
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-17-2004

Dynamic Website and Data Engine Generators for Distributed Dynamic Website and Data Engine Generators for Distributed

Enterprise/Business Architectures Enterprise/Business Architectures

Fareed Qaddoura
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Qaddoura, Fareed, "Dynamic Website and Data Engine Generators for Distributed Enterprise/Business
Architectures" (2004). University of New Orleans Theses and Dissertations. 195.
https://scholarworks.uno.edu/td/195

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/195?utm_source=scholarworks.uno.edu%2Ftd%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

DYNAMIC WEBSITE AND DATA ENGINE GENERATORS
FOR DISTRIBUTED ENTERPRISE/BUSINESS

ARCHITECTURES

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Masters of Science
in

The Department of Computer Science

By

Fareed A. Qaddoura

B.S, Birzeit University, Palestine, 2001

December 2004

 ii

Copyright 2004, Fareed A. Qaddoura

 iii

This thesis is dedicated to my parents,

my wife,

Soondus and Tasneem

and my in-laws and family.

 iv

Acknowledgment

 I would like to thank my advisor Prof. Mahdi Abdelguerfi for the time and

resources he provided to make this project come to life.

 In addition, I would like to thank Prof. Shengru Tu and Dr. Nauman Chaudhry for

being on my thesis defense committee.

 Finally yet importantly, I would like to thank every member of my family for all

the support and help they provided to me. I cannot imagine that without their prayers,

care, love, and generosity I would be able to accomplish this study.

 v

Table of Contents

List of Figures .. vii

List of Tables ..ix

Abstract .. x

Chapter 1 Introduction ... 1

1.1 The Benchmark Data Engine Components .. 2

1.2 Motivation .. 3

1.3 Overview .. 4

Chapter 2 Concepts of Website and Data Engine Generators ... 6

2.1 Portal Application .. 6

2.2 Data Engine Generator .. 7

2.3 Website Generator ... 8

Chapter 3 Architecture and Design .. 9

3.1 Technical Architecture .. 10

3.2 Technology Used .. 11

3.3 Functional Architecture .. 14

Chapter 4 System Catalog .. 17

4.1 System Catalog Tables .. 17

4.2 System Catalog E/R Diagram... 19

Chapter 5 Portal Application .. 25

5.1 Mechanisms of the Portal Application .. 25

5.2 “My Portal Application”... 27

5.3 Design and Implementation.. 29

Chapter 6 Service Integration .. 32

6.1 Service Integration Concepts.. 32

 vi

6.2 Service Integration Applet ... 39

6.3 Design and Implementation.. 48

Chapter 7 Website Generation ... 50

7.1 Website Generator Concepts .. 50

7.2 Design and Implementation.. 51

Chapter 8 Security and Auditing .. 56

8.1 User Login JSP Bean.. 56

8.2 Session Management ... 58

8.3 User Privileges and Component Access ... 61

Chapter 9 Results and Conclusions .. 67

9.1 Results and Conclusions .. 67

References .. 69

Appendix .. 70

A.1 New Service Integration Using XML ... 70

A.2 Copyright Permission ... 72

Vita ... 73

 vii

List of Figures

Figure 1.1 General architecture of the “Benchmark Data Engine” 3

Figure 3.1 General overview of the portal application ... 9

Figure 3.2 Portal application architecture ... 13

Figure 3.3.1 Functional architecture of the verification process .. 14

Figure 3.3.2 Functional architecture of the server session handler 15

Figure 3.3.3 Functional architecture of the new service integration applet 15

Figure 3.3.4 Functional architecture of the website generator .. 16

Figure 4.2.1 System catalog E/R diagram 1 ... 20

Figure 4.2.2 System catalog E/R diagram 2 ... 21

Figure 4.2.3 System catalog E/R diagram 3 ... 22

Figure 4.2.4 System catalog E/R diagram 4 ... 23

Figure 4.2.5 System catalog E/R diagrams alignment .. 23

Figure 5.1.1 Portal application main web page ... 26

Figure 5.1.2 Main page flowchart .. 27

Figure 5.2.1 “My Portal Application” diagram 1 ... 28

Figure 5.2.2 “My Portal Application” diagram 2 ... 29

Figure 5.3.1 Snapshot of H_SEC_USER_LOGS table .. 30

Figure 5.3.2 Portal application class interactions ... 31

Figure 6.1.1 Test case data model ... 34

Figure 6.1.2 Primary–Detail model .. 35

Figure 6.1.3 Primary–Lookup model .. 36

Figure 6.1.4 Detail–Lookup model ... 37

Figure 6.1.5 Primary – Primary – Detail model .. 38

Figure 6.1.6 Primary – Primary model ... 39

Figure 6.2.1 Test case model .. 40

Figure 6.2.2 Service Tables ... 41

Figure 6.2.3 Table Attributes 1 ... 42

Figure 6.2.4 Table Attributes 2 ... 43

Figure 6.2.5 Table Attributes 3 ... 43

 viii

Figure 6.2.6 Table Attributes 4 ... 44

Figure 6.2.7 Table Attributes 5 ... 44

Figure 6.2.8 User Defined Referential Integrities ... 45

Figure 6.2.9 System Generated Referential Integrities 1 .. 46

Figure 6.2.10 System Generated Referential Integrities 2 .. 46

Figure 6.2.11 Schema’s creation credentials .. 47

Figure 6.2.12 Service Created ... 48

Figure 6.3.1 “New Service Integration” class diagram ... 49

Figure 7.2.1 Service web page class diagram ... 52

Figure 7.2.2 Customers Form ... 53

Figure 7.2.3 Resources Form .. 54

Figure 7.2.4 Resource-Types form ... 54

Figure 7.2.5 Schedule-Details form... 55

Figure 8.1.1 Security Header file .. 57

Figure 8.2.1 Session Management Classes Model .. 59

Figure 8.2.2 Tomcat web.xml Modified Header ... 60

Figure 8.2.3 User Authentication – server side – ... 61

Figure 8.2.4 User Logging off – server side – ... 61

Figure 8.3.1 Create User Account Form ... 62

Figure 8.3.2 Update User Account Form... 63

Figure 8.3.3 Reset Password Form ... 63

Figure 8.3.4 Set Screen Access Form ... 64

Figure 8.3.5 Set Attribute Access Form .. 65

Figure 8.3.6 Selected Domain User Form .. 66

Figure A-1 Well- formed XML Document for New Service Integration 71

 ix

List of Tables

Table 4.1 System catalog tables .. 17

 x

Abstract

 Creating websites providing dynamic services is an extensive process. Intelligent systems

are used to create websites with dynamic services. Current intelligent systems are hard to use and

configure by the average user. The generated websites are usually custom built to solve one

problem and cannot be fully customizable for users on different environments.

 This thesis presents a technological solution that enables the average user to create

websites with dynamic services by providing a number of parameters. The website generator is a

web-based application that generates all the components of the website. The components act as

portlets and the generated website will be the portal application.

 The data engine generator creates the website’s underlying database. To enable

distributed enterprise/business architecture, the data engine generator records the metadata about

the database and the website to be generated.

 The website generator is a cost effective, dynamic, secure, reliable, and scalable solution

that outperforms current website generators and portal applications.

 1

Chapter 1 Introduction

In the year 2002, the Computer Science Department initiated a research project

entitled “An Intelligent Benchmark Data Engine for the Maritime Industry”1. The

research was motivated by the need of performance benchmarks of the services provided

by the maritime industry companies. They wanted to know how efficient and effective

their services are. They wanted to know what is the customers feedback regarding the

quality of their services.

Most of the maritime companies are small and serve few vessels only. It will be a

huge financial burden to create IT departments to benchmark the service time, quality of

service, customers’ satisfaction and monitor their growth.

The research initial focus was on creating a flexible web-based benchmark data

engine for the maritime industry. The goal was to implement an Intelligent Site Generator

capable of generating entire new site with all their components based on a number of

parameters given by the user. This will help the economical growth of the maritime

industry by reducing the cost of operation

The goals of the research were to start with the maritime industry and then

generalize the result to any kind of service. The research aimed to find an intelligent way

to get the public or the customers to give their feedbacks on the quality of the service.

