSK) were introduced by 

Saha and Birdsall in [1].  A simple block encoder of rate 3/4 at 
the input of a Q2PSK modulator is used to produce a set of 8 
biorthogonal codewords given by the constant envelope sig-
nals. Constant amplitude is desirable in nonlinear channels;  it 
avoids the variations in phase produced by changing ampli-
tude, which in turn has detrimental effects in the bit error rate 
for coherent demodulation.  The constant envelope feature in 
CEQ2PSK is achieved at the expense of bandwidth efficiency 
because the information transmission rate is 3/(2T) for 
CEQ2PSK while it is 2/T for non-constant Q2PSK. 
 It is shown in [1] that CEQ2PSK can provide a 50 percent 
increase in bandwidth efficiency over minimum shift keying 
(MSK) at the cost of 0.7 dB increase in the average bit energy, 
assuming bandlimiting has taken place at the transmitter and 
receiver, through the use of sixth-order Butterworth filters 
with half power bandwidth equal to 1.2/T, where the bit rate is 
2/T.  The information bit transmission rate is 3/(2T).  To 
achieve this performance an optimum receiver is needed; to 
date, however, no simple optimum hardware receiver has been 
proposed for this modulation scheme.  Indeed, Saha and Bird-
sall recognized that a nonoptimum receiver based on hard de-
cisions might be of interest for its simplicity.  The simple 
hardware receiver provided by Saha and Birdsall performed 

substantially worse than the optimum, as seen in Fig. 11 of 
[1].   
 The greater flexibility for spreading afforded by higher di-
mensional modulation schemes such as Q2PSK and CEQ2PSK 
was exploited in [2] for direct-sequence spread spectrum sys-
tems (DSSS). 
 A hybrid block-convolutional coding scheme for CEQ2PSK 
is shown in [3] to improve performance by 1.5 dB at bit error 
rate (BER) of 10−4 both in additive white Gaussian noise 
(AWGN) and Rician fading channels with moderate fading.  
More substantial improvements are obtained with more severe 
fading.  Saha and Birdsall’s sub-optimum decoder is used 
there also. 
 Digital implementations of CEQ2PSK transmitter and re-
ceiver are discussed in [4], while carrier phase and clock re-
covery in CEQ2PSK using a data-aided algorithm are investi-
gated in [5].  The receiver in [4] is an implementation of Saha 
and Birdsall’s non-optimum receiver and the practical curve in 
Fig. 4 of [4] is close to the non-optimum detection curve in 
Fig. 11 of Saha and Birdsall’s  original paper [1].  That re-
ceiver, then, does not optimally detect CEQ2PSK, whereas 
ours does. Our method requires five hard-limiters and the de-
cision vector is just the correct combination of four of these 
hard-limited outputs. 
 An optimum receiver for minimum bandwidth Q2PSK was 
proposed in [6]; it employs a matched filter receiver with 
hard-limiter detectors that uses two hard-limiters to form a 
decision variable for one of the outputs.  The method in [6] 
still requires a maximum likelihood (ML) Viterbi decoder to 
form the decisions for the other three quantities to be decoded.  
 We will show in this paper that, fortunately, a much simpler 
optimum receiver for CEQ2PSK can be implemented in hard-
ware using hard decisions.   

A final contribution of this paper is to give a more accurate 
gain of CEQ2PSK over Q2PSK.  Saha and Birdsall claim in [1] 
that CEQ2PSK provides 1.76 dB of gain over non-constant 
envelope Q2PSK. However, it is shown here that this figure is 
too optimistic, because it ignores the effects of the error coef-
ficient, which will reduce this gain by about 0.32 dB to around 
1.44 dB. 
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 The remainder of this paper is organized as follows:  In 
Section II we briefly review CEQ2PSK.  Our new optimum 
hardware detector for CEQ2PSK is detailed in Section III.   
The performance of the detector is evaluated in Section IV.  
Concluding remarks and references follow. 
  

