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Abstract 

 

 

Environmental pollution has been a serious concern worldwide. Many degradation 

methods have been developed to clean sites contaminated with pollutants. More knowledge and 

better understanding in this field will help to protect our environment. The goal of the research in 

this thesis is to gain a better understanding of the mechanism of organic pollutant degradation in 

Fenton reactions and sonochemical reactions. 

Fenton degradation uses hydroxyl radical to oxidize organic compounds. The radical is 

produced by catalytic decomposition of hydrogen peroxide with Fe(II).  Further research has 

found that addition of cyclodextrins can enhance degradation efficiency of hydrophobic organic 

pollutants. To study the mechanism of the enhancement, pollutant-cyclodextrin-Fe(II) aqueous 

systems were studied by fluorescence and NMR techniques. The results indicated the formation 

of pollutant/carboxymethyl-β-cyclodextrin/Fe(II) ternary complexes in the solution. With the 

ternary complex, the catalyst Fe(II) becomes closer to the pollutant, therefore leading to more 

efficient hydroxyl radical attack on the pollutant. Additional studies showed that hydropropyl-β-

cyclodextrin, β-cyclodextrin and α-cyclodextrin bound pollutant well, but bound Fe(II) poorly.  

Sulfated-β-cyclodextrin did not bind well with pollutant although it bound Fe(II) well.  

 Sonochemical degradation is another important pollutant treatment method in practice. It 

was found that phenol sonolysis can be enhanced by volatile hydrogen atom scavengers such as 

carbon tetrachloride and perfluorohexane. The non-volatile hydrogen atom scavenger iodate did 

not enhance phenol degradation. The first order rate constant for aqueous phenol degradation 

increased by about 2.2-2.8 times in the presence of 150 µM carbon tetrachloride. In the presence 



 vii

of less than 1.5 µM perfluorohexane the first order rate constant increased by about 2.3 times. 

Hydroquinone was the major observed reaction intermediate both in the presence and absence of 

hydrogen atom scavengers. Hydroquinone yields were substantially higher in the presence of 

hydrogen atom scavengers, suggesting that hydroxyl radical pathways for phenol degradation 

were enhanced by the hydrogen atom scavengers.   

 The additives investigated in this study have potential to improve pollutant degradation 

efficiency. Other fields may also benefit from the information gained in this study.  For example 

the improvement could be achieved in synthetic processes that rely on hydroxyl radical as a key 

intermediate. 
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Chapter 1. Introduction 

 

1.1 Environmental pollution and certain pollutants 

Modern technology has greatly changed our way of life, and unfortunately also 

our environment for the worth. Many serious environmental problems have emerged such 

as the greenhouse effect, depletion of ozone layer, acid rain, rapid shrinking of clean 

drinking water sources… the facts are shocking. The worst result of deterioration of the 

environment could be the extinction of living species in this planet including human 

beings. It was found that a lot of environmental damages were caused by improper use or 

release of chemicals. While we enjoy the benefits of modern science and technology 

ranging from the important development of new medicines to the convenience of 

detergents for dish washing, we also expose ourselves and our environment to possibly 

dangerous chemical pollution.  

Both inorganic and organic chemicals can cause severe damage to people and the 

environment. The inorganic pollutants mainly include heavy metals as well as their 

complexes, and small molecules such as carbon monoxide, sulfur dioxide, nitrogen 

dioxide, etc. Carbon dioxide was not considered as a pollutant decades ago, but now it is 

a major contribution to the greenhouse effect. The known organic contaminants have 

exceeded 20,000 species.1 PAHs (polycyclic aromatic hydrocarbons) are among these 

chemicals. They have serious environment pollution and carcinogenic potential and they 

are also major pollutant examples used in this research.  
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PAHs are a family of more than 200 structurally similar compounds. Some 

examples of PAHs are shown in Figure 1.1. 

 

Figure 1.1 Molecular structures of anthracene, naphthalene, phenanthrene and pyrene. 

 

PAHs are produced generally from heating or burning of organic materials. Some natural 

processes such as forest fires, eruption of volcanoes and biosynthesis by certain species 

of bacteria are also sources of PAHs.2 Since the energy for industrial processes and 

everyday life comes largely from combustion of organic fuel such as coal and petroleum, 

we produce a great amount of PAHs. It was found that 36% of total PAH emission in 

America came from automobiles. Residential heating contributed about 12% and power 

generation 7% in the 1980’s.3 From the survey by Bjorseth and Ramdahl in 1985,4 it was 

estimated that the largest industrial PAH releasers were aluminum producers. About 235g 

of PAH can be released for each ton of aluminum. Iron works, ferroalloy and carbon 

black industries were all among the major PAHs polluters. 

 The first correlation between PAHs and cancer was proposed in 1775 by Pott who 

attributed the formation of malignant human tumors to a long time contact with carbon 

soot.5 In 1930, Kennaway found that tumors could be induced in mouse skin by 

dibenz[a,h]anthracene, a member of the PAH family.6 Three years later, Cook and co-

workers established the relationship between PAH and cancer with isolation of the 
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carcinogen benzo[a]pyrene from coal tar extract.7 From then on, a great amount of effort 

has been devoted to investigate the PAH-cancer linkage and the mechanisms of PAHs 

carcinogenicity. 

 The practical use of PAHs is rather limited. Only several species are used in the 

dye, photoconductor and semiconductor industries. Once released into atmosphere, water 

systems or lands, some species of PAHs can be absorbed by plants and even animals. It 

was shown that grain samples from industrial areas contained higher PAH levels than 

those from nonindustrial areas.8 The food, therefore, was contaminated.  Due to their 

extensive conjugation structure, PAHs are photochemically reactive in soils and water 

suspension, which sugguests they are able to be photodegraded in nature.9 Several low 

weight PAHs were also reported to be oxidized by soil and marine bacteria.10-12 

Apart from PAHs, phenol (monohydroxyl benzene) was also used as an example 

pollutant in this study. The phenolic group of compounds contains species that have one 

or more hydroxyl groups attached to an aromatic ring. Phenol is largely used in modern 

industry. The most important commercial usage is its condensation with formaldehyde to 

produce phenolic resins.13 Except for the great amount produced by human beings, 

phenol could also be formed in random reactions in nature or from biosynthesis. It is 

known that phenol can be absorbed readily by people or animals through digestion, 

respiratory passage and skin. If exposed to the lethal concentration of phenol, people can 

have symptoms such as muscle weakness, convulsion and coma.13  Although a clear 

connection between phenol and cancer is not available right now, researchers did find 

that phenol can promote tumor activity when large concentrations of its solution was 
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painted on the skin of certain kinds of mice.13 Therefore, both phenol and PAHs are listed 

as priority pollutants. 

 

1.2 Environmental remediation methods 14 

Knowing that we have produced and released a large amount of health hazards to 

the environment, people are now making big efforts to clean them up and develop new 

technologies to prevent or reduce further pollution. The widely used remediation methods 

are biodegradation and chemical degradation. Biodegradation depends on bacteria to 

decompose organic compounds, while chemical degradation applies physical and 

chemical processes to remove or destroy inorganic and organic pollutants. 

Biodegradation is usually more selective and less expensive. However, the bacteria are 

sensitive to the ambient conditions and the transformation rate is relatively low. Chemical 

degradation, on the other hand, is less selective but faster. It can treat highly and multiply 

contaminated systems while requiring no strict ambient conditions. The energy and labor 

are consumed more in chemical methods, so the cost is generally greater. Nevertheless, 

both methods are successful in cleaning up the pollutions under appropriate conditions. 

To date more than ten chemical degradation methods have been developed using 

various kinds of oxidation-reduction processes, many of which involve different energy 

sources. These methods include photon assisted degradations, electrochemical 

degradations, electron beam radiation degradation, supercritical water degradation, 

enzyme degradation, sonochemical degradation and direct redox degradations by addition 

of redox reagents. The main oxidizing reagents involved in these methods are ozone, 

oxygen and hydrogen peroxide. These reagents, and sometimes water, can produce highly 
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reactive radicals such as hydroxyl radical and 1O2 under proper conditions. The main 

reducing reagents involved are electrons or zero valent metals such as iron. These species 

can be introduced by addition or by in situ reactions. 

In photon assisted degradations, UV radiation is used as an energy source to 

directly decompose ozone, hydrogen peroxide or through a photosensitizer to degrade 

oxygen or water to create reactive radicals.  UV radiation itself sometimes can be used to 

directly photolyze pollutants. Combinations between the UV and oxidizing reagents are 

flexible. This kind of method is very suitable for water and air treatment and some have 

already been extensively used in water treatment plants.  

Electrochemical degradation uses electrode reactions to directly electrolyze 

pollutants or to produce reactive species such as ozone or hydrogen peroxide that will 

further react with pollutants. This method is also used for the phase separation that is 

required for the treatment of wastewaters containing colloidal particles or heavy metals. 

It has a versatile ability to deal with solid, liquid or gaseous pollutants, but the cost is 

relatively high.  

Electron beam radiation degradation is a method that uses electron beam obtained 

from an accelerator to produce reactive species  hydroxyl radical, aqueous electrons, 

hydrogen atoms and others from water. This method is particularly suitable for flowing 

stream treatment because it can continuously produce reactive species, and the 

degradation processes with the reactive species are very fast.  

Supercritical water degradation uses supercritical water as a medium to oxidize 

organic pollutants. When water transfers to supercritical condition under high 

temperature (647 K) and pressure (218 atm), the viscosity of water decreased to a gas-
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like value and the solubility of organic compounds increased. These properties allow the 

contact of organic pollutants with oxygen in one phase where the oxidation reactions take 

place. This method is ideal for degradation of aqueous hazards. With a high degradation 

efficiency (> 99.99%), the process produces relatively environmentally tolerable 

products: water and carbon dioxide.  

Enzyme degradation is a recently developed technique. Different from 

biodegradation, this method employs enzymes instead of living bacteria to degrade 

organic pollutants. It inherits the high selectivity of biodegradation while avoids certain 

rate-limiting factors in biodegradation.  The cell-free enzyme is easier to handle and 

store. The operation conditions are mild.  Sometimes, even species that may resist 

biodegradation or chemical degradation can be degraded by enzyme reactions. Despite 

the above, the method has not been applied on a large scale. The availability of enzymes 

is limited and the cost is rather high. Sometimes an enzyme loses its activity in a system 

that has relatively extreme conditions or interfering species. In some cases, the final 

product can be even more toxic. 

Sonochemical degradation uses ultrasonic irradiation to introduce extreme 

physical conditions (3000-5000 K, 500-10000 atm in a small spatial range) and reactive 

species to the system. No redox reagents need to be added. It sometimes offers alternative 

reaction pathways which may be faster and environmentally safer due to the unique 

character of sonochemical processes. This method is mainly applied to aqueous systems. 

There are several different degradation systems in direct redox methods. Fenton 

degradation is one of them. In this technique, hydrogen peroxide is used to produce 

hydroxyl radicals under the catalysis of iron ion. Another method uses solvated electrons 
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to reduce pollutants. The electrons are produced by interaction of metals (group I or II) 

with liquid ammonia. A third method uses zero valent metals such as iron to reduce 

organic and inorganic contaminants. While the first method is good for both water and 

soil treatment, the second one is good for soil treatment and the third one for water 

treatment. 

Each of these methods, with its advantages and disadvantages, is suitable for 

degrading pollutants under certain conditions. New technology tends to combine two or 

more of the above methods to clean up complicated contaminations and make the 

degradation more efficient. 

 

1.3 Fenton and sonochemical degradation 

Among all the techniques introduced above, Fenton and sonochemical 

degradations were selected as two focuses in this study.  

