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ABSTRACT 

 

The void spaces in colloidal crystals (opals, three-dimensional (3D) close-packed 

arrays of silica nanospheres) and their replicas are used as templates in the fabrication of 

new nanostructured materials. 3D ordered nanomeshes and nanosphere arrays are readily 

obtained by chemical and/or electrochemical methods. 

Using silica opal templates, metals or polymers are infiltrated into the interstices 

between the silica nanospheres. Subsequent dissolution of the opals with HF solution 

produces open 3D mesh structures. Metal (such as Ni, Co, Fe, Pd, Au, Ag, and Cu) and 

conductive polymer (such as polyaniline) meshes are obtained by electrochemical 

deposition approach, while the nonconductive polymer (such as poly(methyl 

methacrylate) (PMMA)) meshes are synthesized by chemical polymerization method. 

Some new types of meshes are fabricated by the conversion of metal meshes and 

polymer meshes. NiO meshes are formed by oxidizing Ni meshes in the air. The NiO 

meshes exhibit higher volume occupation fraction than Ni meshes and the nanocrystalline 

sizes of NiO particles can be adjusted by the oxidation temperature. Due to the 

mechanical flexibility of polymer meshes, the compression of PMMA meshes produces 

deformed PMMA meshes which contain oblate pores. 

These meshes can be again served as templates to prepare new types of colloidal 

crystals (nanosphere arrays) and specific nanocomposites. By the use of poorly 



 xiv   

conductive NiO mesh or PMMA mesh arrays as templates, 3D periodic metal nanosphere 

arrays, such as those of Ni, Co, Au and Pd, are readily fabricated by the electrodeposition 

method.  Metal/NiO or Metal/PMMA composites can also be obtained if the templates 

are left intact.  

The magnetic behavior of metal (such as Ni and Co) meshes and sphere arrays has 

been investigated. These nanoscale arrays show significantly enhanced coercivities 

compared with bulk metals, due to the size effect of the nanometer dimensions of the 

components in meshes and sphere arrays. Angle-dependent magnetic properties of Ni and 

Co sphere array membranes exhibit out-of-plane anisotropy.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Template-Directed Synthesis 

The “template-directed synthesis” method involves synthesizing a desired 

material within the pores of a host structure, such as a nanoporous membrane, and 

presents a number of interesting and useful characteristics. First, this method is a very 

general approach to the manufacturing of nanostructured materials and can be used to 

prepare different shapes like tubes, wires and meshes composed of different materials 

like metals, semiconductors, ceramics, carbon, polymers, and other materials. Also, 

this approach is promising because it can be used to fabricate nanostructures with 

very small sizes, which is still difficult to form with a conventional lithographic 

process. Furthermore, the nanostructured materials prepared in this way can be 

dimension-controllable and well-defined. Finally, the nanostructures like tubes, wires 

and meshes synthesized within the pores can be freed from the template membrane 

and collected.  

Template-directed method was developed by Possin, who reported the 

fabrication of metal nanowires as small as 40 nm in diameter in etched particle tracks 

which was formed in mica in 1970.1 Later, Williams and Giordano refined Possin’s 

method and they described the preparation of 8 nm diameter metal nanowires in 

1984.2 Since late 1980s, due to the extensive interest in nanomaterials, Martin and 

other researchers have fabricated nanostructured wires and tubes by using porous 
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membranes with one-dimensional (1D) channels as a template.3-9 The widely-used 

templates containing 1D nanoholes are anodic alumina membranes and track-etched 

polymeric membranes. Figure 1.1a shows the model for a porous alumina membrane 

containing 1D nanoholes. Figure 1.1b reveals a transmission electron microscopy 

(TEM) image of a cutout of a thin membrane surface with ca. 50 nm pores.10 The 

nanoholes in porous alumina membrane can be infiltrated with other materials like 

metals, ceramics and polymers, and freestanding nanowires or nanotubes can be 

conveniently obtained by etching away the alumina template with strong bases or 

acids. A lot of other nanoporous materials like nanochannel array glass membrane,11 

mesoporous zeolite membrane9,12,13and cleaved graphite surface14 have also been used 

as templates to prepare nanowires and nanotubes. 

Recently, the template-directed synthesis method has been extended to 

fabricate three-dimensionally (3D) ordered nanostructured materials by the use of 

opals (also called colloidal crystals) and inverse opals (also called meshes or 

macroporous materials) as templates.15-23 The colloidal crystals consist of 3D ordered 

silica or latex spheres. A variety of materials like metals, ceramics, polymers, carbon, 

and silicon can be infiltrated into the void spaces between the colloidal spheres. The 

original colloidal spheres are subsequently removed, leaving behind a new type of 

materials, so called inverse opals, macroporous materials or meshes, whose pores 

preserve the long-range periodic structure of the original colloidal crystals. Figure 2a 

and 2b show the model of opal24 and inverse opal,25 respectively, and Figure 2c shows 

the schematic of the replication of colloidal crystal structure into porous materials. 

The inverse opal can be further used as a template to fabricate 3D ordered nanosphere 

arrays. These 3D ordered arrays of nanospheres and their replicas (porous networks)  
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a)  
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1  a) Model of porous alumina membrane containing one-dimensional 

nanoholes, b) TEM image of a thin alumina membrane ion milled showing 
hexagonally ordered, ca. 50 nm pores (adapted from Ref. 10). 
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a)  
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
c)                                          

 
 
 
Figure 1.2  a) Model of opal consisting of three-dimensionally ordered colloidal 

spheres (adapted from Ref. 24), b) model of inverse opal having three-
dimensionally ordered porous structure (adapted from Ref. 25), 

                  c) schematic of the replication of colloidal crystal structure into porous 
materials. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

remove opal infiltrate materials

opal infiltrated opal inverse opal 
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are of great interest for applications in a variety of areas, including photonics, 

magnetics, catalysis, separations, and sensing.15-23, 26 

 

1.2 Colloidal Crystals 

1.2.1 Synthesis of Colloidal Crystals 

Natural opals are precious gems formed in either a sedimentary or a volcanic 

environment and are composed of a cubic close packed (ccp) arrangement of 

amorphous silica spheres. The spheres may range in size between 150 and 900 nm, 

but have a narrow size distribution (around 5%). The opals (colloidal crystals) can 

also be synthesized from monodisperse colloids through self-assembly. Figure 1.3 

shows a partial list of the colloidal systems and their typical range of critical 

dimensions.27 

Silica spheres and latex polymer spheres, mainly polystyrene (PS) and 

poly(methyl methacrylate) (PMMA), are two major types of colloids used for the 

colloidal crystal assembly due to their high monodispersity and relative cheapness. 

Monodisperse silica colloids are usually prepared by the method developed by Stöber 

et al.28 They hydrolyzed a dilute solution of tetraethyl orthosilicate (TEOS) in ethanol 

at high pH and produced uniform silica spheres with diameters ranging from 50 nm to 

2 µm by adjusting the temperature, pH and concentrations of the reactants. Uniform 

latex spheres like PS and PMMA spheres are mainly synthesized by emulsion 

polymerization method.29-31 Some monodisperse colloidal spheres can also be 

commercially obtained from a number of companies, such as Nissan Chemical 

Industries, Duke Scientific, and Alfa Asear.16 

Colloidal crystals are formed by assembling the silica or latex spheres into 

close-packed structures. A diversity of methods, including gravity sedimentation,  
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Figure 1.3  A list of some representative colloidal systems and their typical ranges of 

dimensions (adapted from Ref. 27). 
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centrifugation, vertical deposition, templated deposition, electrophoresis, patterning, 

controlled drying, and melt compression have been developed to construct close-

packed silica or latex spheres.16,23,32,33  

The simplest but most commonly used method for colloidal assembly is 

gravity sedimentation.34-37 Figure 1.4 shows a schematic view for making colloidal 

crystals by gravity sedimentation. Dilute suspensions (~ 1 wt.%) of colloids having a 

dispersion smaller than 5% are placed in a container, then sedimentation occurs 

driven by gravity. The sedimentation method produces thick opal and the success of 

this method depends on tight control over several parameters such as the size and 

density of the colloidal spheres, as well as the rate of sedimentation. The colloidal 

spheres can always settle completely to the bottom of the container when the size and 

density of these spheres are sufficiently high. When the sphere size is too small, the 

deposition rate is small, too, and no sedimentation occurs in a reasonable time; but if 

the spheres are too large or the sedimentation rate is too fast, bad-quality assembly is 

achieved. Monodisperse silica colloids are most commonly applied in sedimentation 

due to the high density of amorphous silica. A major disadvantage of the 

sedimentation method is that it has very little control over the morphology of the top 

surface and the number of layers of the 3D crystalline arrays. Also sedimentation 

relying solely on gravity is a very slow process, typically requiring weeks or months, 

especially if sphere diameters are smaller than 300 nm. 

Recently, Jiang et al. developed a good and easy method, so called vertical 

deposition, to form thin film colloidal crystals.38 They placed a glass slide into a 

scintillation vial containing silica alcosol and covered the vial with a crystallizing dish 

to allow the slow evaporation of solvent.  Closed-packed layers of silica spheres were 

then formed on the glass slide. The thickness of the layer deposited depends on the  
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Figure 1.4  Schematic for making three-dimensionally ordered silica or latex spheres 

by gravity sedimentation. 
 
 
 
 
 
 
 
 

by sedimentation 
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colloidal concentration and sphere diameter. Thick films up to hundreds of layers 

could be obtained by multiple dip coating and drying cycles. 

The colloidal crystals just after assembly contain a considerable amount of 

water, both physically and chemically bound, and the spheres in the colloidal crystals 

are held just by relatively weak forces. For later applications creaking or disrupting 

the structure is always a problem. Thermal treatment can be applied to enhance the 

mechanical properties of colloidal crystals. Usually, silica opals are sintered by heat 

treatment in air (drying at 100-150°C)39 or thermal annealing (700-750°C),25 and latex 

opals can be strengthened by heating above their glass transition temperature (Tg).
40 

1.2.2 Structure of Opal 

 Usually opals have a cubic-close-packed (ccp) structure with a face-centered- 

cubic (fcc) lattice. The fcc structure has a preference over the hexagonal-close-packed 

(hcp) structure due to a slight difference in the energy of the colloidal spheres 

stacking in the fcc and hcp arrangement as described in the calculations by 

Woodcock.41,42 In fcc crystals, the stacking sequence for spheres follows ABCABC, 

and in hcp it is ABABAB.43,44 In both structures, the spheres take up a volume 

fraction of 0.7405.45 Since the opals undergo a thermal treatment after assembly, 

which leads to the formation of small necks between the spheres, the filling fraction 

for spheres slightly increases.25 

 In fcc structure, there are two types of interstice (or void), namely tetrahedral 

interstice and octahedral interstice, between the spheres.43,44 Figure 1.5 shows the 

structure of voids in fcc lattice.46 The dimensions for the octahedral interstice, 

tetrahedral interstice and the interconnect minimum (triangular interstice between 

three spheres contacted to each other) are 0.414D, 0.225D, and 0.155D (D is the 

sphere diameter) in diameter, respectively.43,44 
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Figure 1.5  Structure of voids in fcc opal (adapted from Ref. 46). 
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1.3 Infiltration Methods 

Three-dimensional nanoscale porous structure (mesh, or inverse opal) can be 

fabricated by infiltrating materials into the voids between the spheres in opal, and then 

extracting the opal template by HF solution (for silica opals), or organic solvents 

(such as dichloromethane, toluene, and acetone) and calcinations (for latex opals). 

Since the late 1990’s, a variety of methods have been employed to fabricate inverse 

opals. The most popular are electrodeposition, sol-gel hydrolysis, chemical 

polymerization, and chemical vapor deposition (CVD) techniques. 

Electrodeposition: First, a layer of metal like Cu is deposited on one-side of 

opal pieces or opals are deposited on conducting substrates like conductive ITO 

(indium tin oxide) glass to make opal template working electrodes. Then the opal 

template electrodes are immersed in plating solutions versus a counter electrode like 

Pt wire, and materials grow inside opals galvanostatically or potentiostatically. A 

number of inverse opals, such as metal,47-52 semiconductor,53-58 and conductive 

polymer59-61 meshes have been fabricated by electrodeposition. Electrodeposition is 

an effective method for producing the inverse opals, due to the nearly complete filling 

of the channels of opal templates and easy control of the extent of materials growth.   

Sol-Gel Hydrolysis: Opals are soaked in alcoholic solutions containing 

alkoxide precursors. The precursors are penetrated into the voids of opals through 

capillary force. Then the opals filled with alkoxide precursors are allowed for 

hydrolysis and then drying. The penetration/reaction/drying process is repeated for 

many times to ensure the voids of opals are sufficiently filled. A wide range of porous 

oxides, such as SiO2,
30,62-67 GeO2,

68 metal oxides (e.g. TiO2, ZrO2, Al2O3, SnO2, 

Eu2O3, Nd2O3, and Sm2O3),
69-87 binary oxides (e.g. BaTiO3,

88 and PbTiO3
89) and 

multinary oxides (e.g. (Pb,La)(Zr,Ti)O3)
90 have been obtained by this method.  
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Chemical Polymerization: Opals are filled with a liquid monomer containing 

small amount of initiator, and polymerization is carried out by heating or ultraviolet 

(UV) illumination. This method produces high-quality polymer meshes, including 

polyurethane,91-94 poly(divinylbenzene) (PDVB),95,96  poly(ethyleneglycol 

dimethacrylate) (PEDMA),95 poly(acrylate methacrylate) (PAM),93 poly(methyl 

methacrylate) (PMMA),94,97 polystyrene (PS),94,98 poly(p-phenylenevinylene) 

(PPV),99 and epoxy resin.100  

Chemical Vapor Deposition: Opals are filled with gaseous precursors and 

deposition is performed by thermal treatment. This technique can produce dense 

inverse opal structures by virtue of the gaseous precursors’ ability to penetrate the 

pore network of colloidal crystals. The fabrications of carbon,25 SnS2,
101,102 Pt and Pt-

Pd alloy103 inverse opals and technologically important Si104-106 and Ge107 inverse 

have been reported. 