II. BRIEF REVIEW OF CEQ2PSK 
A non-constant envelope Q2PSK signal can be written as 
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where fc = n/4T is the carrier frequency, with n any integer 
greater than or equal to two, {ai(t), i = 1, 2, 3, 4} are four data 
streams that have been demultiplexed from a binary data 
source of bit rate 2/T.  Each data pulse in the demultiplexed 
streams is a rectangular shaped pulse with strengths ±1 and 
duration 2T.  With the given restriction on carrier frequency, 
(1) can be written as a vector as 
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 Furthermore, (1) can be written as  
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where θ(t) is the carrier phase and A(t) is the carrier amplitude 
given by  
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  Clearly, for the envelope to be a constant and produce 
CEQ2PSK we must have .04321 =+ aaaa  Therefore, the eight 
possible transmitted four-dimensional (4D) signals for 
CEQ2PSK are S1=[a, a, b, −b] or  S2=[a, −a, b, b], where a, b 
are either +1 or  -1. 
  The received CEQ2PSK signal is assumed to have been 
corrupted by additive white Gaussian noise (AWGN) with 
two-sided power spectral density N0 /2 in each of the four di-
mensions.  It is also assumed that there is no bandlimitation in 
the channel, other than that provided by the integrate-and-
dump filters that are part of the demodulator.  Hence, the re-
ceived demodulated signals, which are sampled every 2T sec-
onds, can be represented as: 
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where m is an integer, ni(2mT), i=1, 2, 3, 4, is a zero-mean 
normal random variable with variance σ2 = N0/2Ts, with Ts the 
signal length, which is equal to 2T. 

Decisions have to be made from the demodulated signals of 
(5), to produce the estimates 4321 ˆ,ˆ,ˆ,ˆ aaaa  of the transmitted 
data bits of (2).   This is the job of the detector.  

III. THE PROPOSED CEQ2PSK HARDWARE DETECTOR 

It is well known that the probability of bit error depends 
critically on the ratio 22 /σfreed , where 2

freed is the minimum 
squared Euclidean distance between constellation points, i.e. 
codewords.  Indeed, 82 =freed  for the CEQ2PSK codewords 
listed in the previous section.  

The key to developing an optimum hardware-based detector 
is to discover functions of the received demodulated signals 
that can be hardlimited, without compromising this critical 
ratio. The method to do this is described in what follows.  The 
result of the development is shown in Fig. 1, where our com-
plete CEQ2PSK receiver, including demodulator and detector, 
is shown. 

First, assume that a member of S1 was transmitted. Then, as 
is shown below, it is easy to detect which member of S1 was 
transmitted, by hardlimiting. This produces the estimate 

]ˆ,ˆ,ˆ,ˆ[ˆ
1 bbaaS −= , one of four possible symbols. 
Second, assume that a member of S2 was transmitted. 

Again, hardlimiting is used to determine which member of S2 
was transmitted, and produce the estimate ],ˆ,ˆ,ˆ,ˆ[ˆ

2 bbaaS −=  
one of four possible symbols. 

Now, thirdly, we must decide whether a member of S1 or S2 
was transmitted.  Let d = 1 if the transmitted signal belongs to 
S1, and d = 0 if it belongs to S2. It is also straightforward to 
determine ,d̂ the estimate for d, by hardlimiting.  Indeed, this 
is the function of the F(·) block of Fig. 1 which requires four 
absolute value circuits and one hardlimiter, as we will prove 
shortly.   

Fourthly, based upon the decision of the previous step, the 
detector must send the correct of the two detected symbols to 
the output. This task is performed by the four-pole double-
throw electronic switch in Fig.1.  Mathematically, the detected 
CEQ2PSK symbol can be described by  
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 As mentioned earlier, it is necessary to detect which mem-
ber of S1 has been transmitted.  To do this, we let 

rr aaw 21 += ; for all members of S1 this yields 

212 nnaw ++= . Notice that w  can be considered a bipolar 
binary signal which can be detected by symmetric hard-
limiting.  Furthermore, for this binary signal, 162 =freed  and 

the variance of 21 nn +  is .2 2σ  Hence, the critical ratio re-
mains unchanged at 8/σ2.  Similarly, we let rr aay 43 −= . 
Then, 432 nnby −+= .  Again, y can be considered a bipolar 
binary signal easily detected by hardlimiting, with no change 
in the critical ratio.  Therefore, the detected 4D codeword for 
S1 can be written as 1Ŝ =[sgn w, sgn w, sgn y , −sgn y], where 

1)sgn( =v for ,0≥v and 1)sgn( −=v for .0<v  
 In like fashion, it is easy to detect which member of S2 was 
transmitted. Indeed, 2Ŝ =[sgn ,x −sgn ,x sgn ,z sgn ],z where 

rr aax 21 −=  and .43 rr aaz +=  

 Also, as mentioned earlier, there is a need to determine .d̂  
The method to do this will now be described.  Notice that if a 
member of 1S  is transmitted and noise is ignored, the four 
possible values for u  = ],,,[ zyxw  are [2 0 2 0],  [2 0 −2 0],   
[−2 0 2 0], and [−2 0 −2 0], and therefore we have 

