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Abstract 
 
 

 Nanowires and nanotubes with single component such as gold and nickel were fabricated by 

electrochemical deposition method directed by the Anodic Alumina Membrane (AAO) as a 

template. A so called “polymer-free” method has been investigated to make striped nanowires 

with superlattice structure. Various methods have been used to characterize these nanomaterials, 

including SEM, FESEM TEM, STM and Optical Microscope. The aggregation of the nanowires 

and their alignment under the magnetic force were observed under the optical microscope.  
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Chapter 1 
Introduction 

 
1.1 Introduction to Nanomaterials 

      Nanostructured materials are materials with a microstructure, the characteristic length scale 

of which is on the order of typically 1-100 nanometers. The microstructure refers to the 

chemical composition, the arrangement of the atoms (the atomic structure), and the size of a 

solid in one, two, or three dimensions. Effects controlling the properties of nanostructured 

materials include size effects (where critical length scales of physical phenomena become 

comparable with the characteristic size of the building blocks of the microstructure), changes of 

the dimensionality of the system, changes of the atomic structure, and alloying of components 

(e.g., elements) that are not miscible in the solid and/or the molten state.  

The synthesis, characterization and processing of nanostructured materials are part of an 

emerging and rapidly growing field. Research and development in this field emphasizes 

scientific discoveries in the generation of materials with controlled microstructural 

characteristics, research on their processing into bulk materials with engineered properties and 

technological functions, and introduction of new device concepts and manufacturing methods.  

1.2 Template-Based Method 

      Recently, one dimensional (1D) nanostructures such as wires, rods, belts, and tubes have also 

become the focus of intensive research owing to their unique applications in mesoscopic physics 

and fabrication of nanoscale devices.[1] Template-directed synthesis represents a straightforward 

route to these 1D nanostructures instead of the numerous chemical methods. In this approach, the 

template simply serves as a scaffold within (or around) which a different material is generated in 

situ and shaped into nanostructure with its morphology complementary to that of template. It is 
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generally accepted that template-directed synthesis provides a simple, high-throughput, cost-

effective procedure that also allows the complex topology present on the surface of a template to 

be duplicated in a single step. This method has a number of interesting and useful features. First, 

it is very general; people have used this method to prepare tubules and fibrils composed of 

electronically conductive polymers,[2] metals,[3] semiconductors,[4] carbons,[5] and other materials. 

Furthermore, nanostructures with extraordinarily small diameters can be prepared. For example, 

Wu and Bein have used this method to prepare conductive polymer nanofibrils with diameters of 

3nm (30Å).[6] It would be difficult to make nanowires with diameter this small using lithographic 

methods. It addition, because the pores in the membranes used have monodisperse diameters, 

analogous monodisperse nanostructures are obtained. Finally, the tubular or fibrillar 

nanostructure synthesized can be freed from the template membrane and collected. Alternatively, 

an ensemble of nanostructures that protrude from a surface like the bristles of a brush can be 

obtained. As a major drawback, nanostructures synthesized using template-directed methods are 

often polycrystalline, and the quantity of structures that can be produced in each run of synthesis 

is relatively limited. 

1.3 Templates  

     A wealth of templates have been used successfully, with notable examples including step 

edges present on the surfaces of a solid substrate;[7] channels within a porous material;[8] 

mesoscale structures self-assembled from organic surfactants[9] or block copolymer;[10] biological 

macromolecules such as DNA strains or rod-shaped viruses;[11] and existing nanostructures 

synthesized using other approaches. Among these templates, porous membranes have become 

very popular ones. Channels in these membranes can provide templates for the synthesis of 1D 

nanostructure. This method was pioneered by Martin and several others.[12] Two types of porous 
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membranes are commonly used in such synthesis: polymer films containing track-etched 

channels and alumina films containing anodically etched pores. Both of them can be obtained 

commercially from a number of venders such as Nuclepore, Poretics, and Whatman. For track-

etching, a polymer film (6-20µm thick) is irradiated with heavy ions from nuclear fission to 

generate damaged spots in the surface of this film. These spots are then amplified through 

chemical etching to generate uniform, cylindrical pores penetrating the membrane film.[13] The 

pores fabricated using this method are often randomly scattered across the membrane surface; 

and their orientation may also be tilted by as much as 34° with respect to the surface normal. 

Porous alumina membranes are often prepared using anodization of aluminum foils in an acidic 

medium,[14] and they usually contain a hexagonally packed 2D array of cylindrical pores with a 

relatively uniform size. Unlike the polymer membranes fabricated by track-etching, the pores in 

alumina membranes have little or no tilting with respect to the surface normal and the pore 

density is also much higher. So it is usually used by our lab to serve as the template. 