Other approaches for inverse opal formation include nanoparticle infiltration 

(e.g. metals,108-110 CdS,111 SiO2,
112 and TiO2

112), salt-precipitation and chemical 

conversion (e.g. metal oxides,113,114 and Sb2S3
115), electroless deposition (e.g. 

metals),116 polymerization and pyrolysis (e.g. carbon),25,117-121 melt infiltration (e.g. 

low melting-point metals, semi-metals, and alloys),122-124 adsorption and chemical 

conversion (e.g. metals,125 Sr0.5Sm0.5CoO3
126), oxidation or reduction (e.g. NiO,127,128 

metals,113,129 alloys,130 and Ge68), electrophoresis (e.g. SiO2 and TiO2),
131 

solvothermal synthesis (e.g. CdS),132 spraying (e.g. metals and Si),133 and atomic layer 

deposition (e.g. tungsten nitride).134 These methods can also be conveniently extended 

to the fabrication of new types of colloidal crystals (three-dimensionally periodic 

sphere arrays) by using inverse opals as templates.97,127,128,135,136 
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1.5 Potential Applications 

 So far, the area of inverse opals and their replicas is relatively new, and most 

of the studies have concentrated on the fabrication and basic characterization of these 

new types of materials.  However, due to their unique structures with 3D periodicity, 

inverse opals (nanoscale porous networks) and their replicas have promising 

applications in a number of fields, including photonics, magnetics, separations, 

catalysis, etc. 

 Photonics: Probably the most important application of colloidal crystals and 

inverse opals is using as photonics crystals. Photonic crystals (also called photonic 

band gap materials) are structures in which the refractive index is a periodic function 

in space.137-142 In the very same way as for electrons in a periodic potential, forbidden 

bands can occur for electromagnetic waves in a periodic refractive index structure. A 

complete 3D photonic band gap material is a material in which light in a band of 

frequencies cannot propagate whatever the polarization or the direction of propagation. 

In 3D photonic crystals, diamond and fcc structures are the representative sturtures. 

Materials with fcc structures (such as opals) receive considerable attention due to their 

easy and low cost fabrication. However, fcc opals don’t have a complete photonic 

band gap because of their low refractive indices (silica ~ 1.4, PS ~ 1.5, PMMA ~ 1.5). 

In order to open a complete band gap, the dielectric contrast or refractive index 

between low and high dielectric regions must be sufficiently high (refractive index 

ratio > 2.85).143 Inverse opals also have fcc structures and it is possible to obtain high 

dielectric contrast inverse opals by filling high refractive index materials such as Si 

and Ge (refractive index: Si ~ 3.8, Ge ~ 4.1) in the voids of opals and then extracting 

the opals. Such materials (Si and Ge meshes) showing full photonic band gap in near-

IR region have recently been successfully fabricated.104-107 Many applications of 
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photonic crystals lie in areas of waveguides, microcavity lasers, dielectric mirrors, 

optical chips, etc.137-142 

 Magnetics: Colloidal template synthesis offers the potential of a low-cost 

preparation method for nanoscale patterned magnetic media.144 The 3D magnetic 

metal (such as Fe, Co, Ni, Ni50Fe50 alloy) meshes and sphere arrays have significantly 

enhanced coercivity than related bulk materials, due to their periodic nanoscale 

structures.47,52,97,144 A notable advantage is that these materials are stable with no 

supports or surfactants needed.  Also, it is found that Co/CoO mesh systems show 

interesting exchanging bias phenomena,145 i.e. the shift of the hysteresis loop of the 

ferromagnet along the field axis caused by the exchange coupling of ferromagnetic 

and antiferromagnetic films across their common interface.146 

 Separations: The pore size of inverse opals can range from < 100 nm to > 

1000 nm, depending on the original opal templates. The uniformity and the 

interconnection of the close-packed pores make some of these materials usable for 

applications in separation, filtration and immobilization.93  

 Catalysis: The applications in catalysis benefit from the open porous structures 

and high surface areas of these materials. The large enough pores allow rapid mass 

transport, while the high surface area is good for using as support for catalytically 

active species. Promising directions are the synthesis of silica inverse opals with 

zeolitic micro- or mesoporous frameworks and doping and modification of the 

surfaces of the pore walls.30,64,147,148 

 Other potential applications include sensors (gas sensors,85 biosensors,98 and 

pH sensors149), porous electrodes,150 solar cells,151 and thermoelectric materials.152 

Further developments are expected for this exciting new area in the near future. 
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1.4 Dissertation Structure 

 This dissertation consists of five chapters. Chapter 2 describes the 

electrochemical preparation of metal meshes by the use of silica opals as templates. 

Microstructures and magnetic characterization of the metal meshes are discussed. In 

Chapter 3, the fabrications of NiO meshes, conductive polyaniline meshes, 

nonconductive PMMA meshes and compressed PMMA meshes are presented. In 

Chapter 4, the two-step template synthesis of metal sphere arrays (metallic colloidal 

crystals) is presented. Opals are used as the first-step templates for the fabrication of 

inverse opals (NiO mesh and PMMA mesh). Poorly-conductive inverse opals are used 

as the further templates to grow metal sphere arrays by electrodeposition. Angle-

dependent magnetic properties of Ni and Co sphere arrays are discussed. The last 

chapter is a summary of the work presented in this dissertation. 
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CHAPTER 2 

ELECTRODEPOSITION AND CHARACTERIZATION OF 

ORDERED NANOSCALE METAL MESHES 

 

2.1 Introduction 

Porous metals that are three-dimensionally (3D) periodic in structure have 

gained extensive attention because of their wide range of applications, including their 

use as photonic crystals,153-158 nano-patterned magnets,144,159 electrochemical 

sensors,160 and  surface-enhanced Raman spectroscopy (SERS) substrates.161 

Traditionally, such ordered and hierarchical metals are fabricated by lithography 

methods. However, the application of lithography methods is limited due to the cost 

and difficulty to obtain nanoscale materials.140 Recently, colloidal crystal template 

methods have been developed to fabricate 3D porous materials with submicron to 

nanometer scale. 

By the use of opals as templates, metals can be infiltrated into the void spaces 

between close-packed silica or latex spheres in opals. Subsequent removal of the opal 

templates produces open 3D mesh structures. Using the opal template method, the 

dimensions of the pores can be easily controlled by changing the size of the silica or 

latex spheres in the templates.  

A number of techniques, such as nanoparticle infiltration,108-110 reduction of 

oxide meshes,113,129,130 melt infiltration,122-124 adsorption and reduction,125 spraying,133 

chemical vapor deposition (CVD),103 electroless deposition,116 and 
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electrodeposition47-52,162,163 have been applied to infiltrate metals into opal templates. 

Among these methods, the electrodeposition technique is an effective route to fill 

metals in the complex porous channels of opal templates since electrodeposition 

occurs from the electrode surface out through the overlying template and the extent of 

growth can be controlled by varying the deposition conditions such as current, 

potential and time. Also, electrodeposition gives a high density in-filling of the 

interstices between the spheres of opal template and results in true “volume 

templating” of the structure, rather than surface templating of the material around the 

surface of the template spheres. 

Previously, electrodeposition was applied to fabricate nanowires and 

nanotubes by the use of membranes with one-dimensional (1D) pore structures as 

templates.6 Later, the electrochemical deposition technique was extended to 

synthesize 3D porous structures (meshes) using opal templates. Braun et al.53 first 

described the fabrication of CdS and CdSe meshes by electrodeposition and 

subsequently the electrochemical synthesis of metal meshes was reported by a couple 

of groups.47-49 Our group was one of the first to fabricate 3D metal meshes by 

electrodeposition.47 In this chapter, we describe the electrochemical preparation, 

microstructural and magnetic characterization of 3D periodical nanoscale metal 

meshes. 

 

2.2 Experimental Section 

2.2.1 Materials  

All solvents and chemicals were of reagent quality and were used as received.  

CoSO4·7H2O (99.998%, Aldrich), H3BO3 (99.8%, EM Science), NaCl (100.2%, J. T. 

Baker), FeSO4·7H2O (99.6%, J. T. Baker), L-ascorbic acid (99%, Aldrich), 
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CuSO4·5H2O (99.16%, Mallinckrodt), HF solution (48%, Aldrich), acetone (99.7%, 

Mallinckrodt). 

2.2.2 Synthetic Opals 

Synthetic opals were obtained from our collaborators Prof. Ray H. Baughman 

and Anvar A. Zakhidov at University of Texas at Dallas. Silica membranes (opal) 

were prepared by published methods.164-166 Silica spheres with a diameter of ca. 290 

nm, 220 nm and 180 nm diameters were initially prepared from hydrolysis of 

tetraethoxysilane (TEOS). The spheres were then formed into close-packed lattices 

through a sedimentation process over several months. This precipitate was then 

sintered at 120°C for 2 days and then 750°C for 4 hours, producing a robust 

opalescent piece that could be readily cut into smaller sections.   

2.2.3 Fabrication of Opal Membrane Electrode 

Figure 2.1 shows the fabrication procedure for the opal membrane electrode. 

Electrodes were formed from the opal pieces (typically 7 x 10 x 1.5 mm) by first 

depositing about 1.0 µm thick gold film on one side of the piece by magnetron 

sputtering. A length of wire was attached to the gold backing with silver paste (Ted 

Pella, Inc.) and the gold/wire side of the electrode, as well as the edges, was sealed off 

with insulating glue (Scotch Super Strength, 3M). 

2.3.4 Synthesis of Metal Meshes (Inverse Opals) 

2.2.4.1 Electroplating Solutions 

The commercial Ni (Nickel Sulfamate RTU, Ni(H2NSO3)2 solution, pH ~ 4.0), 

Pd (Pallaspeed VHS, 3.97% (NH2CH2CH2NH2)2PdSO4 solution, containing 5.3 g/liter 

palladium, pH ~ 6.0), Au (Orotemp 24 RTU, KAu(CN)2 solution, containing 8.2 

g/liter gold, pH ~ 8.0), and Ag (1025 silver process, KAg(CN)2 solution, containing 

30 g/liter silver, pH ~ 12.0) electroplating solutions were obtained from Technic Inc. 



 

 

19

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1.  Schematic of opal membrane electrode fabrication. 
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Co plating solution: 200 g/liter CoSO4·7H2O, 6 g/liter NaCl, 40 g/liter H3BO3,  

pH ~ 3.5 

Fe plating solution: 120 g/liter FeSO4·7H2O, 40 g/liter H3BO3, 1g/liter L-ascorbic 

acid, pH ~ 3.5 

Cu plating solution: 50 g/liter CuSO4·5H2O, and 6.2 g/liter H3BO3, pH ~ 4.5 

2.2.4.2 Infiltration of Metals into Opals 

Figure 2.2 shows the set-up for electrodeposition of metal in opal membrane. 

The opal membrane working electrode was immersed into metal plating solution with 

a platinum wire counter electrode. Electrodeposition was carried out using an EG&G 

Model 263A Potentiostat/Galvanostat by a constant current method. Usually, the 

current density was smaller than 0.50 mA/cm2 and the deposition time was larger than 

24 hours.  

2.2.4.3 Removal of Opal Templates 

After deposition, the opal templates were washed thoroughly with distilled 

water and the insulating glue layers peeled off.  To remove the silica matrix, the 

metal-opal pieces were soaked in a 2% HF solution for 12 hours. This resulted in a 

black (for Ni, Pd, Co, Fe), brown (for Au, Cu), and white (for Ag) opalescent metal 

mesh membranes. Then the metal meshes were washed in turn with distilled water 

and acetone and dried for later characterization. 

2.2.5 Characterization  

2.2.5.1 Scanning Electron Microscopy Characterization 

Scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDX) analysis were performed on a JEOL JSM 5410 SEM. The 

samples were affixed to conductive carbon tape and loaded on specimen mounts for  
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Figure 2.2.  Set-up for electrodeposition of metal in opal membrane. 
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SEM. For non-conducting samples like opal, a thin-layer (~ 4 nm) of Au was 

sputtered onto the surface of samples before the SEM observation.  

2.2.5.2 Transmission Electron Microscopy Characterization 

Transmission electron micrographs (TEM) and electron diffraction patterns 

were obtained by using a JEOL 2010 TEM operating at 200 kV. The samples were 

prepared by mounting small pieces of mesh on TEM copper grid and directly loaded 

in TEM for observation. 

2.2.5.3 Optical Images 

 Optical picture were taken by a Sony DSC-S75 digital camera with 3.3-

megapixel CCD, 3× optical zoom lens and 2× digital zoom under a white light 

illumination.  

2.2.5.4 Magnetic Properties 

Magnetic measurements on the nickel meshes and bulk Ni film were 

performed on an MPMS-5S superconducting quantum interference device (SQUID) 

magnetometer. The sample was fixed between two pieces of KAPTON tape and 

placed in a commercially available soda straw. The temperature dependence of 

magnetization (zero-field-cooled and field-cooled curves) was obtained according to 

the following procedure. The sample was cooled at first to 2 K without any external 

magnetic field. Then a magnetic of 1000 Oe was applied and the magnetization was 

recorded as the temperature slowly rose to 350 K. The procedure was then repeated, 

but this time the sample was cooled in a field (1000 Oe) to 2 K. The temperature was 

again increased from 2 K to 350 K. No correction for the diamagnetic contribution of 

the sample holder was taken into account because it was by at least three orders of 

magnitude smaller than the response generated from the Ni meshes.  
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The field dependence of magnetization (hysteresis loop) was studied at various 

temperatures (2 K, 10 K, 300 K and 350 K) in external fields up to ± 50,000 Oe. To 

produce a hysteresis loop, a sample was cooled to a specific temperature. Once the 

desired temperature was achieved, measurements of the sample’s moments as a 

function of field began. The field was slowly swept from -50,000 Oe to 50,000 Oe 

and then back to -50,000 Oe. 

 

2.3 Results and Discussion 

2.3.1 Chronopotentiogram for Electrodeposition 

Figure 2.3 is a typical chronopotentiogram for the electrodeposition of Ni into 

opal membrane with 290 nm diameter silica spheres at applied constant current 

density of 0.50 mA/cm2. The potential-time curve shows a slight overpotential at the 

first stage of electrodeposition, then eventually the potential reaches a steady state. 

