
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-17-2004

A System-on-Programmable-Chip Approach for MIMO Lattice A System-on-Programmable-Chip Approach for MIMO Lattice

Decoder Decoder

Vipul Hiralal Patel
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Patel, Vipul Hiralal, "A System-on-Programmable-Chip Approach for MIMO Lattice Decoder" (2004).
University of New Orleans Theses and Dissertations. 192.
https://scholarworks.uno.edu/td/192

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/192?utm_source=scholarworks.uno.edu%2Ftd%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A SYSTEM-ON-PROGRAMMABLE-CHIP APPROACH FOR
MIMO LATTICE DECODER

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Electrical Engineering

by

Vipul Hiralal Patel

B.S., University of Pune, 2000

December 2004

ii

Acknowledgements

I would like to express my gratitude to my Advisor, Dr Xinming Huang, for his

support and timely advice through out my research. I appreciate and value his consistent

feedback on my progress, which was always constructive and encouraging, and

ultimately drove me to the right direction.

I would like to express my sincere thanks to the other committee members, Dr.

Jing Ma and Dr. Dimitrios Chalarampidis for their willingness to be on my thesis

committee. Their invaluable suggestions and insightful comments have made my work

more presentable.

I take this opportunity to thank my parents and wife for their unconditional love

and support through out my life. Finally I express my gratitude to my friends for their

encouragement and motivation.

iii

Table of Contents

LIST OF ILLUSTRATIONS..v

 List of Figures ..v
 List of Tables ..vi
 Glossary of Abbreviations ...vii

ABSTRACT...viii

1. Introduction..1
 1.1 Motivation for Implementing MIMO Lattice Decoder..1
 1.2 Research Objectives ...2
 1.3 Thesis Contribution..2
 1.4 Organization of Thesis ...3

2. Introduction to Altera System-on-Chip ...4
 2.1 Introduction of Nios Development Board..4
 2.2 General Description ...5
 2.2.1 EP1S10 Device ...6
 2.2.2 Flash Memory Device ...7
 2.2.3 Serial Port Connector..7
 2.3 Design Tools ..8
 2.3.1 Quartus II ..8
 2.3.2 SOPC Builder..8
 2.3.3 DSP Builder ..9
 2.4 System Components...10
 2.4.1 CPU Architecture ..11
 2.4.2 Instruction Set ...12
 2.4.3 Register File ..12
 2.4.4 Cache Memory..12
 2.4.5 Exception Handling ..13
 2.4.6 Hardware Acceleration ...13
 2.4.7 Custom Instructions ..14
 2.4.8 Standard CPU Options ..15

3. Multiple Input Multiple Output Systems and Lattice Decoder...............................16
 3.1 Multiple Input Multiple Output System...16
 3.1.1 Transmitter..17

iv

 3.1.2 Receiver ..17
 3.2 Closest Point Search in Lattices...18
 3.2.1 Conceptual Description of Closest Point Search Algorithm......................19

4. Algorithms ..21
 4.1 Decoder ..21
 4.2 A Geometric view of square root ...25
 4.3 Strassen Matrix Inversion Method ...31
 4.3.1 Reduction of Strassen Matrix Inversion algorithm of 4x4 lower
 triangular matrix..34
 4.4 QR Decomposition of Matrix ..36
 4.4.1 Householder Matrix ...37

5. Prototyping of Closest Point Search Algorithm..41
 5.1 Why System-on-Chip? ...41
 5.2 Prototyping Closest Point Search Algorithm...41
 5.2.1 Interface between Nios microprocessor based system and controller43
 5.2.2 Interface between state A, B, C and Controller ..44
 5.2.3 VHDL Code structure of Controller for Interface with state A, B, C.........45

6. Results ...47

References ..54

VITA ..55

v

List of Illustrations

List of figures:

Figure 2.1 Nios Development Board..4

Figure 2.2 Nios Processor Based System..11

Figure 2.3 Custom Instruction Logic ..14

Figure 3.1 MIMO Transmitter...16

Figure 3.2 MIMO Receiver ...16

Figure 4.1 Flowchart of Decoding Algorithm...22

Figure 4.2 Flowchart of State A of Decoding Algorithm..23

Figure 4.3 Flowchart of State B of Decoding Algorithm..23

Figure 4.4 Flowchart of State C of Decoding Algorithm..24

Figure 4.5 Geometric view of the square of three digit number26

Figure 4.6 Geometric view of the square of three digit number26

Figure 4.7 Flow chart of Square Root Algorithm ...30

Figure 4.8 Flow chart of Strassen Matrix Inversion Algorithm....................................33

Figure 4.9 Flowchart of QR Decomposition Algorithm ...40

Figure 5.1 Hardware architecture of Lattice Decoder. ..42

Figure 5.2 Interface between controller and Nios Microprocessor based system.........43

Figure 5.3 Interface between Controller and State A, B, C...44

vi

List of Tables:

Table 2.1 Stratix EP1S10 Device Features ...6

Table 2.2 Comparison of Different Nios Processor Multipliers15

Table 6.1 Comparison of Nios Processor with and without divider to perform

Division..48

Table 6.2 Comparison of “sqrt” function in C language and square root algorithm ...48

Table 6.3 Number of cycles required to invert 4x4 and 8x8 lower triangular
 matrix using Starssen method ..49

Table 6.4 Number of cycles to perform QR Decomposition of 4x4 matrix50

Table 6.5 Number of cycles required to perform pre processing part of decoding50

Table 6.6 Sequence of state in Matlab ...51

Table 6.7 Sequence of state in VHDL ...51

Table 6.8 Synthesis results of MIMO Lattice Decoder with Preprocessing Part53

vii

Glossary of Abbreviations

MIMO – Multiple Input Multiple Output

FPGA – Field Programmable Gate Arrays

DSP – Digital Signal Processing

VHDL – Very High speed integrated Description Language

CPU – Central Processing Unit

viii

Abstract

The past decade has shown distinct advances in the theory of multiple input multi output

techniques for wireless communication systems. Now, the time has come to demonstrate

this progress in terms of applications. This thesis introduces implementation of Schnorr-

Euchner strategy based decoding algorithm applied on Altera system-on-chip (Stratix

EP1S10F780C6) with Nios embedded processor. The lattice decoder is developed on

FPGA using VHDL. The preprocessing part of algorithm is targeted for Nios embedded

processor using C language. A controller is also designed to interface and communicate

between the Nios embedded processor and lattice decoder.