Finally, to allow businesses/enterprises use this architecture to facilitate their data

exchange and distribution.

In the first stages of the project, a prototype of a manual website generator was

created. It did support the creation of one database table and one webpage. In the second

1 Dr. Abdelguerfi, M; “An Intelligent Benchmark Data Engine for the Maritime Industry”, funded by the
Louisiana Board of Regents Support fund, Industrial Ties Research Subprogram, $120,000
07/2002-06/2005

 2

stage, two components where created and built on the prototype of the website generator.

The first component was called SagaMap (Semi Automatic Schema Generation and

Mapping). The second component was called ChartVisio.

1.1 The Benchmark Data Engine Components

The Benchmark Engine components facilitated the generation of a simple webpage,

modify the underlying database structure, and visualize the data. The site generator

creates the webpage; SagaMap allows the modification of the database structure and

ChartVisio to visualize the data.

Site Generator: is a component on the server side that dynamically generates at

compile-time all the elements required for the webpage. Then, it uses the stored

elements of the webpage at run-time.

SagaMap: is a tool that works towards providing an interface to accept from users

all the required information to generate a new database. It creates an empty data

warehouse. For a given source database, the tool aims at arriving at an appropriate

mapping to create a structurally related warehouse. After a mapping has been

formalized, tables for the new warehouse are created. Then, relevant data is

automatically transported from the source database to the newly created warehouse.

ChartVisio: a simple web-based visual data-mining system that lets users quickly

explore databases and transform raw data into processed visuals. Data from tables is

internally mapped into charts using aggregate functions across tables. The tool thus

integrates querying and charting into a single general-purpose application.

 3

Figure 1.1 shows the architecture of the Benchmark Data Engine

Figure 1.1 General architecture of the “Benchmark Data Engine”

1.2 Motivation

The generated website should be dynamically configured to accept the

introduction of new functionality or new business operations. It is not acceptable to have

to compile and re-deploy the whole application just because something has to be

modified or a new module or functionality is being added. Users’ views did not reflect

changes in the system environment. Users will still see the same form components in the

generated webpage even though the attributes no longer exist. This motivated the need

 4

for a metadata repository we called “System Catalog”. Any changes in the environment

will be recorded in this set of database tables and the components in the system will adapt

accordingly.

 This also motivated the need to have a framework where the new components add

to the system can be presented to the users. The framework should be configurable to

control what the users would see and interact with. The framework is called “Portal

Application”.

 Creating one database table per service is not realistic for a real life company.

This gave the motivation to create a new “Data Engine Generator” that enables the

creation of more than one database table. The Data Engine Generator ensures that the

relations between the tables are in third normal form. The users’ interface to the “Data

Engine Generator” is a standalone component we called “New Service Integration”. The

“New Service Integration” is an example of a portlet component.

As a result, the “Website Generator” has to be changed. The “Website

Generator” is recreated to accomplish two things:

a. Generate a complete website that allows the users to handle the database

tables.

b. Create the web pages with dynamic contents that adapts to the changes in the

system environment.

 Finally, security and auditing mechanisms are implemented to ensure that the data

and the resources assigned to the users are not tampered or vandalized.

1.3 Overview

The following chapters will go through the details of the “Dynamic Website and

Data Engine Generator for Distributed Enterprise/Business Architecture”.

 5

Chapter 2 discusses the concepts of the “Website and Data Engine Generator”; it

also, discusses how these concepts can be implemented in real life scenarios. Chapter 3

gives the details of the website and data engine “Architecture and Design”. Chapter 4

introduces the metadata repository or the “System Catalog”. Chapter 5 deals with the

users’ work environment or what is called “The Portal Application”. Chapter 6 is about

the users’ interface – or portlet – to the “Data Engine Generator”, what is called “New

Service Integration”. Chapter 7 discusses the “Website Generator”. Chapter 8 is about

“Security and Auditing” of users and portlets in the system. “Results and Conclusions”

are discussed in chapter 9.

 6

Chapter 2 Concepts of Website and Data Engine

Generators

 Current technological solutions attempt to minimize the effort needed for their

implementation. It is clear that the decision to implement a certain solution is highly

motivated by its financial cost and the modifications needed to the current infrastructure.

As a result, many solution providers offer their customers the resources and the

infrastructure hosting.

2.1 Portal Application

The solution is packaged together in what is called “Portal Application”. Portal

applications are off the shelf packages that can be personalized and customized to meet

the business and the user needs. Portlets are the building components of a portal

application. Each portlet is responsible for a set of tasks. New developed portlets are

added to the portal application without the need for any additional programmatic effort.

In general, the requirements for deploying a portal application are an application

server2 and a database server. Cell phones, handheld mobile devices, desktops and

laptops are examples of devices that may be used to interact with a portal application.

Portal applications should ease the data flow between business entities. They should

be dynamic and customizable by the business manager and to a certain degree by the

users.

Some of the most common and widely used portal applications include “My MSN”

from MSN® or “My YAHOO!” from YAHOO!®. These are examples of portal

applications that can be customized and personalized to the user needs. However, these

portal applications do not have a business portlet where data exchange among business

2 Application server is the platform that allows the developers to integrate and deploy their applications or
websites.

 7

entit ies can be established. On the other hand, IBM® WebSphere portal application is an

example of a portal application that handles on demand business. Oracle® has a portal

application that is dedicated to accessing and organizing the enterprise information and

applications. Other portal applications like Novell® Portal application, MEDiAPPS® NET

portal, and Sun Microsystems Java System Portal Server 6 and many others combine the

features of a portal application for user and business interaction.

Unfortunately, the development of highly generic portlets is tedious. Highly generic

portlets limit the user and business needs because of the ir generality. Special purpose

portlets are not designed to operate in different settings than the ones used to create it. In

conclusion, the portlet should allow the users to customize it to their needs and work with

their environments.

2.2 Data Engine Generator

 Our portal application, posses all the advantages of a portal application with the

added benefit of simplicity in creating a portlet that will handle the data organization,

data access, and the applications interaction with the data. Users who are not experienced

with the concepts of database analysis, design and implementation will be able to create

their own business portlets.

The “Data Engine Generator” is a component that was developed and deployed on

the application server. It enables the users of the system to create the database structure

they need without going through the hassles of database analysis, design, and

implementation. All they need to know is how their data is organized. The “Data Engine

Generator” will guide them by imposing a set of semantics on the client side through four

simple steps wizard application called “New Service Integration” to create a fully

customized the database.

 8

2.3 Website Generator

 After the users of the portal application create their own database, the website

engine generator deployed on the application server will dynamically create a set of web

pages that have the capabilities to retrieve and insert data into the database.

 The website generator uses the database structure to intuitively derive the

relationships among different database tables. It creates a set of pages that ensure that

users can interact with their database structure. It embeds all the necessary functionality

that make this interaction happens in a simple and secure manner.

 9

Chapter 3 Architecture and Design

 The architecture explains the design decisions that were taken in order to achieve

a truly cost effective, simple, easy to use, secure, reliable, and scalable portal application.

The design supports the distributed enterprise or corporate architecture as well as the one

location business in terms of database distribution and horizontal fragmentation.

Scalability is achieved by using replicated web servers and distributed database

architecture.

 In this chapter, we will discuss the technical architecture of the portal application

in terms of interaction among the system components, the functional architecture

including the deployed components and their interactions, and the technology used.

 Figure 3.1 visualizes the general architecture of the portal application.

Figure 3.1 General overview of the portal application

 10

3.1 Technical Architecture

 The components appearing in the general overview of the portal application in

Figure 3.1 are:

Verification: is the set of operations that perform the user authentication by

verifying a set of credentials submitted by the user through the portal application

website.