1.3.1 Commercially Available Anodic Aluminum Oxide (AAO) Membrane 

The membranes we have been using in our lab are all purchased from Whatman Company, 

which are called Anodisc™ Membranes. Anodisc membrane filters consist of an Anopore™ 

membrane disc, peripherally bonded to an annular polypropylene ring. Anopore is a unique, 

inorganic membrane, made of aluminium oxide, with a precise non-deformable honeycomb pore 

structure. Its narrow pore size distribution ensures extremely efficient removal of particles at the 

rated pore size. Anodisc filters are available in three pore sizes (0.2µm, 0.1µm and 0.02µm). 

These membranes are not of high partially because they are mass-produced. First, the actual 

pore sizes don’t agree with ones labeled by the manufacturer. According to SEM image in 

Figure 1.1, some pore sizes are actually around 300nm if it is labeled as 0.2µm (200nm). The 
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membrane has the pore size about 200nm if it is labeled as 0.02µm (not shown here) pore size. 

From the SEM image it’s obvious to see that the pore sizes are not distributed uniformly. The 

reason for these defects is because of the difficulties in controlling the experiments parameters 

in the anodization process. 

 

    

 

 

 

 

Figure 1.1 SEM image of commercial Anodic Alumina 
membrane labeled with 200nm pore size  

Second, the shape of the pore is not very regular. Other than the ideal round, some pores have 

shapes like ellipse or even polygon. And instead of hexagonally packed 2D array, the pores are 

just randomly distributed without any order although their density is high. Figure 1.1 shows these 

irregularities.  

    Third, the inside walls of the channels in these membrane are not very smooth, which will 

increase the roughness of nanowires that are formed inside these channels. And also at the end 

of these channels, we can find that they become more irregular, some channels may even merge 

together. This defect will make the nanowires made by these membranes hard to disperse.   
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    Due to a lot of defects of the commercial available AAO membrane, some research groups 

prepare their own Anodic Alumina Membranes. Such membranes have also been prepared in 

our group. 

1.3.2 Anodic Aluminum Oxide (AAO) Membrane made in the lab 

The procedure to prepare the AAO membrane is well known. After the high purity aluminum 

foil is polished and annealed, it is placed in an acid solution under a positive electric field and 

converted to AAO membranes during anodization. Their self-organized pore diameters and 

intra-pore distances can be adjusted by changing the voltage and acid concentration. 

Anodization time controls the membrane’s thickness, which limits the length of nanowires and 

nanotubes grown in the pores. The researchers have made AAO membranes with pore diameters 

ranging from 10 to 400 nanometers and with lengths up to 70 micrometers.[15] The AAO 

membrane consists of three distinct layers: aluminum metal, a thin barrier oxide layer, and a 

relatively thick porous oxide layer, Figure 1.2 shows the SEM results of the AAO membrane 

made in our lab. The aluminum foil was oxidized in H3PO4 at 0°C under the voltage of 195V.  

From the image, we can see that the pores are distributed more evenly, and the pore sizes are 

more uniform. 

 

 

 

 

 

Figure 1.2 SEM image of Anodic Alumina membrane  
made in our lab 
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1.4 Electrochemical Deposition Method 

   There are several methods to load various materials into the channels of these porous 

membranes physically or chemically. For example, metals (such as Bi) with relatively low 

melting points can be directly injected as liquids into pores of the AAO membrane and 

subsequently solidified into highly crystalline nanowires.[16] Most recently, Cao and co-workers 

also demonstrated the use of electrophoretic deposition to fill the pores of a polymeric or 

alumina membrane with charged sols generated in situ from a sol-gel precursor.[17] 

      Among these methods, electrochemical deposition method is used quite often because of its 

simplicity. The basic procedure is: first a layer of conductive metal is sputtered onto one side of 

a piece of membrane and then after the conductive metal side is protected, the membrane can 

thus be fabricated to an electrode. When this electrode is put into a metal ion containing plating 

solution and served as cathode, the metal ions can be reduced into metal in the channels, which 

deposits from the bottom of the channel and grows up to nanowires. There are several 

advantages of this method. First, it’s easy to control the length of the nanowires fabricated 

inside these the channels because the length of the nanowires are proportional to the deposition 

time. Second, nanowires with different components can be fabricated by switching the plating 

solution. In the meanwhile, this method also has some drawbacks. First, the materials that can 

be loaded into the channels are limited to metals or semiconductors since it requires the 

conductivity in the electrochemical system. Second, the nanowires synthesized by this method 

are often polycrystalline. However, single crystals have also been obtained under carefully 

controlled conditions. For example, Neumann and co-workers have shown pulse 

electrodeposition could be exploited to selectively grow either single-crystalline or 

polycrystalline copper nanowires. [18]
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    Several different methods can be used to control the electrochemical deposition. The most 

commonly used one is Chronopotentionmetry, which means the working current density is 

constant during the deposition. The advantage of this method is that the lengths of nanowires are 

easy to be controlled because they are determined by the current density and deposition time. 