1

Chapter 1

Introduction

1.1 Motivation for Implementing MIMO Lattice Decoder

Wireless systems are rapidly developing to provide high speed voice, text and multimedia

messaging services. To support these services, channels with large capacities are

required. The most brute-force approach to increasing wireless data rate is to use more

frequency channels to increase modulation rate. This "channel bonding" approach will

not meet the needs of WLAN consumers, for many reasons. First, while channel bonding

increases data rate, it decreases range for the same transmit power. Second, channel

bonding robs channels from other systems that operate nearby. Finally, channel bonding

violates government regulations in Japan and some European nations [12]

 MIMO answers the question of how to achieve higher data rates with longer

range, backward compatibility, global regulatory compliance, all without using more

frequency spectrum. MIMO systems use multiple transmit and receive antennas. A high-

rate data stream is divided into multiple lower-rate streams, each of which is modulated

and transmitted through a different antenna at the same time using the same frequency

channel. Because of multipath reflections, each receive antenna output is a linear

combination of the multiple transmitted data streams. The data streams are separated at

2

the receiver using algorithms that rely on estimates of all channels between each

transmitter and each receiver. In addition to multiplying throughput, range is increased

because of an antenna diversity advantage, since each receive antenna has a measurement

of every transmitted data stream. The MIMO algorithm and its architecture are active

research area in wireless communication that motivated the research in MIMO systems.

1.2 Research Objectives

The main objectives of this thesis is to develop a system-on-chip approach for MIMO

lattice decoder by using closest point search algorithm described in [1] and also to utilize

parallelism offered by FPGAs to achieve high data rate.

1.3 Thesis Contribution

The implementation of lattice decoder has two parts: 1) the preprocessing part and 2) the

decoding part. To achieve high decoding rate, the decoding part can be implemented by

developing customized hardware unite (IP core) in a FPGA. The preprocessing part

contains operation like matrix inversion. Developing a special hardware unite to directly

implement it in FPGA is complicated and not efficient. Since speed requirement for

preprocessing part is not as critical, the microprocessor based system is suitable for the

preprocessing part. This thesis explains how to implement preprocessing part on an

embedded processor system together with the decoding part on a FPGA. The main

contribution of this thesis is that it explains how to develop embedded processor based

system and FPGA based lattice decoder on the same programmable chip.

3

1.4 Organization of Thesis

Chapter 2 describes Altera system-on-chip. It addition, it describes how to develop the

whole system using SOPC builder and Quartus II software. It also describes hardware

acceleration techniques. Chapter 3 gives information about MIMO system. It also

describes details of closest point search algorithm. Chapter 4 describes Strassen matrix

inversion method, QR decomposition using Householder matrix, finding square root, and

decoding the closest point search algorithm as a part of decoder. Chapter 5 tells how to

develop interface between Nios processor based system and FPGAs. It also describes

parodying of closest point search algorithm. Finally, chapter 6 gives the simulation

results obtained during this thesis research.

4

Chapter 2

Introduction to Altera System-On-Chip

This chapter gives the introduction of Altera system-on-chip (Stratix

EP1S10F780C6). It also explains its programming techniques and how to develop the

whole system using SOPC builder and Quartus II software with hardware acceleration

techniques.

2.1 Introduction of Nios Development Board

Figure 2.1 Nios Development Board

5

The figure 1.1 [7] shows Nios development board. It has following features:

1. Programmable chip Stratix EP1S10F780C6

2. 1 Mbytes of static RAM, 16 Mbytes of SDRAM, 8 Mbytes of flash memory

3. On board logic for configuring the programmable chip from flash memory

4. Two RS-232 serial ports for serial communication

5. 50 MHz clock generator

6. Dual 7-segment LED display and LCD display

7. JTAG connector which is used to load hardware image from host computer

2.2 General Description

 The Nios development board, Stratix edition, provides a hardware platform for

developing embedded systems based on Altera Stratix devices. The Nios development

board features a Stratix EP1S10F780C6 device with 10,570 logic elements (LEs) and 920

Kbits of on-chip memory. When power is applied to the board, the on-board

configuration logic configures the Stratix FPGA using hardware configuration data stored

in flash. When the device is configured, the Nios processor design in the FPGA wakes up

and begins executing boot code from flash memory. User defined software and hardware

configuration data can be downloaded to the board from a host computer. Download

methods include a serial cable, a JTAG download cable, or an Ethernet cable. At power

on, or when the Reset, Config button (SW10 in figure1.1) is pressed, the configuration

controller reads user configuration data out of flash at address 0x600000. This data, and

suitable control signals, are used in an attempt to configure the FGPA. FPGA Image

configuration data written into this region of flash memory is conventionally called the

6

“User Hardware Image”. If there is no valid User Hardware Image, or if SW9 (Safe

Config in figure1.1) is pressed, the configuration controller begins reading data out of

flash at address 0x700000. Any FPGA configuration data stored at this location is

conventionally called the “Safe Hardware Image”. The development board was factory

programmed with a “Safe Hardware Image”.

2.2.1 EP1S10 Device

Device U53 in figure1.1 is a Stratix EP1S10F780C6 FPGA in a 780-pin FineLine

BGA package. Table 1 lists the Stratix device features.

LEs 10,750

Total RAM bits 920,448

DSP blocks 6

Embedded multipliers 48

Maximum user I/O pins 426

Table 2.1 Stratix EP1S10 Device Features

There are two methods for configuring Stratix device:

1 By using the Quartus II software running on a host computer and JTAG connector,

we can download hardware image file into Stratix device.

2 Store hardware image into flash memory so that on board configure logic

configure the device during the reset or when power is applied to the board.

7

2.2.2 Flash Memory Device

Device U5 in figure 1.1 is an 8 Mbyte AMD AM29LV065D flash memory chip

connected to the Stratix device and can be used for two purposes:

1. It can be used as general-purpose readable memory and non-volatile storage.

2. It is mainly used to store hardware image created by user or default hardware

image. It also used to store software program for Nios embedded processor.

2.2.3 Serial Port Connectors

J19 & J27 in figure1.1 are the serial connectors used for communication with a

host computer using a standard, 9-pin serial cable connected to the serial port of host

computer. The Nios board development provides two serial connectors, one labeled

Console and the other labeled Debug. Many processor systems make use of multiple

UART communication channels during prototype and debug stages. When we use

“printf” command in software code of Nios processor, the Nios system sends data to the

host computer using debug serial connector. Both connectors connect to the Stratix

FPGA in the same manner, and a Nios processor system can use either serial port for any

purpose, and is not limited to the usage implied by the label. Both FPGA logic ports are

able to transmit all RD-232 signals. Alternatively, the Stratix design may use only the

signals it needs, such as RXD and TXD. LEDs are connected to the RXD and TXD

signals, giving a visual indication when data is being transmitted or received.

8

2.3 Design Tools

Altera provides three design software tools to develop system on programmable

chip. They are:

1. Quartus II

2. SOPC builder

3. DSP builder

2.3.1 Quartus II

Quartus II is used to integrate Nios processor based system created using SOPC

builder with other hardware block. It is also used to synthesize system design and

download into Stratix EP1S10F780C6 device.