[ ] == zyxwu ,,, [2 0 2 0]. On the other hand, if a member 

of 2S  is transmitted, =u [0 2 0 2].  
 Luckily, the binary vector |u| does not compromise the criti-

cal ratio.  Hence, if ( ) <+−++−
2222

)2(2 zyxw  

( )2222
2)2( −++−+ zyxw  then ,1ˆ =d  and it is deter-

mined that S1 was transmitted. However, if the inequality is 
not satisfied, ,0ˆ =d   and it is determined that S2 was transmit-
ted. Furthermore, the above inequality simplifies to 

zxyw +>+ .   Hence, 

( )[ ].1sgn
2
1ˆ +−−+= zxywd      (7) 

The function block F(·) in Fig. 1 computes the result of (7) 
and therefore determines ,d̂  the estimate of the unipolar bi-
nary variable d, which in turn activates the switch to pass the 
correct symbol (from 1Ŝ  if ,1ˆ =d  from 2Ŝ  if 0ˆ =d ) to the 
output. 

Superficially, Fig. 3 of [4] resembles our receiver.  The 
summers there, however, are performing a different function 
than our summers:  theirs are simply forming the decision 
variables with two of them just clipping, which means that 
they are not detected optimally, as the squared distance is only 
4 whereas the squared distance between nearest CEQ2PSK 
symbols is actually 8.  On the other hand, our summers are 
ensuring that the critical ratio is maintained. 

Also, the decoders in [1, 3, 4] assume that correct decisions 
about a1 and a3 have been made and use these along with the 
estimates a2r and a4r to make decisions about a2. 

IV. PERFORMANCE VERIFICATION OF OUR DETECTOR 
  In order to verify the derivations in the previous section, 
Monte Carlo simulations were performed.  For each signal-to-
noise ratio (SNR), i.e., Eb/No, the simulation ran until twenty 
symbol errors were committed. According to [7], this allows 
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Fig.1.  Block diagram of the proposed optimum CEQ2PSK demodulator and detector. 



 
 

the probability of bit error to be estimated with a standard de-
viation equal to less than half of the true probability of bit 
error value.  

The theoretical probability of symbol error is given by 

,
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where erfc(·) is the complementary error function, and K is the 
error coefficient normalized to 2D, equal to ,2/N where N is 
the average number of neighbors from a given symbol at a 
squared distance of eight.  For CEQ2PSK, it is easily verified 
that N is 6 and therefore K is 3. 
 To find the probability of bit error, Pb(E), it is necessary to 
know how the three information bits are mapped to the eight 
4D symbols.  Ideally, a Gray code would be used to do this, so 
that one symbol error causes only one bit error.  However, it is 
not possible to do this (because there are six neighbors and the 
Gray code only allows three).  The best that can be achieved is 
an average of 1.5 bit errors for each symbol error. 

 For our simulations, the three information bits were as-
signed to a1, a2, and a3; a4 was then derived to satisfy the con-
stant amplitude condition .04321 =+ aaaa  With this mapping, 
there are an average of one and a half bit errors for every sym-
bol (3 information bits) error.  Hence, 
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 This means that the error coefficient is 1.5 and not 0.5 as 
Saha and Birdsall assumed in [1].  Hence, the SNR suffers a 
loss of about 0.2 log(3)/log(2) or 0.32 dB as given by Forney 
[8].  The gain, then, of CEQ2PSK over non-bandlimited non-
constant Q2PSK is not 1.76 dB, but more like 1.44 dB.  This 
was corroborated during our simulations also. 
 The experimental probability of bit error is plotted in Fig. 2 
(shown as asterisks), along with the theoretical CEQ2PSK  
curve from (9) and the curve for non-constant Q2PSK. As can 
be seen, there is very good agreement between the theoretical 
value and the Monte Carlo simulation experimental results.   
We also see in Fig. 2 that at BER of 10−6 the gain of 
CEQ2PSK over Q2PSK is about 1.4 dB. 
 Additionally, the optimum detector was simulated simulta-
neously with our new detector.  No bit errors were discovered 
for our proposed detector that were not also found for the op-
timum detector. Thus, the proposed hardware detector does 
indeed give optimum performance, as claimed.  

V.  CONCLUSIONS 
We have presented an optimum hardware detector for con-

stant envelope quadrature-quadrature phase shift keying 
(CEQ2PSK).  Five hardlimiters, four adders, four absolute 

value circuits, two inverters, and a four-pole double-throw 
switch are needed to implement the decoder.  Monte Carlo 
simulations show that the performance indeed matches the 
theoretical value for bit error probabilities.  The gain of 
CEQ2PSK over non-constant Q2PSK was shown to be around 
1.44 dB. 
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