The second one is Chronoamperometry, which means the working potential is fixed during the 

experiment. It has the merit of selecting the metal to be deposited since different metals will be 

reduced at different potentials. The drawback of the method is it needs a standard electrode to 

verify the potential. The third one is the Pulsed Electrodeposition Method. It utilizes the 

rectifying properties of barrier, which allow the pores of the membrane to be filled uniformly by 

pulsed sequence.   

      In Pulsed Electrodeposition Method, the deposition is based on modulated pulse signals in 

the microsecond range. (Figure 1.3) [19] During the relatively long pulse of negative current the 

metal is deposited on the pore ground. In comparison to the direct current deposition, relatively 

high current density are applied at the moment of metal deposition, which should increase the 

number of deposition centers in each pore and also the nuclei formed at higher frequencies are 

more crystalline.  After a short abrupt rise in the negative current pulse, the measured signal of 

the potential increases a little further, which is due to the charging of the capacitance of 

deposition interface. After the deposition pulse, a short pulse of positive polarization follows to 

discharge the capacitance of the barrier layer and to immediately interrupt the electric field at 

the deposition interface. The delay time toff, was varied between 10ms and 5s. During this period 

the ion concentration recovers. Thus, the concentration of the metal ions is high at the bottom of 

each pore when the subsequent deposition pulse appears. The delay time, toff, improves the 

homogeneity of the deposition and limits the hydrogen evolution. Overall, it provides an 
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efficient method to deposit materials like Fe, Co, and NiFe-alloys without removing the barrier 

layer of the AAO membrane.  

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 1.3 Schematic Diagram of the filling of porous alumina structure with 

nickel by pulsed electrodeposition.   
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Chapter 2 

Nanowires and Nanotubes 

2.1 Introduction 

    Recently, one-dimensional (1D) nanostructures such as wires, tubes have become the focus of 

intensive research owing to their unique applications in mesoscopic physics and fabrication of 

nanoscale devices. It is generally accepted that 1D nanostructures provide a good system to 

investigate the dependence of electrical[20] and thermal transport[21] or mechanical properties[22] 

on dimensionality and size reduction (or quantum confinement). They are also expected to play 

an important role as both interconnects and functional units in fabricating electronic, 

optoelectronic, electrochemical, and electromechanical devices with nanoscale dimensions. In 

comparison with quantum dots and wells, the advancement of 1D nanostructures has been slow 

until very recently, as hindered by the difficulties associated with the synthesis and fabrication of 

these nanostructures with well-controlled dimensions, morphology, phase purity, and chemical 

composition. As described in Chapter One, electrochemical deposition in an alumina oxide 

membrane as the template can provide a very effective way to fabricate metal nanowires.  

2.2 Experimental Section 

2.2.1 Materials and Equipment 

All solvents and chemicals were of reagent quality and were used as received. 

Membrane: The Whatman AnodiscTM Aluminum Oxide Membrane (AAO) was purchased from 

VWR Company. 

Plating solution: The commercial Ni (Nickel Sulfamate RTU, Ni(H2NSO3)2 solution, pH ~ 4.0) 

and Au (Orotemp 24 RTU, KAu(CN)2 solution, containing 8.2 g/liter gold, pH ~ 8.0) 

electroplating solutions were obtained from Technic Inc. 
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Chemicals: Dichloromethane CH2Cl2 (99.5%, EM Science) NaOH (98%, Sigma) 

Glue 3M all purpose glue purchased from Walmart Retail Store 

Equipment: VMP2 Multi-Channel Potentiosat from Princeton Applied Research 

 

2.2.2 Fabrication of Metal Nanowires in the AAO membrane 

Electrode Fabrication: The whole procedure can be illustrated as the following: 

           
Sputter Metal

         

Silver Paste 

Attach Wire

Conductive Wire 

   
Break into pieces 

 

 

 Seal with Glue 

Electrode is ready for  
Electrochemical Deposition  

 

 
Figure 2.1 Schematic diagram of making the electrode 

 

Sputter Metal: For electrochemical deposition, it requires the membrane to be conductive to 

serve as the electrode. So the first step is to sputter the metal onto one side of the membrane. 