2.3.2 SOPC Builder

The SOPC builder is a system integration tool included in the Quartus II software

that provides designers with a powerful platform for composing memory-mapped

systems from common system components. SOPC Builder library components can be

either simple blocks of fixed logic, or complex, parameterized, and dynamically

generated subsystems. Examples of SOPC Builder library components include:

1. Processors (Excalibur stripe & Nios embedded processor)

2. Intellectual property (IP) & peripherals (including SOPC Builder Ready IP

cores)

3. Bridges (AMBA AHB-to-Avalon, Avalon-to-PCI)

4. Software (compilers, debuggers & real-time operating system (RTOS))

9

In addition to the integrated FPGA solution generated, SOPC Builder provides software

files for developing simple to complex applications. Examples of the SOPC Builder file

outputs include:

1. Header files

2. Generic C drivers

3. OS kernels

4. Software Models for hardware-software co-simulation

2.3.3 DSP builder

DSP system design in Altera programmable logic devices requires both high- level

algorithm and hardware description language (HDL) development tools. The Altera DSP

Builder integrates these tools by combining the algorithm development, simulation, and

verification capabilities of The MathWorks MATLAB and Simulink system-level design

tools with VHDL synthesis, simulation, and Altera development tools. The DSP Builder

shortens DSP design cycles by helping designers create the hardware representation of a

DSP design in an algorithm-friendly development environment. The existing MATLAB

functions and Simulink blocks can be combined with Altera DSP Builder blocks and

Altera intellectual property (IP) MegaCore functions to link system-level design and

implementation with DSP algorithm development. DSP Builder allows system,

algorithm, and hardware designers to share a common development platform.

Designers can use the blocks in DSP Builder to create a hardware implementation of a

system modeled in Simulink in sampled time.

10

2.4 System Components

Nios embedded processor-based systems include one or more Nios CPUs and the

Avalon switch fabric. Nios processor-based systems can also contain multiple bus

masters, such as multiple Nios CPUs Designers can create and integrate these multi-

master systems easily when using Altera’s SOPC builder system development tool.

SOPC Builder automatically generates the interface to all of these components. The

following components can be used to form a Nios processor-based embedded system:

1. Nios CPU

2. Cache memory

3. Avalon switch fabric

4. Peripherals and memory interface

5. On chip debug

Designers can use SOPC Builder to custom-build Nios processor-based systems to their

own specifications. Figure 1.2 [7] shows an example of a Nios processor-based system

built using SOPC Builder. This particular system contains a Nios CPU with instruction

and data cache, an on-chip debugging core, a direct memory access (DMA) controller,

several peripherals such as UART, parallel I/O (PIO), an Ethernet port, and memory

interfaces, and a simultaneous multi-master Avalon switch fabric.

11

Figure 2.2 Nios Processor-Based System

2.4.1 CPU Architecture

The Nios embedded processor CPU instruction set architecture is optimized for

programmable logic and system-on-a-programmable-chip (SOPC) integration. The Nios

CPU is a five-stage pipelined general-purpose RISC microprocessor that supports both

32-bit and 16-bit architectural variants. Both the 32-bit and 16-bit Nios CPUs utilize a

16-bit instruction format to reduce code footprint and instruction memory bandwidth. The

instruction set is optimized for compiled embedded applications. The Nios embedded

processor implements the CPU with separate data and instruction-memory bus masters,

generally known as modified-Harvard memory architecture. The SOPC builder allows

users to easily specify connections between both Avalos masters and slaves in a system.

These slaves may be memories or peripherals.

 Nios
 CPU

 D-cache

 On-Chip Debug

DMA Controller

 I-cache

Avalon
Switch
Fabric

 Data
 Memory

 Instruction
 Memory

 SDRAM
 Controller

 UART

 PIO

 Ethernet
 10/100

12

2.4.2 Instruction Set

 The Nios instruction set is tailored to support compiled C and C++ programs. It

includes a standard set of arithmetic and logical operations and instruction support for bit

operations, byte extraction, data movement, control flow modification, as well as a small

set of conditionally executed instructions, which can be useful in eliminating short

conditional branches. The instruction set contains rich addressing modes to reduce code

size and increase the processor performance.

2.4.3 Register File

The Nios CPU architecture has a large general-purpose windowed register file,

several machine-control registers, a program counter, and the K register that is used for

instruction prefixing. The general-purpose registers are 32 bits wide in the 32-bit Nios

CPU and 16 bits wide in the 16-bit Nios CPU. The register file size is configurable and

contains a total of 128, 256, or 512 registers. The software can access the registers

exposed in a 32-register- long sliding window that moves with a 16-register granularity.

This sliding window allows fast context switching, accelerating subroutine calls and

returns.

2.4.4 Cache Memory

The configurable Nios CPU can optionally contain an instruction and data cache.

In general, cache is used to improve CPU performance by providing a local memory

system that can respond quickly to CPU-generated bus transactions. The Nios cache

13

implementation is a simple, direct-mapped, write-through architecture that is designed to

maximize performance and minimize device resource consumption.

2.4.5 Exception Handling

The Nios processor allows up to 64 vectored exceptions, which can be generated

from any of these three sources: external hardware interrupts, internal exceptions, or

explicit software trap instructions. The Nios exception-processing model allows precise

handling of all internally generated exceptions. Users can optionally disable support for

TRAP instructions, hardware interrupts, and internal exceptions. This option reduces the

size of the Nios system, and is intended for use only in systems where the processor is not

running complex software

2.4.6 Hardware Acceleration

The Nios instruction set can be configured to take advantage of hardware to

increase system performance. Specific cycle- intensive software operations can be

offloaded to hardware, increasing system performance significantly. This feature is

provided through instruction set modifications. The Nios processor has two levels of

instruction set modifications:

1. Custom instructions

2. Standard CPU options

14

2.4.7 Custom Instructions

Developers can accelerate time-critical software algorithms by adding custom

instructions to the Nios processor instruction set. Developers can use custom instructions

to implement complex processing tasks in single-cycle (combinatorial) and multi-cycle

(sequential) operations. Additionally, user-added custom instruction logic can access

memory and/or logic outside of the Nios system. Figure 1.3 shows a block diagram of the

instruction logic[7].

Figure 2.3 Custom Instruction Logic

A complex sequence of operations can be reduced to a single instruction implemented in

hardware. This feature empowers developers to optimize their software inner loops for

digital signal processing (DSP), packet header processing, and computation- intensive

applications. The Altera SOPC builder software provides a graphical user interface (GUI)

that developers can use to add up to five of their own custom instructions to the Nios

embedded processor.

15

2.4.8 Standard CPU Options

Altera provides several pre-defined instruction set extensions to increase software

performance. The MUL and MSTEP instructions are implemented with additional

hardware units. When you select either of these CPU options in the SOPC Builder, logic

is added to the arithmetic logic unit (ALU). For example, if a user chooses to implement

the MUL instruction, an integer multiply unit is added automatically to the CPU's ALU to

return a 16-bit by 16-bit multiplication operation in two clock cycles. This same

operation performed using an iterative software routine would take 80 clock cycles. Table

1.2 [7] shows number of clock cycles for multiplication using hardware and software

multiplier.