The stable plating potential indicates homogeneous growth of Ni within the opal 

membrane, thus the volume of Ni deposited can be controlled by varying the plating 

time. Based on Faraday’s Law, the thickness (tNi) of deposited Ni mesh can be 

estimated from equation 2.1: 

 

 

where A is the area of opal membrane, ρNi is the density of Ni metal, and P is the 

porosity of opal membrane. The sphere filling fraction of opal with cubic close-

packed structure is 0.74,45 then the porosity of opal is 0.26. The estimated growth rate 

of Ni mesh at plating current density of 0.50 mA/cm2 is only 2.4 µm/hour, as is 

similar to what is observed. The control of current density is very important in the 

electrodeposition of metal meshes. Usually, a low plating current density (≤ 0.50  

[No. of Coulombs of Ni(II)] (atomic weight of Ni) 

2 × 96,485AρNiP
tNi = (2.1) 
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Figure 2.3.  Chronopotentiogram for the electrodeposition of Ni into opal membrane. 
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mA/cm2) is used for the uniform growth of Ni within the opal membrane due to the 

much lower Ni2+ diffusion rate inside complex nanoporous channels of opal. A 

current density of 1.0 mA/cm2 was attempted, but this resulted in very uneven Ni  

deposition. For some metals like Pd and Au, even smaller current density is needed 

for uniform metal growth, possibly due to their much lower plating concentrations. 

2.3.2 Microstructure of Metal Meshes 

2.3.2.1 Scanning Electron Microscopy Characterization 

This electrodeposition method produces well-defined metal meshes. The 

electrodeposition starts from the bottom Au microelectrode, fills the void space 

between the close-packed silica spheres of opal and grows toward the opal membrane 

surface. Figure 2.4 shows a cross-sectional SEM picture of opal membrane consisting 

of three-dimensionally ordered silica spheres with 290 nm diameter (× 10,000 

magnification). As can be seen from the picture, (111) and (100) orientations of silica 

spheres and stacking faults are present in the original opal, which will be replicated in 

the metal mesh. Figure 2.5a shows a cross-sectional view of Ni infiltrated opal near 

the electrode side (Au film side). The electrodeposited Ni (white dots) fills the void 

space of opal. Due to the sintering process in the formation of opal, small necks are 

produced between the close-packed SiO2 spheres.25 The small necks make the 

adjacent SiO2 spheres connect to each other, and thus allow the silica spheres to be 

chemically removed after electrodeposition. Figure 2.5b shows a section of a 

palladium metal mesh (x 10,000) after dissolution of the silica spheres by dilute HF 

solution. The lighter network in the image represents the metal mesh, and the dark 

parts correspond to the air spheres (void space) that were previously occupied by 

silica spheres. This image highlights the packing variation for the original silica 

spheres. Different regions corresponding to (100) and (111) orientations can be  
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Figure 2.4. SEM picture of opal consisting of ordered silica spheres with 290 nm 

diameter (× 10,000). 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. SEM pictures of a) cross-sectional view of Ni infiltrated 290 nm opal near 

the electrode side (× 10,000), b) top view of a piece of three-dimensionally 
periodic Pd mesh with 290 nm pores (× 10,000). 
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observed. At the boundaries between the (100) and (111) direction regions, the 

regions can be seen clearly to be very well connected together. There are no transition 

regions between them. Furthermore, it is observed that a triangular and a cross pattern 

below each pore of the first layer of (111) and (100) direction region, respectively, 

indicating that the metal mesh forms a three-dimensionally periodic structures. Since 

the sphere filling fraction of opal with cubic close-packed structure is 0.74, the filling 

factor of metal in the mesh structure is 0.26. Thus the metal meshes are materials with 

high porosity. 

Figures 2.6, 2.7 and 2.8 are SEM top views of predominately the (100), (110), 

and (111) planes, respectively. Different magnification of metal meshes is presented 

on these images. Based on these images, the diameter of air spheres (void space in the 

meshes) is estimated to be 290 ± 10 nm, agreeing well with the diameter of original 

silica spheres in opal, which indicates that the metal mesh does not contract after the 

removal of opal. As can be seen very clearly from Figure 2.6a, a regular cross pattern 

lies below the pores in the first layer, indicating the three-dimensional periodicity of 

metal meshes. Figure 2.6b is a higher magnification (× 50,000) of the (100) plane. 

The square features are essentially cubes with concave sides that arise from filling the 

octahedral sites in the close-packed structure. Each cube is connected to eight other 

cubes through its vertices via tetrahedra (Figure 2.9). The structure is akin to the 

fluorite structure (CaF2) where the calciums, representing the cubes, are eight 

coordinate and the fluorides, representing the tetrahedra, are four coordinate. Relative 

to the structure of close-packed spheres with diameter D, the diameters of octahedral, 

tetrahedra and interconnect minimum are 0.414D, 0.225D, and 0.155D, 

respectively.43,44 Then for 290 nm diameter opal, one would calculate minimum  
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a)    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6. Top view SEM pictures of 290 nm Ni meshes with predominately (100) 

orientation at magnification of a) × 20,000, b) × 50,000. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7. Top view SEM pictures of 290 nm Ni meshes with predominately (110) 

orientation at magnification of a) × 15,000, b) × 35,000. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8. Top view SEM pictures of 290 nm Au meshes with predominately (111) 

orientation at magnification of a) × 10,000, b) × 20,000. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. a) Illustration of square motif seen in Figure 2.6 (the lighter regions are the  
                  closer and the darker regions are progressively further away), b) 

corresponding (100) SEM picture of Ni mesh. 
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diameters of approximately 120 nm, 65 nm, and 45 nm for the cubes, tetrahedra and 

interconnects, respectively, and this is observed.  

The periodic metal meshes with 220 nm and 180 nm pores can also be 

fabricated by the use of 220 nm and 180 nm opals as templates, respectively. Figure 

2.10a shows the SEM picture of 220 nm Pd mesh (× 20,000) and Figure 2.10b is the 

image of 180 nm Ni mesh (× 10,000).  

Sometimes, the surface layers of mesh lack long-range periodicity. Some areas 

of the mesh appear nodular. This effect is not due to disorder in the opal, but rather 

because of uneven deposition. Such a phenomenon was also observed by Braun et al. 

in the electrodeposition of macroporous CdS (CdS mesh).54 This effect can be more 

apparent by the view of metal mesh in a larger area. Figure 2.11a shows the low 

magnification (× 2,000) top view of Pd mesh with 290 nm pores fabricated by 3-day 

electrodeposition at a current density of 0.25 mA/cm2. Due to the uneven growth, the 

Pd mesh shows a cauliflower-like surface. The mountain-like cross-sectional SEM 

image verifies the uneven deposition in Pd mesh (Figure 2.11b). When opal with 

smaller voids is used as template, the electrodeposition becomes more uneven. Figure 

2.12a and 2.12b show the top view SEM pictures of Pd mesh with 220nm pores and 

180 nm pores, respectively.  Both meshes were fabricated at a current density of 0.25 

mA/cm2 over a 3-day period, same condition as Pd mesh with 290 nm pores. It is seen 

that the growth of 220 nm mesh is more uniform than that of 180 nm mesh, but more 

uneven than that of 290 nm mesh.  

The current density also plays a very important role in the growth of metal 

meshes. When the current density decreases, the growth of metal meshes becomes 

more uniform. Figure 2.13a and 2.13b show the surface of Au meshes obtained at 

current density of 1.0 mA/cm2 and 0.20 mA/cm2, respectively. Apparently, the  
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10. Top view SEM pictures of a) 220 nm Pd meshes (× 20,000), 

b) 180 nm Ni mesh (× 10,000). 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11.  SEM pictures of 290 nm Pd mesh. a) top view showing cauliflower-like 

surface (× 2,000), b) cross-sectional view, × 1,000. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.12. Top view SEM images of a) 220 nm Pd mesh (× 5,000),  
                     b) 180 nm Pd mesh (× 5,000). 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13. Top view SEM images 290 nm Au meshes. a) obtained at current density 

of  1.0 mA/cm2 (× 7,500), b) obtained at current density of 0.20 mA/cm2 
(× 3,500). 
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diameter of the spherical “floret” is larger for Au mesh with 0.20 mA/cm2 constant 

current deposition, indicating the more uniform growth. 

Though sometimes the electrodeposition for metal meshes (especially for Au 

and Pd meshes) was uneven, the filling of the underlays is quite complete, as can be 

seen from cross-sectional SEM images of Pd meshes (Figure 2.14 and Figure 2.15). 

Cross-sections for SEM studies were prepared simply by physically separating 

segments with a small blade, the step faults, holes and clumps in the images therefore 

likely result from this process. The cross sections show long range periodicity, which 

is quite different from the surface of Pd mesh, indicating the cauliflower-like surface 

of metal meshes come from uneven electrochemical growth. 

Highly pure metal meshes are obtained by the electrodeposition process, as 

can be confirmed by the EDX (energy dispersive X-ray) spectra as shown in Figure 

2.16. No silicon is detected, indicating the complete etching away of the opal 

templates by dilute HF solution. Due to the surface oxidation in the air, a tiny amount 

(< 3%) of oxygen is found on the EDX of Ni, Co and Cu meshes. 

2.3.3.2 Transmission Electron Microscopy Characterization 

TEM was also used to examine the Ni mesh. Figure 2.17a shows a TEM 

image of opal (silica sphere arrays) filled with Ni. The lighter regions in the image 

represent the opal framework, and the darker parts are the infiltrated Ni nanoparticles. 

A (100) monolayer and multiple silica layers, as well as (111) stacking faults can be 

seen. By loading a small piece of the inverse Ni mesh on a TEM copper grid, the two 

dimensional projection of Ni network in predominately (110) orientation can be seen 

as shown in figure 2.17b. The lighter regions now represent the void space previously 

occupied by silica spheres. Figure 2.18a reveals a higher magnification of Ni mesh 

with (100) orientation. Microtwins and stacking faults were found as shown in Figure  
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.14. Cross-sectional view SEM images of 290 nm Pd mesh. a) × 2,000,  
                     b) × 7,500. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15. Cross-sectional view SEM images of 290 nm Pd mesh.                             

a) near surface, ×  3,500, b) near  Au electrode, × 10,000. 
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Figure 2.16. EDX spectra of a) nickel mesh, b) cobalt mesh, c) palladium mesh,  

d) gold mesh, e) silver mesh, f) copper mesh. The small amount of C on  
the EDX of metal meshes result from the C substrate. 
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a)  
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d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f)  
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a)                                                                  b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17. TEM images of (a) silica colloids with Ni infiltration, (b) macroporous 

Ni mesh in predominately (110) orientation. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)                                                            c)             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.18. TEM images of a) Ni mesh in (100) orientation (inset is the <110> SADP 

of single Ni cube), b) a single Ni cube magnified from that in a), c) a 
single macropore with Ni/NiO pore wall.  
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2.18b by carefully investigating a single cube, which can be also determined from the 

<110> SAED (selected area electron diffraction) pattern as shown in the inset of  

Figure 2.18a. The streaks and twin diffraction spots can be clearly seen. By doing 

SAED of many nickel octahedra, it was found that the most octahedral cubes formed 

single crystals during the electrodeposition. The reason for forming such unique 

structure is that the octahedral interstices have bigger space and gave enough time for 

Ni cubes to crystallize and grow into homogeneous structure. The connections of the 

macromesh consisted of nanograins. The narrow space of connections and large silica 

surface provide a rapid quenching environment for forming Ni nanograins. Even 

though the single crystal octahedral Ni cubes were formed, it was hard to find any 

preferential growth of these nanocubes by doing SAED. The SAED showed 

polycrystalline face-centered cubic (fcc) Ni feature with homogenous diffraction rings 

(Figure 2.19a). The nanograins of the connections were composed of Ni 

nanocrystallites with size range from 20-50 nm. The SAED in Figure 12a also reveals 

the existence of fcc NiO. On close examination of a single macropore wall, it was 

often found some small nanocrystals with size about 5 nm sticking on the surface of 

the Ni membrane after etching away silica spheres as shown in figure 2.18c. By doing 

EDX analysis, it was found that these nanoparticles contained Ni and oxygen, which 

was also confirmed as NiO nanocrystals by doing SAED. Similar phenomena was 

also observed by Blanford et al..76 When they removed the template in an oxygen 

containing atmosphere, any metal formed was immediately oxidized producing metal 

oxide. In our case, when the silica spheres were etched away, the fresh Ni surface was 

exposed to air and easily oxidized and formed a layer of NiO nanocrystals. In addition, 

the feature of Ni and NiO meshes is quite different from that prepared by chemical 

synthesis method reported by Yan et al..113 In their samples Ni or NiO walls of  



 

 

47

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.19. Selected area electron diffraction pattern for a) Ni mesh (the top right 

indices correspond to cubic Ni, while the left bottom indices correspond 
to cubic NiO), b) Ni/opal composite.  
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meshes were composed of fused nanograins with size about 50 nm and 6 nm, 

respectively. The NiO structure is hexagonal phase. In our case the nanocrystals of the  

NiO on the surface of the Ni membrane is face-centered cubic structure with size 

about 5 nm. On the contrary, no NiO diffraction ring was found from the SAED of 

Ni/opal composite (Figure 2.19b), indicating that the silica spheres can protect Ni 

nanoparticles from oxidation, similar to the situation in Ni infiltrated polyaniline 

nanotubules167 and Co infiltrated ZrO2 nanotubules.168 

2.3.3 Optical Images of Opals and Metal Meshes 

Since opals and metal meshes are structures with three-dimensional 

periodicity on a length scale comparable to that of light, they can strongly diffract 

white light, providing an iridescent coloration (Figure 2.20) that depends on the angle 

of the incidence on the crystals, the angle of observation, the spacing between the 

scattering planes, and the refractive index of materials, based on Bragg’s Law 

(equation 2.2):16 

                   mλ = 2nadhklsinθ                                                           (2.2)   

where m is the order of the diffraction, λ is the wavelength of the diffracted light, na is 

the average refractive index of the 3D arrays, dhkl is the interplanar spacing along the 

(hkl) direction, and θ is the angle between the incident light and the normal to the (hkl) 

plane. This equation indicates that the wavelength of the diffracted light is 

proportional to the interplanar spacing, then when the diameter of silica spheres in 

opals decreases, the wavelength of the diffracted light exhibits a blue shift if other 

conditions are the same. Due to the difference between the refractive indices of metal 

meshes and opal templates, they show different colors. The variation in color (Figure 

2.20) arises from the fact that the films are not ordered in the whole surface areas, due 

to the defects like step faults in the crystals, as were observed in the SEM pictures. 
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a)                                                                  b) 
 
 
 
 
 
 
 
 
 
 

 
c)                                                                   d)  
 
 
 
 
 
 
 
 
 
 
e)                                                                      f)   
 
 
 
 
 
 
 
 
 
 
 
Figure 2.20. Opals and meshes (inverse opals) show opalescent colors. 
                     a) 290 nm opal,        b) 220 nm opal, 
                     c) 180 nm opal,        d) 290 nm Ni/opal composite, 
                     e) 290 nm Ni mesh,  f) 290 nm Pd mesh. 
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2.3.4 Magnetic Properties 

Figure 2.21a shows the zero-field-cooled (ZFC) and field-cooled (FC) 

magnetization curves as a function of temperature taken in an applied field of 1000 

Oe. The two curves separate at low temperature, and the ZFC curve exhibits a peak at 

7 K and a broad peak with maximum at about 200 K, then the two curves merge at 

around 320 K. The maximum temperature (200 K) in the ZFC curve is called 

blocking temperature (TB, at which the time to be thermally activated over the energy 

barrier becomes comparable to the measurement time). Because of their small size, 

anisotropy energy barrier for magnetic nanoparticles are smaller than for the bulk 

materials. Therefore, at high temperature, thermal energy can overcome the 

anisotropy barrier and allow a coherent rotation of the atomic moments of a 

nanoparticle. Then a nanomagnet may become superparamagnetic at a so-called 

blocking temperature, at which it would be magnetic in the bulk. When the 

temperature drops below the blocking temperature, the nanoparticle’s moments are 

bound to the particle, and will not be very susceptible, so the induced magnetization 

will be small. This creates a peak at the blocking temperature for the ZFC 

magnetization under an applied field with increasing temperature.169,170 When a size 

range of nanoparticles exists, there is a corresponding range in blocking temperature. 