There are various metals that can be sputtered onto the membrane depending on the composition 

of the target. Those most often used by our group are Au-Pd alloy and Ag targets. Au-Pd film is 

very stable since Au and Pd are all very stable elements. But their stableness brings a major 

drawback, which makes the film difficult to remove since it can not be dissolved even in strong 

acid like nitric acid. So in order to collect the free standing nanowires, a polish method is used to 
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remove the Au-Pd film, which can be difficult since it’s hard to apply the force uniformly on the 

brittle membrane when it is polished on the sandpaper.  

      Ag films solve this problem since they can be dissolved in the dilute nitric acid. Ag can be 

oxidized in the air but the oxide layer won’t affect the conductance very much as long as the 

membrane is not exposed in air very long after it is deposited. 

        Another purpose of sputtering metal is to seal the pores of the membrane so the metal can 

fill the pore completely. However, the sputtered metal actually can not fill the pore because the 

pore size is relatively big in comparison with the thickness of the metal film. The thickness of the 

sputtered metal film is proportional to the sputtering time. Our experience told us that at least 

800 s sputtering is needed to make the surface of the membrane conductive. And even after 2000 

s deposition, we can still find the pores of the membrane are not completely sealed, as shown in 

Figure 2.2. 

 

 

 

 

 

 

 

 

 
 Figure 2.2 SEM image of commercial AAO membrane sputtered  

by the metal for 2000 s 
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Fragmentation of Membrane: A very sharp blade is needed to cut the membrane into pieces on a 

very flat surface since the membrane is very brittle. It is preferred that the membrane is cut into 

pieces with regular shapes since we need to measure the area of the electrode. 

Attach the wire: Conductive silver paste is used to attach the wire to the membrane. The density 

of the silver paste and the amount of the silver paste are two important factors. If the silver paste 

is too dense, it will be hard to fill the gap between the wire and the membrane. On the other hand, 

too diluted silver paste will not only weakens the strength of the attachment but also spread out 

onto the membrane, penetrate the pores and clog them. Usually acetone is used to adjust the 

density of the silver paste. In terms of the amount of the silver paste, it should be sufficient to 

maintain the strength of the attachment of the wire to the membrane. But too much glue will also 

spread out over the membrane and clog the pores. 

Sealing with Glue: Sealing the membrane with glue has two functions. First, it can cover the 

surface of the sputtered metal to make it insulated. Otherwise the plating solution will be reduced 

on the sputtered metal side since it has less resistance to deposit metal onto the conductive side 

than to deposit it into the pores. Second, it will seal the incomplete space of the pores that are left 

after the sputtering so that the plating solution will not pass through the pores and get reduced on 

the other side. The density of the glue is very important in this step since the glue will enter the 

unsealed pores. Dense glue will not enter the pores too much, while diluted glue will enter the 

pores. And after it dries, glue nanowires will be formed which can help forming the long 

nanotubes, which will be discussed later. 

  Electrochemical deposition: 

Before the electrochemical deposition, we need to measure the area of the electrode because 

we need this parameter to determine the current strength to maintain the current density. The 
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electrochemical deposition process is carried out in a standard electrochemical cell which is 

composed of three electrodes as shown in Figure 2.3. The working electrode is the membrane 

itself, and the counter electrode is made of Pt foil. The reference electrode is simply a piece of 

bended Pt wire. The reason to choose Pt as the electrodes is due to the stableness of Pt.  

Counter Electrode CE 

Platinum Wire 
Reference Electrode 

AAO Membrane 
Working Electrode Platinum Foil 

Counter Electrode 

Reference Electrode RE 

Working Electrode WE 

 

 

 

 

 

 

 

 

 Figure 2.3 Schematic Diagram of Electrochemical Cell  

The next step is to calculate the current for the deposition. The current is determined by the 

current density and electrode area as the following equation: 

                  Current (I) =Current Density (Idensity)*Electrode Area(S) 

We can calculate the current if we know the surface area of the electrode and the current 

density that are kept as constant. The current density is usually measured in the unit of mA/cm2. 

The most often used current density according to the literature is 0.5 mA/cm2. However, our 

experience told us that this current density is not very suitable for this process because the 

qualities of the nanowires deposited under this current density are not very good. The reason is 

that the metal can not fill the channels completely under higher current density. So the current 
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density we choose is only 0.1 mA/cm2, which will guarantee that the nanowires can have smooth 

surface.  

      After we setup the current of the potential equipment, we can start to deposit the metal into 

the pores. This process should be kept undisturbed. The nanowires will grow in the pores at the 

rate which is determined by the plating solution as well as the current density. Nickel is 

deposited into the channels first since it can remove the imperfectness at the end of the channels. 