Multiplication Logic Elements Used Cycles 16×16 Cycles 32×32

None(software) 0 80 250

MSTEP 125 18 80

MUL 370 3 20

Table 2.2 Comparison of Different Nios processor Multipliers

Additionally, the Nios CPU includes an internal shift unit for executing logical and

arithmetic shift instructions. The CPU uses fixed barrel-shifter logic that executes all shift

operations in two clock cycles.

16

Serial
to

parallel
converter

RF
Frontend

Baseband
Processor

Decoder

Chapter 3

Multiple Input Multiple Output Systems and Lattice Decoder

This chapter explains the concept of multiple input multi output (MIMO). It also

explains the closest point search algorithm used as the channel decoder in MIMO

receiver.

3.1 Multiple-input multiple output (MIMO) system

Figure 3.1 MIMO Transmitter

Figure 3.2 MIMO Receiver

Data Processing

Data Processing

Data Processing

Data Processing

17

The diagrams shown above are schematic representation of multiple input multiple output

(MIMO) systems [4]. MIMO systems use multiple antennas in both transmitters and

receivers.

3.1.1 Transmitter

At transmitter side, the incoming serial stream of data is first converted into M

parallel streams. After de-multiplexing of serial data, M parallel data streams are

processed and transmitted using M antennas.

3.1.2 Receiver

The MIMO receiver has three main parts RF-frontend, baseband processor and

decoder.

(i) RF-frontend: It receives data from N parallel antennas and converts analog

data into digital form.

(ii) Baseband processor: It receives samples from RF- frontend, extracts timing

information and channel information (channel matrix coefficients).

(iii) Decoder : The received signal y is given by

 y = Hx + noise

where H is channel matrix and x is transmitted vector. The decoder computes the

vector u) using H and y such that u) is closest to x.

The reasons for use of MIMO techniques are

(i) To increase maximum data rate

(ii) To extend coverage

18

(iii) To serve large number users

3.2 Closest Point Search in Lattices

In several communication systems, the received signal is given by a linear

combination of the transmitted data symbols and additive noise. The input–output

relation describing such channels can be put in the form of the real multiple- input

multiple-output (MIMO) linear model y = Hx + v. In a wireless communication context,

x, y, and v are the transmitted, received, and the additive white Gaussian noise vectors,

whereas H contains the channel coefficients. Typically, the noise components are

independent and identically distributed zero-mean Gaussian random variables with a

common variance, and the information signal (x) is uniformly distributed over a discrete

and finite set, representing the transmitter codebook. Under such conditions and

assuming H perfectly known at the receiver the matrix H generates a lattice that we

denote as ∧ (H), the maximum-likelihood (ML) estimate u) for x is obtained by

minimizing the Euclidean distance of y from the valid lattice points .The closest point

problem is: Given y and lattice ∧ (H) with known generator H, find the lattice vector u)

∈ ∧ (H) that minimizes the Euclidean distance from y to u) such that

Where || . || denotes the Euclidean norm. In channel coding, the closest point problem is

referred to as decoding. In communication theory, lattices are used for both modulation

and quantization. If a lattice is used as a code for the Gaussian channel, maximum-

likelihood decoding in the demodulator is a closest point search. A common approach to

uxux −≤−
)

19

the general closest point problem is to identify a certain region in mR within which the

optimal lattice point must lie, and then investigate all lattice points in this region, possibly

reducing its size dynamically. Up to now there are two typical lattice decoding

algorithms. One is the Pohst strategy based algorithm developed by Viterbo and Boutros

(VB) [6], and the other is the Schnorr-Euchner strategy based algorithm applied by

Agrell, Eriksson, Vardy, and Zeger (AV) [1]. The VB method tries to find lattice points

inside a sphere of given radius. AV method divides the lattice into hyperplanes and starts

the search for the closet point in the nearest hyperplane. Both algorithms have high

complexities in most practical situations. The AV algorithm is claimed to be faster than

the VB algorithm at a speedup factor varying from 2 to 8 [1]. In addition, to search the

closest lattice point to the received signal within a sphere, the radius of the sphere C

must be specified in the VB algorithm and the choice of C is very crucial to the search

speed of the algorithm. Herein, we address the closest point algorithm by using AV.

3.2.1 Conceptual Description of Closest Point Search Algorithm

Let H be the channel coefficient matrix and y be the received vector. The basic steps of

AV algorithm to find vector u) are as follow:

1. Decompose H into H = GQ where G is the lower triangular matrix and Q is the

orthogonal matrix. The standard method to achieve such decomposition is the QR

decomposition. The QR decomposition decomposes given matrix A into Q and R

where Q is the orthogonal matrix and R is the upper triangular matrix. The G is

the lower triangular matrix while R is the upper triangular matrix , TRG =

20

2. Find 1

1
−= GG and TyQx =1

3. Find u) by using 1G and 1x (),(11 GxDECODEu =)) such that the vector Hu) is

 closest to the transmitted signal x.

In the beginning the function)1,1(GxDECODE initialize k = n, bestdistance = 8 . It

finds 11Gxek = ,)(kkk eroundu = and orthogonal distance
kk

kkk

G
ue

b
1

−
= . After finding

currentdistance by using b it enters into either state A, state B or state C depending on the

currentdistance. It enters into state A if currentdistance = bestdistance and k ? 1. It enters

into state B if currentdistance < bestdistance and k = 1. It enters into state C if

currentdistance =bestdistance.

In state A it finds kkk bGee 11 −=− , orthogonal distance and moves down in layers.

In state B it stores lattice point ku into u and makes bestdistance= currentdistance. It also

finds currentdistance and moves one step up in hierarchy of layers.

In state C if k = n then it stop searching otherwise finds currentdistance and moves one

step up in hierarchy of layers. In order to work, all the diagonal elements of the 1G must

be positive. If they are not positive, we have to make them positive explicitly.

21

Chapter 4

Algorithms

This chapter explains in detail different algorithms such as Strassen matrix

inversion method, QR decomposition using Householder matrix, finding square root and

decoding algorithm (part of closest point search algorithm) used in this thesis work.

4.1 Decoder

Algorithm Decode(H, x)

Input: an n× n lower-triangular matrix H with positive diagonal elements, and an n-

dimensional vector x to decode in the lattice ()1−∧ H .

=

nnnn hhh

hh
h

H

.
0...
..
000

21

2221

11

)......(21 nxxxx =

Output: an n-dimensional vector u) such that 1−Hu) is a lattice point that is closest to x.

22

Figure 4.1 Flow Chart of Decoding Algorithm

Define n = size of H
Define bestdist = ∞

bestdist represents current distance

Define k = n, stop = 0
k represent distance to examined layer

Define vector dist of size k, 0=kdist
dist represents distance of lattice point to

corresponding layer

Define matrix e of size n×n
e is used to compute ku

xHek =

ku = ⎣ ⎦kke , y =
kk

kkk

h
ue −

 , kstep = sgn*(y)

ku represents examined lattice point

kstep represents offset to next layer

2ydistnewdist k +=

State A State B State C

Y

Is newdist < bestdist?