Consequently, a size distribution broadens the ZFC maximum. The blocking 

temperature TB at 200 K is related to the blocking of nanoparticles with average sizes, 

while the merging temperature (320 K) corresponds to the blocking of the largest 

particles. The broad maximum of ZFC curve indicates a distribution of particle sizes 

in Ni mesh, as is consistent with the SEM and TEM results. Interestingly, the ZFC 

curve also exhibits a sharp peak at 7 K, which may result from Ni nanoparticles with 

extremely small size171 or from the surface NiO nanoparticles. Though bulk NiO 
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a) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.21. Temperature dependence of magnetization for a) 290 nm Ni mesh.  
                     b) 180  nm Ni mesh. The zero-field cooled (ZFC), field-cooled (FC) 

curves were recorded at 1000 Oe. 
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shows antiferromagnetism with Néel temperature (TN) of 523 K, it is observed that 

NiO nanoparticles exhibit weak ferromagnetism and superparamagnetism due to 

uncompensated surface spins caused by the finite particle size.172-176
 

Figure 2.21b shows the ZFC-FC curves (applied field: 1000 Oe) of 180 nm Ni 

mesh. The shape of ZFC and FC curves is similar to that of 290 nm Ni mesh, but with 

average blocking temperature TB of 185 K and merging temperature of 280 K, 

respectively, both smaller than the corresponding 290 nm Ni meshes, due to the 

reduced particle size in 180 nm Ni meshes.  

In-plane hysteresis loops (magnetization versus applied field plots) at different 

temperature of 290 nm Ni mesh, 180 nm Ni mesh and bulk Ni film (fabricated by 

electrodeposition) were also obtained by SQUID magnetometer. Figure 2.22a shows 

the hysteresis loops of 180 nm Ni mesh measured at 5, 10, and 300 K and Figure 

2.22b is the full range of the hysteresis loops (field range of between -50,000 to 

50,000 Oe). The material exhibits a coercive field (Hc) of 506 Oe and squareness SQ 

(ratio of remanence to saturation magnetization, Mr/Ms) of 0.540 at 5 K. Both the 

coercivity and SQ decrease slowly with increasing temperature. The material reached 

a coercivity of 271 Oe and Mr/Ms of 0.491 at 300 K. Table 2.1a and 2.1b show 

respectively the coercivity and squareness data for bulk Ni film, 290 nm Ni mesh and 

180 nm Ni mesh at different temperature (5, 10, 300 and 350 K). The values of 

coercivity and squareness of Ni meshes are much higher than found in bulk nickel 

film. Such an dramatic enhancement is well known for other size-constrained 

magnetic systems.169 The presently observed coercive field for Ni meshes is similar to 

reported for 60 nm diameter Ni nanowires,177 and thin-film (0.5µm thick) 

macroporous Ni.52 The coercivity and squareness of 290 nm Ni mesh are slightly 

smaller than that for 180 nm Ni mesh, due to the size effect.52,177 Since the  
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a)      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.22.  a) In-plane hysteresis loops for 180 nm Ni mesh at 5, 10, and 300 K.        

b) Full range of the hysteresis loop (field range of between -50,000 to 
50,000 Oe) for 180 nm Ni mesh at 5 K, 10, and 300 K. 
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Table 2.1. Comparison of a) coercivity, and b) squareness (Mr/Ms) for bulk Ni, 290 
nm Ni mesh, and 180 nm Ni mesh at different temperature. 

 
a)  

 
b)  

 
 

 

 

 

 

 

 

 

 

 

 

 

Hc (Oe) 
Sample 

5 K 10 K 300 K 350 K 

Bulk Ni 35 35 18  

290 nm Ni Mesh 426 404 211 190 

180 nm Ni Mesh 506 491 271  

Mr/Ms Sample 
5 K 10 K 300 K 350 K 

Bulk Ni 0.114 0.113 0.052  

290 nm Ni Mesh 0.465 0.453 0.386 0.367 

180 nm Ni Mesh 0.540 0.535 0.491  
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nanoparticles in Ni meshes are connected to each other, strong dipole-dipole 

interactions exist. The Ni meshes show hysteresis loops even at 350 K, which is 

different from the pure superparamagnetic systems with very weak interparticle 

interactions,178,179 but similar to the systems with very strong dipole-dipole 

interactions like ferromagnetic nanowires and nanoparticles assemblies.180-183 

 

2.4 Conclusions 

 Electrodeposition in opal templates offers an effective route for the 

preparation of metal meshes. These metal meshes have uniformly porous structures 

with three-dimensional periodicity. Plating current density and pore size of templates 

can affect the growth of metal meshes, and better-quality metal meshes are obtained if 

a lower current density and an opal piece consisting of larger diameter silica spheres 

are applied.  Due to their structures with interconnected pores, the metal meshes may 

be infiltrated with other materials (such as metals by melt infiltration127) to make 

specific alloys or composites. Also lower dimensional structures (such as one-

dimensional corrugated metal nanowires or two-dimensional metal-mesh sheets) may 

be fabricated by mechanical processing like polishing.184 

The magnetic properties of nickel mesh show size effects due to the nanometer 

dimensions of the components. The Ni mesh exhibits an enhanced coercivity by 

comparison with bulk nickel. The investigation of these new types of materials will be 

of significant fundamental and practical interest because of their unique structures 

consisting of three-dimensionally porous metal arrays. 
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CHAPTER 3 

TEMPLATE SYNTHESIS OF METAL OXIDE MESHES  

AND POLYMER MESHES 

 

3.1 Introduction 

Colloidal crystal template synthesis has been broadly applied in materials 

areas as it is expected to create 3D ordered macroporous (pore size > 50 nm) materials 

with unique physical and chemical properties. A number of macroporous materials, 

such as metal, metal oxide, silica, polymer, and carbon meshes have been fabricated 

by colloidal crystal templating method. Metal oxide and polymer meshes are two 

types of macroporous materials which are extensively investigated due to their facile 

fabrication and wide range of applications. Generally, alkoxide-based sol-gel 

hydrolysis,69-87 metal salt (such as acetates and oxalates) precipitation and subsequent 

calcination113-114 are used to fabricate metal oxide meshes, but it is hard to obtain 

dense filling of metal oxides in the opal templates by these two techniques. Direct 

oxidation has been reported to convert metal nanowires to metal oxide nanowires;185 

here we extend this method to fabricate NiO meshes by the oxidation of Ni meshes 

obtained by electrodeposition.127,128 One advantage of synthesis of NiO meshes by 

direct oxidation is that higher filling fraction of NiO (~ 0.44) can be achieved 

comparing to NiO meshes obtained by nickel oxalate precipitation and thermal 

decomposition (filling fraction: ~ 0.09),114 then the mechanical stability of as-

synthesized NiO meshes increases a great deal, and thus they are more stable for 
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further applications, such as in catalysis,76 and as templates for metal nanosphere 

fabrication (see Chapter 4).127,128 

Polymer meshes have broad applications in a variety of areas, including 

photonics,91-94, 100 biosensing,98,186,187 catalysis,188 and separations.189 Chemical91-100 

and electrochemical59-61 polymerization approaches are generally used to prepared 

polymer meshes through colloidal crystal templating. Other methods include 

electroless polymerization,190 and infiltration of polymer solutions.191 Due to the 

plastic nature of polymers, the polymer meshes usually have highly uniform porous 

structures and are also stable enough for further applications, such as used as 

templates for nanosphere fabrication.85,97,192  

In this chapter, we demonstrate the fabrications of NiO meshes by direct 

oxidation of Ni meshes, conductive polyaniline meshes by electrochemical 

polymerization, and nonconductive PMMA mesh by chemical polymerization. Also, 

the formation of pressed PMMA meshes containing oblate pores by the compression 

of PMMA meshes is reported. 

 

3.2 Experimental Section 
 
3.2.1 Materials  

All solvents and chemicals were of reagent quality and were used as received.  

Na2SO4 (99.99%, Aldrich), H2SO4 (99.999%, Aldrich), HF solution (48%, Aldrich), 

methyl methacrylate (99%, Aldrich), aniline (99.5%, Aldrich), benzoyl peroxide (97%, 

Aldrich), dichloromethane (99.5%, EM Science), acetone (99.7%, Mallinckrodt).  

3.2.2 Synthesis of NiO Meshes 

We first sputtered a Au film (ca. 1 µm thick) onto one side of an opal piece 

(typically 7×10×1.5 mm), then Ag paste (Ted Pella, Inc.) was used to attach a length 
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of Cu wire to the Au film, and finally the Au/wire side of the electrode, as well as the 

edges, were covered with an insulating glue (Scotch Super Strength, 3M). 

Using the opal membrane as the working electrode, versus a Pt wire counter 

electrode, Ni was deposited galvanostatically into the opal template at a current 

density of 0.12 mA/cm2. The Ni electroplating solution (Nickel Sulfamate RTU, 

Ni(H2NSO3)2 solution) was obtained commercially (Technic, Inc.). The deposition 

time was 144 hours (ca. 80 µm thick nickel deposited).  

After the deposition, the Ni/opal sample was attached to a polishing wand, and 

polished with a piece of silicon carbide paper (600) to remove silica layers that had 

not been infiltrated with nickel. When the nickel mesh layer was nearly reached, the 

polishing was then carefully continued with a piece of silicon carbide paper 

(1200/4000) until reaching the surface of nickel mesh layer. The sample appearance 

changed from opalescent white (opal) to opalescent black (nickel/opal composite). 

Freestanding porous Ni mesh could be obtained by etching away the opal template 

with a 2% HF solution for 2 hours. 

Then the Ni mesh was put in a crucible and annealed in a tube furnace (TF 

55035A-1, Lindberg/Blue M). NiO mesh was obtained by slowly oxidizing the Ni 

mesh in open air to 550ºC at 1ºC /min., followed by an 8-hour isotherm. Then the NiO 

mesh was cooled slowly to room temperature in the furnace. Under similar procedure, 

NiO mesh with annealing temperature of 650ºC was also fabricated. 

3.2.3 Electrodeposition of Conductive Polyaniline Mesh 

3.2.3.1 Electroplating Solution 

The prepared plating solution contained 40 g/liter aniline, 70 g/liter Na2SO4, 

and 62 g/liter H2SO4, and had a pH ~ 1.0. 
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3.2.3.2 Synthesis of Polyaniline Mesh 

Using the opal membrane as the working electrode, versus a Pt wire counter 

electrode, electropolymerisation was carried out galvanostatically inside the opal 

template at a current density of 0.50 mA/cm2, over a 48-hour period. After the 

electrochemical deposition was complete, the opal template was removed by soaking 

the polyaniline/opal film in 2% HF solution for 12 hours, resulting in freestanding 

polyaniline mesh with black opalescent color. 

3.2.4 Chemical Polymerization of Nonconductive PMMA Mesh 

A piece of opal was immersed in methyl methacrylate (MMA) monomer with 

1 wt.% benzoyl peroxide (BPO) as an initiator.  Polymerization was initially carried 

out at 40°C for 10 hrs and then 60°C for 12 hrs. Excess poly(methyl methacrylate) 

(PMMA) on the opal surfaces, was removed by wiping the exposed opal surface clean 

with dichloromethane (CH2Cl2). Then, the PMMA/opal composite was immersed in 

10% HF solution for 12 hrs to remove silica spheres, resulting in freestanding PMMA 

mesh structure. The PMMA mesh was washed thoroughly with distilled water, then 

was either kept in distilled water for later preparation of compressed PMMA mesh or 

dried in air for SEM observation. 

3.2.5 Preparation of Compressed PMMA Mesh with Oblate Pores 

 A piece of PMMA mesh was placed between two metal plates and filled with 

distilled water. By the use of a laboratory press (Fred S. Carver, Inc.), a pressure (~ 5 

tons) was then applied to the top metal plate to deform the PMMA mesh, resulting in 

the formation of compressed PMMA mesh with oblate pores, instead of the spherical 

pores of original PMMA mesh. Then the compressed PMMA mesh was dried in air 

for the SEM observation. 
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3.2.6 Characterization  

3.2.6.1 Scanning Electron Microscopy Characterization 

Scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDX) analysis were performed on a JEOL JSM 5410 SEM. The 

samples were affixed to conductive carbon tape and loaded on specimen mounts for 

SEM. For PMMA mesh and compressed PMMA mesh, a thin-layer (~ 4 nm) of Au 

was puttered onto the surface of samples before the SEM observation.  

3.2.6.2 Transmission Electron Microscopy Characterization 

Transmission electron micrographs (TEM) and electron diffraction patterns 

were obtained by using a JEOL 2010 TEM operating at 200 kV. The samples were 

prepared by mounting small pieces of mesh on TEM copper grid and directly loaded 

in TEM for observation. 