System Catalog: The system catalog is the metadata holder. It contains

information about the users, users’ accounts, users’ privileges, available

resources, resources locations, and portlets. The metadata is inserted in a set of

database tables. Storing this metadata allows the portal application to work with

any database management system. Moreover, even if the database management

system is capable of retrieving the metadata about the created schemas, the cost to

interpret and parse the retuned metadata is much greater than, if the metadata is

stored directly in the database. Storing metadata about the users’ database

schemas in special database tables outperforms the use of the database

management system to retrieve the metadata and then process it. In other words,

there is no need to use any API to retrieve the metadata, it is a direct read

operation from the database. Finally, the system catalog contains metadata about

not only the users and their privileges, but also about the portlets and their

components which emphasis the need for this structural component.

Operational Database: is the database that receives the transactional data of the

business entities.

Portlets: are the set of developed modules that can be used by the logged in user.

Each blue box is the container of a set of portlets that may work independently to

perform a set of tasks. The main portlet in the portal application is the “New

Service Integration” portlet. It enables the users to create custom database

 11

schemas; then it interacts with the “Website Generator” to generate the set of

web pages for interaction with the database.

 The developed portlet’s functionality is defined by the user. It is important to note

that users with enough privileges should be able to configure the portlets’ operation

modes and the database tables involved. This enforces that the portlet itself is enabled to

function in a configurable manner. It is very crucial to point that the model complies with

our understanding of the prototype of the coming generation of portlets imposed by the

on demand business solution development and deployment requirements. This prototype

requires a portlet to operate on any platform, perform the tasks on any set of data, and

interact if necessary with any existing operational database. Clearly, these portlets will

have the intelligence to be used and to operate with minimal requirements of training. To

complete the picture portlets are expected to be able to generate portlets by minimal user

interaction and minimal set of specifications.

 The portal application allows portlets to be integrated in the system without any

extra programming effort. This will result in two types of portlets, one set, which is

already defined in the portal application, and another set, which is created by the users.

3.2 Technology Used

Most of the components are built using the Java™ programming language. Java

provides platform independence. In addition, Java has many web application

development capabilities that do not need any intermediate components to run on the web

server.

The technologies used in this project are:

Java Swing: are components used to build the graphical user interface. Swing

used swing in the service integration portlet. The service integration portlets has

 12

four tabs organized and structured as a wizard application to guide the user

through the process of creating and integrating a new service.

Java Applets: are java programs that have the ability to be executed through the

web browser by embedding them in an HTML page. Applets run on the client

side and have the capability of requesting and posting data to the server side.

Java Servlets: are Java programs that are used to extend the functionality of a

web server. Servlets can be thought of as Java applets running on the server side.

Servlets are used to handle the Java Applet requests and to provide the data for

the web pages with a dynamic content.

JSP: or Java Server Pages: are used to create web pages with dynamic contents.

JSP creates the dynamic content. JSP gets the dynamic content by executing the

JSP code and/or tags on the server side. Client’s requests cause the execution of

the JSP code and then the result is displayed with the dynamic content on the

client side. JSP is used in all the web pages of the portal application.

Jakarta Tomcat: is the web server used as the container or host for Java Servlet

and JSP. It is used as the platform for deploying web applications and web

services. This web server will manage the user sessions and fire a set of events

whenever a user is terminating or invalidating the session, that is, closing the

browser or logging out of the system.

Oracle 9i: is used as the database management system. The data engine generates

and executes the SQL commands to create and integrate the new schema. It is also

used to store the metadata of the portal application system.

HTML: or Hyper Text Markup Language : it contains tags – commands – for the

web browser to display the webpage.

 13

JavaScript: is a scripting language that is used to improve the design and validate

the web pages displayed on the client side.

CSS: or Cascading Style Sheets: are definitions used to tell the web browser how

to display the HTML elements. They can be embedded in the web page or stored

separately in external files called CSS files. External and embedded CSS

definitions are used to format the look of the web application web pages.

DHTML/DOM: or Dynamic HTML/Dynamic Object Model: Technologies that

allow the web page to have a dynamic content that can be manipulated by a set of

events fired from user interaction with the web page. The DOM defines a set of

methods to access and manipulate HTML objects. The DHTML and DOM

together reduce the traffic time from and to the server by having the ability to add

components to the web page without sending any server request.

Figure 3.2 shows how the above technologies are combined together in the portal

application architecture.

 Figure 3.2 “Portal Application” architecture

 14

3.3 Functional Architecture

 The functional architecture describes the deployed components and their

interactions. The focus here will be on the UML®1 diagrams to explain the interactions

and will go further more into the details in the following chapters. The UML diagrams

used in this section describe the packages that literally encapsulate the code used to

perform the set of tasks required by the users or the system.

 The root package is called benchmark because of the initial focus of this project

“Benchmarking for the Maritime Industry”. The users try to login to the system and a set

of commands is generated to accomplish this task. The user login class interacts with the

database login module to verify the user credentials. Using the same package the users

with appropriate privileges will be able to retrieve the necessary data to manage their

profiles by interacting with the profiles management servlet. Figure 3.3.1 models the

functional architecture of the verification process and the user interactions with the

profiles management.

Figure 3.3.1 Functional architecture of the verification process

1 Unified Modeling Language™: is a standard language for analysis, design and documentation of the
software system.

 15

 Users’ sessions and the login information are maintained and recorded on the

server for auditing and security purposes. The auditing is done by inserting the user login

information in database tables that have the log files structure. The server package will be

described in more details in Chapter 9.

Figure 3.3.2 models the functional architecture of the server session handler.

Figure 3.3.2 Functional architecture of the server session handler

In order to proof the concept of portal applications a portlet was created to allow

users to create their own database schema. The portlet server component will invoke

website generator, which in turn will generate the corresponding web pages. The users

interact with a Java applet. The applet validates the user input and then communicates

with the server side internally to create the database schema using the “Data Engine

Generator”. Figure 3.3.3 models the functional architecture of the new service

integration

Figure 3.3.3 Functional architecture of the new service integration applet

 16

The new service integration portlet communicates with the server side, which in

turns forward the data posted by the applet to the service normalization data base module.

The module will insert the metadata in the system catalog and create the database

schema. Later it calls the website generator to create the necessary web pages to handle

the created database schema. The website generator generates (in addition to the

generated website) two utility classes and a servlet and deploys the website automatically

at the web server. No user interaction is needed for the deployment of the generated

website. The newly generated website is considered as a new portlet. In Figure 3.1

“Resources” and “Orders” are two different portlets created by the users. Figure 3.3.4

models the functional architecture of the website generator.

Figure 3.3.4 Functional architecture of the website generator

 17

Chapter 4 System Catalog

The system catalog is the metadata holder. It contains information about the users,

users’ accounts, users’ privileges, available resources, resources locations, and portlets.

The metadata is inserted in a set of database tables. Storing this metadata allows the

portal application to work with any database management system. Moreover, even if the

database management system is capable of retrieving the metadata about the created

schemas, the cost to interpret and parse the retuned metadata is much greater than, if the

metadata is stored it directly in the database. Storing metadata about the users’ database

schemas in special database tables outperforms the use of the database management

system to retrieve the metadata and then process it. Finally, the system catalog contains

metadata about not only the users and their privileges, but also, about the portlets and

their components which emphasizes the need for this structural component.

4.1 System Catalog Tables

 The system catalog is composed of twenty database tables. The tables in the

system catalog are listed in Table 4.1 below:

Table Name Table Name Table Name

H_SEC_USER_LOGS SEC_USER_LOGS SRV_TABLE_TYPES

SEC_COMPANY_PROFILES SEC_USER_SCREENS SRV_USER_TABLES

SEC_MODULES SEC_USER_STATUS STP_PORTAL_STYLES

SEC_SCREENS SEC_USER_TYPES STP_SERVICE_PARAMETERS

SEC_SCREEN_TABLES SRV_DATA_TYPES STP_USER_SCREEN_STYLES

SEC_USERS SRV_TABLE_ATTRIBUTES STP_USER_SERVICES

SEC_USER_ATTRIBUTES SRV_TABLE_FOREIGN_KEYS

Table 4.1 “System Catalog” tables

 18

 Tables that start with the prefix H are history tables. Tables that start with the

prefix SEC are security tables. Tables that start with the prefix SRV are service tables.