Is
k = 1

N

N

stop=1
N

Y

Y

exit

23

Figure 4.2 Flow Chart of State A of Decoding Algorithm

Figure 4.3 Flow Chart of State B of Decoding Algorithm

kikiik yhee −=− ,1
for i = 1,….k - 1

k = k – 1

ku = kke , newdistdist k =

y =
kk

kkk

h
ue −

 , kstep = sgn*(y)

uu =) , k = k +1
bestdist = newdist

ku = kk stepu + , y =
kk

kkk

h
ue −

 kstep =)(sgn* kk stepstep +−

State B

State A

24

Figure 4.4 Flow Chart of State C of Decoding Algorithm

In this algorithm, k is the dimension of the sublayer structure that is currently being

investigated. In state A this algorithm performs three steps:

1. finding k – dimensional layer

2. finding distance to layer

3. after finding distance expand layer into (k -1)

State B is invoked when the algorithm has successfully moved down all the way to

the zero-dimensional layer (that is, a lattice point) without exceeding the lowest distance.

In this state this algorithm store lattice point as output and update the lowest distance.

State C is invoked when distance to examined layer is greater than lowest

distance. In this state this algorithm checks condition to stop the search. If condition to

stop is not meet than it moves up one step in hierarchy of layer.

Is k = n ?

k = k +1

ku = kk stepu + , y =
kk

kkk

h
ue −

 kstep =)(sgn* kk stepstep +−

stop = 1

State C

25

The operation sgn*(z) returns:

 sgn*(z) = -1 if z = 0

 = 1 if z > 0

 [z] = integer closet to z i.e. [2.4] = 2 and [2.6] = 3

In hardware [z] can be implemented in following way.

Suppose z is amplified by p where Sp 2= . If S -1 bit of z is 0 then reset S-1 to 0 bits of z

as zeros. If S -1 bit z is 1 then Sp 2= . If S -1 bit of z is 1 then reset S-1 to 0 bits of z as

zeros and add S2 to z.

4.2 A geometric view of the square root

There are two facts concerning the square of an integer that are useful in the

inverse process of finding the square root. The first concerns the number of digits.

If 0 < a < 10 then 0 < a2 < 100,

if 10 < a < 100 then 100 < a2 < 10 000,

if 100 < a < 1000 then 10 000 < a2 < 1 000000,

and so on.

The point to see here is that the square of an integer has either twice as many digits as the

integer itself, or one less than twice as many. So, since 9,409 has 4 digits its square root

has 2 digits, and the square root of the 13 digit number 3,871,696,594,290 has 7 digits.

The second fact concerns the "geometry" of squaring a number. Consider, for example,

the square of 249 so the geometric object to consider is a square with side of length 249

units. Write 249 as 200 + 40 + 9 then the square can be seen as

26

Figure 4.5 Geometric view of the square of three digit number

The square of 249 is 200x200 + 2(200x40) + 40x40 + 2(240x9) + 9x9 = 62001.

Now to find the square root of an integer you need first to determine the number of digits

there will be. Let us find the square root of 64 009. Since 64 009 has 5 digits, the square

root of 64009 will have 3 digits. A square of a 3 digit number is divided into 7 parts as

shown in the diagram.

Figure 4.6 Geometric view of the square of three digit number

1

3

6

2

4

5

7

27

To find the square root of 64009 divide the number in group of

“two” as 6 | 40 | 09 and start with the group of digits nearest to

the left (in this case 6). This represents the square of a. We know

that the largest perfect square less that 6 is 4, and that the square

root of 4 is 2. Since 2 must be placed in the hundreds position,

we can say a = 2*100. The area of region 1 is 200x200 = 40 000.

We then subtract this area from the total area of 64 009. By

looking at the diagram we realize that next we should remove the

areas of the two regions whose sides are a and b (region 2 and 3).

To find the length of b we must estimate the quotient of 24 009

by 400. The 400 is arrived at by recalling that two regions, each

of which has a length of 200, would have an overall length of

2(200) = 400.

The quotient of 24 009 by 400 is approximately 60. However looking again at our

diagram we realize that besides region2 and 3, we also must subtract an area of b x b

(region 4). Since 2 x 200 x 60 = 24 000 we are left with only 9, but we need to subtract b

x b which is 60 x 60 = 3 600. Thus we reduce our estimate of b to 50, and place a 5 in the

tens position of the square root calculation. Two rectangles (region 2 and 3), each 200

units by 50 units, have a total area of 20 000 square units. Subtracting 20 000 from 24

009 leaves 4 009. Again, going back to the diagram we note that the area (region 4) of b x

b that must be subtracted is now 50 x 50 = 2 500. Subtracting 2 500 from 4 009 leaves 1

509.

28

Returning to the diagram we note that next we must subtract the areas of the two regions

which has a length of a + b = 250 units each. The unknown quantity c can now be

estimated by the quotient of 1 509 by 500. 500 is arrived by placing the two regions

together to arrive at a rectangle with length 2 x 250 = 500. The quotient of 1 509 by 500

is approximately 3. Place 3 in the units position of the square root calculation and

subtract the sum of the areas of regions 5 and 6 , which is 2 x 250 x 3 = 1 500.

Subtracting 1 500 from 1 509 leaves 9. From the diagram the region 7 is the only region

not subtracted so far and its area is c x c = 3 x 3 = 9. Subtracting 9 from our previous

remainder leaves us with a remainder of 0. Thus the square root of 64009 is 253.

The Square root Algorithm:

Input: a positive integer x.

Output: root = x rounded toward zero.

figure continued on next page

w = [1, 10,100………]
w represents weight associated with number

Divide number x into groups of two
d = no of digits in root (no of groups)

i = d-1
i is used index of w

Find p such that
 p = first group (left most)
p represents perfect square

q = SQRT (p)

A

29

figure continued on next page

Is d = 1?

root = q
EXIT

Y

iwqroot ×=
2rootxn −=

N

A

i = i - 1
2×= rootadd

quotient = round (n – add)
quotient = round(quotient -w i) iw×

 Is quotient = 0?

done = 1 done = 0

Y N

 Is done = 0 ?

))((2quotientquotientaddnm +×−=

Is
m = 0

done = 1
n = m

root = root + quotient

N

iwquotientquotient −=

N

Y

 B
Y

C

30

Figure 4.7 Flow Chart of Square root Algorithm

In this algorithm we need to find number of digits (d) in square root of given number (x).

This can be implemented as follow:

d = 2 if 0 ≤ x ≤ 99

d = 3 if 100 ≤ x ≤ 9999

d = 4 if 10000 ≤ x ≤ 999999

………

The function SQRT (p) in above algorithm returns q as follow:

q = 9 if p > 80

q = 8 if p > 63 and p ≤ 80

q = 7 if p > 47 and p ≤ 63

q = 6 if p > 35 and p ≤ 47

q = 5 if p > 24 and p ≤ 35

B

d = d -1

Is
d ≥ 1 C

return root and exit

Y

N

31

q = 4 if p > 15 and p = 24

q = 3 if p > 8 and p = 15

q = 2 if p > 3 and p = 8

q = 1 if p > 0 and p = 3

q = 0 if p = 0

4.3 Strassen Matrix Inversion Method

Suppose matrix C is the inverse of matrix A. If the size of A is N×N, the size of C

is also N×N. In Strassen method the matrix A is divided into four sub matrix A 11 , A12 ,

A 21 , A 22 in such way that number of rows in A 11 equal to number of columns in A 21 .