 

3.3 Results and Discussion  

3.3.1 Synthesis and Characterization of NiO Meshes 

In the preparation of Ni mesh (inverse Ni opal), a low plating current density 

(0.12 mA/cm2) was used for the even growth of nickel within the opal membrane. The 

thickness of the Ni mesh film can be controlled by simply adjusting the deposition 

time. After the deposition, the silica part with no Ni deposited of the Ni-mesh/opal 

sample was removed by polishing to show the Ni/silica composite surface. Such a 

step is necessary for the preparation of uniform Ni and NiO mesh. Since the thickness 

of opal piece (~ 1.0 mm) is far more than that of Ni mesh (~ 80 µm), in order to 

reduce the dissolution of Ni when etching away of opal by dilute HF acid, we used a 

grinding paper to polish the Ni filled opal until Ni appears on the surface. Then opal 

template could be removed in a relatively short time to get freestanding Ni mesh. It 
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takes about 2 hours to completely etch away the opal in the polished Ni/opal sample 

(around 80 µm thick) by 2% HF solution, while 12 hour is needed for the complete 

removal of opal in the pre-polishing sample, thus higher-quality Ni mesh can be 

obtained by the polishing.  

NiO mesh can be readily obtained by annealing the Ni mesh in open air. In the 

annealing, we raised the temperature to 550ºC at a low rate of 1 ºC/min to ensure the 

even oxidation of Ni mesh, then the sample was kept at 550ºC for 8 hours to 

completely convert the Ni to NiO. Semiquantitative analysis with EDX shows a 

stoichiometry of approximately 1:1 (Ni:O) for the NiO mesh (Figure 3.1). After 

annealing, the mesh could not be attracted by a strong magnet, which indicated that 

the Ni was well oxidized. Figure 3.2a shows a representative SEM image of 290 nm 

NiO mesh surface (5,000 ×). Figure 3.2b and 3.2c reveal 290 nm NiO mesh with 

predominately (111) orientation (10,000 ×), and (100) orientation (20,000 ×), 

respectively. Figure 3.2d shows SEM image of a piece of 220 nm NiO mesh (20,000 

×). These meshes are quite uniform and good for further applications, such as used as 

templates for the fabrication of metal sphere arrays.127,128 

The size of the pores in the NiO mesh became smaller due to the oxidation of 

Ni mesh. If one assumes that the overall dimensions of the mesh piece do not vary 

with oxidation and that the volume changes that do occur only go to reduce the 

internal void volume of the mesh, then one can estimate the expected change in the 

internal void space by considering the formula weights (FW) and densities (D) of Ni 

(FW: 58.69, D: 8.902 g/cm3) and NiO (FW: 74.71, D: 6.67 g/cm3). Based on these 

values, the fraction of space occupied by the Ni mesh (~0.26) would be expected to 

increase to ca. 0.44 for the NiO mesh. The higher filling fraction of NiO mesh makes 

it more mechanically stable than the NiO meshes fabricated by other methods like  
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Figure 3.1.  EDX spectra of NiO mesh. 
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Figure 3.2. SEM photographs of a) 290 nm NiO mesh at magnification of 5,000,        

b) 290 nm NiO mesh predominately along the 111 direction (× 10,000),    
c) 290 nm NiO mesh along 100 direction (× 20,000),                                  
d) 220 nm NiO mesh (× 20,000). 
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c)  
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nickel oxalate precipitation and thermal decomposition which produces NiO meshes 

with a very low filling fraction (~ 0.09).113,114 

The annealing process turned the Ni membrane completely into a mesh 

consisted of NiO nanograins. Figure 3.3a is the (111) TEM image of the mesh. All of 

the mesh now was composed of fused NiO nanograins with an average diameter of 20 

nm. Figure 3.3b is the selected area electron diffraction (SAED) pattern of the NiO 

membrane with face-centered cubic (fcc) structure. The structure is quite different 

from that reported by Yan et al., who obtained crystalline hexagonal NiO mesh by 

salt-precipitation and chemical conversion method.113 Further annealing of the NiO 

membrane at 650ºC induced the NiO nanograins to grow bigger. TEM picture as 

shown in Figure 3.3c shows that NiO nanograins grew into a size of 50-80 nm. The 

higher temperature treatment made NiO membrane more stable for further 

applications.  

3.3.2 Synthesis of Conductive Polymeric Meshes 

Conductive polymeric meshes can be synthesized by either chemical or 

electrochemical polymerization. The latter is generally preferred because it provides 

better control of film thickness and morphology. Polyaniline is one of the most 

extensively investigated conductive polymers. In our experiments, we successfully 

fabricated conductive polyaniline mesh using opal template by electrochemical 

polymerization. The polyaniline was infiltrated into opal under acidic condition 

(shown in equation 3.1) through anodic oxidation. Then the opal was removed by  

 

 
 
 

 
 

(3.1) 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)                                                               c)  
 
 

 
 
 
 
 
Figure 3.3. a) TEM image of 290 nm NiO mesh obtained by annealing Ni mesh at 550 

ºC. b) Electron diffraction pattern of NiO mesh. c) TEM image of a single 
macropore with NiO pore wall obtained by annealing Ni mesh at 650 ºC. 
(In TEM images, darker regions represent NiO nanoparticles). 
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dilute HF solution to produce freestanding polyaniline mesh. The black polyaniline 

mesh shows opalescent color under the illumination of white light. 

Figure 3.4 shows SEM image of a piece of polyaniline mesh made from a 290 

nm diameter silica opal template. It is obvious that the polyaniline mesh has three-

dimensionally ordered porous structure. The three-dimensional periodicity extends 

over long range. 

3.3.3 Synthesis of Nonconductive PMMA Meshes 

Nonconductive PMMA poly(methyl methacrylate) meshes can be fabricated 

by chemical polymerization of MMA (methyl methacrylate) monomer inside the void 

space of opal, followed by the removal of opal template by dilute HF solution. In the 

polymerization process (shown in equation 3.2), BPO (benzoyl peroxide) was used as 

the initiator for the free radical synthesis of PMMA. The polymerization can be 

carried out by either heating or UV (ultra-violet) irradiation. Thermopolymerization 

was used to synthesis PMMA mesh in our experiments. The reaction temperature was 

easily controlled by a furnace, and PMMA was readily obtained by heating at 60°C 

for a few hours. 

 

 

 

 

 

The filling of PMMA inside the void space opal was quite complete, and 

nearly all the interstices in the whole opal piece were occupied by PMMA, which is 

different from the infiltration process of electrodeposition. By electrochemical 

deposition, the thickness of materials being deposited can be controlled by varying the  

(3.2) 
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Figure 3.4. SEM picture of 290 nm polyaniline mesh (× 10,000). 
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time and current, while by chemical polymerization, nearly all the voids in the whole 

volume of the template are filled by polymer. Figure 3.5a shows the cross-sectional 

SEM image (× 10,000) of PMMA mesh made from opal consisting of 290 nm 

diameter silica spheres, and Figure 3.5b is a higher magnification of the PMMA mesh 

in (111) orientation. The PMMA mesh contains highly uniform macropores and a 

triangular pattern below each pore of the surface layer of (111) orientation region can 

be seen clearly, indicating that PMMA mesh consists of 3D ordered porous structures. 

Since PMMA is glassy, the pore wall of PMMA mesh is smooth compared with that 

of metal and metal oxide meshes consisting of crystalline metal or metal oxide. Dilute 

HF solution can completely remove the silica spheres in opal template, based on the 

SEM image and EDX analysis, which detected no Si signal in the PMMA mesh. Since 

opal templates can be made with variable silica sphere sizes, as well as thicknesses, 

the resulting polymeric meshes have easily controlled void volume and thickness. 

Also the PMMA meshes, which are white themselves, can strongly diffract white light 

and exhibit opalescent colors.  

3.3.4 Synthesis of Compressed PMMA meshes 

Silica opal is brittle and thus further processing is impossible. In contrast, 

polymer mesh is soft and can be deformed by stretching or pressing to produce 

polymer mesh with oblate pores. Jiang et al. fabricated ellipsoidal polystyrene mesh 

by heating the polystyrene mesh filled with mineral oil above the glass transition 

temperature of polystyrene (94°C) and stretching.192 Sumioka et al. stretched PMMA 

mesh fill with hot water (87°C) to obtain deformed PMMA mesh.193 In our 

experiments, we applied a pressure on the surface of PMMA mesh film by simply 

using a laboratory press at room temperature. The pressure can be controlled by the 

press, and thus the deformation of PMMA mesh can be also controlled. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5. a) SEM image of PMMA mesh (× 10,000). b) A higher magnification of 

PMMA mesh with (111) orientation showing uniform porous structure. 
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Figure 3.6 shows the SEM pictures of compressed PMMA mesh obtained by 

pressing water-filled PMMA mesh containing 290 nm diameter pores. Oblate textures 

that represent deformed air spheres in the PMMA mesh can be observed. Three-

dimensional periodicity of original PMMA mesh is still retained. In contrary to the 

original PMMA mesh which reflects green light, the compressed PMMA mesh 

reflects blue light, indicating a decrease in the lattice spacing of selective reflection.193 

Thus the optical properties of PMMA meshes are tunable by if the deformation is well 

controlled. 

 

3.3 Conclusions 

Three-dimensionally periodic NiO meshes were successfully fabricated by 

directed oxidation of Ni meshes in the air. The nanocrystalline sizes of NiO particles 

can be adjusted by temperature. Lower-temperature treatment of Ni meshes leads to 

NiO meshes with smaller nanograins, but having higher total surface areas. More 

mechanically stable NiO meshes are obtained by annealing NiO meshes at higher 

temperature. Using opal templates, ordered conductive polyaniline meshes were 

synthesized by electrochemical polymerization of aniline monomer in acidic solution. 

Well-defined nonconductive PMMA meshes were produced from chemical 

polymerization of MMA monomer inside opal templates. These polymer meshes 

show highly uniform porous structures with 3D periodicity. Also, compressed PMMA 

meshes with oblate pores could be formed by the deformation of PMMA meshes with 

pressure. One important application of these meshes is that they can be used as further 

templates to fabricate new types of 3D ordered sphere arrays (colloidal crystals) with 

technologically important properties (refer to Chapter 4).97,127,128,192  
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b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6  SEM images of compressed PMMA mesh with magnification of a) × 

10,000,  b) × 20,000. 
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CHAPTER 4 

TWO-STEP TEMPLATE SYNTHESIS OF  

METAL SPHERE ARRAYS  

 

4.1 Introduction 

Two-step template synthesis has been previously applied to prepare one-

dimensionally ordered nanohole arrays.194-197 Recently, this approach was extended to 

fabricate three-dimensional (3D) nanoscale structures.85,95,97,127,128,192,198-205 By the use 

of opal (colloidal crystal with ordered silica or latex spheres) as a template, inverse 

opal can be fabricated by established methods described in Chapter 1. Then the 

inverse opal can be further used as a mold to synthesize diverse nanosphere arrays 

(colloidal crystals) and nanocomposites, such as silica,95,198 metal oxide,85,192,198-201 

and metal sphere arrays97,127,128,205 and carbon/metal,127 carbon/semiconductor,127  

carbon/polyaniline,202 and ferromagnetic/ ferroelectric composites.203  These new 

types of materials, which are hard to produce by other techniques, have potential 

applications in a variety of areas, including photonics,23 gas sensing,85,200 and 

magnetics.97,206 

A number of methods like sol-gel hydrolysis,85,192,198-201,203 electrochemical 

deposition97,127,128,202,205 and melt infiltration127 have been employed to fabricate 

nanosphere arrays and nanocomposites. In our group, we mainly use electrochemical 

deposition technique to synthesize metal nanosphere arrays.97,127,128,205  

Electrodeposition offers an effective method for producing metal sphere arrays, due to 
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the nearly complete filling of the channels of porous templates and easy control of the 

extent of metal growth.  In this chapter, we describe the two-step template synthesis 

of metal sphere arrays.97,127,128,205 First, NiO mesh or poly(methyl methacrylate) 

(PMMA) mesh was prepared from an opal template.  Then, using the poorly 

conductive NiO mesh or PMMA mesh as a mold, highly ordered metal nanospheres 

were readily obtained by electrochemical deposition. Also, angle-dependent magnetic 

properties of Ni and Co sphere arrays were investigated. 

 

4.2 Experimental Section 

4.2.1 Materials  

All solvents and chemicals were of reagent quality and were used as received.  

CoSO4·7H2O (99.998%, Aldrich), NaCl (100.2%, J. T. Baker), HF solution (48%, 

Aldrich), H3BO3 (99.8%, EM Science), H2SO4 (95.0-98.0%, EM Science), methyl 

methacrylate (99%, Aldrich), benzoyl peroxide (97%, Aldrich), dichloromethane 

(99.5%, EM Science), acetone (99.7%, Mallinckrodt), ethyl alcohol (99.5%, Aldrich). 

4.2.2 Electrodeposition of Metal Sphere and Oblate Sphere Arrays 

4.2.2.1 Electroplating Solutions 

The commercial Ni (Nickel Sulfamate RTU, Ni(H2NSO3)2 solution, pH ~ 4.0), 

Pd (Pallaspeed VHS, 3.97% (NH2CH2CH2NH2)2PdSO4 solution, containing 5.3 g/liter 

palladium, pH ~ 6.0), and Au (Orotemp 24 RTU, KAu(CN)2 solution, containing 8.2 

g/liter gold, pH ~ 8.0) electroplating solutions were obtained from Technic Inc. 

Co plating solution: 200 g/liter CoSO4·7H2O, 6 g/liter NaCl, 40 g/liter H3BO3,  

pH ~ 3.5 

4.2.2.2 Synthesis of Metal Sphere Arrays Using NiO Mesh Template 

Synthesis of NiO Mesh.  Three-dimensionally ordered Ni mesh was fabricated 
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by first electrodepositing Ni into the opal template at a current density of 0.12 

mA/cm2 over a 144-hr period (ca. 80 µm thick nickel deposited), then polishing to 

remove silica layers that had not been infiltrated with nickel until reaching the Ni 

mesh layer, and finally removing the opal template with dilute HF solution. Poorly-

conductive NiO mesh was obtained by slowly oxidizing the Ni mesh in open air to 

550 ºC at 1 ºC /min., followed by an 8-hour isotherm. More details are described in 

Chapter 3. 

Synthesis of Metal Sphere Arrays.  The poorly conductive NiO mesh was then 

used as an electrode (the sputtering gold backing still in place) after the copper wire 

and insulating glue (Scotch Super Strength, 3M) were reapplied. The NiO mesh was 

filled with metals by galvanostatic electrodeposition using a Pt wire counter electrode 

and a Potentiostat/Galvanostat (EG&G Model 263A). Figure 4.1 shows the set-up for 

electrodeposition of metals in NiO mesh membrane. The current density is usually 

smaller than 0.6 mA/cm2, and the deposition time is larger than 12 hours. After the 

deposition, the NiO mesh was removed in a boiling dilute sulfuric acid solution (20% 

v/v, 15 min.), resulting in ordered metal sphere arrays. 