Tables that start with the prefix STP are Setup tables.

 The above tables can be replicated at different database servers as long as the

system catalog connection parameters files place on the tomcat server is modified to

point to the new location of the system catalog. The system catalog can be horizontally

fragmented when more than one web server is running the portal application so the load

is distributed.

 The main tables in the system catalog are:

SEC_COMPANY_PROFILES: this table is used whenever a new business,

corporate or enterprise subscribes to benefit from the portal application and its

portlets.

SEC_USERS: this table has the user accounts and specifies the type of the user by

using the stored values of user types in the table SEC_USER_TYPES. The user

status determines if the user is Active, Inactive, and Locked; these values are

stored in the table SEC_USER_STATUS. The tables SEC_USER_SCREENS and

SEC_USER_ATTRIBUTES are used to define which web pages and which

attributes or components the user can interact with when using a certain webpage.

SEC_USER_LOGS is the table of the currently logged users. When the user logs

off the SEC_USER_LOGS records are modified and moved to the history log

table H_SEC_USER_LOGS.

SRV_USER_TABLES: this table has the names of the database tables that are

created by the users of the portal application. SRV_TABLE_TYPES have the

types of the tables that the user can create; more details are to come in Chapter 6.

SRV_TABLE_ATTRIBUTES and SRV_TABLE_FOREIGN_KEYS hold the

metadata about the tables created and their relations.

 19

STP_SERVICE_PARAMETERS: is the main table in the system that keeps track

of the location of the database schemas that the users create or can access. The

new schema is interchangeably used in this context with the term “Service”. This

table allows the DBA administrators to move the databases wherever they want or

refer to the databases at the users’ side, without the need for any programming

effort.

STP_PORTAL_STYLES: holds the CSS used to format the user’s environment.

Each user can customize the portal application main page to meet their needs.

SEC_SCREEN_TABLES: specifies the tables associated with the generated

website for the users of the portal application. SEC_MODULES is a literal

packaging for the screens that perform a set of relevant task. SEC_SCREENS is

the table that holds the web pages created for the users automatically and the

portlets in the system.

SRV_DATA_TYPES: is a lookup table that has the definitions of all possible

datatypes in the system and their sizes. The listed datatypes and sizes are

supported by Oracle 9i. The supported datatypes by the “Data Engine Generator”

are the primitive datatypes.

4.2 System Catalog E/R Diagram

 The entity relationship diagram or E/R diagram is a way to describe the relations

among the different tables making up the database. E/R diagrams are used to build the

logical design of the database and may be used for reverse engineering of the database.

The E/R diagram for the system catalog cannot fit in one figure so Figures 4.2.1, 4.2.2,

4.2.3, and figure 4.2.3 if aligned together in the order listed will make up the E/R diagram

for the system catalog.

 20

Figure 4.2.1 System catalog E/R diagram 1 shows the first quarter of the whole

E/R diagram.

Figure 4.2.1 System catalog E/R diagram 1

 21

Figure 4.2.2 System catalog E/R diagram 2 shows the second quarter of the whole

E/R diagram.

Figure 4.2.2 System catalog E/R diagram 2

 22

Figure 4.2.3 System catalog E/R diagram 3 shows the third quarter of the whole

E/R diagram.

Figure 4.2.3 System catalog E/R diagram 3

 23

Figure 4.2.4 System catalog E/R diagram 4 shows the fourth quarter of the whole

E/R diagram.

Figure 4.2.4 System catalog E/R diagram 4

 In order to align the system catalog E/R diagram quarters follow the Figure 4.2.5,

which shows how to align the four quarters.

Figure 4.2.1 Figure 4.2.2

Figure 4.2.3 Figure 4.2.4

Figure 4.2.5 System catalog E/R diagram alignment

 In addition to the description of the system catalog tables it is important to point

out that, the data in the system catalog is logically separated. Therefore, each company

has its own users, screens (users’ generated websites and portlets), services (database

schemas created by users), auditing, and styles.

 24

 System scalability and the ease of administration is achieved by maintaining

pointers to the resources and their locations. The tables

STP_SERVICE_PARAMETERS, SEC_COMPANY_PROFILES, SEC_SCREENS and

SEC_USERS are the main tables where all the relations are drawn into or exported from.

These tables can be used to distribute the system or add new users or components.

In the E/R diagram, the dashed line means that the inserting a record in the parent

table does not enforce inserting records in the child relation. As an example of this,

consider the fourth quarter of the E/R diagram (Figure 4.2.4). Inserting a new user in

SEC_USERS does not require inserting a record in H_SEC_USER_LOGS. While, in the

third quarter of the E/R diagram (Figure 4.2.3), inserting a record in SEC_MODULES

requires an existing record in SEC_COMPANY_PROFILES or a prior concurrent insert

in the SEC_COMPANY_PROFILES table.

 25

Chapter 5 Portal Application

Current technological solutions attempt to minimize the effort needed for their

implementation. It is clear that the decision to implement a certain solution is highly

motivated by its financial cost and the modifications needed to the current infrastructure.

As a result, many solution providers offer their customers the resources and the

infrastructure hosting.

The solution is packaged together in what is called “Portal Application”. Portal

applications are off the shelf packages that can be persona lized and customized to meet

the business and the user needs. Portlets are the building components of a portal

application. Each portlet is responsible for a set of tasks. New developed portlets are

added to the portal application without the need for any programmatic effort.

5.1 Mechanisms of the Portal Application

 The portal application operates on the client side of the client server architecture.

In other words, when the user opens the web browser and navigates through the internet

to the portal application’s website, the user is considered the client in the client server

architecture. When the portal application main page is called –usually the index page –, it

searches the cookies1 on the client side for the last logged user name and company

domain2.

 The user will be required to log on to the portal application by providing a valid

username, password, and company domain. If the user credentials combinations are

correct then the portal application calls the users portal page.

1 Cookies: are files stored on the client side to remember some parameters values that may have been used
by the user and may be used again. So the user may change the background color of a certain website and
whenever the user navigates back to the site the background color information is retrieved for the cookies
and assigned to the website background color.
2 Company domain: is categorizing users under their functional units, which can be viewed as the network
domain of the user.

 26

 Figure 5.1.1 shows the main page of the portal application where the users are

expected to provide the system with their login credentials.

Figure 5.1.1 Portal application main web page

 27

 Figure 5.1.2 shows the flowchart of the algorithm used in the portal application

main page.

 Figure 5.1.2 Main page flowchart

5.2 My Portal Application

When the user is authenticated, the portal application main page will send a

request to load the user’s portal application or “My Portal Application”. The user will be

able to access the portlets and services granted and listed in the system catalog inside the

table SEC_USER_SCREENS. The portal application will generate dynamic links to the

user’s portlets and services by reading the SCREEN_URL in the SEC_SCREENS table.

SEC_SCREENS is equivalent to the resource locater of the portlet or from the

STP_SERVICE_PARAMETER table if it is a service.

 28

Figures 5.2.1 and 5.2.2 show two different portal applications for two different

users in two different companies. Note that if the user has a CSS stored in the

STP_PORTAL_STYLES as in Figure 5.2.1, it will be loaded from the database.

Otherwise, the default CSS will be read from the portal application directory on the web

server. It is easy to note that the two users have different privileges to access the portlets

and services. The user “davem” in Figure 5.2.1 has the privileges just to login to the

system while the user “fareed” in Figure 5.2.2 has a menu of the accessible portlets and

services.

Figure 5.2.1 “My Portal Application” diagram 1

 29

 Figure 5.2.2 “My Portal Application” diagram 2

5.3 Design and Implementation

 The portal application main page is a JSP file that creates a JSP bean1. The bean is

going to live as long as the session is valid and will keep the username, company domain

and if the verification method of the user have failed or succeeded.