(Figure 2.4) 

      

 

 

     

 

Post-treatment of the samples: 

Figure 2.4 Schematic diagram of depositing Ni into the channels of the membrane 

After the electrochemical deposition is finished, we need to process the electrode in order to 

characterize the nanowires or measure their properties and collect the nanowires for future use. 

There are several methods that we can use to treat the electrodes after the deposition is 

finished. It depends on what kind of assembly of the nanowires we need. 

Nanowires Arrays: If we need to get nanowires arrays standing on a substrate, we can just 

simply remove the membrane by 2M NaOH or KOH for half hour since the membrane is 

composed of Al2O3 which can be dissolved in the basic solution. After soaked in the basic 

solution, we need to clean the nanowires by rinsing them with distilled water for several times. 

Otherwise the alumina left on the nanowires will be absorbed onto them since these 

nanomaterials have high surface area. This will bring difficulties when the nanowires are 
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observed under SEM because the alumina coated on the nanowires will make the SEM images 

look fuzzy.  

 Freestanding Nanowires: If we need to collect these nanowires as freestanding ones, we have to 

remove the sputtered metal which serve as the substrate and hold these nanowires. Before 

removing the sputtered metal, we need to remove the glue that seals the membrane. Usually we 

use CH2Cl2 to dissolve the glue since it’s a very good organic solvent. This step is very tricky 

since the glue is an adhesive mixture of polymer. When the glue meets CH2Cl2, it will become 

diluted glue and enter into the channels of the membrane, which will attach to the nanowires 

after the membrane is removed. Due to its adhesive property, once it has stuck to nanowires it 

will be very hard to clean. So in order to avoid the glue enter into the channel, we need to soak 

the electrode in CH2Cl2 for very long time (at least one week is needed, and fresh CH2Cl2 should 

be changed everyday). The glue inside the channels will diffuse out but the process is really slow.  

     After the glue is cleaned the electrode is polished to remove the sputtered metal if it’s 

composed of Au-Pd. And we use nitric acid (4M) to dissolve the sputtered metal if it’s silver. 

      Put the sample into NaOH and the sample soon becomes soft and thin. Now if we shake it 

with hand, we can find they break into pieces and become little fragments. In the meanwhile, the 

solution becomes cloudy. After this, we sonicate the sample for a few seconds; we can find the 

solution become homogeneous colloid with the metal color immediately. 

      Transfer the nanowire solution into a centrifuge test tube and centrifuge it at 1000-2000 rpm 

for 2-3 mins. It is not necessary to centrifuge these nanowire solution for a long time at higher 

spin rate become the nanowires have relatively larger dimensions, which will make the 

nanowires come down to the bottom of the test tube very soon even without any centrifugation. 

After the centrifugation, we use pipette to remove the supernatant and the nanowires are now 
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collected at the bottom of the test tube. We add several milliliters of distilled water into the test 

tube and redisperse these nanowires. Repeat this process for 5-6 times until the nanowires are 

clean. Add C2H5OH to the test tube and disperse the nanowires into it for future use. 

2.2.3 Characterization 

Scanning Electron Microscopy Characterization:  

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 

analysis were performed on a JEOL JSM 5410 SEM. The nanowire arrays were affixed to 

conductive carbon tape and loaded on specimen mounts for SEM. The nanowires solution can be 

dropped onto the SEM sample holder directly and after the solution is evaporated, nanowires will 

be left on the surface of the specimen mounts. 

Transmission Electron Microscopy Characterization 

Transmission electron micrographs (TEM) and electron diffraction patterns were obtained by 

using a JEOL 2010 TEM operating at 200 kV. The samples were prepared by mounting small 

pieces of mesh on TEM copper grid and directly loaded in TEM for observation. 

Optical Images: 

Optical images with 400 times magnification were obtained by Fluorescence Microscope 

(Olympus IX-70). A high performance charge-coupled device (CCD) camera (Rupert Scientific, 

model 256HB) with a 512×512 pixel array is used for digital fluorescence imaging of the 

samples. 

Scanning Tunneling Microscope (STM) Characterization: 

STM was performed on Multimode Scanning Probe Microscope (SPM) which is controlled by 

NanoScope@ IIIa controller. 
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2.3 Results and Discussion: 

2.3.1 Chronopotentiogram for Electrodeposition 

Figure 2.5 is a typical chronopotentiogram for the electrodeposition of gold into AAO 

membrane with about 300 nm diameter pore size at applied constant current density of 0.10 

mA/cm2. The potential-time curve shows a slight overpotential at the first stage of 

electrodeposition, and then eventually the potential reaches a steady state. The stable plating 

potential indicates homogeneous growth of gold within the AAO membrane, thus the length of 

Au deposited can be controlled by varying the plating time.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Chronopotentiogram for the electrodeposition of gold into AAO membrane  

2.3.2 Microscope Characterizations 

Figure 2.6 shows typical gold nanowires array on the Au-Pd substrate. Nickel was deposited into 



18 
                                                                                                                                                      

the channels at current density 0.2mA/cm2 for 40mins. Then the channels were filled by gold at 

current density of 0.1mA/cm2 for 9 hours. The darker parts in the images are nickel and brighter 

parts are gold.  