Fenton reaction was first reported by Fenton in 1876.15 He obtained a colored 

product by mixing tartaric acid with hydrogen peroxide and a low concentration of a 

ferrous salt. In 1932-1934, Harber and  Weiss16 proposed free hydroxyl radicals in the 

decomposition of H2O2 catalyzed by iron salts. Around 1950, Baxendale and colleagues 

suggested that superoxide reduces Fe(III) formed on reaction, explaining the catalytic 

role of iron in the reaction.17 After that, many other transition metal ions in their lower 

oxidation states (e.g. Cu(I), Co(II)) were found to have a similar catalytic effect as Fe(II) 

in decomposing H2O2. The reactions of these metal ions or complexes with H2O2 are 

called “Fenton-like” reactions.18-21 Apart from hydroxyl radical, Fe(IV) was proposed as 

an alternative intermediate in Fenton reaction.22 The debate between the two mechanisms 
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continued to today.23-30 The most study on this subject favored the opinion of hydroxyl 

radical mechanism.  

Hydroxyl radical is not selective in reacting with organic compounds. This makes 

Fenton reaction very useful in pollutant degradation. Great efforts have been devoted into 

the study of application of the method to environmental remediation. Sato C. et al. used 

the method to decompose perchloroethylene (PCE) and polychlorinated biphenyls (PCB) 

that are absorbed on sand.31 Koyama O. et al. studied the degradation of chlorinated 

aromatics by Fenton oxidation in digester sludge.32 Li Z.M. and colleagues evaluated the 

feasibility of Fenton reaction in remediation of TNT contaminated water, soil and water-

soil slurries.33 Fenton degradation of inorganic pollutants such as cyanides was 

investigated by Aronstein B.N. and colleagues.34 There are many more research in this 

field other than the examples listed above. In these studies, the degradation conditions 

(e.g. pH, temperature, the initial concentration of Fe(II) and H2O2) and kinetics and 

products of the reactions were investigated. The results offered very useful information 

for real applications.  

In Fenton degradation, the matrix of the system plays an important role in the 

chemical processes occurring. The matrix effects have been widely studied too. Lindsey 

M.E. and Tarr M.A. found that the dissolved natural organic matter (NOM) could inhibit 

the hydroxyl radical reaction with aromatics.35-36 They attributed the inhibition to the 

separated sites of hydroxyl radical production and appearance of aromatic compounds in 

the presence of NOM. Lipczynska-Kochany E. and colleagues found that some anions 

such as ClO4
-, NO3

-, SO4
2- and Cl- that existed in groundwater and surface waters could 

decrease the reaction rate of 4-chlorophenol by Fenton reaction. They explained the 
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observation as a result of hydroxyl radical scavenging by those anions and slower 

oxidation rates of Fe(II)-anion complex.37 Puppo A. reported an enhanced Fenton 

degradation which uses Fe(III)-EDTA as the catalyst by myricetin, quercetin, catechin, 

morin and kaempferol, members of flavoids (commonly found in plants).38 The 

researcher drew the conclusion that the enhancement was due to the ability of flavoids to 

reduce Fe(III) to Fe(II). In another study conducted by Cheng I. and Breen K., it was 

found that flavenoids inhibit hydroxyl radical formation in the presence of adenosine 

triphosphate.39 The conflicting results indicate that the individual effects of each species 

are interrelated, which makes the matrix effects complicated. The thorough study of the 

matrix effect for in situ application is important for efficient degradation. 

Combining Fenton degradation with other degradation methods to enhance the 

degradation efficiency is a new research direction in pollutant remediation field. Photo-

Fenton combination has been studied by many researchers.40-44 In the method, Fe(III) is 

convert back to Fe(II) by absorbing a photon. At the same time, a hydroxyl radical is 

produced. Both processes increase the formation of hydroxyl radical, which in turn 

enhances the degradation efficiency. Electrochemical techniques are also used in 

association with Fenton reaction.45-49 In this combination, H2O2 is produced in situ by 

reduction of O2 at the cathode. At the anode, hydroxyl radical is generated by oxidation 

of water. Biodegradation has been operated with Fenton method too.50-54 It was found 

that pretreatment with Fenton reaction makes biodegradation easier or faster in some 

cases. Combination of more than two methods is also under investigation.45 

Based on the extensive studies, Fenton reaction has been widely used for in situ 

remediation of water system and soil system.14 
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Compared to Fenton degradation, sonochemical degradation is a relatively new 

technique employed in the environmental protection field. It has been investigated for the 

past decade on the laboratory scale. The attractiveness of sonochemical degradation lies 

in the facts that firstly, it triggers chemical processes without adding any chemical 

reagents; secondly, it is often conducted at ambient temperatures and pressures. However, 

the cost of the method is high and reactor design for the scale up applications has not 

been quite successful.14 

Sonochemical degradation has been studied in decomposing chlorinated organic 

compounds, aromatic compounds, surfactants etc. Cheung H.M. et al. studied the 

sonolysis of methylene cloride, carbon tetrachloride, 1,1,1-trichloroethane and 

trichloroethylene.55 They found that HCl was one of the major degradation products and 

calculated the first order rate constant of HCl formation. Petrier C. and Francony A. 

studied the effect of ultrasound frequencies on sono-degradation of tetrachloride and 

phenol.56 They reported that under all the frequencies being used, carbon tetrachloride 

was always degraded faster than phenol. The degradation efficiency of carbon 

tetrachloride increased with the increase of frequency while that of phenol reaches maxim 

at 200 kHz. Hua I. and Hoffmann M.R. examined the kinetics and mechanism of 

sonolytic degradation of carbon tetrachloride.57 They proposed a radical- reaction 

mechanism after thermolysis of the compound. Wheat P.E. and Tumeo evaluated the 

ability of ultrasonic radiation in degrading phenanthrene and biphenyl, two members of 

PAH.58 They found that the extent of degradation is proportional to the sonicaiton time. 

Several intermediates were detected by GC/MS. They suggest that the method is 

promising in PAH remediation in tandem with other techniques. Laughrey Z. et al. 
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investigated the sonolytic decomposition of PAH in the presence of additional dissolved 

species.59 They found that certain organic compounds including humic acid, benzoic acid, 

and sodium dodecyl sulfate could decrease degradation rate of PAH while dissolved 

oxygen could enhance the degradation. Destaillats et al. studied the sonolysis of nonionic 

surfactants, tert-octylphenoxypolyethoxyethanol and tert-octylphenol.60 Their results 

showed that the concentration of the surfactant has a dramatic effect in degradation rate. 

When the initial concentration was above the critical micelle concentration (CMC), the 

rate constant became very small. They attribute the observation to the isolation effect of 

the micelle which separate the free surfactant monomer from being in the liquid-gas 

interface. By-products of the degradation were also identified in their study. 

The combination of sonochemical technique with other degradation techniques 

such Fenton, photo, electro methods has also been conducted.61-64 Other methods seem to 

benefit from sonication not only by the chemical processes it causes, but also by its 

physical processes which enhance the solubility of pollutants or catalysts and accelerate 

mass transfer. All these studies illustrate sonochemistry is promising in environmental 

remediation. 

 

1.4 Purpose of this study 

One of the important degradation pathways in both Fenton and sonochemical 

methods is hydroxyl radical oxidation. It is well known that hydroxyl radical is a very 

reactive species. The reaction rate constants of hydroxyl radical with organic substances 

is generally in the range of 107 – 109 M-1S-1.65 Therefore, a large amount of hydroxyl 

radicals are consumed by nontoxic materials which are the main composition of most 
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degradation systems. Recently, methods were found to improve the efficiency of 

hydroxyl radical’s reaction with certain pollutants such as polycyclic aromatic 

hydrocarbons and phenol.66-67 In the present study, the improved Fenton reaction has 

been extended to degrade other classes of pollutants. The mechanisms underlying the 

improved degradation efficiencies of both methods have been investigated. The 

knowledge obtained in the research enables a better understanding about the interactions 

among certain organic pollutants, degradation reagents and other species in the aqueous 

systems. The information can help to improve the efficiency of the degradation 

techniques and lower their costs as well. At the same time, this study also offers some 

insights to the fields where certain radicals or the geometry of different species are 

involved as the main issues. 
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Chapter 2. Modified Fenton degradation of some chemical warfare 

analogues and herbicides 

 

2.1 Introduction 

It was found that the Fenton degradation efficiencies of many harmful compounds such 

as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and 2,4,6-

trinitrotoluene (TNT) are increased by addition of carboxymethyl-β-cyclodextrins (CMCD).1 In 

this chapter, the method has been applied to degrade some chemical warfare analogues  

malathion and demeton-S, and some herbicides  linuron, monuron and diuron. The molecular 

structures of these compounds are shown in Figure 2.1 and some of their physical properties are 

listed in Table 2.1. Afterwards,the detailed information about Fenton chemistry and 

cyclodextrins are introduced. 

 

Table 2.1 Some physical properties of the five compounds under investigation 

Compounds M.W. Aqueous Solubility 

(mg/L) 

Vapor Pressure 

(mmHg) 

Malathion 330.36 143.1 4 × 10-5 

Demeton-S 258.34 2000 2.6 × 10-4 

Linuron 249.10 75 1.5 × 10-5 

Monuron 198.65 Very slight 5 × 10-7 

Diuron 233.10 42 3.1 × 10-6 
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Figure 2.1 Molecular structures of malathion, demeton-S, linuron, monuron and diuron. 

2.1.1 Fenton Chemistry2,3 

In Fenton degradation, the main reaction that takes place is: 

H2O2 + Fe2+ → HO· + OH- + Fe3+  (2.1) 

H2O2 and Fe2+ are referred to as Fenton reagents. Actually, the Fenton system is a very 

complicated one. In addition to the above main reaction, there are many other important 

reactions that also take place: 

Fe3+ + H2O2 → Fe2+ + H+ + HO2·    (2.2) 

Fe3+ + HO2· → Fe2+ + H+ + O2   (2.3) 

Fe2+ + HO2· → Fe3+ + HO2
-   (2.4) 

Fe2+ + HO· → Fe3+ +OH-    (2.5) 

H2O2 + HO· → H2O + HO2·   (2.6) 
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Fe2+ ions are recycled between reaction 2.1 and 2.2 or 2.3. So Fe2+ acts as a catalyst in the 

reactions. All above reactions are connected with one another in some way. Therefore, the 

overall process in a Fenton system is largely dependent on reaction conditions such as pH, initial 

concentrations of various reagents and non-Fenton species that exist in the solution. The more 

fundamental mechanism of reaction (2.1) has been proposed as: 

Fe2+ + HOOH → Fe(OH)2+ + HO·  (2.7) 

Fe(OH)2+ → Fe3+ + OH-    (2.8) 

where reaction (2.7) is the rate limiting step.  

 Hydroxyl radical produced in the reaction is the main species that degrades the pollutants. 

However, since it is very reactive, it is scavenged by nearly everything on its way. Thus, the 

opportunity for a pollutant to be attacked by hydroxyl radical is rather small. On the other hand, 

a big category of pollutants is hydrophobic organic compounds. They are likely to avoid the 

aqueous environment in which hydroxyl radical is produced. Therefore, using Fenton reactions 

to degrade hydrophobic organic pollutants seems less efficient. To solve the problem, 

cyclodextrins were used as intermediates in the Fenton system.  