4.2.2.3 Synthesis of Metal Sphere Arrays Using PMMA Mesh Template 

Preparation of PMMA Infiltrated Opal.  The PMMA infiltrated opal was 

prepared by chemical polymerization of methyl methacrylate (MMA) monomer inside 

the opal piece. Excess poly(methyl methacrylate) (PMMA) on the opal was removed 

by wiping the exposed opal surface clean with dichloromethane (CH2Cl2).  More 

details are described in Chapter 3. 

Fabrication of PMMA Mesh Electrode.  A Au film (ca. 1 µm thick) was 

sputtered onto one side of a piece of PMMA/opal, then Ag paste (Ted Pella, Inc.) was  

used to attach a length of Cu wire to the Au film, and finally the Au/wire side of the 
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Figure 4.1.   Set-up for electrodeposition of metals in mesh membrane. 
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electrode, as well as the edges, were covered with an insulating glue (3M).  The silica 

opal spheres were removed using a 10 wt.% HF solution (12 h) to obtain a  

freestanding PMMA mesh (inverse opal).  This PMMA mesh was kept in water for 

later use as working electrode in electrodeposition. 

Synthesis of Metal Sphere Arrays.  The PMMA mesh was filled with metals by 

galvanostatic electrodeposition using a Pt wire counter electrode and an EG&G 

Model 263A Potentiostat/Galvanostat (Figure 4.1).  The current density is 0.8 

mA/cm2 for Ni or Co deposition and 0.6 mA/cm2 for Pd deposition; the plating times 

were all 48 hrs.  After the electroplating process, freestanding metal sphere arrays 

were obtained by etching away the PMMA template with warm CH2Cl2.  The 

thickness of a typical metal colloidal crystal was about 60 µm. 

4.2.2.4 Synthesis of Oblate Metal Sphere Arrays Using Compressed Mesh Template 

Preparation of Compressed PMMA Mesh.  Compressed PMMA mesh was 

prepared by applying a pressure on the surface of PMMA mesh, which was filled with 

water. The resulted compressed PMMA mesh was dried in air. More details are 

described in Chapter 3. 

Fabrication of Compressed PMMA Mesh Electrode.  A Au film (ca. 0.5 µm 

thick) was sputtered onto one side of a piece of compressed PMMA, then Ag paste 

(Ted Pella, Inc.) was used to attach a length of Cu wire to the Au film, and finally the 

Au/wire side of the electrode, as well as the edges, were covered with an insulating 

glue (3M).  The electrode was immersed in 50% (v/v) EtOH solution for 24 hours to 

make the PMMA pore wall hydrophilic, and then the electrode was kept in distilled 

water for later use as working electrode in electrodeposition. 

Synthesis of Oblate Metal Sphere Arrays.  The compressed PMMA mesh was 

filled with metals by galvanostatic electrodeposition using a Pt wire counter electrode 
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and an EG&G Model 263A Potentiostat/Galvanostat (Figure 4.1).  For Ni deposition, 

the current density is 0.4 mA/cm2 and the plating time was 96 hrs.  After the 

electroplating process, freestanding oblate metal sphere arrays were obtained by 

etching away the compressed PMMA template with warm CH2Cl2.   

4.2.3 Fragmentation of Metal Sphere Arrays 

The metal sphere array samples were put in distilled water.  Then sonication 

was carried out in a 75 W ultrasonic bath (Branson 1510) to disintegrate the large 

piece of metal sphere array into smaller pieces, sphere arrays, or isolated spheres.  

Pieces of the colloidal crystals were deposited on conducting ITO (Indium Tin Oxide) 

glass substrate for SEM observation. 

4.2.4 Characterization  

4.2.4.1 Scanning Electron Microscopy Characterization 

Scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDX) analysis were performed on a JEOL JSM 5410 SEM. The 

samples were affixed to conductive carbon tape and loaded on specimen mounts for 

SEM.   

4.2.4.2 Optical Image 

 Optical picture was taken by a Sony DSC-S75 digital camera with 3.3-

megapixel CCD, 3× optical zoom lens and 2× digital zoom under a white light 

illumination.  

4.2.4.3 X-Ray Diffraction Characterization 

Powder X-ray diffraction (XRD) data were collected between 5º and 118º 2θ 

(step = 0.02º with a 1 s count time) on an automated Philips X’Pert-MPD 

diffractometer equipped with copper radiation (λ = 1.5418 Å) and a graphite attached  
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monochromator. X-ray diffraction measurements were made on sample membranes to 

the sample holder using a double-face tape. 

4.2.4.4 Magnetic Properties 

The angular dependence of hysteresis loops for Ni and Co sphere arrays 

obtained from PMMA mesh template was measured at room temperature on thin 

sample plates (3 mm x 3 mm x 60 µm) using a Lakeshore 735 vibrating sample 

magnetometer (VSM). For out-of-plane angular variation measurements, the magnetic 

field was applied at an angle between the field direction and the normal to the plate 

plane; for in-plane angular variation measurements, the magnetic field was applied in 

the plate plane but at an angle between the field direction and one axis of the plate 

plane. The maximum applied field was ± 10,000 Oe. 

 The temperature dependence of hysteresis loops for ordered Ni sphere arrays 

was studied at various temperatures (5 K, 50 K, 300 K) in external fields up to ± 

50,000 Oe using an MPMS-5S superconducting quantum interference device (SQUID) 

magnetometer. The procedure is similar to that described in Chapter 2. 

 

4.3 Results and Discussion 

4.3.1 Schematic Procedure for Two-Step Templating Method 

Figure 4.2 shows schematic views of the procedure for the fabrication of 

ordered metal sphere arrays (metallic colloidal crystals).  There are two replication 

steps in the fabrication process.  In the first templating process, opal consisting of 

three-dimensionally ordered silica spheres was used as a template to fabricate Ni 

mesh (Figure 4.2a) by electrodeposition or PMMA mesh (Figure 4.2b) by chemical 

polymerization of MMA monomer.  Freestanding inverse opals (Ni mesh and PMMA  
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a)  
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
Figure 4.2.   Schematic of two-step replication process for the fabrication of metal 

sphere arrays. a) NiO mesh used as the second-step template, b) PMMA 
mesh used as the second-step template. 
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mesh) were obtained by etching away the opal template in dilute HF solution. Then 

conductive Ni mesh was oxidized in the air to form poorly conductive NiO mesh. 

In the second templating process, the poorly conductive NiO mesh or PMMA 

mesh was further used as a nanomold for the electrochemical growth of 3D periodic 

metal spheres in the macropores of NiO mesh (Figure 4.2a) or PMMA mesh (Figure 

4.2b). The templates were then removed by acidic solutions (for NiO mesh) or 

organic solvents (for PMMA mesh) to produce freestanding metal sphere arrays; or 

the templates were kept intact to form specific metal/metal oxide and metal/polymer 

composites, which are hard to otherwise fabricate. 

Since in our experiments the metal sphere arrays were synthesized by 

electrodeposition, the second-step template needs to be poorly conductive, otherwise 

the electrochemical growth of metal preferentially occurs on the surface of mesh. 

Also due to the interconnection of macropores in a mesh, the electroplating solution 

can effectively diffuse through the poorly conductive mesh to reach the 

microelectrode, and then the electrodeposition starts from the electrode and grows out 

towards the exposed surface of mesh. 

4.3.2 Metal Sphere Arrays from NiO Mesh Templates 

Well-defined NiO mesh was fabricated by slowly oxidizing Ni mesh in open 

air. In order to obtain high quality NiO mesh, we used very low electroplating current 

density (~ 0.12 mA/cm2) for the even growth of Ni mesh and polished away the opal 

layers with no Ni deposited to reach the surface of Ni mesh layers in order to reduce 

the time of etching of Ni mesh by dilute HF acid. Also it is important to remove the 

opal completely, otherwise some parts of the macropores in Ni mesh was occupied by 

silica spheres, and then blocked the diffusion of electroplating solution. Figure 4.3a 

and 4.3b show typical SEM images of a piece of opal (first template) consisting of  



 83

a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.   SEM pictures of a) a piece of opal consisting of 290 nm diameter silica 

spheres (× 10,000), b) a piece of three-dimensionally periodic NiO mesh 
oxidized from Ni mesh containing 290 nm diameter pores (× 10,000). 
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290 nm diameter ordered silica spheres and NiO mesh (second-step template) 

oxidized from Ni mesh containing 290 nm diameter pores, respectively (both at  

magnification of 10,000). Some grey parts on the surface of NiO mesh (Fugure 4.3b) 

came from polishing. 

Using the NiO mesh as a template, ordered metal sphere arrays were readily 

obtained by electrodeposition. Figure 4.4a shows a low magnification (× 5,000) SEM 

image of the of the gold sphere arrays that were electrochemically deposited within 

the NiO mesh. EDX analysis reveals the presence of only Au in the sphere arrays after 

complete dissolution of the NiO template by hot dilute sulfuric acid. 3D ordered 

structure of Au sphere arrays can be seen clearly from Figure 4.4b. Figure 4.5 shows 

cross-sectional SEM images of Au sphere arrays. The extended three-dimensional 

sphere network can be seen in Figure 4.5a (× 10,000). The spheres can be seen linked 

to each other by narrow interconnects. Cross-sections for SEM studies were prepared 

simply by physically separating segments with a small blade, the clumps and large 

hollows seen in Figure 4.5a therefore likely result from this process. Figure 4.5b 

shows a higher-magnification image of Au sphere arrays in the (111) orientation. 

Figure 4.6a shows the SEM image of a small piece of Pd sphere arrays (5,000×). The 

flat part on the right lower corner came from the overdeposition of Pd. Well ordered 

Pd sphere arrays were exposed after detaching the overdeposited Pd layer. Figure 4.6b 

reveals a cross-sectional SEM image of Pd sphere arrays (15,000×). The narrow 

interconnects between adjacent Pd spheres can be clearly observed. Interestingly, the 

metal spheres are slightly smaller in diameter (ca. 270 nm) relative to those of the 

starting opal membrane (290 nm). This likely relates to volume changes that occur on 

oxidation of the Ni mesh to NiO. Since the filling fraction of NiO mesh is about 0.44 

(refer to Chapter 3), which is larger than that of Ni mesh (0.26), this would  
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.   SEM pictures of a) Au sphere arrays at low magnification (× 5,000),       

b) Au sphere arrays show three-dimensional structure (× 15,000). 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5.   Cross-sectional SEM pictures of a) Au sphere arrays at × 10,000 

magnification, b) Au sphere arrays along (111) direction. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6.   SEM images of (a) nanoscale Pd sphere arrays with overdeposited part  

(× 5,000), (b) cross-sectional Pd sphere arrays (×15,000). 
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correspond to a reduction in the metal sphere diameter from that of the opal spheres to 

approximately 260 nm, similar to what is observed. 

It is important to completely oxidize Ni mesh into NiO mesh. A partial 

oxidized Ni mesh (NiO shell/Ni core mesh) was attempted to fabricate metal sphere 

arrays, the resulting sample surface was covered by metal. Though the surface of Ni 

core was covered by the nanocrystalline NiO shell, the NiO nanoparticles could not 

completely block the diffusion of plating solution to reach the Ni core, then 

electrodeposition could also take place on the surface of NiO shell/Ni core mesh, and 

the inner pores could not completely be filled with metal by electrodeposition. If 

conductive metal mesh was used as the template for electrodeposition, the 

electrochemical growth of metal preferentially occurred on the surface of metal mesh, 

rather than from the bottom electrode. Though metal meshes are not good templates 

for electrodeposition of metal sphere arrays, they can be used as a mold for the 

preparation of specific alloys by melt filtration127 or fabrication of other types of 

sphere arrays like ceramic sphere arrays by sol-gel methods. 

Some other metals like Ni and Co can also be deposited into the NiO mesh, 

and metal/NiO nanocomposites can thus be produced, but it is hard to separate the 

metal spheres from NiO mesh since these metals also dissolve in acid. Though 

freestanding Ni and Co cannot be obtained from NiO mesh template, the Ni/NiO and 

Co/NiO nanocomposites may have important properties like interesting exchanging 

bias property since these materials contain antiferromagnetic (NiO)/ferromagnetic (Ni 

or Co) nanolayers.145,146,207 Other metal oxide meshes (such as CoO and CuO meshes) 

can also be prepared and used as the templates to fabricate a diversity of functional 

metal sphere arrays and metal/metal oxide nanocomposites by electrodeposition. 
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4.3.3 Metal Sphere Arrays from PMMA Mesh Templates 

4.3.3.1 Scanning Electron Microscopy Characterization 

Though electrodeposition is a highly effective approach for the preparation of 

metal sphere arrays by template filling, the application of the NiO mesh is limited, 

since it readily dissolves in solutions containing acid and can be affected by strongly 

coordinating ligands. Polymer meshes have an advantage that they can be unaffected 

by acidic or basic solutions, so that a wider range of metals may be electrodeposited. 

Further, the ease at which organic reagents can remove the polymer meshes readily 

leads to high-quality, freestanding metal sphere arrays. 

Figure 4.7 reveals the uniform porous structure of the PMMA mesh, which 

contains 290 nm diameter pores (× 20,000). Since the macropores in PMMA mesh are 

interconnected, the PMMA mesh allows the electroplating solutions to diffuse 

through the mesh and reach the Au electrode, so that electrochemical growth of the 

metal spheres can take place, starting from the Au electrode. Because of the 

hydrophobicity of the PMMA surface, the PMMA mesh had to be kept wet after 

removal of the silica opal spheres by HF solution, otherwise the aqueous plating 

solutions could not effectively diffuse into the mesh. Also, the wet PMMA mesh 

maintains its porous structure, with pore diameter similar to that of the original silica 

spheres. If dried in air, the PMMA mesh shrinks and the pore diameter somewhat 

decreases.    