 The portal application itself is also a JSP that interacts with the user’s data defined

in the system catalog to load the right privileges. The portal application generates the

menus and the links to the resources during load time by creating a set of html tags that

will represent the menus. A set of JavaScript functions with DHTML/DOM is embedded

in the portal’s application main page, to make the menus show and hide on mouse

rollovers and mouse exit.

1 JSP beans: are Java objects that can hold their state as long as the developer specifies in the JSP bean tag.
The developer determines the life scope of the bean by determining which components in the web
application or in the web site will be benefit from the “cached data”.

 30

 The user will logout from the portal application either by clicking on the logout

link, by closing the browser, or by being idle for a period of time without using the web

page. The user’s log time, location, how many failed attempts before actually logged in,

and the logout time are stored in the log tables SEC_USER_LOGS and

H_SEC_USER_LOGS described earlier in the system catalog. If the user fails three times

to log in to the portal application then it will be impossible for this user to re- log to the

portal application before the administrator resets the user status from “Locked” to

“Active”.

Figure 5.3.1 shows a snapshot of the history log table H_SEC_USER_LOGS.

Figure 5.3.1 Snapshot of H_SEC_USER_LOGS table

The implementation required the use of JSP for portal application main page and

for the application itself. It also, required two Java classes to handle the requests of the

JSP beans. The restrictions on what the user can see and do are all specified in the system

catalog.

 31

Figure 5.3.2 Portal application class interactions

 32

Chapter 6 Service Integration

The main portlet in this web-application is the new service integration portlet. It

enables the users to create a custom database and interact with the websit e generator to

generate a set of web pages. The generated web pages allow the users to exchange data

with the database and make it available for business entities access. The process in which

users create the database schema is called “New Service Integration” and the server side

component that facilitates this, is called “Data Engine Generator”.

The service integration portlets has four tabs organized and structured as a wizard

application to guide the user through the process of creating and integrating a new

service.

6.1 Service Integration Concepts

The main objective of designing and implementing the new service integration

portlet is to enable users to create their own database schemas. To create the database

schema, the user has to determine the functional dependencies 1. This requirement would

make it very hard to argue that the portal application will reduce the cost of operation, so

all the necessary validations were embedded inside the portlet to make sure that it can

intuitively derive the functional dependencies from the user description of the schema’s

tables.

The functional dependencies are very important for designing the database in the

third normal form2. The third normal form ensures that the primary key – unique

identifier for each record in the table – is unique enough to identify every record in the

1 Functional dependencies: if for each value in a relation there is a set of values determined in another
relation then we say that the second relation is functionally dependent on the first; i.e. the primary key in a
relation determines all other non-key attributes.
2 Normal Forms: are a set of conditions that ensures the minimal redundancies in the database as well as
ensuring that there are no insert, update or delete anomalies.

 33

database table. None of the other attributes should be part of the primary key or

independent from the primary key (candidate key). It would be very hard for the users to

define the functional dependency so the user is provided with a multi-step wizard and a

set of messages that guide the user during the process of creating the database schema.

The portlets assumed that the users would be able to understand what a database

table is. It also assumes that the user will be able to list the tables, which will correspond

maybe to a spreadsheet or a form that is used in the user business entities and to be

modeled in the newly integrated database schema, referred to as “Service” here in.

The functional dependencies are used to generate the minimal set of foreign keys

needed to ensure that the physical database schema is in the third normal form. Three

types of tables are defined for this purpose:

1. Primary table : is a table that holds the header records for a detail table. This

term is interchangeable with the term Master Relation in DB glossaries. This

table can reference lookup tables and create foreign keys to another primary

table. One attribute can be the primary key.

2. Detail table: is a table that holds the record(s) for a master record in a primary

table. This table must have a minimum of one reference to a primary table and

a maximum of two references to two different primary tables. More than one

attribute can be used as the primary key. The primary key of the primary table

should be used in the detail table whether it is part of the primary key or just a

not null attribute.

3. Lookup table : is a table that has no details and used as list of values for any

other referencing non- lookup table. Only one attribute can be a primary key.

The primary key of the lookup table should be used at least in another

non- lookup table.

 34

Figure 6.1.1 shows a set of tables created in a data-modeling tool that will be used

as a test case for the definitions above. In the rest of this chapter, the relations of this test

case model will be examined.

Figure 6.1.1 Test case data model1

The test case model is composed of five tables. It models a resource scheduling

data model. By looking at the model, it can be seen that the “Customers” and “Resource

Types” tables are lookup tables – dangling with only one link. Schedule Details is a detail

table for the Schedule table. Therefore, Schedule is a primary table. From our definitions

above, Resources cannot be a lookup table because it has a foreign key from the Resource

Types table; also, it cannot be a detail table because the primary table primary key

(Schedule Id) is not used in it. Therefore, Resources is another primary table.

Can an inexperienced user derive such a model? The user is expected to be using

a form, spreadsheet, report, or any kind of document in the business entity to be as the

guide for deciding what tables to be created. People are using many financial packages

and bookkeeping toolkits to organize their data. They learned by experience how to

1 The model is based upon a sample Resource Management Microsoft Access database.

 35

organize their data, how to put each set of related data in the same datasheet and give

them title and so on. The users of the “New Service Integration” portlet are not expected

to be database designers to be able to use it. Users of the “New Service Integration” are

expected to be familiar with the business entity data flows to be able to use the portlet.

To enforce the concepts of the “Data Engine Generator” outlined previously, five

cases of relationships among database tables will be examined. The goal is to verify if the

“Data Engine Generator” logic really complies with the above definitions. These cases

are based on the possible data entities in a sample grocery store database

Case one, the relation between a primary table and a detail table: In this case, the

primary key of the primary table should be a non null attribute in the detail table or part

of a composite primary key that consists of more than one attribute. The applet adds these

attributes if the user forget to do so or used different attribute names. This is to enforce

the one-to-many relationship between the primary and the detail table. When a record is

inserted in the primary table, one or more records should be inserted at the same time.

Figure 6.1.2 shows the relationship between two entities Invoices and Invoice details.

The assumption made here is that you cannot issue an invoice for no activity, which

implies that at least one detail record is required in each invoice detail. The primary key

of the detail table should be composite if the primary key of the primary table is to

considered as parts of its key.

Figure 6.1.2 Primary–Detail model

 36

 Case two, the relation between a primary and a lookup table: in this case the

primary key of the lookup table should be used as an attribute in the primary table that

can be nullable. Figure 6.1.3 shows the relations ship between Invoices as a primary table

and Customers as a lookup table. The Invoice must be issued to a Customer whether the

customer has an account in the store database or not, but it can exclude the customer

name if the payment is in cash. Some stores may restrict their services to be provided

only for their customers. As a result, the attribute Customer Id should be an attribute in

the Invoices table with a not null option. The main issue, in this case, is the fact that

inserting a new Invoice requires that the customer id to exist in the customers table.

Finally, the relationship is again one-to-many, which means that a customer can have

more than one invoice.

Figure 6.1.3 Primary–Lookup model

 Case three, the relationship between a detail and a lookup table: consider the

table Invoice Details and Products. Products is a lookup table and enforces the fact that

nothing can be sold if not listed in the inventory table or the Products table. The

relationship between them is one to many where the Invoice Details can have many

products while the product is listed once in each Invoice Detail. The Invoice Details can

be thought of as the items on the receipt while the products as the products id or bar code

number. In some cases, the lookup table foreign key attribute in the detail table can be

nullable. Lets take the relationship between Invoice Details and Product list price

 37

discounts, the product may not be listed for discounts in any list price discount. Figure

6.1.4 shows the relationship between a detail and a lookup table.

Figure 6.1.4 Detail–Lookup model

 Case four: detail table references two primary tables: this solution is introduced

because it handles the many-to-many relationships. Many-to-many relationships violate

the third normal form requirement; the solution introduces the addition of a new table.