 

 

 

 

 

 

 Figure 2.6 Gold nanowires array on the substrate after the membrane is removed by NaOH 

 

Figure 2.7 (a), (b) shows dispersed gold nanowires. Ni was deposited into the channels at 

Idensity = 0.2mA/cm2 for 30 mins. Then the channels were filled by gold at Idensity= 0.1mA/cm2 for 

8 hours.  

 

 

 

 

 

 

Figure 2.7(b) SEM image of higher magnification 
of gold nanowires 

Figure 2.7(a) SEM image of free standing 
gold nanowires. 

 

 

Figure 2.8(a), (b) shows nickel nanotubes formed in the porous membrane with the assistance 
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of glue. Nickel was deposited into the channels for 2h at current density of 0.1mA/cm2. 

According to higher magnification SEM image, the external diameters and internal diameters of 

these nanotubes are around 300nm and 200nm, respectively. The wall thickness of these 

nanotubes is around 50nm. 

 

 

 

 

 

 

 
Figure 2.8(b) Higher magnification of SEM image of Ni 

nanotubes formed in the AAO membrane
Figure 2.8(a) SEM image of Ni nanotubes 

 formed in the AAO membrane  

Because the sputtered metal can’t seal the pores completely, the conductive part exposed to 

the plating solution will be a circle-like shape after sealed by the glue. At the same time, the glue 

will enter into the unsealed pores. If the glue is dense and not used too much, the glue will form a 

“hill” at the bottom of the pore. (Figure 2.9) When the electrochemical deposition is carried out 

under this condition, the nanotubes will grow inside the pores by the direction of the sputtered 

metal circle. But eventually the nanotubes will seal themselves after several hours of deposition 

at current density of 0.1mA/cm2. 

 

 

 

 

Figure 2.9 Schematic Diagram of forming glue wires in the channels 
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     If the glue is diluted and larger amount is used, it will flow into the pores, after drying, glue 

nanowires will form inside the channel, Figure 2.10 the SEM image of glue nanowires. Very 

long metal nanotubes can formed inside the channel by the direction of these glue nanowires.  

  

 

 

 

 

 

 

 
Figure 2.10 Glue nanowires formed in the AAO membrane 

 

Figure 2.11 is TEM image of the nanowire made by pulsed electrochemical deposition method 

at current density 20mA/cm2, the pulse time is 0.01s with 4000 cycles while the rest time is 2s 

each time. Because there is no nickel seal, the end of the nanowire forms a branch structure, 

reflecting the irregular channel at the bottom of the membrane. 

 

 

 

 

 

 

Figure 2.11 TEM image of the gold nanowire fabricated by pulsed 
electrochemical method 
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Figure 2.12 (a), (b) show STM results of the nanowires fabricated in the AAO membrane 

labeled with 20 nm pore size. Thus the nanowires have pore size of around 200 nm. And STM 

results show the pore sizes are consistent with what are expected. Figure 2.12(a) shows lower 

magnification of a single nanowire, which breaks into small parts and leave their position due to 

the sweep of the STM tip. Figure 2.12(b) is the higher magnification image of this nanowire. 

 

 

 

 

 

 

 

 
Figure 2.12 (a) (b) STM results of a single gold nanowire. Lower and higher magnification 
respectively  

2.3.3 Aggregation of the nanowires observed by Optical Microscope 

     Nanomaterials can have a tendency to aggregate because they tend to lower their energy by 

decreasing their surface area after aggregation. Under the optical microscope, we can see the 

nanowires are “swimming” randomly, which is so-called Brownian motion. Eventually, we can 

observe that the nanowires aggregate into bundles. Figure 2.12 (a)-(l) show the aggregation 

process by monitoring one single nanowire. From a series of optical images, we can see that this 

single nanowire labeled with a circle flows toward a nanowire bundle and finally joins it into a 

bigger bundle. Once it has merged itself into bundle, the nanowire doesn’t move any more, it  

“disappears” in Figure 2.12 (k), (l) after it joins into the bundle. 
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2.4 Conclusions 

     Gold nanowires and nickel nanotubes were successfully fabricated in the AAO membrane. 