Figure 4.8 shows a cross-sectional view of Pd spheres between the Au 

electrode and the sample surface (× 1,500). The filling is quite complete, and the 

periodicity extends over the entire area, except when interrupted by defects present 

largely as stacking faults in the original opal.  Figure 4.9 shows SEM pictures of 

metal sphere arrays at different magnification. High-quality metal sphere arrays with  
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Figure 4.7.   SEM image of a piece of PMMA mesh containing 290 nm diameter 

pores (× 20,000). 
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Figure 4.8.   Cross-sectional SEM image of 290 nm diameter Pd spheres between the 
Au electrode and the sample surface (× 1,500). 
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Figure 4.9.   SEM images of 290 nm diameter metal sphere arrays at different 
magnifications. a) Ni sphere arrays (× 10,000), b) Pd sphere arrays        
(× 20,000), c) Ni sphere arrays with (111) orientation (× 35,000), d) Ni 
sphere arrays with predominately (100) orientation (× 50,000), e) Pd 
sphere arrays at high magnification (× 100,000). 
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three-dimensional periodicity can be seen from Figure 4.9a (Ni sphere arrays, at 

magnification of × 10,000). Figure 4.9b shows the Pd sphere arrays at magnification 

of × 20,000. Figure 4.9c and 4.9d show predominately (111) and (100) orientation of 

Ni sphere arrays, with magnification of (× 35,000) and (× 50,000), respectively. 

Interestingly, one single Ni sphere was found on the surface of the (111) plane (Figure 

4.9c), and also a void space was left on the lattice, which suggests that metal sphere 

arrays may be broken into isolated spheres by methods such as ultrasonication.192,208 

Figure 4.9e is a higher magnification (× 100,000) of Pd sphere arrays. The location of 

broken nanoscale interconnects (to spheres removed from the sample) can be clearly 

seen in the Figure 4.9b to 4.9e, as white spots on the sphere surfaces. Based on Figure 

4.9d and 4.9e, the diameter of as-prepared metal spheres is estimated to be 290 ± 10 

nm, very close to that of original silica spheres, indicating that electrodeposition 

produces high-density infiltration through volume templating. On the contrary, a sol-

gel process either forms hollow colloidal crystals through surface templating or 

experiences significant reduction of sphere diameter.85,192 Opal with 180 nm diameter 

silica spheres was also used to fabricate metallic colloidal crystals, and similar results 

were obtained (Figure 4.10, × 15,000).   

4.3.3.2 Optical Image of Metal Sphere Arrays  

Since these metal sphere arrays have structures with three-dimensional 

periodicity on a length scale comparable to that of light, they are metallic photonic 

crystals. These materials strongly diffract white light and exhibit iridescent colors.  

Figure 4.11 shows the optical photo of 290 nm diameter Ni sphere arrays. Different 

colors on the surface relate to different regions of metal sphere arrays, each of which 

is differently oriented. Also, based on Bragg’s Law, the color for same orientation 

region depends on the angle of the incidence on the sample. 
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Figure 4.10.  SEM image of 180 nm diameter Ni sphere arrays (× 15,000). 
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Figure 4.11.  Optical image of 290 nm diameter Ni sphere arrays. 
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4.3.3.3 X-Ray Diffraction of Metal Sphere Arrays 

The electrodeposition produced polycrystalline metal sphere arrays, like that 

observed in electrodeposited metal nanowires and metal meshes. Figure 4.12 shows 

the powder X-ray diffraction pattern of a piece of Ni sphere arrays. The position and 

relative intensity of peaks agree well with that reported for polycrystalline FCC (face-

centered cubic) nickel (PDF-2 database, International Center for Diffraction Data, 

Newtown Square, Pennsylvania, 1993; Ni reference pattern, 4-850), indicating an 

absence of preferred orientation in the electrodeposited nickel sphere arrays. 

4.3.3.4 Magnetic Properties of Metal Sphere Arrays 

Magnetic hysteresis loops with different angles up to a field of ± 10,000 Oe 

for 290 nm Ni sphere arrays prepared from a PMMA mesh template were performed 

on a vibrating sample magnetometer (VSM) at room temperature. Figure 4.13 shows 

both the hysteresis loops with the field perpendicular (out-of-plane) and parallel (in-

plane) to the plate plane for the nickel sphere opal. Typical values of coercivity Hc 

and squareness SQ (ratio of remanence to saturation magnetization, Mr/Ms) are Hc = 

100 Oe and SQ = 0.028 for out-of-plane magnetization and Hc = 90 Oe and SQ = 

0.225 for in-plane magnetization. These values of coercivity are similar to that of an 

array of 300 nm diameter Ni nanowires209 and higher than for bulk Ni, which has 

coercivity of a few tens of oersteds.177 The large difference in the remanence shows 

that the easy direction of magnetization is in the plate plane, and perpendicular to the 

sample membrane is the magnetic hard axis. In addition, the very low remanent 

magnetization, Mr, is always less than 30% of the saturation magnetization, which 

indicates very strong interaction among the Ni sphere arrays because the spheres are 

very close to each other.   
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Figure 4.12.  X-ray diffraction pattern of 290 nm diameter Ni sphere arrays. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13.  a) Hysteresis loops of ordered Ni sphere arrays with the applied field 

perpendicular (out-of-plane) and parallel (in-plane) to the plate plane.      
b) Full range of the out-of-plane and in-plane hysteresis loops (measured 
over a field range of between -10000 to 10000 Oe) for Ni sphere arrays. 
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Figure 4.14a and 4.14b present the angular dependence of coercivity and 

squareness, respectively.  The indicated parameter θ is the angle between the applied 

magnetic field and the normal to the plate. The “M” shape angular variation of 

coercivity has also been found in other anisotropic magnetic systems, such as in CoNi 

thin films210-213 and Ni nanowires.214,215 Domain wall motion216 and coherent 

rotation217 may account for the mechanism of magnetization reversal.213 For the angle 

range of 0° to 90°, the coercivity increases rapidly with angle to reach a maximum 

(154 Oe) at θ = 20°. After that the coercivity decreases with increasing θ and the 

minimum (91 Oe) occurs when the applied field is parallel to the plate plane (θ = 90°). 

According to coherent rotation mode,217 the coercivity increases with θ, which is 

consistent with the angular variation of coercivity at θ < 20°. After a critical angle (θ 

= 20°), domain wall motion will dominate the reversal process. Based on domain wall 

motion mode, the angular variation of coercivity normalized at φ = 0° will be 1/|cosφ| 

(φ is the angle between the easy axis and applied field; in this system, the easy axis 

lies in the plate plane, thus φ = 90°- θ and cosφ = sinθ).216 As can be seen from Figure 

4.15, the experimental data of normalized coercivity at higher angles agree well with 

the 1/sinθ values predicted by domain wall motion mechanism. The angular 

dependence of as-prepared Ni sphere arrays (~ 60 µm thick) is different from that of 

thin-film macroporous permalloy (1 µm pore size and 0.5 µm thickness), in which 

domain wall motion predominates and the product of coercivity and the angle 

between applied magnetic field and the normal to the film plane is nearly constant.144 

The squareness behavior of Ni sphere arrays shows a |cosφ| dependence, i.e. SQ = 

SQ0|cosφ|, where SQ0 is the squareness when the applied field is along the easy axis. 

The |cosφ| dependence is caused by the uniaxial anisotropy along the in-plane easy 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14.  Angular dependence of a) coercivity and b) squareness for Ni sphere 
arrays. θ is the angle between the applied magnetic field and the normal 
to the plate plane of the Ni sphere arrays. 
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Figure 4.15.  Normalized coercivity as a function of angle for Ni sphere arrays. 
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axis of magnetization.214 Similar feature of angular dependence of squareness was 

also reported for Ni and Co nanowires.214,215,218 The maximum of squareness (0.225) 

is obtained when the magnetic field is applied parallel to the plate plane (θ = 90°) and 

minimum squareness (0.028) occurs when the field is perpendicular to the plate plane 

(θ = 0°). When rotating the magnetic field in the plate plane, similar hysteresis loops 

were obtained from different orientations. Figure 4.16 shows the in-plane hysteresis 

loops with different orientations (0° to 200°, at 10° interval). The coercivity and 

squareness are in the range of 92 to 94 Oe, and 0.232 to 0.255, respectively. The very 

similar hysteresis loops indicate random in-plane magnetization anisotropy in this 

system, as is similar to the thin-film CoNiCr/Cr media.219 Due to the polycrystalline 

structure of Ni sphere arrays and the relatively small crystalline anisotropy, the 

crystalline anisotropy of Ni can be neglected. Therefore, the angle dependent 

magnetic behavior is overall predominated by shape anisotropy of the bulk nickel 

piece. 

The angular dependence of hysteresis loops for cobalt sphere arrays prepared 

from a PMMA mesh template was also investigated. Figure 4.17 shows both the 

hysteresis loops with the field perpendicular (out-of-plane) and parallel (in-plane) to 

the plate plane for the Co sphere arrays. The material exhibits a coercivity of 88 Oe 

and squareness of 0.099 for in-plane hysteresis loop, and a coercivity of 108 Oe and 

squareness of 0.033 for out-of-plane hysteresis loop. The easy axis of magnetization 

lies in the plate plane. Interestingly, the out-of-plane hysteresis loop shows an 

anomalous ‘hourglass shape’, i.e. the loop looks as if it is pinched closed at near zero 

fields, the region where an ordinary hysteresis graph is the widest. Such an hourglass-

shaped hysteresis loop was also observed in the macroporous Co (due to the 

exposition in the air, an antiferromagnetic CoO layer was present on the surface of the  
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Figure 4.16.  In-plane hysteresis loops from different orientations for ordered Ni 
sphere arrays. The inset is the full range of the hysteresis, measured over 
a field range of between -10,000 to 10,000 Oe. 
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Figure 4.17.  a) Hysteresis loops of ordered Co sphere arrays with the applied field 
perpendicular (out-of-plane) and parallel (in-plane) to the plate plane.   
The inset is out-of-plane hysteresis loop showing hourglass shape, 
between field range of -2,000 to 2,000 Oe.   b) Full range of the out-of-
plane and in-plane hysteresis loops (measured over a field range of 
between -10000 to 10000 Oe) for Co sphere arrays. 
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Co nanoparticles in macroporous Co), where the anomaly in the hysteresis loops was 

attributed to the formation of spin-glass-like state in the coupled single-domain Co 

nanoparticles.146 The angular dependence of coercivity and squareness of Co sphere 

arrays is present in Figure 4.18. The shape of graphs is similar to but not so regular as 

that in Ni sphere arrays, especially when the field is nearly perpendicular to the plate 

plane. The coercivity data are in the range of 87-118 Oe with the maximum (118 Oe) 

at θ = 20° and minimum at θ = 90° (87 Oe); and the squareness shows |sinθ| i.e. |cosφ| 

dependence with squareness range of 0.031 to 0.099. Like that observed in Ni sphere 

arrays, very similar in-plane hysteresis loops from different orientations (Figure 4.19) 

also occur in the ordered Co sphere arrays, indicating that there is no obvious in-plane 

magnetization anisotropy in this system. The coercivity and squareness are in the 

range of 87 to 90 Oe, and 0.088 to 0.112, respectively. 

The temperature dependence of hysteresis loops for 290 nm Ni sphere arrays 

was investigated using a SQUID magnetometer. Figure 4.20 shows the out-of-plane 

hysteresis loops of 290 nm Ni sphere arrays measured at 5, 50, and 300 K. The 

material exhibits a coercive field (Hc) of 220 Oe and squareness of 0.066 at 5 K. Both 

the coercivity and SQ decrease slowly with increasing temperature. The material 

reached a coercivity of 122 Oe and Mr/Ms of 0.038 at 300 K (by the comparison with 

the coercivity and squareness data obtained from VSM, the sample in SQUID was not 

strictly perpendicular to the field, but with an inclination of about 5°, see Figure 4.14). 

It seems that the coercivity and squareness of Ni sphere arrays vary linearly with 

temperature (Figure 4.21). Linear temperature dependence of the coercivity was also  

observed in Ni nanowires,180 acicular Fe2O3,220 and percolating granular Fe–SiO2 

composites.221  
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Figure 4.18.  Angular dependence of a) coercivity and b) squareness for Co sphere 
arrays. θ is the angle between the applied magnetic field and the normal 
to the plate plane of the Ni sphere arrays. 
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Figure 4.19.  In-plane hysteresis loops from different orientations for ordered Co 
sphere arrays. The inset is the full range of the hysteresis, measured over 
a field range of between -10,000 to 10,000 Oe. 
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Figure 4.20.  a) Out-of-plane hysteresis loops for 290 nm Ni sphere arrays at 5, 50, 
and 300 K.  b) Magnification of the hysteresis loops in field range of 
between  -800 to 800 Oe. 
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Figure 4.21.  Temperature dependence of a) coercivity and b) squareness for Ni 
sphere arrays. 
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4.3.3.5 Fragmentation of Metal Sphere Arrays by Ultrasonication 

Ultrasonication has been used to disintegrate the colloidal crystals into small 

arrays of spheres, and even single spheres.192,208 Due to the strong interconnection 

between adjacent metal spheres, it is more difficult to fragment the metallic colloidal 

crystals (metal sphere arrays) than to fragment ceramic colloidal crystals. After 2-hour 

sonication in a 75 W ultrasonic bath, the metallic colloidal crystal was broken into 

about 1 mm size pieces of colloidal crystals. Some smaller pieces, several microns in 

size, (showed in Figure 4.22a) were detached from the larger pieces and dispersed in 

water. Continued ultrasonication of the smaller pieces resulted in even smaller sphere 

arrays, and isolated spheres. Figure 4.22b shows several isolated spheres and the inset 

is a segment consisting of six spheres. The six spheres are still connected to each 

other through the small interconnects, which can be clearly seen in the inset of Figure 

4.22b.  

4.3.4 Oblate Metal Sphere Arrays from Compressed PMMA Mesh Templates 

PMMA mesh is a soft material, which can change shape to form a PMMA 

mesh with oblate pores by stretching or pressing. PMMA mesh with oblate pores can 

be further used as a template for the fabrication of oblate sphere arrays. Jiang et al. 

used stretched PMMA mesh to fabricate hollow oblate TiO2 spheres by sol-gel 

technique.192 In our experiments, we used a laboratory press to make compressed 

PMMA mesh (more details are described in Chapter 3) and then fabricated oblate 

metal sphere arrays by electrodeposition.  