Consider the case where a product is supplied by two different suppliers. The relationship

between the Products table that is (in an inventory system) a primary table and the

Suppliers is another primary table is worded as follows: Each supplier supplies many

products; each product is supplied by many suppliers. To eliminate this kind of

relationships, the products of each supplier are separated from the products supplied by a

different supplier. The separation is done by creating a new detail table call referred to as

“Supplier Products”. The primary keys of the primary table s are exported to the new table

as not null attributes or part of the primary key. Figure 6.1.5 shows how the database is

maintained in its third normal form in the case of the three tables Products, Suppliers and

Supplier Products.

 38

Figure 6.1.5 Primary – Primary – Detail model

Case five, primary table to primary table relationships: This structure is clearly

viewed when the relationships among the tables have a hierarchal structure. Consider a

new sample database where the main table is Countries. Each country has a set of states

or provinces, each province or state has a set of cities and villages, each city and village

 39

has a set of zip codes and so on. Defining any of the tables in between the top most level

table Countries and the table in the last level let say ZIP Codes of the hierarchy will break

the links and make it impossible to build this model using the system by considering the

previous four cases only. Therefore, primary tables are allowed to have a foreign key

reference to another primary table. Figure 6.1.6 shows the relationship diagram between

the tables Provinces and Cities.

Figure 6.1.6 Primary–Primary model

6.2 Service Integration Applet

The users interact with a Java applet to create the database schema that

corresponds to some or all the data needed to allow the communication between the

business entities. The applet validates the user input and then communicates with the

server side internally to create the database schema by utilizing the methods of the “Data

Engine Generator”.

The new service integration portlet communicates with the server side, which in

turns forward the data posted by the applet to the “Service Normalization DB Module”.

After inserting the metadata in the system catalog and creating the database schema. The

design and implementation will be discussed more in section 6.3.

 40

 Figure 6.2.1 shows the test case data model discussed in section 6.1.1. In the

discussion of the model, it was mentioned that the Schedule and Resources tables are

primary tables, Schedule Details is a detail table for Schedule, Customers, and Resource

Types are lookup tables.

Figure 6.2.1 Test case model

The new service integration applet is a graphical user interface built to make it

easy for non-technical users to create database schemas that are relevant to their business

processes and to use the generated database schema to be the container of the data

exchanged among the business entities. In this section, the New Service Integration

Applet will be used to create the model.

The new service is integrated by going through a multi step process that looks

exactly like a wizard application. Clicking on the “Next” or “Previous” buttons in each

tab causes the system to revalidate the user input, prompt the user with any possible

errors and inserts the primary key attribute of the primary table into its details if it does

not exist. It also creates the minimal set of foreign keys needed to ensure that the

 41

database schema will be in third normal form if not already generated, and checks if the

schema’s database “Service Login Name” is used.

At each step or tab, the “New Service Integration” applet checks if the semantics

of the defined schema are valid from the perspective of the DBMS (Database

Management System). Validations like table name length, the datatypes used, the sizes of

the attributes to be created, attribute names, same datatype and size for user defined

foreign keys, and if the attributes to be referenced are primary keys 1.

Step One: Define the names and the relations among the tables to be created.

Figure 6.2.2 shows the tables’ definition and their relations. There is no

requirements that the table specification to be in any order as long as at the end

the user specifies the primary table(s) of the detail table if any. Otherwise, the

“New Service Integration” will not let the user move to the next step.

Figure 6.2.2 Service tables

1 Foreign keys can be created also if the attribute is referencing a unique constraint (an attribute with unique
values for each record with possible null values). Unique constraints are not used in our system.

 42

Step Two: Specify the table attributes – including the lookup table’s primary key

usage – and the primary keys. Figures 6.2.3 to 6.2.7 shows how the attributes and

the primary keys are specified.

Figure 6.2.3 Table attributes 1

 43

Figure 6.2.4 Table attributes 2

Figure 6.2.5 Table attributes 3

 44

Figure 6.2.6 Table attributes 4

Figure 6.2.7 Table attributes 5

 45

Step Three: Determine the Referential Integrities among the tables, i.e., define the

foreign keys. The users can skip this step because the applet generates

automatically the minimal set of referential integrities required to create the

database schema in third normal form. Users can define more referential

integrities than the ones generated. Figure 6.2.8 Shows a user defined referential

integrity; while Figures 6.2.9 and 6.2.10 show the automatically generated

referential integrities.

Figure 6.2.8 User define referential integrities

 46

Figure 6.2.9 System generated referential integrities 1

Figure 6.2.10 System generated referential integrities 2

 47

Step Four: Determine the database schema name, login, password, and the

displayed name of the service. The “Next” button is still enabled, so after the user

specifies the new service credential the “Data Engine Generator” will check if this

user exists within the same database server instance it will be created on. In

Figure 6.2.11, the service name is the name that the users will see while

interacting with the portal application. The service login name is the database user

name and is used to create the schema. The administrator password and its

confirmation are the database password for the database user to be created. If the

specified credential does not conflict with an existing schema then clicking on the

“Next” button will enable the “Create” button. When the user clicks on the create

button the applet sends the data to the servlet and in turn calls the “Data Engine

Generator”.

Figure 6.2.11 Schema’s creation credentials

If there are no errors in the specified semantics then the “Data Engine Generator” will

record the metadata about the schema in the system catalog table. Then, it will create the

 48

database schema on the appropriate database server, and finally calls the website

generator to create the website for the new service. Figure 6.2.12 shows the result of

creating the data test model introduced in section 6.1 and again in this section.

Figure 6.2.12 Service created

 Substantially, allowing the users to draw the E/R diagram and make the system

derive the relationships among the database tables may be a possible alternative.

6.3 Design and Implementation

 The “New Service Integration Applet” was created using the applet-servlet

communication architecture and specs. Figure 6.3.1 shows the class diagram of the

applet, the servlet, and the “Data Engine Generator” classes. Some utility classes used to

ease and facilitate the communication are excluded from the figure for simplicity

purposes. The “Data Engine Generator” calls the Website Generator after it completes it

 49

tasks. The “Website Generator” creates a set of web pages to insert data in the new

integrated schema (service) via the World Wide Web.

Figure 6.3.1 “New Service Integration” class diagram

The implementation of the Data Engine Generator allows it to connect to any kind

of database and perform the required tasks. Standard SQL was used as much as possible

except for some Oracle’s DBMS built in functions. Oracle’s functions should be checked

for compliance with the standard SQL.

The target destination of the users’ database schema is stored in the system

catalog. The “Data Engine Generator” uses the stored destination to create the schema.

The system catalog connection parameters file is stored on the web server directory. This

file is used by the “Data Engine Generator” to connect to the “System Catalog” database.

 50

Chapter 7 Website Generation

 After the users of the portal application create their own database, the website

engine generator deployed on the application server will dynamically create a set of web

pages. The generated web pages have the capabilities to retrieve and insert data into the

database.

 The website generator intuitively derives from the database structure the

relationships among different database tables. It creates a set of web pages that ensure

that users can interact with their database structure. It embeds all the necessary

functionality that makes this interaction happen in a simple and secure manner.

7.1 Website Generator Concepts

 The users determine the relations among the database schema tables in the “New

Service Integration” applet. These definitions are very important to keep in mind,

especially that they are used to generate the website’s web pages. Primary tables are

standalone tables that needs separate web page to insert data, except if the primary table

is referenced by one or more detail tables. In this case, they should be wrapped together

in the same page with each detail table. Clearly, a detail table cannot be alone in a web

page; while, a web page will be created for each lookup table.

 The generated web pages are called forms, and the form name as well as the JSP

file name is a combination of the table names used in the web page. The website

generator creates a JSP file for each logical unit in the database and inserts three types of

different tags in each web page.

 51

7.2 Design and Implementation

The web pages of each service are separated in the web server directories inside a

folder named after the service web pages it holds. Moreover, the service folders are

located inside the company’s main folder on the web server. This file–folder organization

is critical and makes all the difference for administrators when they want to move a

company’s folders from one web server to another for distribution or replication

considerations.