 A =

21

11

A

A

22

12

A

A
 and C =

21

11

C

C

22

12

C

C

Let A =

NNPNNMN

PNPPPMP

MNMPMMM

NPM

aaaa

aaaa
aaaa

aaaa

....
............

....

....
............

....

1

1

1

11111

 A11 , A12 , A 21 , A 22 given by

A11 =

MMM

M

aa

aa

..
......

..

1

111

A12 =

MNMP

NP

aa

aa

..
......

.. 11

A 21 =

NMN

MPP

aa

aa

..
......

..

1

1

A 22 =

NNNP

NPPP

aa

aa

..
......

..

32

where M =
2
N

 if N = even

 M = round

2
N

 if N = odd

 P = M + 1

Strassen Matrix Inversion Algorithm:

Input: N×N matrix A

Output: N×N matrix C such that C = A 1−

figure continued on next page

Divide A into four sub matrix
A11 , A12 , A 21 , A 22

R1 = 1
11

−A

R2 = 121 RA ×

R3 = 121 AR ×

R4 = 321 RA ×

R5 = 224 AR −

X

33

Figure 4.8 Flow Chart of Strassen Matrix Inversion Algorithm

R6 = 15−R

6312 RRC ×=

2621 RRC ×=

2137 CRR ×=

7111 RRC −=

622 RC −=

X

34

4.3.1 Reduction of Strassen Matrix Inversion algorithm for 4 × 4 lower triangular

matrix

If matrix is lower triangular, it’s inverse is also lower triangular. Let A and C are

inverses of each other.

A =

44434241

333231

2221

11

0
00
000

aaaa
aaa

aa
a

 C =

44434241

333231

2221

11

0
00
000

cccc
ccc

cc
c

A11 =

2221

11 0
aa

a
 A12 =

00
00

A 21 =

2441

3231

aa
aa

 A 22 =

4443

33 0
aa

a

1) 1

11
1 −= AR

 R1 =
1

1
d

− 1121

22 0
aa

a
 where 22111 aad ∗=

2) R2 = A 21 × R1

R2 =

2441

3231

aa
aa

×
1

1
d

− 1121

22 0
aa

a

 R2 =
1

1
d

2221

1211

rr
rr

 where

114222

2124224121

113212

2132223211

*

**
*

**

aar

aaaar
aar

aaaar

=

−=
=

−=

3) R3 = 0)0(12 =aQ

4) R4 = 0)03(=RQ

35

5) R5 = - A 22)04(=RQ

 =

−−

−

4443

33 0
aa

a

6) 156 −= RR

 =
2

1
d

−

−

3343

44 0
aa

a
 where 44332 aad ∗=

7) C12 = 0)03(=RQ

8) C 21 = R6 × R2

 C 21 =
2

1
d

−

−

3343

44 0
aa

a
 ×

1
1
d

2221

1211

rr
rr

 =
1*2

1
dd

2221

1211

hh
hh

 where

2233124322

2133114321

124412

114411

**

**

*
*

rarah

rarah

rah
rah

−=

−=

−=
−=

9) R7 = 0)03(=RQ

10) C11 = R1)07(=RQ

 C11 =
1

1
d

− 1121

22 0
aa

a

11) C 22 = - R6

 C 22 =
2

1
d

−

−

3343

44 0
aa

a

The inverse C of 4×4 lower triangular matrix A is given by

 C =

21

11

C

C

22

12

C

C

36

 C =

−

−

−

222*12*1

0
22*12*1

00
11

000
1

33432221

441211

1121

22

d
a

d
a

dd
h

dd
h

d
a

dd
h

dd
h

d
a

d
a
d
a

 where 22111 aad ∗=

 44332 aad ∗=

 114411 rah ∗−=

 124412 rah ∗−=

 2133114321 * rarah −∗=

 2233124322 * rarah −∗=

 2132223211 ** aaaar −=

 113212 *aar =

 2142224121 ** aaaar −=

 114222 aar ∗=

4.4 QR decomposition of matrix

 The matrix A can be decomposed into

 QRA =

 Here R is upper triangular matrix, while Q is orthogonal matrix, that is, TQQ = I w here

TQ is the transpose matrix of Q. The standard algorithm for the QR decomposition

involves successive Householder transformations An appropriate Householder matrix

37

applied to a given matrix can zero all elements in a column of the matrix situated below a

chosen element. Thus we arrange for the first Householder matrix 1Q to zero all elements

in the first column of A below the first element. Similarly 2Q zeroes all elements in the

second column below the second element, and so on up to 1−nQ Thus

AQQR n 11−=

() 11
1

11 −
−

− == nn QQQQQ

4.4.1 Householder Matrix

The Householder transformation is often described in terms of multiplication by a

matrix known as Householder matrix. A Householder matrix has the form

TWWIH 2−= where W is a column vector. The formation of the Householder matrix to

reduce to zero a vector X from position k to position n is summarized in the following

algorithm:

Given an n-dimensional vector X and an index k such that 11 −≤≤ nk find a vector

W so that the matrix TWWIH 2−= reduces positions k+1,…, n of vector X to zero, so

the vector HX has the form []TZKZZ 0,...0,0,....., 21

1. Set Wi = 0 for i =1,…,k-1.

2. Find 22 ... nk XXg +=

3. Find)(2 kXggs +=

4. Set
s

gXX
W kk

k

)sgn((+
=

38

5. Set
s

X
W i

i = for i = k+1,…,n

QR Decomposition Algorithm:

Input: an n× n matrix A

Output: n× n upper triangular matrix R and n× n orthogonal matrix Q.

 figure continued on next page

k = 1, B = A, R = 0

mx = MAX(nkkkkk AAA ,....)1(, +) BB

mx

AAA nkkkkk, .)1(+

22
)1(

2 nkkkkk AAASum ++=

AA

=S SIGN(kkASum,)

kkkk ASA +=

kkk ASC ×=
Smxd k ×−=

39

AA

j = k + 1

njnkjkkkkjkk AAAAAAS1)1()1(++= ++

kC
S

T
1

=

pkpjpk ATAA ×−=
p varies from k to n

1−= jj

Is j= n ?

1−= kk

Is k< n ? BB

 CC

Y

N

Y

N

 figure continued on next page

40

Figure 4.9 Flow Chart of QR Decomposition Algorithm

In the above algorithm operation MAX(p1,p2.....pn) finds absolute value of

p1,p2.....pn and then return maximum absolute value e.g. MAX (-2.1 ,1.0) returns 2.1.