2.1.2 Cyclodextrin  

Cyclodextrins are cyclic oligosaccharides with α-1,4-type glycosidic linkages that contain 

six, seven or eight glucose units (Figure 2.2a). Such components and structure make them non-

reducing species. They can be produced by a relatively simple technology by fermentation of 

starch.4 Cyclodextrins have doughnut-like shape (Figure 2.2b). The internal cavity is built up by 

carbon-carbon, carbon-oxygen and carbon-hydrogen bonds which are slightly nonpolar. The 

surface of the outer ring contains several hydroxyl groups which are relatively polar. The names 

and physical properties of the natural cylcodextrins are listed in Table 2.2.5  
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Figure 2.2. (a) The chemical structure of β-cyclodextrin and  (b) the steric structure of β-
cyclodextrin. 
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Table 2.2. Some physical properties of natural cyclodextrins 

Cyclodextrin Number of 
glucose 

unit 

Molecular 
weight 

(calculated)

Water 
solubility 
(g/100ml) 

Specific 
rotation 
[α]D

25 

Cavity 
dimension 

(1) 
internal 
diameter 

(Å) 

Cavity 
dimension 

(2)  
depth  
(Å) 

α-
cyclodextrin 

6 972 14.5 150.5 ± 
0.5 

4.5 6.7 

β-
cyclodextrin 

7 1135 1.85 162.5 ± 
0.5 

~ 7.0 ~ 7.0 

γ-
cyclodextrin 

8 1297 23.2 177.4 ± 
0.5 

~ 8.5 ~7.0 

 

Due to the hydrophilic property of the hydroxyl groups, cyclodextrins are water soluble. 

At the same time, the hydrophobic internal cavity is capable of encapsulating appropriately sized 

nonpolar organic molecules.5-8 The inclusion is totally or in part by physical forces, that is 

without covalent bonding. The driving forces of the formation of such complexes are based on 

several facts: 1) nonpolar/nonpolar (guest/CD) interaction are preferred over the polar/nonpolar 

(water/CD) interaction; 2) substitution of water by the less polar guest molecules can release the 

strain of the CD ring; 3)Van der Waals and hydrogen bonding interactions help to bind 

guest/host molecules together; 4) the formation of the inclusion complexes decreases the free 

energy of the system. For the potential guest molecules, its size must be compatible with the 

dimension of the cavity. However, for larger molecules, certain sub-groups or side chains could 

enter the cavity.  Apart from the ‘size’ requirement, the ‘polarity’ is another important 

characteristic to decide if the complex could be formed.  Species that are less polar than water 

are more likely to be encapsulated. Strong hydrophilic molecules, highly hydrated or ionized 

groups have very weak complexation ability if there is any. Hydrogen bonding between the guest 

and the host could increase the stability of the complex.  For the cyclodextrins, the cavity size is 
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crucial in complex formation. With bigger cavities, such as those that occur in δ-cyclodextrin 

(having 9 glucose units) or higher homologues, the cavity is able to accommodate so many water 

molecules that the properties of the internal solvent resemble those of the bulk solvent. Under 

such circumstances the driving forces for complex formation drop substantially.4  

By encapsulation, many easily oxidized species could be protected from oxidation 

reagents like oxygen. Volatile substances may be stabilized by forming crystalline complexes 

with CDs. In the aqueous solution, such complexes are usually stable at room temperature for 

quite a long time. In some cases, specific catalytic effects could be induced by the interaction of 

the guest and host molecules. The well size-defined cavities also have certain applications in 

separation processes. Under many circumstances, natural CDs could be modified to better 

achieve the specific goals by substituting the hydroxyl groups with other groups such as 

carboxymethyl groups. Due to above phenomena cyclodextrins have been widely used as vessels 

for reaction, model system of enzymes, and solubilizers of water-insoluble species.4,9,10  The 

formation of host-guest binary complexes with natural or modified cyclodextrins has been 

extensively studied.11-15  

Another noteworthy property of the CDs is their chirality. The cavities of CDs are non-

symmetric and this gives rise to different binding ability of CDs to enantiomers. Due to this fact, 

CDs and modified CDs have been widely used in chiral separation16-23. 

The prospective industrial fields for the application of CDs include food, pharmaceutical, 

agriculture, cosmetics, chemical production and environmental protection industries, etc. 
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2.2 Experimental 

 Malathion (98.2%) and demeton-S (99%) were obtained from Chem Service. Linuron 

(99%), monuron (99.9%) and diuron (99%) were obtained from Riedel-deHaën. Hydrogen 

peroxide (wt. 35%) and iron (II) perchlorate hydrate (98%) were obtained from Aldrich. 

Carboxymethyl-β-cyclodextrin (average substitution degree = 3) was obtained from Cerestar. 

Propanol was obtained from EM Science. Hexane (pesticide grade) was obtained from Fisher. 

All reagents were used as received. Purified water for the preparation of aqueous solutions was 

obtained from a Barnstead NanopureUV water treatment system. 

Due to the low aqueous solubility of the five compounds, a more concentrated stock 

solution of each compound was first prepared in hexane or methanol.  A small aliquot of the 

stock solution was transferred into a clean dry volumetric flask and the solvent was evaporated. 

Water (pH adjusted with HClO4) was then used to fill the flask to the mark. The solute was 

dissolved by vigorously shaking. Typically, 50-100mL aqueous solutions were prepared each 

time. To make one degradation sample, 2mL of the solution was transferred into a 20mL vial. 

Solid CMCD was added with the desired concentrations when needed. The solutions were 

shaken on an orbital shaker for about one hour. Afterwards, iron(II) perchlorate and sometimes 

propanol as well were added with the desired concentrations. Then one dose of hydrogen 

peroxide was added. The solution was allowed to shake for 20-30min before further treatment. 

The reactions of malathion and demeton-S were quenched by 2mL hexane which also served as 

an extraction solvent. The extracted solution was then analyzed by GC. The reactions of linuron, 

monuron and diuron were quenched by 100uL propanol and the solution was analyzed by HPLC.   

GC analysis was carried out on a HP 6890 series with a fused silica capillary column 

(30m×0.32mm×0.25um). GC conditions were as follows: split injection at 200 or 275°C for 1uL 
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or 2uL injection; oven temperature programmed from 150°C to 220°C at 10°C /min and hold 

2min at 220°C; detector for malathion was ECD, for demeton-s was FID. HPLC analysis was 

carried out on a HP (Hewlett Packard) 1090 series. An Allsphere ODS-2 column 

(250mm×4.6mm×5um) was used. The mobile phase was a mixture of 60:40 acetonitrile:water. 

The eluent was delivered at a rate of 1.0mL/min. The wavelength for absorbance detection was 

254nm.  

The concentration of hydrogen peroxide was determined by classic iodometric titration. 

The reactions used in this method are: 

H2O2 + 3I- + 2H+ → 2H2O +I3
-  (2.9) 

I3
- + 2S2O3

2- → 3I- + S4O6
2-   (2.10) 

And the concentration of Na2S2O3 was determined by reactions: 

IO3
- + 8I- + 6H+ → 3I3

- + 3H2O  (2.11) 

I3
- + 2S2O3

2- → 3I- +S4O6
2-   (2.12) 

 

2.3 Results and discussion 

Fenton degradation of malathion in the absence and presence of CMCD is shown in 

Figure 2.3. In the figure (and following figures), control group means the malathion samples that 

were not degraded and reaction group means the malathion samples that had been degraded. 

Under the given conditions (listed in the figure captions), more than 90% of malathion was 

degraded in the absence of CMCD while only about 30% was degraded in the presence of 

CMCD. Obviously, degradation efficiency is higher without CMCD.  
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Figure 2.3 Degradation of malathion in the absence and presence of CMCD. Degradation 
conditions were: [Fe2+]=2mM, [H2O2]=0.5mM, [CMCD]= 2mM and pH=2.5.  
 

Figure 2.4 shows the degradation of malathion under the similar conditions but with extra 

scavenger—propanol in the solution. The results indicate that in the presence of extra scavenger 

the degradation of malathion with or without CMCD was comparable. Malathion degradation in 

the absence of extra scavenger was repeated at near neutral pH condition (Figure 2.5). The pH of 

the samples was about 5-6. The small acidity was due to the acidity of nanopure water. 

Compared to Figure 2.3, results in Figure 2.5 showed that the degradation efficiency in the 

presence of CMCD was lower at near neutral pH while the degradation efficiency in the absence 

of CMCD was not influenced.  
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Figure 2.4 Degradation of malathion in the absence and presence of CMCD with extra 
scavenger-propanol in the solution. Degradation conditions were: [Fe2+]=4mM, [H2O2]=10mM, 
[CMCD]= 2mM, [propanol]=10mM and pH=2.5.  
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Figure 2.5 Degradation of malathion in the absence and presence of CMCD at near neutral pH 
condition. Degradation conditions were: [Fe2+]=2mM, [H2O2]=0.5mM, [CMCD]= 2mM and 
pH=5~6.  
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Similar results were obtained from degradation of the other four compounds. The 

degradation data of all five compounds are listed in Table 2.3. These data suggest that CMCD 

acted as a hydroxyl radical scavenger and not as a degradation enhancement factor.  

 

Table 2.3 The degradation percentage of the five pollutants under various conditions 

Compounds In the absence of extra scavengers* In the presence of extra scavengers** 

 Without CMCD With CMCD Without CMCD With CMCD 

Linuron 63% ± 47% 0% ± 38% 42% ± 4% 43% ± 4% 

Monuron 75% ± 7% 4% ± 6% 0% ± 6% 9% ± 6% 

Diuron 92% ± 11% 27% ± 8% 52% ± 5% 60% ± 2% 

Malathion  96% ± 7% 6% ± 6% 60% ± 3% 56% ± 3% 

Demeton-S 100% ± 4% 46% ± 1% ~ ~ 

*: Degradation conditions: pH=5~6, [H2O2]=0.25~5mM, [Fe(ClO4)2]=2 or 4mM, [CMCD]=1 or 2mM 
**: Degradation conditions: pH=2.5, [H2O2]=5 or 10mM, [Fe(ClO4)2]=2 or 4mM, [CMCD]=1mM, [PrOH]=67 or 
10mM. 
 

In the degradation experiments, it was also found that CMCD inhibited the 

decomposition of hydrogen peroxide. The decomposition of hydrogen peroxide vs. time was 

plotted in Figure 2.6. The result could be due to the coordination of iron to CMCD, which 

changed the Fe2+/Fe3+ cycles in the Fenton reactions. This inhibition might also be a contribution 

to the decreased degradation efficiency in the presence of CMCD. 
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Figure 2.6 Decomposition of H2O2 (with 1mM Fe2+) with time in the presence of CMCD (■) and 
in the absence of CMCD (▲). 
 

From all above results, it seems that CMCD played a negative role in the Fenton 

degradation. However what made it improve the degradation of PAHs, PCBs and TNT? To 

answer this question, further investigation of the function of CMCD in Fenton system was 

carried out and discussed in Chapter 3. 
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Chapter 3. Investigation of ternary complexes of iron, 

carboxymethyl-β-cyclodextrin and hydrophobic pollutants in 

Fenton degradation system 

 

3.1 Introduction 

 Carboxymethyl-β-cyclodextrin has been found to improve Fenton degradation of certain 

pollutants such as PAHs, PCBs and TNT. However, the successful application of the method to 

some other pollutants such as malathion and linuron (Chapter 2) was not achieved. The goal of 

this chapter is to investigate the mechanisms lying behind the observed phenomena.  

The improvement of degradation is proposed to be due to the formation of ternary 

complexes among iron, pollutants and CMCD. In the ternary complexes, the Fenton catalyst is 

located closer to the pollutant target so the attack of hydroxyl radical is more efficient. NMR and 

optical spectroscopy which are two powerful techniques to study the structure of complexes in 

aqueous solution have been employed in this investigation. Several concepts and methods related 

to the two techniques are introduced  below. The reasons of unsuccessful application in Chapter 

2 are discussed more at the end of this chapter. 

3.1.1 Continuous variation method measuring binding stoichiometry  

 Binding stoichiometry is usually an important parameter for people to understand the 

interaction between two compounds. To measure the binding stoichiometry, continuous variation 

method (also called Job’s method) is commonly used1. 