Three Java classes are created, compiled and deployed to the company’s folder

and will be used by the generated web pages, after that the Java .class files are copied to

the classes directory on the web server under the company’s directory. The three classes

are:

Experience submission1 servlet class (ExperienceSubmissionServlet.java): this

servlet handles the requests of the services web pages and posts the incoming data

to the users’ database.

Database connectivity class: (DBConnections.java): this class acts as the database

connection manager. It is used to create and terminate connections to the system

catalog database.

Retrieve form attribute class (RetrieveFormAttributes.java): this class acts as a

utility class that collects the data about the users database tables to be used in the

web page. It also retrieves the user’s attributes that will be discussed more in

Chapter 9.

The class diagram in Figure 7.2.1 below shows the interaction between the

generated Java classes. These classes are packaged together inside the company’s domain

folder on the web server.

1 Experience submission: refers to the action of users to fill in the forms and submit the data to the server
where it can be used by other business entities.

 52

Figure 7.2.1 Service web page class diagram

The JSP file is constructed using three types of tags; each type is needed to

perform a special set of tasks needed for security, creating the form, and communication

between the web page and the server

 53

JSP and Java: handles security issues, session management and communications

with the system catalog.

HTML: tags are used for the form and the hidden parameters used to

communicate with the servlet. The form components are generated on the fly

when the web page is requested by a user using the JSP and Java in the web page.

Scripts: JavaScript code is embedded to collect the user’s input, prepare the form

for submit and submit the form. In case the form has a detail table, JavaScript

functions are added to enable the creation or deletion of more than one detail

record. This script will not request any resource from the server. DOM is used so

that the server will not take any part to reconstruct the page or add more

components.

Figures 7.2.2 through 7.2.5 show the generated web pages for the test case data

model. These forms will post the data to the user’s created database schema. The forms

are viewed only by the set of users defined to view them, and the attributes displayed will

be only the attributes with granted access to the user.

Figure 7.2.2 shows the Customers form, recall that Customers is a lookup table.

Figure 7.2.2 Customers form.

 54

Figure 7.2.3 shows the Resources form, which is a standalone primary table.

Figure 7.2.3 Resources form.

Figure 7.2.4 shows the Resources Types form, Resources Type is a lookup table.

Figure 7.2.4 Resource-Types form.

Figure 7.2.5 shows the Schedule Details form, the users are expected to use the

same Schedule ID in both tables. The Resource Id column will be populated by values if

any values are already inserted in the lookup table, the same applies for the Customer Id

attribute. Users can click on the “Add” button to add more rows to the detail table. Users

can click on the “X” button beside the row to delete it. In addition, no less then one row

is expected in the detail table.

 55

Figure 7.2.5 Schedule-Details form

 56

Chapter 8 Security and Auditing

 The portal application is secured at two different levels. The security is

implemented on the server side components and on the business logic. The application

components and the users’ databases are secured by granting access to authenticated

users only. On the business logic, administrators grant or revoke access privileges to the

application components.

On the server side, a set of forms and mechanisms is implemented to make sure

that only authenticated users can use the portal application. To go one-step further an

auditing mechanism was implemented. The necessary data for auditing is recorded with

every login attempt as well as with every logout from the system. Every component

accessible to users checks if the user is in a valid session. Moreover, the portal

application purges out the idle users and the ir sessions will be destroyed.

 A set of user interface driven components were created to enable the

administrators of the system to control who can see what and how. This allows the

flexibility of securing the business logic components.

 In the following sections, the details covered to make this application as secure as

possible are discussed. It should be noted that this project is not about security or

securing web applications. Still, the application is secure enough at this level and created

a framework that can be easily enhanced, upgraded, and extended.

8.1 User Login JSP Bean

 The JSP specifications allow the definition of Java objects and specify the life

scope of the object. A Java object (which is an instance of the “UserLogin” class) has

been created. The scope of this object is the session. The garbage collector will not

destroy the resources and state of the object unless destroyed manually, the session

expires or the session is invalidated at logout.

 57

 The “UserLogin” JSP bean accesses and sets the state of the object instantiated

from the class “UserLogin”. The main variables set by the “UserLogin” are the username,

the company domain and if the user credentials are validated and verified or not.

 To enhance the security design of the components of the “Portal Application”, all

web pages include a pointer to the “SecurityHeader.jsp” in their header. The

“SecurityHeader.jsp” checks if the user session is valid or not. In other words, did the

user login to the system or not? When one web page references another JSP, the code in

the included file will be interpreted as if it existed in the referencing page. In the

“SecurityHeader.jsp”, if the user login credentials are not valid the system will redirect

the user to the portal’s application main page. Figure 8.1.1 shows the security header file

“SecurityHeader.jsp”.

Figure 8.1.1 Security header file

 Users are expected to login to the system within three attempts at most, after three

times the user’s status will be changed from “Active” to “Locked”. Locked users cannot

login again to the system until the system administrator reactivates the user. When the

administrator unlocks the user, the user’s profile will be updated to indicate the new lock

release date and time.

 58

 The statistics are important to give the indication about the users that are forgetful

or that have bad intentions. When the user logs in to the system some parameters are

collected from the user environment and inserted in the system catalog table

SEC_USER_LOGS in the next section.

8.2 Session Management

 Tomcat web server is not configured to handle sessions. Therefore, a set of

functions have been implemented to manage the session creation and destruction or

invalidation. The Tomcat server creates and invalidates session but no extra handling is

provided.

Servlet filters are Java implementations that reside on the Tomcat web server

directories. The main objective for having servlet filters is to allow the administrator

track all user requests and the server responses. Servlet filters are not Servlets but all

clients’ requests and server responses pass through. Filtering all the traffic from and to

the server is tedious and wastes the server’s CPU time and resources. As a result, a

servlet filter and a listener Java classes have been created to overcome this problem. The

listener class listens only to the servlet context changes. It handles the case where the

session is created or destroyed. This is achieved by creating a session manager class that

is instantiated when the session is created. It holds the session object caught by the filter.

All instantiated session managers are added to a data structure. When the user tries to

logoff, the user’s session is invalidated and a set of actions are taken to modify the user

log flag to null, move the SEC_USER_LOGS entry to H_SEC_USER_LOGS and set the

logout time. If the session expires and the user is still logged, the Listener class requests

the session manager object associated with the user and gets the users session id and logs

off the user automatically.

 59

 Figure 8.2.1 shows the class model diagram for the classes implemented to

manage the users’ sessions.

 Figure 8.2.1 Session Management Classes Model

 60

Even with the described classes, the Tomcat server is still not aware that these

classes will manage the session. The Servlet Filter class will not filter anything unless the

Tomcat notifies it about what is going on with the users’ requests. In order to make the

Tomcat notify the Servlet Filter class the following modifications should be done to the

web.xml configuration file from the conf directory at the Tomcat’s installation directory.

Figure 8.2.2 shows the tags that are needed to force the Tomcat to forward the users’

requests to the session management classes.

 Figure 8.2.2 Tomcat’s web.xml modified header

Figure 8.2.3 shows the actions that are taken when the user is trying to log in to

the system. Note that the user failed to login the first time and succeeded in the second

time. The IP address of the user’s machine is recorded. The user’s credentials are

displayed just for demonstration purposes. When the user tried first to login to the

system, a session is created and assigned to the requests coming from that user machine.

 61

Figure 8.2.3 User authentication – server side –

Figure 8.2.4 shows what happens when the session expires or the user tries to log

off.

Figure 8.2.4 User logging off – server side –

8.3 User Privileges and Component Access

In addition to the technical approach to secure the portal application, security is

imposed at logical level where the business rules are implemented and the access to the

data is granted. A set of user interface driven components were created to enable the

administrators of the system to control who can see what and how.

 62

Figures 8.3.1 through 8.3.5 show the forms that are used to allow the users to

maintain their accounts either by direct interaction or through an administrator. Each

form composes a piece in the business logic.