The operation SIGN (M, N) returns y as follow:

 y = M if N > 0

 y = -M if N < 0

N Y

iii dR = , x = 1
i varies from 1 to n

xyxy AR =
y varies from x + 1 to n

x = x + 1

Is x = n ?

N

Y

 CC

Q = BR 1−

exit

41

Chapter 5

Prototyping of Closest Point Search Algorithm

This chapter explains how to prototype the closest point search algorithm on the

Altera system-on-chip (Stratix EP1S10F780C6).

5.1 Why system-on-chip

The MIMO prototyping is challenging because of the complexity of the system.

The large complexity of AV algorithms needs to be partition over DSP and FPGAs. It

also requires the presence of interface drivers to support intercommunication between

DSP, FPGAs. By using system-on-chip we can develop microprocessor based system,

hardware logic and driver to communicate between microprocessor based system and

hardware logic on the same chip. The main goal is to develop a platform for parallel

execution of the preprocessing unit and the lattice decoder, therefore improving the

overall performance and decoding rate (Mbps) of the MIMO channel decoder.

5.2 Prototyping Closest Point Search Algorithm

We can divide the closest point search algorithm into two parts 1) preprocessing

and 2) decoding. Preprocessing contains QR decomposition of channel matrix and matrix

inversion while decoding contains search of vector in matrix.

42

QR involves operations like finding square-root, floating point multiplication,

division. FPGAs are not suitable for QR decomposition and matrix inversion. These

operations are performed by using NIOS embedded processor in the FPGA.

If we analysis AV algorithm in details, it is found that there are three different

states A, B, C. For given k (layer index) state A performs calculations for k-1 layer, while

states B, C perform calculations for layer k. It means that data for state B and C are not

depended on data from state A. Because search procedure can jump to either state B or C

after performing sate A and no data dependency of state B, C on state A, we can start

state B and C in parallel with state A. We can accept or reject the output from state B or

C depending on result of state A. If current state is C, we can start another state C in

parallel with first state C. Depending on the result of first C; we can accept or reject the

output of second state C.

 Such parallelism cannot be achieved by using microprocessor so we use FPGAs

to model decoder. The following diagram shows architecture of closest point search

algorithm.

Figure 5.1 Hardware architecture of lattice decoder

NIOS
Microprocessor
Based System

Hardware
Controller

State A

State B

State C

State C

43

ready

send

data

Controller is the most important part of the lattice decoder. It is used to control data

between State A, B, C and NIOS microprocessor based system.

5.2.1 Interface between Nios microprocessor based system and

Controller

Figure 5.2 Interface between Controller and NIOS Microprocessor Based System

C code for NIOS System VHDL code for Controller

 ……. …….

 …… ……..

Loop: process(ready)

 “ Put data on bus”

 “ Activate ready signal” “ read data”

 “ Wait for send signal” “ activate send signal”

 “ Go to loop” …..

End Loop; end process;

ready

 send

data

Controller
Nios
Microprocessor
Based System

44

NIOS microprocessor based system computes QR and R inversion and transfer Q and R

matrix to the controller. NIOS microprocessor based system transfer one row of Q and R

matrix at a time. When it is ready to transfer the data, it activates the ready signal. This

ready signal is in sensitivity list of process of controller so it triggers the process. The

process in controller read the data and activate send signal. The send signal is used to

interrupt the NIOS microprocessor based system so that it can send next data.

5.2.2 Interface between State A, B, C and Controller

Figure 5.3 Interface between Controller and State A, B, C

 Start A
 Ready
 Data

 Controller start B

 Ready

 Data

 Start C1

 Ready

 Data
 Start C2

 Ready
 Data

Start
 State A
Ready
Data

Start
 State B
Ready
Data

Start
 State C1
Ready
Data

Start
 State C2
Ready
Data

45

5.2.3 VHDL Code Structure of Controller for Interface with State A, B, C:

architecture of controller is

 k := n

 CURRENT_STATE <= A

 STATE_CHANGE <= ‘0’

 ………

 ……….

 begin

 P1: process (CURRENT_STATE)

 begin

 If (CURRENT_STATE = A) then

 “put data on bus for state A, B, C1 and start them”

 “wait for result from state A”

 “store data from state A “

 “from result of state A check what is next state after A”

 “store or discard result form B, C1 depending on state A”

 end if

 If (CURRENT_STATE = C) then

 “put data on bus for state C1, C2 and start them”

 “wait for result from state C1”

 “store data from state C1 “

 “from result of state C1 check what is next state after C1”

 “store or discard result form C2 depending on state C1”

46

 end if

 STATE_CHANGE <= ‘1’

 end process P1

 P2: process (STATE_CHANGE)

 begin

 if (new distance < best distance) then

 CURRENT_STATE <= A

 else

 CURRENT_STATE <= C

 end if

 end process P2

end architecture

47

Chapter 6

Results

This chapter gives the experimental results obtained for both the preprocessing

and decoding part of the MIMO decoder.

6.1 Results of Pre-processing Part

The pre-processing part is executed on Nios microprocessor based system which

runs at frequency of 50MHz on the Stratix EP1S10F780C6 device. Using the Division

custom instruction, the maximum frequency is 50MHz.

6.1.1 Results of Division

The table 6.1 compares number of clock cycles required to perform division using

Nios microprocessor without hardware divider and with hardware divider. Nios

microprocessor with divider uses divider as custom instruction attached to Nios CPU.

48

 a b c = a ÷ b Number of cycles

With divider 31,111 1,000 31 38

With divider -31,111 1,000 -31 40

Without divider 31,111 1,000 31 65

Without divider -31,111 1,000 -31 69

Table 6.1 Comparison of Nios Processor with & without divider to perform division

Table 6.1 clearly shows division is 1.6.times faster on Nios microprocessor with divider

than on Nios microprocessor with divider.

6.1.2 Results of Square root

The table 6.2 compares number of clock cycles required to find square root of

integer (rounded toward zero) using square root algorithm explained in 3.2 and C

language “sqrt “function.

A Round(a) Number of cycles using C

language “sqrt” function

Number of cycles using

square root algorithm

99 9 6,192 51

999 31 5,870 521

6,420 80 6,015 396

6,40,094 800 5,759 550

Table 6.2 Comparison of “sqrt” function in C language and square root algorithm

49

The table 6.2 shows that square root algorithm explained 4.2 in is faster than “sqrt” C

language function. The reason is that “sqrt” function uses floating point operation

(execution of floating point operation on Nios fixed point processor takes more cycles)

and square root algorithm explained in 4.2 uses hardware multiplier and divider.

6.1.3 Results of Strassen Matrix Inversion Method

 The table 6.3 shows number of cycles required to invert 4×4 and 8×8 lower

triangular matrix using Strassen method. It clearly shows that matrix inversion using

divider is almost 3.5 times faster than inversion without divider.

Matrix size Number of cycles

using hardware divider

Number of cycles

without divider

4×4 873 2,973

8×8 5,755 17,820

Table 6.3 Number of cycles required to invert 4×4 and 8×8 lower triangular matrix

using Strassen method

6.1.4 Results of QR Decomposition of matrix

 The table 6.4 shows number of cycles required to perform QR decomposition of

4×4 matrix. It shows that use of divider, square root algorithm speed up QR

decomposition of matrix.