 Considering binding between two species, S (substrate) and L (ligand), the complex 

could be in the form of SL, SL2, SL3… as in the equilibrium of: 
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S + nL → SLn  (3.1) 

If one complex (eg. n=1) predominates, the continuous variation method will be able to identify 

the stoichiometry of the predominant complex. 

 In the method, the total concentration of S plus L keeps constant while the fraction of the 

two changes (eg. [S] : [L] = 9:1, [S] : [L] =8:2…[S] : [L] =1:9, while [S] + [L] = 0.5M in all 

fractions). If UV-vis absorbance is the characteristic of the system that is monitored during the 

experiment, we will see the corrected absorbance reaches the maximum when the composition of 

S and L is equal to the stoichiometry of the predominant complex. Corrected absorbance is 

defined as: 

corrected absorbance = measured absorbance- εSb[S]T - εLb[L]T (3.2) 

where εS and εL are the molar absorptivities of S and L, b is the sample pathlength, and [S]T and  

[L]T are the total concentrations of S and L in the solution. 

3.1.2 NMR titration – measuring binding constant 

 Binding constant is an important parameter for people to understand the stability of the 

complex. There are many methods to measure binding constant such as NMR, UV-vis 

absorbance, fluorescence, solubility measurement2… NMR and fluorescence methods are two 

main methods used in this study to determine the binding constants. In this chapter, NMR 

titration method is introduced while the fluorescence titration method will be introduced in  next 

chapter. 

 In NMR measurement, the chemical shifts of protons are very sensitive to their local 

chemical environment. Upon binding to another species, the chemical environment of certain 

protons or all the protons of the substrate or ligand is changed. The change will cause a 

difference in the energy absorption and therefore in the chemical shift.  
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 Considering a 1:1 binding system as shown in below equilibrium, 

S + L → SL  (3.3) 

the species S is generally in two sites: S or SL and it can exchange between these two sites. If the 

lifetime of the S in each site is very long, a proton in site S or SL can precess many times before 

it leaves one site to enter another. There is enough time for the proton to absorb energy from the 

radiofrequency field and thus two resonance peaks at different frequencies will appear in the 

NMR spectrum. This situation is called slow exchange. If the lifetime of the S in each site is very 

short, the proton can not precess to a significant extent before it leaves S to enter SL, the proton 

is essentially stationary from the point of view of rotation frame in NMR concept. Only one 

resonance peak at the mean frequency (mean of frequencies at site S and SL) will be observed. 

This situation is called fast exchange. The situation lies in between of the above two is called 

moderately slow exchange in which a broad resonance peak is usually observed. 

 In fast exchange situation, if the binding stoichiometry is 1:1 ratio, the binding constant 

can be calculated from the equation (1:1 binding isotherm) below: 

∆ = (∆11K[L]) / (1 + K[L]) (3.4) 

where ∆ is the difference in observed chemical shift and chemical shift of S, ∆11 is the difference 

in chemical shift of SL and S, K is the binding constant, and [L] is the concentration of ligand. 

The equation will usually show a hyperbolic curve. In practice, it has been linearized as the form: 

1 / ∆ = (1 / ∆11K[L]) + 1/ ∆11  (3.5) 

The linear plot of 1/∆ versus 1/[L] is called double-reciprocal plot. Obviously, the binding 

constant K can be calculated from the slope and intercept (K = intercept / slope). Other linearized 

equations from equation (3.4) include the y-reciprocal form: 

[L] / ∆ = ([L] / ∆11) + (1/ ∆11K) (3.6) 
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and the x-reciprocal form: 

∆ / [L] = -K∆ + ∆11K  (3.7) 

 The binding constants of the complexes that have stoichiometry other than 1:1 may also 

be measured2. However, the binding isotherm will be much more complicated than equation 

(3.4). Since most complexes studied in this dissertation had 1:1 ratios, only the 1:1 binding 

isotherm is introduced here.   

3.1.3 Fluorescence quenching 

 Fluorescence is a phenomenon of light emission by certain molecules during their energy 

release from the first excitation state to the ground state. Fluorescence quenching is a process 

that decreases the fluorescence intensity of a given species. Many processes can cause 

fluorescence quenching such as energy transfer, excited state reactions, excited state collisions 

and complex formation3. Among these processes, excited state collisions and complex formation 

are two largely observed quenching mechanics which are called collisional quenching (or 

dynamic quenching) and static quenching respectively. In collisional quenching, the quencher 

must collide with the fluorophore during the lifetime of its excited state. Upon contact the 

excited fluorphore returns to the ground state without emission of a photon. In static quenching, 

the quencher and the fluorophore form a complex that is not fluorescent. An important character 

in both processes that needs to be noted here is that the fluorophore and the quencher must be in 

contact to introduce the quenching.  

The theory of fluorescence quenching has been extensively studied. Collisional 

quenching can be described by the Stern-Volmer equation:  

F0 / F = 1 + kqτ0[Q] = 1 + KD[Q] (3.8) 
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where F0 is the fluorescence intensity in the absence of quencher, F is the observed fluorescence 

intensity when the quencher is added, kq is the bimolecular quenching constant, τ0 is the lifetime 

of the fluorophore in the absence of quencher, [Q] is the concentration of quencher, and KD = 

kqτ0  is the Stern-Volmer quenching constant. The plot of F0/F versus [Q] (Stern-Volmer plot) is 

expected to be linear. In static quenching, the quenching behavior can be described by the 

equation: 

F0 / F = 1 + Ks[Q] (3.9) 

where Ks is the association constant of the complex and the other symbols have the same 

meanings as in equation 3.8. The plot of F0/F versus [Q] is also expected to be linear. Therefore a 

linear Stern-Volmer plot is not an indication of collisional quenching or static quenching. 

However, it suggests that only one type of quenching occurs.  

 In practice, the Stern-Volmer plot sometimes deviates from linearity. The deviation 

indicates that either more than one fluorophore population is present in the system or more than 

one quenching mechanism occurrs. The former situation usually causes a downward curvature, 

concave towards the x axis while the later one causes an upward curvature, concave toward the y 

axis. In many cases the fluorophore can be quenched by collision with the quencher and at the 

same time, by the formation of the nonfluorescent complex with the same quencher. In such 

combined collisional-static quenching, an upward curvature is usually observed. However the 

upward curvature can also generated from a phenomenon called sphere of action. This 

phenomenon is often observed when the extent of quenching is large. It is caused by a close 

location of the quencher to the fluorophore during the lifetime of its excitation. Within the sphere 

of action, the probability of quenching is unity. The Stern-Volmer equation is modified to 

describe this situation: 
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F0 / F = (1 + KD[Q])exp([Q]υN / 1000) (3.10) 

where υ is the volume of the sphere, N is Avogadro’s number. Under such a circumstances, the 

distance of the quencher and the fluorophore is usually only a slightly larger than the sum of the 

radii of the two. 

3.1.4 NMR measurements in the presence of paramagnetic species  

 Paramagnetic species are often used in NMR measurements to deduce the conformational 

structure of biomolecules. We transferred this method to our ternary complex study to probe the 

distance of the metal ion to the guest/host complex. 

 The presence of paramagnetic species in NMR system will greatly change the relaxation 

times and chemical shifts of the nuclear resonance4. In a paramagnetic system, the nuclear spins 

relax mainly through electron-nuclear interactions. Although the nature of electron-nuclear spin 

interactions is similar to nuclear-nuclear interactions, the magnitudes are much larger since the 

electronic magnetic moments are a thousand times larger than nuclear magnetic moments. The 

relaxation time is significantly reduced due to the paramagnetic influence which further results in 

the broadening of the resonance peaks. Meanwhile the unpaired electrons introduce an extra 

magnetic field into the local fields which makes the effective magnetic field at the nuclear as5: 

Heff = H0 + (4/3π – α)M + qM  (3.11) 

where H0 is the externally applied field; the second term is the contribution to the local field 

from the magnetization of the sample outside a spherical cavity around the nucleus under 

consideration, α being the demagnetizing factor and depending on the shape of the sample; and 

the third term is the contribution to the local field from the paramagnetic ions inside a small 

sphere around the nucleus. Accordingly, the chemical shifts of the nucleus change. Since both 

above effects are introduced by electronic magnetic moments of the unpaired electrons and the 
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moments drop fast with the distance, these effects are dependent on the distance between the 

paramagnetic species and the nucleus.  The relaxation time (T) is proportional to the sixth power 

of the distance (T ∝ r6)6,7. As a result, only when the paramagnetic species is very close to the 

nucleus can we observe resonance changes in the NMR spectra. 

3.1.5 Fluorescence resonance energy transfer (FRET) 

 FRET is a widely used method to measure the distance between two molecules or two 

sites on a macromolecule, especially in biosystem8-11. It is a phenomenon in which energy is 

transferred from an excited donor molecule to an acceptor molecule. Usually, two fluorophores 

are used as donor and acceptor. With this energy transfer, the originally excited donor gets back 

to the ground state without emitting a photon while the acceptor is excited and emits a photon. In 

FRET, energy transfer is through long-range dipole-dipole interactions between the donor and 

the acceptor. It is dependent on the distance of the two species.  

 For FRET to occur, first, the emission band of the donor must have an overlap with the 

excitation band of acceptor. Then, the distance between the two species must be close enough. 

The distance at which 50% energy is transferred is called the Forster distance (R0). Typically, the 

Forster distance is in the range of 20-60Å. It can be calculated through the equation (3.12)12: 

R0
6 = [9000(ln10)κ2ΦDJ] / (128π5n4NAV) (3.12) 

where κ2 is the orientation factor, ΦD is the donor quantum yield in the absence of acceptor 

molecules, J is the overlap integral, n is the refractive index of the medium, and NAV is 

Avogadro’s number.  

 The rate of energy transfer (kT) is inversely proportional to the sixth power of distance 

between the donor and acceptor (r6)8: 

kT = (1/τD)(R0/r)6  (3.13) 
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where τD is the decay time of the donor in the absence of acceptor. This relationship shows that 

the energy transfer is very sensitive to the donor-acceptor distance. That is one reason why the 

method is good for distance measurement. 

 Although FRET is similar to the fluorescence quenching in the observation of decrease in 

the donor’s fluorescence intensity, they are two different procedures. In FRET, the energy 

transfer is through space and the effective distance is much longer. The interaction is mostly 

independent of the intervening solvent and/or macromolecule. Fluorescence quenching, on the 

other hand, is caused by interactions of the fluorophore with the quencher in the surrounding 

solvent shell. Furthermore, if the acceptor in FRET is also a fluorophore, an enhanced or 

sensitized acceptor emission is often observed. 

 

3.2 Experimental 

3.2.1 Attempted preparation of crystal of βCD with iron ions, and βCD with both iron ions and 

hydrophobic compounds 

 βCD was obtained from Cerestar. Biphenyl, 3-phenylphenol (90%), 4-phenylphenol 

(99%) and ferrous perchlorate (anhydrous) were obtained from Aldrich. Ferric nitrate was 

obtained from J.T.Baker.  

 In an attempt to grow crystals of βCD with Fe(II), solutions that contained βCD and 

Fe(ClO4)2 in different ratio (βCD: Fe(II) = 1:8, 1:4, 1:2, 1:1, 2:1) were prepared under acidic 

condition (pH=2, pH adjusted with HClO4). Using acidic condition is to avoid oxidation of 

Fe(II). These solutions were shaken on an orbital shaker (VWR) overnight. Then they were sat 

quietly with a filter paper as a cover for evaporation of the solvent. In an attempt to grow crystal 

of βCD with Fe(II) and hydrophobic compounds (biphenyl, 3-phenylphenol or 4-phenylphenol), 
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excess (above solubility) of each compound was added into βCD and Fe(ClO4)2 solutions (βCD : 

Fe(II) = 1:2). After the mixtures were shaken overnight, the supernatant of each solution was 

transferred into clean vials and sat for solvent evaporation. However, it was found Fe(II) is not 

stable enough for crystal growth under our acidic condition. The slow oxidation of Fe(II) could 

disturb the growing of crystal. So Fe(III) was used to displace it. The preparation of crystal with 

Fe(III) followed the same procedures as described above. Fe(NO3)3 was used as Fe(III) source 

and HNO3 was used for pH adjustment. Before the crystal was taken for analysis, it was rinsed 

several times by distilled water and acetone. 