Nanowires arrays as well as free-standing nanowires were obtained after post-treatment of the 

sample. SEM, TEM were used to characterize these nanostructured materials. The mechanism of 

forming nickel nanotubes was studied. Their behavior in solution was observed by optical 

microscope, including the Brownian motion and their aggregation.  
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Chapter 3 

Striped Nanowires Made by Polymer Free Method 

3.1 Introduction  

    By sequentially depositing different metals into the nanopores, multisegments or striped metal 

nanowires can be fabricated. [23]These nanowires are also described as a superlattice structure. 

Electrochemical deposition methods are very suitable to fabricate these striped metal nanowires. 

The length of each segment can be controlled by the charge passed in each plating step and the 

sequence of the multiple segments is determined by sequence of the plating steps. One potential 

application of these striped nanowires is as building blocks for nanoscale electronic device since 

these metal nanowires are still highly conductive compared to the bulk metal if the length of 

nanowire does not dramatically affect the resistivity of the wires. However, nanowire electrical 

characteristics can be markedly altered by incorporation of other materials; for example, Au-

CdSe-Au wires exhibit photoconductivity.[24]Despite the sub-wavelength diameter of these 

striped nanowires, the reflectivity of individual segments 300nm in diameter and 1-3 µm in 

length closely matches that expected for the corresponding bulk metals.[25] Thus, the striping 

pattern of the nanowires makes these particles very attractive for information storage, analogous 

to barcodes in the macroscopic world. Under the magnetic field, nanowires with Ni component 

can be aligned, which will help to assemble individual nanowires. Due to the different chemical 

reactivities of the “stripe” metals, these strips can be modified with appropriate molecules. For 

example, Au binds strongly to thiols and Pt has high affinity to isocyanides. Using this strategy, 

nanowires could assemble deterministically into cross- or T-shaped pairs, or into more complex 

shapes.[26] It is also possible to use specific interactions between selectively functionalized 

segments of these nanowires to direct the assembly of nanowire dimers and oligomers, to prepare 
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two-dimensional assemblies between nanowire and substrate, and to prepare three-dimensional 

colloidal crystals from nanowire-shaped objects. [27]  

       Due to the difficulties in removing the glue when treating the sample, it was necessary to 

find another way to alternate route. A polymer-free method described in this paper provides a 

very practical method to fabricate nanowires with stripes. It shortens the period of the 

experiment and allows a large scale of nanowires with stripes to be successfully made.  

3.2 Experimental Section: 

3.2.1 Materials and equipment 

      All the chemicals and equipments are the as same as what described in Section 2.2.1 in 

chapter 2.  The filter holder is purchased from VWR which can fit AAO membranes that have 

diameters of 25mm.  

3.2.2 Equipment for polymer-free method 

     

   

 

 

 

 

 

 

 

 

 Figure 3.1 Equipment for polymer-free method to make nanowires 
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Shown in Figure 3.1, the equipment is actually made from a modified filter holder. The plastic 

outlet on the cap is cut so that the filter can be put on flat table. And a big hole is made at the 

bottom of the support base in order to let the plating solution contact the membrane adequately. 

Two holes were drilled on the wall of the support base symmetrically. One hole is for putting the 

reference electrode in, one is for counter electrode. The support grid is not used in this system 

because it will prevent the solution from contacting the membrane. The membrane is sputtered 

with Ag film. And the conductive side is clamped to a copper film by the filter. A conductive 

wire was soldered on the copper film to serve as working electrode. An O-ring is used in this 

system to guarantee the seal between the membrane and the copper film. However, the effect of 

this seal is not very ideal, initially there was plating solution coming between the membrane and 

the copper film, which resulted in metal depositing onto the conductive side of the membrane. 

Thus modification was made to this system, which is to add one more O-ring between the cap 

and the copper film as the Figure 3.2 shows: 

           

  

 

 

 

 

     

O-ring 
 

One more O-ring 
Copper film

 
Membrane 

Figure 3.2 Schematic Diagram of membrane assembly in polymer-free method 
 

  The membrane is clamped carefully between the copper film and the support base by the force 

applied by the screwing the filer tightly. 
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 As an advantage, the surface area of the membrane is fixed in this system because only 

membrane with diameter of 25mm can fit into this filter. The inside diameter of the membrane 

determines the electrode area that will be exposed to the plating solution. 

3.2.3 Electrochemical Deposition of Striped Nanowires into the AAO membrane 

 By switching the plating solution, striped nanowires can be fabricated into the channels of the 

membrane. First, nickel is deposited into the channels to seal the pores as well as fill the bottom 

of the channel with imperfect structures. Since Ni can be dissolved in the acid, so it can be easily 

removed even though it’s deposited on the other side of the membrane. At the current density 

0.1mA/cm2, at least 24 hours are needed to seal the pores and remove the imperfections of the 

channels in the membrane. Otherwise gold wires will link to each other since some channels at 

the bottom of the membrane merge together. This will bring difficulties to separate these 

nanowires after the membrane is removed.  