Figure 4.23 shows a typical oblate Ni sphere arrays (× 10,000), and the inset is 

a higher magnification of oblate Ni sphere arrays in (111) orientation. Three- 

dimensionally ordered oblate Ni spheres can be seen clearly on the picture. Due to the 

pressing, the volume of the oblate pores is smaller than that of the spherical pores in 
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Figure 4.22.  SEM images of (a) small pieces of ordered Pd spheres after 2-hour 
ultrasonication  (× 5,000), (b) isolated Pd spheres after longer 
ultrasonication (× 20,000), inset shows an array of six spheres at higher 
magnification (× 35,000). 
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Figure 4.23.  SEM oblate Ni sphere arrays fabricated from compressed PMMA mesh, 

inset shows higher magnification image of oblate Ni sphere arrays.  
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original PMMA mesh, and then the volume of the oblate metal spheres is smaller than 

that of relating metal spheres. Also, ultrasonication can be used to break the oblate 

metal sphere arrays into smaller pieces and even monodisperse oblate metal 

spheres.192  

 

4.2 Conclusions 

The two-step templating method, combining chemical and electrochemical 

processes, provides an effective route for the preparation of metal sphere arrays. 

These metal sphere arrays are composed of highly ordered metal spheres having a 

diameter close to that of the SiO2 spheres in the starting opal templates. Angle-

dependent magnetic properties of Ni and Co sphere array membranes exhibit out-of-

plane anisotropy. Investigations of these metal sphere arrays are of significant 

fundamental and technological interest due to their novel structures having three-

dimensional periodicity. For example, theoretical calculations show that the metal 

sphere arrays are promising for the construction of complete photonic band gap 

materials in the visible part of the optical spectrum.222-225 In addition, oblate sphere 

arrays can be fabricated using compressed PMMA template by electrodeposition, and 

small pieces of metal sphere arrays and isolated metal spheres, which are hard to 

otherwise fabricate, can be obtained by ultrasonication technique. Furthermore, the 

method described here can be conveniently extended to fabricate semiconductor (such 

as CdS, CdSe, and ZnO) nanosphere arrays and conductive polymer/nonconductive 

polymer nanocomposites.  
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CHAPTER 5 

SUMMARY 

 

Three-dimensionally (3D) ordered meshes were fabricated by a colloidal 

crystal templating method. In this process, opals composed of 3D close-packed SiO2 

spheres served as templates, with the voids between the SiO2 spheres infiltrated by 

materials (such as metals and polymers) that solidified in place without disrupting the 

order of opals. Subsequent dissolution of the opals by HF solution opened 3D mesh 

structures.  

Using opals as templates, well-defined metal (such as Ni, Pd, and Au) meshes 

were readily obtained by electrochemical deposition using constant current method. 

Electrodeposition ensures a high-density filling of the void spaces in opals, resulting 

in very low shrinkage of metal meshes when the opal templates are removed. Also, 

the extent of metal growth can be controlled by adjusting the charge passed in the 

deposition. The plating current density plays an important role in the electrodeposition 

of metal meshes. In general, lower current density led to more uniform deposition. 

Also, higher-quality metal meshes were obtained if opals consisting of larger diameter 

SiO2 spheres were used, because of the faster diffusion of metal ions inside larger 

diameter opals. 

Some metal oxide meshes like NiO mesh could be prepared by direct 

oxidation of corresponding metal meshes in the air. Due to the lower density and 

higher formula weight of metal oxides comparing with related metals, the metal oxide 



 118

meshes exhibit higher volume occupation fraction than corresponding metal meshes. 

For example, the filling factor of NiO meshes is about 0.44 while it is only 0.26 for Ni 

meshes. Also the nanocrystalline sizes of metal oxide particles could be adjusted by 

temperature. More mechanically stable metal oxide meshes comprising of larger 

metal oxide nanocrystals could be obtained by annealing metal meshes at higher 

temperature. This direct conversion of metal meshes may be extended to fabricate 

other types of meshes, such as metal halide meshes and metal sulfide meshes. 

3D periodic conducive polyaniline meshes were prepared by electrochemical 

polymerization of aniline monomer inside opal templates in acidic solution. 

Nonconductive poly(methyl methacrylate) (PMMA) meshes were synthesized by 

chemical polymerization of methyl methacrylate (MMA) monomer using opal 

templates. These polymer meshes exhibit highly uniform porous structures consisting 

of glassy polymer walls. Due to the mechanical flexibility of polymer meshes, the 

PMMA meshes could be pressed to produce deformed PMMA meshes having oblate 

pores. 

One of the important applications of the meshes is that they can be used as 

further templates to fabricate new types of colloidal crystals (nanosphere arrays) and 

specific nanocomposites. Metal sphere arrays were prepared by electrodepositing 

metals into the voids of poorly conductive NiO mesh or PMMA mesh templates and 

then removed the templates by acids (for NiO) or organic solvents (for PMMA). 

Metal/NiO or Metal/PMMA composites could also be obtained if the templates were 

left intact.  

Magnetic measurements showed that both the metal (such as Ni and Co) 

meshes and sphere arrays had enhanced coercivities compared with bulk metals, due 

to the size effect of the nanometer dimensions of the components in meshes and 
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sphere arrays. Both the coercivity and squareness decreased with increasing 

temperature. Angular variation of Ni and Co sphere array membranes exhibited out-

of-plane magnetic anisotropy, similar to that observed in magnetic recording media 

(such as CoNi and CoNiCr/Cr films) membranes.  

Due to their unique structures having 3D periodicity, these meshes and sphere 

arrays have potential applications in a variety of areas, including photonics, magnetics, 

thermoelectrics, catalysis, separations, and sensing. Future work may include 

fabricating new types of functional meshes, sphere arrays and composites by the 

combination of electrodeposition with other techniques (such as melt infiltration, and 

sol-gel hydrolysis), and investigating their novel properties.   
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APPENDIX A 

BASIC CONCEPTS OF MAGNETISM 

 

A.1 Classes of Magnetic Materials 

The origin of magnetism lies in the orbital and spin motions of electrons and 

how the electrons interact with one another. The best way to introduce the different 

types of magnetism is to describe how materials respond to magnetic fields. The 

magnetic behavior of materials can be classified into the following five major groups: 

Diamagnetism: Diamagnetic materials, which have no atomic magnetic 

moments, have no magnetization in zero field. When a field is applied a small, 

negative moment is induced on the diamagnetic atoms proportional to the applied 

field strength.  

Paramagnetism: In a paramagnet the atoms have a net magnetic moment but 

are oriented randomly throughout the sample due to thermal agitation, giving zero 

magnetization. As a field is applied the moments tend towards alignment along the 

field, giving a net magnetization which increases with applied field as the moments 

become more ordered.  

Ferromagnetism: Ferromagnetic materials exhibit parallel alignment of 

moments resulting in large net magnetization even in the absence of a magnetic field. 

As the temperature increases, thermal oscillation, or entropy, competes with the 

ferromagnetic tendency for moments to align. When the temperature rises beyond a 

certain point, called the Curie temperature, the system can no longer maintain a 



 136

spontaneous magnetization, although it still responds paramagnetically to an external 

field. 

Antiferromagnetism: In materials that exhibit antiferromagnetism, the 

magnetic moments align in a regular pattern with neighboring moments pointing in 

opposite directions. This is the opposite of ferromagnetism. Generally, 

antiferromagnetic materials exhibit antiferromagnetism at a low temperature, and 

become disordered above a certain temperature; the transition temperature is called 

the Neel temperature. Above the Neel temperature, the material is typically 

paramagnetic. 

Ferrimagnetism: A ferrimagnetic material is one in which the magnetic 

moment of the atoms on different sublattices oppose as in antiferromagnet but the 

opposing moments are unequal and a spontaneous magnetization remains. 

Table A.1 shows summary of different types of magnetic behavior. 

 

A.2 Magnetic Domains 

Ferromagnetic materials exhibit a long-range ordering phenomenon at the 

atomic level which causes the unpaired electron spins to line up parallel with each 

other in a region called a domain. Within the domain, the magnetic field is intense, 

but in a bulk sample the material will usually be unmagnetized because the many 

domains will themselves be randomly oriented with respect to one another (Figure 

A.1a). A modest applied magnetic field can cause a larger degree of alignment of the 

magnetic moments with the external field, giving a large multiplication of the applied 

field. The microscopic evidence about magnetization indicates that the net 

magnetization of ferromagnetic materials in response to an external magnetic field 

may actually occur more by the growth of the domains parallel to the applied field at  
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Table A.1  Summary of different types of magnetic behavior. (Adapted from Ref. 226) 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
Figure A.1  a) Illustration of orientation of the domains with and without external 

fields, b) sketch of growth of the domains under zero, weak and strong 
external fields. (Adapted from Ref. 227) 
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the expense of other domains (Figure A.1b) rather than the reorientation of the 

domains themselves as implied in the Figure A.1a. 

 

A.3 Magnetic Hysteresis  

When a ferromagnetic material is magnetized by an increasing applied field 

and then the field is decreased, the magnetization does not follow the initial 

magnetization curve obtained during the increase. This irreversibility is called 

hysteresis. An example of a full or major (i.e., M is taken to near Ms) hysteresis curve 

(or loop) is given is Figure A.2. At extremely high applied fields, the magnetization 

approaches the saturation magnetization, Ms. Then if the field is decreased to zero, the 

M verse H curve does not follow the initial curve but instead lags behind until, when 

H = 0 again, a remanent magnetization remains, the remanence Mr. If the field is now 

applied in the reverse direction (a negative field), M is forced to zero at a field 

magnitude called the coercivity, Hc. Increasing this negative field still further forces 

the magnetization to saturation in the negative direction. Symmetric behavior of this 

hysteresis curve is obtained as H is varied widely between large positive and negative 

values. 

 

A.4 Magnetic Anisotropy  

In many situations the susceptibility of a material will depend on the direction 

in which it is measured. Such a situation is called magnetic anisotropy. When 

magnetic anisotropy exists, the total magnetization of a ferromagnet Ms will prefer to 

lie along a special direction called the easy axis. Cystalline anisotropy and shape 

anisotropy are two types of important and common sources of anisotropy. 
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Figure A.2  A full-loop hysteresis curve. Ms is the saturation magnetization, Mr is the 

magnetization remanence (at H = 0), and Hc is the coercivity. (Adapted 
from Ref. 170) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 141

Cystalline anisotropy: Cystalline anisotropy is an intrinsic property of a 

ferromagnet, independent of grain size and shape. In can be most easily seen by 

measuring magnetization curves along different crystal directions. Depending on the 

crystallographic orientation of the sample in the magnetic field, the magnetization 

reaches saturation in different fields. Crystalline anisotropy energy is the energy 

necessary to deflect the magnetic moment in a single crystal from the easy to the hard 

direction. The easy and hard directions arise from the interaction of the spin magnetic 

moment with the crystal lattice (spin-orbit coupling). 

Shape anisotropy: This type of anisotropy is due to the shape of a magnetic 

grain. A magnetized body will produce magnetic charges or poles at the surface. This 

surface charge distribution, acting in isolation, is itself another source of a magnetic 

field, called the demagnetizing field. It is called the demagnetizing field because it 

acts in opposition to the magnetization that produces it. For a nonspherical piece of 

material, the demagnetizing field will be less if the magnetization is along the long 

axis than if is along one of the short axes. This produces an easy axis of magnetization 

along the long axis. A sphere, on the other hand, has no shape anisotropy.  

 

A.5 Small Particle Magnetism 

A.5.1 Superparamagnetism 

Superparamagnetism is a phenomenon by which magnetic materials may 

exhibit a behavior similar to paramagnetism at temperatures below the Curie 

temperature. 

Normally, coupling forces in magnetic materials cause the magnetic moments 

of neighboring atoms to align, resulting in very large internal magnetic fields. At 

temperatures above the Curie temperature, the thermal energy is sufficient to 
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overcome the coupling forces, causing the atomic magnetic moments to fluctuate 

randomly. Because there is no longer any magnetic order, the internal magnetic field 

no longer exists and the material exhibits paramagnetic behavior. 

Superparamagnetism occurs when the material is composed of small particles. 

In this case even though the temperature is below the Curie temperature and the 

thermal energy is not sufficient to overcome the coupling forces between neighboring 

atoms, the thermal energy is sufficient to change the direction of magnetization of the 

entire particle. The resulting fluctuations in the direction of magnetization cause the 

magnetic field to average to zero. The material behaves in a manner similar to 

paramagnetism, except that instead of each individual atom being independently 

influenced by an external magnetic field, the magnetic moment of the entire particle 

tends to align with the magnetic field.  

The energy required to change the direction of magnetization of a particle is 

called the anisotropy energy and depends both on the material properties and the 

particle size. As the particle size decreases, so does the anisotropy energy, resulting in 

a decrease in the so-called blocking temperature TB, at which the material becomes 

superparamagnetic. 

The blocking temperature can be easily measured with a magnetometer. The 

procedure is to cool the sample under zero applied field, so-called zero-field-cooled 

(ZFC), to a temperature well below TB. Then apply a field (e.g. 100 Oe). If T < TB, 

the individual particle’s moments are bound to the particles, point in random 

directions, and will not be very susceptible, so the induced magnetization will be 

small. The system is then warmed at a uniform dT/dt. As T approaches TB from below, 

the thermal ennergy will begin to loosen up the moments from the particles and 

induced M will rise. At TB, the moments are unblocked and hence are free to align 
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with the applied field to yield a large total M. As T increases above TB, M falls via the 

Curie law, M ~ 1/T because the system is a (super)paramagnet.  

A.5.2 Coercivity of Small Particles 

The coercivity of small ferromagnetic particles (e.g., 1 µm or less) has a 

striking dependence on their size. As the particle size is reduced, it is typically found 

that the coercivity increases, goes through a maximum, and then tends toward zero. 

Figure A.3 shows the schematic of the variation of coercivity with particle diameter D. 

Beginning at large sizes, the following regions can be distinguished: 

Multidomain: For most, but not all, materials the size dependence of the 

coercivity is experimentally found to be given approximately by  

 

 

where a and b are constants. 

Single-domain: Below a critical diameter Ds, the particle become single 

domain, and in this size range the coercivity reaches a maximum. As the particle size 

decreases below Ds the coercivity decreases, because of thermal effects. Below a 

critical diameter Dsp the coercivity is zero, again because of thermal effects, which are 

now strong enough to spontaneously demagnetize a previously saturated assembly of 

particles. Such particles are called superparamagnetic. 

The magnetic hardness of most small particles is due to the forces of shape 

and/or crystalline anisotropy. When shape anisotropy prevails, the coercivity 

decreases as packing fraction p (defined as the volume fraction of magnetic particles 

in the assembly) because of particle interaction. On the other hand, when crystalline 

anisotropy prevails, the coercivity is independent of p. 

 

 (A.1) 
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Figure A.3  Particle coercivity verse size (~ diameter). Dsp is the superparamagnetic 

size; Ds is the single-domain size. (Adapted from Ref. 170) 
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