3.2.2 UV, fluorescence and NMR measurements 

Anthracene (99+%), EuCl3•6H2O (99.99%) and cadmium chloride (99+%) were obtained 

from Aldrich.  Ferrous sulfate heptahydrate and calcium chloride were obtained from J.T. Baker. 

Carboxymethyl-β-cyclodextrin(average substitution degree = 3) was obtained from Cerestar. 2-

naphthol (99+%) was obtained from EM Science. Potassium bromide (99%) was obtained from 

Mallinckrodt.  Deuterated water (99.9%) was obtained from Cambridge Isotope Laboratories Inc.  

All reagents were used as received. Purified water for the preparation of aqueous solutions was 

obtained from a Barnstead NanopureUV water treatment system. 

To prepare aqueous anthracene solutions, a more concentrated anthracene stock solution 

was first prepared in hexane.  A small aliquot of this stock solution was transferred into a clean 

dry volumetric flask and the solvent was evaporated. Water (pH adjusted with H2SO4) was then 

used to fill the flask to the mark. The solute was dissolved by low-energy (60W) sonication in a 

bath sonicator (Branson 1510) for about half an hour. The final concentration of aqueous 

anthracene was 0.1 µM. Naphthol aqueous solutions were prepared by dissolving solid 2-

naphthol in pH adjusted water or deuterated water. A more concentrated stock solution was 
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prepared first, then it was diluted to the concentrations in the range 10 µM to 5 mM. To prepare 

samples containing cyclodextrins, solid CMCD was added to the aqueous anthracene or 2-

naphthol solutions, making the final CD concentration 2 mM to 10 mM. These samples were 

shaken on an orbital shaker from several hours to several days before analysis in order to allow 

the CD and PAH to equilibrate. 

UV spectra were recorded with a Cary 500 UV-vis-near IR spectrophotometer. The 

stoichiometry of iron(II)/cyclodextrin complexes were determined from spectra of iron-

cyclodextrin mixtures using the continuous variation method1. The total concentration of Fe(II) + 

CMCD was kept at 5mM. 

Fluorescence spectra were recorded with a Photon Technology International QM-1 

fluorometer. Aliquots (3mL) of aqueous anthracene or 2-naphthol solutions were placed in a 

quartz cuvette and were subsequently modified by consecutive additions of 5 or 10 µL aliquots 

of FeSO4 (aq) or KBr (aq). The sample was stirred by a magnetic stirring bar throughout the 

whole period of measurement. In total 30-60 µL of quencher solution was added for each 

experiment. Compared to the 3 mL sample volume, these additions caused negligible decreases 

in the fluorescence due to dilution. To evaluate the possible interference of O2, which is also a 

fluorescence quencher, some quenching experiments were carried out under low O2 conditions.  

Sample preparation and transfer were undertaken under a nitrogen stream or in an argon box. 

The samples were sealed using rubber stoppers and kept under nitrogen atmosphere prior to 

measurement. During quenching experiments, FeSO4 or KBr was injected into a septum sealed 

quartz cuvette using a syringe. In the Cd2+ or Ca2+ substitution experiments, aliquots (10-30 µL) 

of concentrated Cd2+ or Ca2+ stock solution was added to each sample.   
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1H NMR spectra were recorded using Varian Unity 400 and 500 spectrometers operating 

at 400 or 500 MHz. D2O was used as the solvent and the trace H2O served as an internal 

standard. In NMR titration experiment, aliquots (10-20µL) of concentrated CMCD (7.5mM-

100mM) was added to 2-naphthol sample each time and shaken heavily to get the solution mixed 

well. Then NMR analysis was followed by each addition. 

All experiments were repeated two to three times in order to determine precision. 

 

3.3 Results and discussion 

3.3.1 Temptation to grow crystal of binary complexes: βCD-iron ions, and ternary complexes: 

βCD-iron ions-hydrophobic compounds 

 To investigate the structure of a possible binary or ternary complex in aqueous solution, 

one good way is to study the crystal structure of the intended complexes. X-ray crystallography 

can provide very detailed structural information about the complexes. Although the solid 

structure is usually different from the structure in solution, it could provide people with a good 

guess about the structure in solution.  

 In our study, CMCD is the main interest. However, CMCD is a mixture with 

carboxymethyl groups substituting in different hydroxyl group positions. This impurity could 

make the complexes difficult to crystallize, or even if they were crystallized the analysis by X-

ray would be more complicated. Therefore, we used pure βCD which has similar cavity size as 

CMCD. Following the procedures described in the experimental section, transparent crystals 

were obtained from solution 1βCD-2Fe(III)-saturated biphenyl. A small piece of the crystal was 

used to test the existence of Fe(III). The test is based on the reaction: 

Fe3+ + 5 NH4SCN → Fe(SCN)5
2- (red) + 5 NH4

+  (3.14) 
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Appearance of red color in the solution of dissolved crystal indicates the existence of Fe(III). It is 

a very sensitive method and trace Fe(III) can be detected this way. However, no red color was 

showed in the test. It suggests that Fe(III) was not crystallized with the other components. It 

explained why the crystal is transparent instead of having any yellowish color. Another piece of 

the crystal was dissolved in D2O to get NMR analysis. The spectrum illustrates the same 

character as that of pure βCD. It indicates that no biphenyl was crystallized with βCD or the 

amount of crystallized biphenyl was not large enough for NMR to detect. Therefore the crystal is 

either pure βCD or βCD with small amount of biphenyl.  

No crystals were found in other samples. As can be seen, crystal growth was not fruitful. 

However it does not mean that the binary or ternary complexes were not formed in the aqueous 

solution. It is probably just due to the difficulty of crystallization of the intended complexes. 

Therefore other methods need to be employed to investigate the structure of cyclodextrin, iron 

and hydrophobic compounds. 

3.3.2 Binding stoichiometry between Fe2+ and CMCD 

 Continuous variation method1 was used to determine the binding stoichiometry between 

Fe(II) and CMCD in aqueous solution (pH=3.1). The UV absorbance spectra of Fe(II), CMCD 

and Fe(II) + CMCD are shown in Figure 3.1. The Fe(II) + CMCD system exhibits maximum 

absorbance at 200nm. However at the wavelength near 200nm range a lot of species absorb light, 

which leads to a serious interference. Therefore the absorbance at 250nm was chosen for 

analysis. At 250nm, the Fe(II)/CMCD complex shows a moderate absorbance while Fe(II) or 

CMCD have only a very small absorbance. In such case the maximum corrected absorbance at 

this wavelength should occur when the greatest amount of complex is formed. The result is 

presented in Figure 3.2. The corrected absorbance reached a maximum at approximately 0.5 
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mole fraction of Fe(II), which indicates that a 1:1 binding stoichiometry was predominant for the 

Fe(II)/CMCD complex. 
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Figure 3.1 UV absorbance spectra of 2.5mM Fe(II) (---), 2.5mM CMCD (─) and 2.5mM Fe(II) + 
2.5mM CMCD (▬) in aqueous solution (pH=3.1) 
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Figure 3.2 Corrected absorbance at 250nm vs mole fraction of Fe(II) in mixtures with CMCD. 
Solution pH was 3.1. 
 
3.3.3 Fluorescence quenching of anthracene and 2-naphthol by Fe2+, Br- and Eu3+ 

 Fluorescence quenching results usually provide the structure information in the solvent 

shell of the fluorophore.3 So this technique was employed here to study the structure of CMCD, 

Fe(II) and certain hydrophobic fluorophores (anthracene and 2-napthol) in aqueous solution. 

Anthracene (see Figure 1.1) and 2-naphthol (see Figure 3.11) were selected as study interests 

because firstly, they are members of PAH and PAH analogues. Anthracene and naphthalene (an 

analogue of 2-naphthol) have been successfully degraded by Fenton chemistry with addition of 

CMCD. Secondly, their sizes match the dimension of the cavity of CMCD. The encapsulation of 

the two species by βCD has previously been proven and studied13-16. Although CMCD has been 

modified from βCD by substitution of some secondary hydroxyl groups with carboxymethyl 

groups, the size and shape of the cavity likely remains the same. Consequently, CMCD is 

expected to bind with these two compounds.  Thirdly, most PAH members have very limited 
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solubility in aqueous solution including anthracene. This property greatly hindered the 

investigation of their interactions with other species in water. 2-Naphthol, on the other hand, has 

a much higher water solubility. It enabled us to use other powerful structure investigation 

techniques such as NMR. 

3.3.3.1 Different quenching effect of Fe2+ and Br-  

Fe2+ is a good fluorescence quencher for anthracene and 2-naphthol. Br- is also a 

quencher for the two species. Figure 3.3 shows the Stern-Volmer plot for anthracene 

fluorescence quenching by Fe2+ and Br- in the presence or absence of CMCD at pH = 3.1  (to 

avoid the precipitation of iron, all quenching experiments were carried out under acidic 

conditions, pH ~ 1-4). As can be seen in Figure 3.3a, the quenching efficiency of Fe2+ is 

significantly higher in the presence of CMCD, and the Stern-Volmer plot deviated significantly 

from linearity with CMCD present. In the case of Br- (Figure 3.3b), the quenching efficiency 

decreased in the presence of CMCD, and linear Stern-Volmer plots were obtained (R2 = 0.991 

with CMCD and 0.999 without CMCD). The linear relationship indicates that only one 

quenching mechanism is involved. Since the negative charge on Br- makes it unlikely to bind 

with either anthracene or cyclodextrin, Br- quenching is considered to occur via a collisional 

mechanism. Less efficient quenching by Br- in the presence of CMCD is the result of a 

protecting effect by CMCD.  
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Figure 3.3 Stern-Volmer plot of anthracene (0.1 µM) quenched by (a) Fe2+ and (b) Br- in aqueous 
solution (pH = 3.1) in the presence (▲) and absence (■) of CMCD (2 mM). 
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Because of electrostatic repulsion between the bromide anion and the partially negative carboxyl 

groups on CMCD, the bromide ion is unlikely to have close contact with the  

CMCD or any species included within the hydrophobic cavity. Therefore collisional quenching 

is decreased.   A number of studies have shown that ionic species could not quench the 

fluorescence of aromatic compounds which were encapsulated into micelles having the same 

charge as the quencher17-20. On the contrary, the positive charge of Fe2+ and the metal 

coordinating ability of carboxylic acid groups makes it likely that iron can bind to the rim of 

CMCD. Such binding would lead to a higher local concentration of Fe2+, and therefore result in a 

higher quenching efficiency.  Furthermore, the non-linear result for Fe2+ quenching in the 

presence of CMCD is an indication of mixed collisional and static quenching mechanisms; the 

static mechanisms are only likely in the case of ternary pollutant/CMCD/Fe2+ complexes.  

Molecular oxygen quenches almost all known fluorophores3. To test its interference, 

additional anthracene quenching experiments were carried out under low O2 concentrations 

(Figure 3.4). The results were the same as those under air-equilibrated conditions, indicating that 

oxygen effects were not significant in these studies. 

The Fe2+ quenching experiments were repeated with 2-naphthol (Figure 3.5). Although 

Fe2+ quenching efficiency of 2-naphthol is lower than for anthracene, the general quenching 

behavior in the presence and absence of CMCD were similar to that of anthracene. 