50

Matrix size Number of cycles

with multiplier

only

Number of cycles

with multiplier and

divider

Number of cycles

with multiplier, divider

and square root algorithm

4×4 26,508 19,307 6,929

Table 6.4 Number of cycles required to perform QR decomposition of 4×4 matrix

6.1.5 Results of preprocessing part

The table 6.5 shows number cycles required to perform pre processing part of

decoding

Matrix size Number of cycles

4×4 9,736

8×8 36,587

Table 6.5 Number of cycles required to perform pre processing part of decoding

6.2 Results of Decoding Part

State A, B, C of decoder and controller to controller parallelism of A, B, C are

developed using VHDL and simulated using Aldec simulator. 18 clock cycles are

required to complete state A and 9 clocks cycles are required to complete both state B

and C. The matlab and C version of decoder are also developed. The result from matlab

and VHDL are matched.

51

 In order to test decoder we assumed received signal is [-1,-3, 1, 1] and channel

matrix H some random number

−−
−−
−−−

−−

=

4070.03665.19414.20963.0
7477.04380.08866.15484.0
0893.01918.17284.02656.0
8727.09800.03807.19794.0

H

Given an example, we set up the SNR as 20db. In this case, the number of iterations to

perform search operation in Matlab is 9 and search procedure goes through following

sequence of states.

Iteration 1 2 3 4 5 6 7 8 9

State A A A B A C C C C

Table 6.6 Sequence of state in matlab

Iteration 1 2 3 4 5 6

State A A A A C C

Parallel state B C C

Table 6.7 Sequence of state in VHDL

In VHDL we can start two states at the same time so in iteration 3 states A and B

are executed at the same time, similarly in iteration 4 state A and C, in iteration 5 states A

and C. In iteration 6 state C takes 2 cycles instead of 9 because at that time k = M.

52

If we consider that all state executes in sequence instead of parallel like matlab, than total

number of cycles required to complete search operation for this case are as follow:

18 × 4 (number of times A come) + 9 × 1 (number of times B come) +

9×3 (number of times C come – 1) + 2 (number of cycles for last C) = 110 cycles

Total number of cycles to complete search operation if states are executed in parallel is as

follow:

 18 × 4 + 9 × 3 + 2 = 83 cycles

Because of parallelism we can save 110 – 83 = 27 cycles for this case.

The bit rate of decoder is:

(frequency × bits_per_dimension × N) ÷ (total number of cycles)

N = 4 for 4 - antenna system

bits_per_dimension = 2

Total number of cycles in case of parallel architecture is 83 and maximum frequency is

54 Mhz so bit rate in case of 4.85 Mbits/secons. The sequential decoder takes 3571

cycles on Nios microprocessor based system which runs at 50 Mhz so in this case data

rate is 0.11 bits/seconds.

53

6.3 Synthesis Result

Target FPGA Altera Stratix EP1S10F780C6

Total logic elements 5,671/10,570

Total pins 203/426

Total memory bits 669,696/970,448

Total DSP blocks 24/48

Total PLL 1/6

Table 6.8 Synthesis results of MIMO Lattice Decoder with Preprocessing Part

6.3 Conclusion

In this thesis work, the parallel architecture of lattice decoder is presented. The

preprocessing part of decoder has been implemented on Nios microprocessor based

system. The parallel architecture of decoder has been simulated and synthesized on

FPGA and its performance is verified with software simulation. For the case we

considered in section 6.2, parallel architecture of decoder is 1.25 times faster than

sequential architecture and it is about 43 times faster its implementation on Nios

microprocessor based system which runs at 50 Mhz, The data rate of parallel architecture

(for the case in 6.2) is 5.2 Mbits/second which higher than data rate 0.11 Mbits/second.

54

Reference:

[1] Thomas Eriksson, Erik Agrell and Kenneth Zeger, “Closest Point Search in
Lattices,” Vol. 48, pp 2201, IEEE Transaction on Information theory, August
2002.

[2] Jing Ma and Xinming Haung, “Design of Lattice Decoder for MIMO Systems in

FPGA”,pp 24-29, Proceeding of the IEEE Workshop on Signal Processing
Sysytems(SiPS’04), Austin, Texas, Oct 13-15, 2004.

[3] T. Kaiser, A. Wilzeck and M. Rupp “Prototyping For MIMO Systems”.

Department of Communication Systems, Duisburg, Germany.

[4] Ali Adjoudani, Eric C, D Haessig and Salim Manji “Prototype Experience for

MIMO Blast Over Third-Generation Wireless System.” Vol. 21, pp 440, IEEE
Journal on Selected area in communication, April 2003.

[5] William H, “Numerical Recipes in C: The art of Scientific Computing”

Cambridge University Press, October 1992.

[6] Douglas J Smith, “HDL Chip Design” Doone Publication.

[7] Altera System-on-chip Manual http://www.altera.com.

[8] Square root theory http://www.dattalo.com/technical/theory/sqrt.html.

[9] Michael Barr, “Programming Embedded System in C and C++” O’Reilly

Publication Jan 1999.

[10] Dan Saks “Represent ing and Manipulating Hardware in C and C++”

http://www.embedded.com.

[11] Ted M “Optimizing C for embedded system” embedded system conference July

2001- Chicago Reference.

[12] EE Times, December 31, 2003.

55

Vita

Vipul Patel was born in 1976 in Gujarat, India, received his Bachelors Degree

from Pune University, India, in December 1999. He completed his Master’s

requirements in Electrical Engineering at University of New Orleans, New Orleans,

Louisiana. He defended his Master’s thesis in December 2004. His research interests are

mainly Embedded System Programming and Hardware Design.

	A System-on-Programmable-Chip Approach for MIMO Lattice Decoder
	Recommended Citation

	Table of Contents
	List of Illustrations
	Chapter 1 Introduction
	Chapter 2 Introduction to Altera System-On-Chip
	Chapter 3 Multiple Input Multiple Output Systems and Lattice Decoder
	Chapter 4 Algorithms
	Chapter 5 Prototyping of Closest Point Search Algorithm
	Chapter 6 Results
	Reference
	Vita

30

Figure 4.7 Flow Chart of Square root Algorithm

In this algorithm we need to find number of digits (d) in square root of given number (x).

This can be implemented as follow:

d = 2 if 0 ≤ x ≤ 99

d = 3 if 100 ≤ x ≤ 9999

d = 4 if 10000 ≤ x ≤ 999999

………

The function SQRT (p) in above algorithm returns q as follow:

q = 9 if p > 80

q = 8 if p > 63 and p ≤ 80

q = 7 if p > 47 and p ≤ 63

q = 6 if p > 35 and p ≤ 47

q = 5 if p > 24 and p ≤ 35

B

d = d -1

Is
d ≥ 1 C

return root and exit

Y

N