  Gold is deposited into the pores in relatively shorter time. We can calculate the deposition 

time of the gold by measuring the length of the nanowires and their deposition time since they 

are proportional. Deposition at current density of 0.2mA/cm2 for 26 minutes is needed if gold 

segment length is 300nm according to our calculation. We can label this gold as Au-1. 

    Consequently, relatively longer nickel segments are deposited at current density of 0.3mA/cm2 

for 4hrs and labeled as Ni-1. 

    Repeat these steps for another 2 times, thus Au-2, Ni-2, Au-3 can be loaded into these 

channels.  

3.2.4 Post-treatment of the sample 

   After the deposition is finished, the sample was soaked in nitric acid for about 30 seconds to 

remove the sputtered silver on the back of the membrane. Then 2M KOH or NaOH was used to 
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remove membrane, the free standing nanowires were obtained after sonication. An adequate 

amount of basic solution must be added to dissolve the AAO membrane, otherwise the alumina 

oxide will react with NaOH to form a white flocculant, which will absorb onto the nanowires and 

making SEM observation difficult. The nanowires were rinsed with distilled water for several 

times and finally dispersed in C2H5OH. 

 

Remove 
Template

 
Figure 3.3 Schematic diagram of post-treatment of striped nanowires  

 

3.2.5 Microscope Characterization: 

      SEM, TEM, Optical Microscope were used to characterized these striped nanowires similarly 

as described in Chapter 2 Section 2.2.3 

      In order to obtain the detailed surface morphology of these striped nanowires, LEO 1530VP 

Variable Pressure Field-Emission Microscope is used to characterize these nanowires.   

3.2.6 Alignment under magnetic field 

The solution of striped nanowires was dropped on the glass slide and observed under the 

optical microscope. Initially magnetic stirring bar is used to align these nanowires, but due to the 

weakness of the magnetic strength of stirring bar, the nanowires failed to be aligned. Finally a 

piece of very strong permanent magnet was applied and aligns these striped nanowires. 
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3.3 Results and Discussion 

3.3.1 SEM images 

Figure 3.4 shows some gold nanowires synthesized by this polymer free method. Here 

nanowires were still immobilized on the substrate because the plating solution leaking between 

the membrane and the copper and metal was deposited on the back contact side of the membrane. 

Not enough deposition of nickel may also cause this problem.  

 

    

      

 

 

 

 Figure 3.4 Initial result of gold nanowires fabricated by the polymer-free method 

Some improvements are made when the Ni deposition time is elongated. From Figure 3.5 (a), 

(b), we can still find that the nanowires’ surface roughness which maybe caused by the 

incomplete seal.  

         

 

 

 

 

 

 

Figure 3.5 (a),(b) Gold nanowires synthesized by polymer-free method after 
                             Ni deposition time is elongated 
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After one more O-ring is added, the qualities of the striped nanowires are enhanced due to 

much better seal between the membrane and the copper film, as shown in Figure 3.6 (a), (b). 

 

 

 

 

 

      

 

 
Figure 3.6 (a), (b) Striped nanowires obtained after better seal by adding one more O-ring 

3.3.2 Field-Emission SEM images 

     Figure 3.7(a), (b) show the Field-Emission SEM images of the striped nanowires. This 

microscope has two modes which are InLens and MPSE respectively. The InLens mode has the 

capability of obtaining high resolution image under high vacuum, while the MPSE mode has the 

advantage of acquiring three-dimensional information of the object. Thus the mixed signal of 

InLens and MPSE is used to take both of the two advantages.  

 

 

 

 

   

 

 

Figure 3.7 (a) FESEM image obtained by the mixed signal of InLens and MPSE 
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Figure 3.7 (b) FESEM image obtained by the signal of MPSE 

 

 3.3.4 Magnetic alignment  

Figure 3.8 (a),(b) show the alignment of these stripe nanowires 

 

 

 

 

 

 

 

 

 Figure 3.8 (a), (b) Magnetic Alignment of striped nanowires under magnetic force 
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3.4 Conclusions 

      Striped nanowires with Au-Ni-Au-Ni-Au segments were successfully fabricated in AAO 

membrane clamped in the membrane filter without any assistance of glue. SEM was used to 

characterize these nanowires. Detailed morphology of the nanowires was obtained by Field-

Emission SEM. Under strong magnetic force, these striped nanowires were successfully aligned 

and observed by an optical microscope.  
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