 

  

 



 

 48

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

0 0.005 0.01 0.015 0.02 0.025

[FeSO4] (M)

Fo
/F

(a) 

 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.01 0.02 0.03 0.04 0.05 0.06
[KBr] (M)

Fo
/F

(b) 

 

Figure 3.4 Stern-Volmer plot of anthracene (0.1 µM) quenched by (a) Fe2+ and (b) Br- in aqueous 
solution (pH = 3.1) under low O2 condition in the presence (▲) and absence (■) of CMCD (2 
mM). 
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Figure 3.5 Stern-Volmer plot of 2-naphthol (10 µM) quenched by Fe2+ in aqueous solution (pH = 
3.1) in the presence (▲) and absence (■) of CMCD (2 mM).  
  
3.3.3.2 pH effect 

Acidity of the solution affected the quenching efficiency of Fe2+ in the presence of 

CMCD. Figure 3.6 shows anthracene fluorescence quenching in pH = 1.9, 3.1, and 4.1 solutions. 

At pH = 1.9 the quenching was reduced compared to higher pH systems. This effect is caused by 

protonation of the CMCD carboxyl groups (whose pKa is assumed 

~3.75 from an analog of CMCD21 ), which makes them less likely to bind iron.   Furthermore, 

the pH = 1.9 system gave a linear Stern-Volmer plot (R2 = 0.995), indicating that only a single 

quenching mechanism (most likely collisional) was occurring.  The same pH effect was also 

observed in 2-naphthol fluorescence quenching studies (Figure 3.7). 
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Figure 3.6 Stern-Volmer plot of anthracene (0.1 µM) quenched by Fe2+ in pH = 1.9 (▲), 3.1 (●), 
and 4.1 (■) solutions in the presence of CMCD (2 mM). 
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Figure 3.7 Stern-Volmer plot of 2-naphthol (10 µM) quenched by Fe2+ in pH = 1.2 (▲) and 3.1 
(●) solutions in the presence of CMCD (2 mM). 
 

0

1

2

3

4

5

6

7

0 0.005 0.01 0.015 0.02 0.025 0.03
[FeSO4] (M)

Fo
/F



 

 51

3.3.3.3 Fluorescence quenching by Eu3+ 

Europium (III) was also used as a fluorescence quencher in the present work. Similar to 

the results for iron, anthracene quenching by Eu3+ was significantly enhanced in the presence of 

CMCD (Figure 3.8).  The effect for europium was more pronounced than for iron.  These results 

are consistent with the formation of a ternary pollutant/CMCD/Eu3+ complex analogous to the 

iron containing complex. 
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Figure 3.8 Eu3+ (5mM) quenching of anthracene (0.1µM) in aqueous solution (pH=3.1) in the 
presence (---) and absence(  ) of CMCD. 



 

 52

3.3.4 Ca2+ and Cd2+ substitution of Fe2+ in fluorescence quenching experiment 

 For the fluorophores used in this study, Ca2+ and Cd2+ are less efficient fluorescence 

quenchers than Fe2+. When Ca2+ was added to an anthracene + CMCD + Fe2+ solution, the 

fluorescence was restored by a small but statistically significant amount (Figure 3.9a). In the 

absence of CMCD (anthracene + Fe2+ solution), addition of Ca2+ resulted in greater quenching 

(Figure 3.9b). The substitution experiment was repeated with Cd2+ and similar results were 

observed (data not shown). Without CMCD, the addition of Ca2+ and Cd2+ increased the total 

concentration of quenchers, which resulted in greater quenching of anthracene fluorescence. In 

the presence of CMCD, Ca2+ and Cd2+ competed with Fe2+ for the binding sites on CMCD. 

Consequently, some of the bound Fe2+ was displaced by Ca2+ or Cd2+.  Since Ca2+ and Cd2+ are 

poorer quenchers than iron, displacement of the iron resulted in an increase in fluorescence. 

These effects were small, so a statistical test for Ca2+ substitution was used to confirm that there 

was a significant difference.  Results of a t-test yielded tcalc = 5.9 (n1 = n2 = 3; ttable = 5.598 at 

99.5% confidence and 4 degrees of freedom), indicating that the fluorescence for the anthracene 

+ CMCD + Fe2+ solution before and after addition of Ca2+ were statistically different.  To ensure 

the validity of these results, the intensity of fluorescence at two separate wavelengths (378 nm, 

400 nm) were compared and both indicated statistical differences.  (At 378 nm: ∆F = -2900 ± 

1400 without CMCD and ∆F = +2700 ± 800 with CMCD; at 400nm: ∆F = -4379 ± 2069 without 

CMCD and ∆F = +1646 ± 937 with CMCD; ∆F is the fluorescence difference in the presence 

and absence of Ca2+.)  These results further indicate that Fe2+ binds in a ternary 

pollutant/CMCD/Fe2+ complex, and also indicate that iron binding to the complex is reversible. 
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Figure 3.9 Fluorescence spectra of anthracene (---), anthracene + Fe2+ () and anthracene + Fe2+ 
+ Ca2+ (▬) (a) in the presence of CMCD (2mM) and (b) in the absence of CMCD. 
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3.3.5 NMR study of interactions among 2-naphthol, CMCD and Fe2+ 

3.3.5.1 NMR measurement of binding constant between 2-naphthol and CMCD 

 The binding constant between 2-naphthol and CMCD in aqueous solution was 

determined by a NMR titration method. To get a better understanding of the spectrum of 2-

naphthol, a COSY experiment was carried out beforehand (Figure 3.10). 2-Naphthol peaks were 

assigned mainly according to the COSY spectrum. At the mean time, other reference has been 

considered too [www.aist.go.jp RIODB db004 img/hsp/W/WHSP40229.gif]. The spectrum of 2-

naphthol with peak assignment was illustrated in Figure 3.11. 

 

 

Figure 3.10 COSY NMR spectrum of 2-naphthol (2 mM). 
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Figure 3.11 1H NMR spectrum of 2-naphthol (2mM) with peak assignment (the insert is 2-
naphthol molecule structure). 

 

In NMR titration experiments, it was found that upon addition of CMCD, the hydrogens 

of 2-naphthol at positions 3, 6, and 7 shifted toward high field while hydrogens at positions 1, 4, 

5, and 8 shifted toward low field. These shifts indicate that the 2-naphthol molecules were 

binding with CMCD. A binding constant of 224 ± 10 M-1 was obtained. The proton shifts at 

position 7 on addition of CMCD were shown in Figure 3.12a. Figure 3.12b is the double-

reciprocal plot for the data in Figure 3.12a, and from it the binding constant was calculated. 

CMCD protons also exhibited a shift in the presence of 2-naphthol (data not shown). However, 

due to the complex NMR spectrum of CMCD, which is a mixture with different numbers of 

carboxymethyl substitutions on each molecule, it is difficult to determine which CMCD protons 

were involved in interactions with 2-naphthol. 
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Figure 3.12 (a) Chemical shift of proton 7 in 2-naphthol on addition of CMCD and (b) double-
reciprocal plot of (a) [1/(d-do) = 1/ ∆]. 
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3.3.5.2 NMR spectra in the presence of Fe2+ 

Fe2+ is paramagnetic when it coordinates with water molecules (Figure 3.13). Therefore, 

the peak of the protons in close proximity to it will be broadened and the chemical shift of the 

protons may also be changed22-25. Since both effects are highly dependent on the distance 

between Fe2+ and the protons, the phenomena have been employed to investigate the distance 

between Fe2+ and hydrophobic compound (2-naphthol) in the presence and absence of CMCD. 

 

Figure 3.13 Electron distribution of Fe2+ when it coordinates with H2O. 

 

In aqueous solution of 10 mM Fe2+, 2-naphthol peaks were not broadened and did not 

show changes in chemical shift (Figure 3.14). The apparent peak shift in this spectrum compared 

to Figure 3.11 is an artifact caused by a shift in the water signal used for calibration. The shift in 

the water signal was caused by interaction with the Fe2+ present in solution. Note that all the 

peaks in Figure 3.14 are shifted to the same extent due to an offset in the reference peak.  The 

lack of broadening of 2-naphthol peaks indicates that Fe2+ is not close enough to the 2-naphthol 

molecules to induce such a change.  In other words, the iron and 2-naphthol do not exhibit 

noticeable interaction. 
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Figure 3.14 1H NMR spectrum of 2-naphthol (2mM) in the presence of Fe2+(10mM). 

 

In the presence of CMCD, 2-naphthol peaks were significantly broadened when Fe2+ was 

also present (Figure 3.15). Although there were no significant chemical shift changes, the 

observed broadening in peak width suggests that iron and 2-naphthol are in close proximity in 

this system. In the measurement, peak broadening of CMCD was also observed (Figure 3.16). 

Therefore, iron must be close to both species. 
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Figure 3.15 1H NMR spectra of (a) 2-naphthol (0.5mM) in the presence of CMCD (5mM) and 
(b) 2-naphthol (2mM) in the presence of CMCD (10mM) and Fe2+ (10mM). 

 

Figure 3.16 1H NMR spectra of (a) CMCD (5mM) in the presence of 2-naphthol(0.5mM) and (b) 
CMCD (10mM) in the presence of 2-naphthol (2mM) and Fe2+ (10mM). 
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3.3.5.3 Cd2+ and Ca2+ substitution of Fe2+ in NMR measurement 

Ca2+ and Cd2+ are diamagnetic cations. The electronic structure of Ca2+ is [Ar] and that of 

Cd2+ is [Kr]4d10. They were used to displace Fe2+ from CMCD binding sites. Both of these ions 

have been proven to bind with CMCD by the fluorescence experiments discussed above, and 

binding of Cd2+ was further proven by 113Cd NMR26-29 measurements (Table 3.1). If Fe2+ was 

displaced by Ca2+ or Cd2+, the peak broadening effect caused by it should be weakened. 

 

Table 3.1 Chemical shift of Cd2+ (0.1M) in 113Cd NMR with addition of CMCD 

[CMCD] (M) 0 0.01 0.05 0.1 0.5 

Chemical shift 

of Cd2+ 
2.356 18.337 44.869 62.911 77.052 

 

The narrowing of 2-naphthol peaks was observed upon addition of Cd2+ or Ca2+ to the 2-

naphthol + CMCD + Fe2+ solution. Figure 3.17 shows the spectrum of 2-naphthol in the presence 

of CMCD, Fe2+ and Cd2+. Compared to Figure 3.15b (2-naphthol + CMCD + Fe2+), the data in 

Figure 3.17 exhibit considerably less peak broadening. Ca2+ displacement has a similar effect 

(Figure 3.18), although the peak narrowing of 2-naphthol is not as significant as that in Cd2+ 

displacement. These data clearly indicate that a ternary 2-naphthol/CMCD/Fe2+ complex must 

exist in solution. Furthermore, this complex must exist in an arrangement that allows direct 

interaction of iron and 2-naphthol.   
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Figure 3.17 1H NMR spectra of 2-naphthol (2mM) in the presence of CMCD (10mM), Fe2+ 
(10mM) and Cd2+ (90mM). 

 

 

Figure 3.18 1H NMR spectra of 2-naphthol (0.5mM) (a) in the presence of CMCD (8mM) and 
Fe2+ (10mM); (b) in the presence of CMCD (8mM), Fe2+ (10mM) and Ca2+ (90mM). 
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As additional control experiments, NMR spectra were recorded for the ternary systems 

using Ca2+ or Cd2+ instead of Fe2+ as the binding cations.  Because Ca2+ and Cd2+ are 

diamagnetic, they cannot cause NMR peak broadening due to paramagnetic effects. The NMR 

spectra of 2-naphthol + CMCD + Cd2+ (Figure 3.19) and 2-naphthol + CMCD + Ca2+ (data not 

shown) did not exhibit any observable peak broadening or shift in 2-naphthol peak positions.  