Figure 8.3.1 and 8.3.2 are used to create and update a user account.

Figure 8.3.1 Create user account form

In the user update form (Figure 8.3.2), more functionality is added such as reset

password, purge, and activate. In case the user forgets the login password, the reset

password function resets the user password to the social security number. Purge forces

the user’s flag “IS LOGGED” to be null. Activate, unlocks the user and increments the

number of times the user have been unlocked and records the date and time of this unlock

event.

 63

Figure 8.3.2 Update user Account form

Figure 8.3.3 shows the form utilized by the users to reset their password. The

default password for a new user account is the social security number of the user.

Figure 8.3.3 Reset password form

 64

Figure 8.3.4 shows the form to grant screen or form access to the user. If the user

is not an administrator then the set of screens or forms that this user is eligible to access

are the screens with no admin option.

Figure 8.3.4 Set screen access form

 Figure 8.3.5 shows how the administrator may control the user access to the

attribute level on the forms. The primary key attributes and the not null attributes cannot

be revoked from the user. To make the case clearer, assume a manager wants to set a

discount list price on some order detail items and this action is performed and seen only

by accountants and managers. Would the manager be able to hide this attribute from the

users to prevent them from driving the store to bankruptcy? Yes, the managers with

administrator privileges can revoke the right of users from seeing and inserting data in

 65

this attribute, and from database design of view this attribute “Item’s List Price Discount”

should be nullable.

Figure 8.3.5 Set attribute access form

 66

The administrators use the form in Figure 8.3.6 to select the user that will have a

profile update. Users are viewable for administrators under their company accounts so

there is no mixing between users of different companies at all.

Figure 8.3.6 Select domain user form

 67

Chapter 9 Results and Conclusions

 This chapter discusses the project results, its possible uses, and conclusions.

9.1 Results and Conclusions

 The portal application had a framework of sixteen Java classes composed of

almost 9000 lines of code. There is another sixteen JSP almost of the same magnitude.

The system catalog has twenty tables. All of this is to accomplish the following:

a. Reduce operation cost overhead on small and medium businesses.

b. Allow enterprises to integrate their distributed architecture in a simple way,

allowing their business entities to exchange data.

c. Create a framework that enables the integration of new portlets on the fly

without a need to change the portal application

d. Make it easier for administrator to manage users, audit the interactions with

the system, distribute the load on the web servers, and distribute the database.

e. Control the user privilege to the form attribute level.

f. Allow users to customize their views and manage their profiles.

g. Create portlets that are intelligent enough to provide the users with what they

need by allowing them to configure it.

h. Portlets should be able to create portlets if the desired is to create 100% user

define portlets.

i. Allow users to use portlets on their own data without requiring them to post

all their data to host on the portal application environment.

 68

Some of the applications that will benefit the most by using this “Portal

Application” are:

a. Definitely, the maritime industry will be able to benchmark their performance

and quality of service. The same benefits can be generalized to all other

industries.

b. Connect the enterprise departments that need to share information without the

need to create a new infrastructure or posting all their data to one repository.

This portal application is a saver in terms of resources, time, and money

needed to do this kind of data exchange among the different entities in a

secure and fast manner. In other words, the time needed to exchange

information with the right user privileges is a matter of seconds or minutes but

not weeks; the money to be saved in this process can be significant.

c. Add electronic business tier for small and medium business. The new tier will

be 100% custom and dynamic to operate as defined by the creators – the

users.

 The portal application is running and tested thoroughly. It reflects the vision of

portal applications. Hopefully, this perspective of the portal application possible uses will

find its way to implementation.

 69

References

1. Ozu Tamer M, Valduiez Patric: Principles of Distributed Database Systems;

second edition; Prentice Hall 1999.

2. Geary David M.: graphic JAVA Mstering the AWT, second edition, Sun

Microsystems 1997.

3. Campione Mary, Walrath Kathy: the Java™ Tutorial Object–Oriented

Programming for the internet, Addison Wesley 1997,

4. Sommerville Ian: Software Engineering, Addison Wesley 2001.

5. Date C. J.: An Introduction to Database Systems, seventh edition, Addison

Wesley 2000.

6. Ramakrishnan, Gehrke: Database Management Systems, McGraw Hill, third

edition 2003.

7. El – Mallah Mohamed: Web Development with Oracle Portal, Prentice Hall 2001

8. Sun Microsystems http://java.sun.com

9. WebSphere Software IBM: http://www-306.ibm.com/software/websphere/

10. W3 Schools: http://www.w3schools.com

11. Java World: http://www.javaworld.com

12. Oracle9i Database Release 2 Documentation:

http://www.oracle.com/technology/documentation/oracle9i.html

13. Oracle9i Portal application:

http://portalstudio.oracle.com/pls/ops/docs/FOLDER/ONLINE_HELP/ONLINEMANUA

LS/DOC_TUTORIAL/toc.htm

14. Novell Portal application: http://www.novell.com

15. MEDiAPPS NET portal: http://www.mediapps.com/nportal/us/index.html

16. Sun Microsystems Java system portal server 6:

http://developers.sun.com/prodtech/portalserver/

17. Sharathkumar, Sudhindra B: “An Automated Data Warehouse” A thesis,

University of New Orleans, 2003.

18. Joish, Sudha: “Data Visualization for the Benchmarking Engine” A thesis,

University of New Orleans, 2003.

 70

Appendix

A.1 New Service Integration using XML1

 XML or eXtensible Markup Language allows the description of the data. Data

description is necessary for standardizing the consistency of the data values and meanings

among all users.

 The users can submit an XML file of the format and building blocks defined by

the Document Type Definition. After the file is uploaded using a web page, it will be

reconstructed again at the server side. The fill will be parsed and checked if well formed.

The Data Engine Generator will use the data values in the XML document to

create the service. Then it calls the website generator to create the website. Figure A-1

shows a sample XML file to create a database schema with six tables (Agencies, Agents,

Phone_Numbers, Agent_Phone_Numbers, Case_Types, and Cases).

1 This work was a joint work with Smith, Alexander J. UNO 2004.

 71

Figure A-1 Well- formed XML document for “New Service Integration”

 72

A.2 Copyright Permission

 73

Vita

 Fareed A. Qaddoura was born in the city of Ramalla in Palestine, in March 09,

1977. He studied in the honorable Friends School and graduated from high school with

honors. He got his Bachelors of Sciences in Computer Science from Birzeit University in

August 2001.

 He joined the Masters of Sciences in Computer Science at the University of New

Orleans in 2003. During this time, he worked as a Research Assistant under the chair of

the Computer Science Dept Prof. Mahdi Abdelguerfi. His research was concentrated on

intelligent web applications for distributed systems, web application design, GIS, and

spatial databases.

	Dynamic Website and Data Engine Generators for Distributed Enterprise/Business Architectures
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 The Benchmark Data Engine Components
	1.2 Motivation
	1.3 Overview

	Chapter 2 Concepts of Website and Data Engine Generators
	2.1 Portal Application
	2.2 Data Engine Generator
	2.3 Website Generator

	Chapter 3 Architecture and Design
	3.1 Technical Architecture
	3.2 Technology Used
	3.3 Functional Architecture

	Chapter 4 System Catalog
	4.1 System Catalog Tables
	4.2 System Catalog E/R Diagram

	Chapter 5 Portal Application
	5.1 Mechanisims of the Portal Application
	5.2 My Portal Application
	5.3 Design and Implementation

	Chapter 6 Service Integration
	6.1 Service Integration Concepts
	6.2 Service Integration Applet
	6.3 Design and Implementation

	Chapter 7 Website Generation
	7.1 Website Generation Concepts
	7.2 Design and Implementation

	Chapter 8 Security and Auditing
	8.1 User Login JSP Bean
	8.2 Session Management
	8.3 User Privileges and Component Access

	Chapter 9 Results and Conclusions
	9.1 Results and Conclusions

	References
	Appendix
	A.1 New Service Integration using XML
	A.2 Copyright Permission

	Vita