The peak broadening observed with Fe2+ is therefore believed to be due to an interaction between 

the paramagnetic iron and the naphthol molecule.  Since this interaction was only observed in the 

presence of CMCD, the CMCD must play a substantial role in mediating the iron-naphthol 

interaction. 

 

Figure 3.19 1H NMR spectra of 2-naphthol (2mM) in the presence of CMCD (10mM) and Cd2+ 
(50mM). 
 
3.3.5.4 2D NMR ─ NOESY and ROESY experiments 

 To get more detailed information about the structure of the ternary complex 

CMCD/Fe2+/hydrophobic compound, NOESY 2D NMR experiment with βCD and 2-naphthol 

was carried out. The use of βCD instead of CMCD is to make the spectra easier to interpret. To 

avoid peak broadening, Fe2+ was not added at first. However, the NOESY spectrum did not show 

any interactions between 2-naphthol and βCD (data not shown). This result is not due to the lack 
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of interaction between the two because it has been determined that the binding constant of the 

two is about 600M-1.30 The result could be due to the NOESY technique itself. In NOESY 

experiment, NOE (nuclear overhauser effect) will be zero if the product of frequency of the 

applied magnetic field (ω) and the rotational correlation time of the molecule (τc) equals 1.12 

(ωτc = 1.12)31. The rotational correlation time can be roughly estimated by equation 2.12 

(Stokes-Einstein-Debye model)32: 

τc =  (Vη) / (kT)  (3.15) 

where V is the volume of the host molecule, η is the viscosity of the solvent, k is Boltzman 

constant, and T is the temperature. If βCD is treated as a spherical molecule, the volume of it can 

be calculated using: 

V = 4/3 (πr3)  (3.16) 

The radii ( r ) of βCD is about 7.6 Å. In the magnetic field of 500 MHz, under temperature 295K 

and in the solvent D2O, the calculated product of ω and τc is about 1.43. This result is very close 

to 1.12, which means that the NOE of the system is very small. If the interaction between 2-

naphthol and βCD is not strong enough, little interaction signal between the two can be detected. 

 ROESY experiment which gives similar information as NOESY does not have such a 

limitation. Therefore, ROESY NMR was carried out with 2-naphthol and βCD. However, again, 

the spectrum showed no evidence of interaction between the two. This result has been partly 

attributed to the fact that the interaction of 2-naphthol with βCD is not very strong. 1D NMR of 

the binary complex shown in Figure 3.20 illustrates that the binding of the two is in a moderately 

slow exchange range. The exchange speed of two species between their complexed state and free 

state is probably too fast for ROESY NMR to detect. Therefore, the further plan of 2D NMR 

with ternary complex (addition of metal ion) was given up.  
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Figure 3.20 1H NMR spectra of 2-naphthol (2mM) in the presence of βCD (4mM). 

3.3.6 Intended FRET experiment 

 FRET is another method that had been intended to get more structure information about 

the ternary complex ― estimate the distance between Fe2+ and hydrophobic molecule in the 

presence of CMCD. The donor molecule chosen was anthracene and the acceptor was Eu3+. The 

selection of these two species to be donor and acceptor pair is because that the excitation of Eu3+ 

overlaps the emission of anthracene and the maximum excitation and emission of Eu3+ are far 

separated (Figure 3.21). Additionally, Eu3+ is also a metal ion. It could coordinate with CMCD 

as Fe2+. The similarity between the two ions makes it reasonable to estimate anthracene-Fe2+ 

distance from anthracene-Eu3+ distance. Although Eu3+ quenches the fluorescence of anthracene, 

resonance energy transfer between the two species can still be detected if the fluorescence 

emission of Eu3+ was enhanced by the excitation of anthracene.  
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Figure3.21 Fluorescence emission spectrum of anthracene (▬), excitation spectrum of 
Eu3+/CMCD (―) and emission spectrum of Eu3+/CMCD (---). 
 

 However, the results show that by excitation of anthracene at 250nm, no fluorescence 

emission of Eu3+ was observed in the presence of CMCD (data not shown). It indicates that 

FRET does not occur between anthracene and Eu3+ or the energy transfer efficiency is quite low 

between the two species. In addition, Eu3+ quenches the fluorescence of anthracene which makes 

resonance energy even less available for transferring.  

3.3.7 More discussion on degradation results observed in Chapter 2 

 From the investigation in this chapter, we understand that ternary complexes — 

CMCD/Fe2+/certain hydrophobic compounds, were formed in aqueous solution. The formation 

of the complexes improved Fenton degradation by pulling the pollutants and catalyst closer. In 

CMCD enhanced PAHs degradation, the geometry of the ternary complexes must be favorable in 

order to enhance the interaction of hydroxyl radical with PAH molecules. The proposed 
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mechanics is shown in Figure 3.22a. As a result, CMCD improved the degradation efficiency 

even though it could act as a scavenger and inhibit the decomposition of hydrogen peroxide. 

 In the degradation of malathion etc. that was discussed in Chapter 2, however, addition of 

CMCD did not enhance the degradation. A possible reason is that CMCD did not function as a 

bridge to bring the pollutants and Fe2+ together in such a system. On the contrary, it could isolate 

the two species. All five compounds investigated in Chapter 2 bear hetero atoms such as S, P and 

N. These atoms have lone electron pairs therefore they have potential to coordinate with Fe2+. If 

the pollutants contacted the catalyst directly, the degradation would be most favored. The 

addition of CMCD, under such circumstances, would disturb the binding between pollutants and 

Fe2+. CMCD became a binding competitor with the pollutants and therefore inhibited the 

degradation. This situation is illustrated in Figure 3.22b. The results of degradation under 

different pH support above arguments (section 2.3). When pH of the degradation system was 

raised from 2.5 to about 6, the degradation in the presence of CMCD was less significant while 

that in the absence of CMCD was not influenced. In the solution with a higher pH value, 

carboxymethyl groups on CMCD dissociated more so they have a higher coordination potential 

to Fe2+. As a result, less Fe2+ was available to the pollutant molecules. The degradation was thus 

reduced.  
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Figure 3.22 (a) Proposed mechanics of CMCD enhanced Fenton degradation and (b) possible 
inhibition mechanics of CMCD in malathion degradation. 
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Chapter 4. Assessment of ternary complexes of iron, hydrophobic 

pollutants and several other cyclodextrins in aqueous solution 

 

4.1 Introduction 

 Since it has been proven that ternary complexes can be formed in aqueous solution 

among iron, certain hydrophobic pollutants and CMCD1, the next step is to explore some other 

cyclodextrins as potential additives to enhance the Fenton degradation. The different sizes and 

modifications in cyclodextrins could change their association behavior with the iron and 

pollutants, thus further influencing their degradation enhancing effect. In this chapter, four more 

cyclodextrins have been examined: hydroxypropyl-β-cyclodextrin (HPCD), sulfated- β-

cyclodextrin (SCD), underivitized β-cyclodextrin (βCD) and underivitized α-cyclodextrin (αCD). 

Anthracene and 2-naphthol were kept as the hydrophobic pollutant models. The techniques 

employed are mostly the same as those in Chapter 3 except for that fluorescence titration has 

been used as a substitution method for NMR titration in deterimining binding constants. 

 In fluorescence titration, addition of ligands could lead to enhancement or reduction of 

fluorescence intensity of the solution. The intensity change is due to the fact that the interaction 

between the substrate and the ligand changes the quantum yields of the fluorophore. Under the 

condition of 1:1 binding equilibrium, in which the complex and the substrate are fluorescent, the 

increase or decrease in intensity can be expressed by the equation2:  

F0 / F = (1 + K[L]) / (1 + aK[L])  (4.1) 

where F0 and F are the fluorescence intensity in the absence and presence of ligands respectively; 

[L] is the concentration of free ligands (non-bound); K is the binding constant; a = εCXφCX / εSφS 

(εCX and εS are the absorptivities of the substrate in its complexed and free forms, φCX and φS are 
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the quantum yields of the substrate in its complexed and free forms). This equation can be 

linearized to: 

1 / (F0/F – 1) = a / (1 – a) + 1 / [(1 – a)K[L]]  (4.2) 

When the amount of added ligand is much larger than the substrate in the solution, [L] ≈ total 

concentration of L.   Under these conditions, the plot of 1 / (F0/F – 1) versus 1/[L] is a straight 

line. The binding constant can be calculated from the slope and the intercept: K = (intercept + 1) 

/ slope. 

 

4.2 Experimental 

Sulfated-β-cyclodextrin (average degree of substitution = 9) and anthracene (99+%), 

were obtained from Aldrich.  Hydroxypropyl-β-cyclodextrin (average degree of substitution = 5) 

and β-cyclodextrin were obtained from Cerestar. α-cyclodextrin  was obtained from Sigma. 

Ferrous sulfate heptahydrate was obtained from J.T. Baker. 2-naphthol (99+%) was obtained 

from EM Science.  All reagents were used as received. Purified water for the preparation of 

aqueous solutions was obtained from a Barnstead NanopureUV water treatment system. 

Aqueous solutions of anthracene and 2-naphthol with and without cyclodextrins were 

prepared in the same way described in the experimental section of Chapter 3.  

Fluorescence spectra were recorded with a Photon Technology International QM-1 

fluorometer. Aliquots (3mL) of aqueous anthracene or 2-naphthol solutions were placed in a 

quartz cuvette and were subsequently modified by consecutive additions of 10 µL aliquots of 

FeSO4 (aq) or cyclodextrins (aq). The sample was stirred by a magnetic stirring bar throughout 

the whole period of measurement. In total 60-80 µL of iron or cyclodextrin solution was added 

for each experiment.  
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1H NMR spectra were recorded using Varian Unity 400 and 500 spectrometers operating 

at 400 or 500 MHz. D2O was used as the solvent and trace H2O served as an internal standard. 

 

4.3 Results and discussion 

4.3.1 Hydroxypropyl-β-cyclodextrin 

The binding constant of HPCD and 2-naphthol was measured by the fluorescence 

titration method2. Figure 4.1a shows the fluorescence enhancement of 2-naphthol upon addition 

of HPCD. Figure 4.1b is the linearized plot of data in 4.1a according to equation (4.2). The good 

linear fit ( R2 = 0.9973 ) of the data shows that the binding between HPCD and 2-naphthol was 

in a 1:1 ratio. The calculated binding constant was 173 ± 28 M-1. The measurement of binding 

constant between HPCD and anthracene was also carried out. However the increase of 

fluorescence was not observed upon addition of the cyclodextrin. On the contrary, a small 

fluorescence quenching was observed. Due to the sensitivity of anthracene to many fluorescence 

quenchers such as O2, the fluorescence quenching was attributed to quenchers in the solution. 

Although HPCD may also quench the fluorescence of anthracene, the interference of other 

quenchers makes this method difficult to give an accurate binding constant between anthracene 

and cyclodextrins. However, we still assume that anthracene has a binding with HPCD according 

to the same reason described in Chapter 3. 
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Figure 4.1 (a) Fluorescence titration of 2-naphthol (50 µM) with HPCD in aqueous solution 
(excitation at 326 nm and emission at 360 nm). (b)The linear plot obtained from  (a) using 
Equation 4.2. 
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Fluorescence quenching experiments were carried out to investigate the geometry of the 

three species: HPCD, anthracene or 2-naphthol and Fe2+ in aqueous solution. Figure 4.2 and 4.3 

show the Stern-Volmer plots of Fe2+ quenching of anthracene and 2-naphthol in the presence and 

absence of HPCD respectively. As clearly shown in the figures, the quenching efficiencies of 

both species were not influenced by the presence of HPCD. This result suggests minimal binding 

of Fe2+ with HPCD. The most reasonable binding sites are the hydroxyl groups located on the 

ends of the cavity.  Metal binding by hydroxyl groups has been reported for mono- and 

disaccharides3,4. Since hydroxyl groups have a very small pKa, we assume that lowering the pH 

of solution would not change the quenching behavior of Fe2+(Figure 4.4), contrary to the 

observation in the similar experiments with CMCD (Chapter 3).  The stability of the quenching 

as a function of HPCD concentration suggests that HPCD does not effectively alter the 

accessibility of iron to the anthracene and 2-naphthol. 
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Figure 4.2 Stern-Volmer plot of anthracene (0.1 µM) quenched by Fe2+ in aqueous solution (pH 
= 3.1) in the presence (▲) and absence (■) of HPCD (2 mM). 
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Figure 4.3 Stern-Volmer plot of 2-naphthol (50 µM) quenched by Fe2+ in aqueous solution (pH = 
3.1) in the presence (▲) and absence (■) of HPCD (2.5 mM). 
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Figure 4.4 Stern-Volmer plot of 2-naphthol (50 µM) quenched by Fe2+ in aqueous solution (pH = 
1.2) in the presence (▲) and absence (■) of HPCD (2.5 mM). 
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To further confirm the above observations, NMR measurements of 2-naphthol + HPCD 

solutions were carried out in the presence of Fe2+. In aqueous solutions of 10 mM Fe2+, 2-

naphthol peaks (7-8 ppm) and HPCD peaks (1-5 ppm) were not broadened and did not show 

changes in chemical shift (Figure 4.5). The apparent peak shift in spectrum 4.5b is an artifact 

caused by a shift in the water signal used for calibration (see Chapter 3). The lack of broadening 

of 2-naphthol and HPCD peaks indicates that Fe2+ is not close enough to either species to induce 

such changes. This observation is in agreement with the fluorescence quenching results. 

 

Figure 4.5 1H NMR spectra of 2-naphthol (1 mM) + HPCD (10 mM) (a) in the absence and (b) 
in the presence of Fe2+ (10 mM). 
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4.3.2 Sulfated-β-cyclodextrin 
 

The measurement of the binding constant of SCD and 2-naphthol was attempted using 

the fluorescence titration method as used for HPCD. However, the fluorescence intensity of the 

solution did not change with addition of SCD. This result indicates that there is no significant 

interaction between 2-naphthol and SCD. The possible reason lies in the high substitution degree 

of the cyclodextrin. With an average 9 sulfate groups substituted on each cyclodextrin, the 

entrances to the cavity are very likely blocked because the sulfate groups are much more bulky 

than the hydroxyl groups present in the underivatized cyclodextrin. Furthermore, the presence of 

multiple charged groups at the rim of the cyclodextrin could contribute to a decrease in the 

hydrophobicity of the cavity. 

In agreement with above observations, the fluorescence quenching efficiency of Fe2+ on 

anthracene (Figure 4.6) or 2-naphthol (Figure 4.7) fluorescence was neither enhanced nor 

decreased in the presence of SCD. 
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Figure 4.6 Stern-Volmer plot of anthracene (0.1 µM) quenched by Fe2+ in aqueous 
solution (pH = 3.1) in the presence (▲) and absence (■) of SCD (2 mM). 
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Figure 4.7 Stern-Volmer plot of 2-naphthol (50 µM) quenched by Fe2+ in aqueous  
solution (pH = 3.1) in the presence (▲) and absence (■) of SCD (2.5 mM). 
 

However, NMR measurement of SCD in the presence of Fe2+ showed a peak broadening 

effect which indicates that Fe2+ has a significant interaction with SCD (Figure 4.8). At the same 

time, NMR spectra of 2-naphthol in the presence of SCD + Fe2+ did not show any peak 

broadening effect (data not shown). These NMR results suggest close location of Fe2+ to SCD 

molecules but not to 2-naphthol molecules.  These data agree with the fluorescence results and 

also indicate that 2-naphthol was not encapsulated inside the SCD. Therefore, we can conclude 

that little if any ternary complex of SCD, Fe2+ and 2-naphthol was formed in aqueous solution. 
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Figure 4.8 1H NMR spectra of SCD in the solution of (a) 1 mM 2-naphthol + 10 mM SCD and 
(b) 1 mM 2-naphthol + 10 mM SCD + 10 mM Fe2+. 
 
4.3.3 β-cyclodextrin 

The binding constants of β-CD with anthracene, and β-CD with 2-naphthol have been 

reported as about 3000 M-1 and 600 M-1 respectively5,6. The binding ratio is 1:1 for each binary 

complex. The Fe2+ coordination sites on β-CD are hydroxyl groups, just as in HPCD.  Therefore, 

only weak binding between Fe2+ and β-CD was expected. Fe2+ quenching data for 2-naphthol 

fluorescence in the presence of β-CD were similar to that for HPCD (Figure 4.9). Fe2+ quenching 

data for anthracene in the presence of β-CD (Figure 4.10) showed that β-CD had a protecting 

effect on anthracene. It is probably due to the fact that β-CD has a higher binding ability to 

anthracene. With more anthracene molecules inside β-CD and a minimal binding of Fe2+ to β-

CD, less anthracene was available to the quencher. Both quenching results indicate that β-CD did 

not induce a strong interaction between Fe2+ and the two hydrophobic compounds. 
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Figure 4.9 Stern-Volmer plot of 2-naphthol (50 µM) quenched by Fe2+ in aqueous solution (pH = 
3.1) in the presence (▲) and absence (■) of β-CD (2.5 mM). 
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Figure 4.10 Stern-Volmer plot of anthracene (0.1 µM) quenched by Fe2+ in aqueous solution (pH 
= 3.1) in the presence (▲) and absence (■) of β-CD (2 mM). 
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Furthermore, NMR measurements of 2-naphthol + βCD in the presence of Fe2+ showed 

no significant peak broadening effect (Figure 4.11). Comparing 2-naphthol spectra in Figure 4.11 

and those in Figure 4.5, we see a significant peak broadening in the presence of βCD. This peak 

broadening, of course, is not caused by paramagnetic effect, but due to a moderately slow 

exchange process. With increasing temperature, the broadened peaks became narrower and the 

missing peaks reappeared (Figure 4.12). At 55°C the spectrum of 2-naphthol in the binary 

complex looks similar to that of free 2-naphthol (Figure3.11). It is a result of increased exchange 

rate between the complexed state and free state of the two species with increased temperature. 

The peak shifts in the figure is caused by water shift which is influenced by temperature. Also, 

from the figure, we see that 30°C temperature increase can make the exchange rate of the two 

species from a moderately slow one to a very fast one. It suggests that the interaction between 2-

naphthol and βCD is not very strong. It confirms the argument in Chapter 3 explaining why the 

ROESY experiment did not show interaction between 2-naphthol and βCD. 

 

Figure 4.11 1H NMR spectra of 1 mM 2-naphthol (7-8 ppm) + 8 mM βCD (3-6 ppm) (a) in the 
absence and (b) in the presence of 10 mM Fe2+. 
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Figure 4.12 1H NMR spectra of 2-naphthol (2 mM) in the presence of βCD (2 mM) under 
different temperatures. 
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4.3.4 α-cyclodextrin  

The cavity of αCD is smaller than that of β-CD7. However, there is still enough room to 

encapsulate one aromatic ring. The reported binding constant of α-CD and 2-naphthol (1:1 ratio) 

is 18 ± 3 M-1 in basic solution (pD=11) 8. NMR titration method was used in an attempt to 

determine the binding constant of 2-naphthol and αCD in neutral condition. The chemical shift 

of each proton in 2-naphthol upon addition of αCD was plotted in Figure 4.13. The changes in 

chemical shift indicate an interaction between the two species. However, the data could not be fit 

to the linear equation (3.3), which means the binding is not a 1:1 ratio. Since 2-naphthol has two 

aromatic rings, binding by more than one αCD can occur. Unlike the other cyclodextrins studied 

here, binding between αCD and 2-naphthol takes two days. The binding between the other 

cyclodextrins and 2-naphthol only takes a few seconds. For anthracene, it is too bulky to get into 

αCD. The binding between the two can not be found in the literature. Therefore we did not make 

it a study object here.  

Fluorescence quenching of 2-naphthol with Fe2+ showed a decreased efficiency in the 

presence of α-CD (Figure 4.14).  This result indicates that the 2-napthol was protected from 

interaction with iron, most likely through the ability of αCD to bind 2-napthol but not Fe2+.  

Since αCD can only accommodate one aromatic ring in each cavity, there must be more than one 

αCD binding with 2-naphthol. If not, 2-naphthol should be still quite available to the Fe2+ with 

one aromatic ring intruding outside αCD. Decreased quenching efficiency suggests that α-CD 

isolates the 2-napthol from Fe2+.  
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Figure 4.13 Chemical shift of protons in 2-naphthol in the solutions with different concentration 
of αCD. (For the positions of the protons, please see Figure 3.11 in Chapter 3). 
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Figure 4.14 Stern-Volmer plot of 2-naphthol (50 µM) quenched by Fe2+ in aqueous solution (pH 
= 3.1) in the presence (▲) and absence (■) of αCD (2.5 mM). 
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This argument was confirmed by NMR measurements of aqueous 2-naphthol + α-CD in 

the presence of Fe2+, which showed no peak broadening effect (Figure 4.15). 

 

 

Figure 4.15 1H NMR spectra of 2 mM 2-naphthol (7-8 ppm) + 20 mM αCD (3-6 ppm) (a) in the 
absence and (b) in the presence of 10 mM Fe2+. 
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Chapter 5. Enhancement of sonochemical degradation of phenol 

using hydrogen atom scavengers 

 

5.1 Introduction 

 In sonochemistry, ultrasound is used as an energy source to achieve various chemical 

processes. Ultrasound was first produced about 100 years ago by F. Galton who studied the 

threshold levels of hearing in animals and humans1. He found that the normal limit of human 

hearing is about 16kHz. So ultrasound was defined as the sound of a frequency that is beyond 

human hearing, i.e. above 16 kHz. The piezoelectric effect is the basis of the production of 

ultrasound. When some crystalline materials such as quartz experience a sudden compression, a 

potential difference will be produced across the opposite faces. The reverse effect – a rapidly 

alternating potential placed across the faces of a piezoelectric crystal will produce a dimensional 

change and thus convert electrical energy into vibrational or sound energy. 

 The ultrasound energy has been divided into two distinct ranges in chemistry: power (16-

1000 kHz) and diagnostic (above 1000 kHz). Diagnostic ultrasound is nondestructive when 

operating at medium intensities. So it can be used in fetal imaging in medical field. It is also used 

in material flaw detection and remote sensing in flow systems. Power ultrasound is the one that 

used in sonochemistry and industry. Its applications in industry include cleaning and degreasing 

of surfaces, crystallization, homogenization, welding of thermoplastics, filtration, degassing, and 

etc. 

5.1.1 Cavitation phenomenon 

 The application of power ultrasound in sonochemistry is based on a phenomenon called 

cavitation2-4. Ultrasound is transmitted through a solution as a wave. It superimposes an 
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acoustical pressure (Pa) on the hydrostatic ambient pressure (P) of the fluid. The total pressure 

(Pt) is: 

Pt = P + Pa (5.1) 

As ultrasound passes through, the acoustic pressure compresses some part of the fluid, which is 

called compression; and pulls apart some other portion of the fluid, which is called rarefaction 

(Figure 5.1). The rarefaction and compression cycle consecutively at all points in the acoustic 

field.  

 

 

 

 

 

 

 

 

Figure 5.1 The effect on the solution of ultrasound as it goes though2.  

 

During rarefaction, if the negative pressure is strong enough to overcome the 

intermolecular forces binding the fluid, a cavitation bubble is generated. These bubbles will 

disappear on the next compression cycle if the radius is smaller than the critical value. However, 

if the radius is large enough, the bubbles will undergo oscillatory growth and shrinking during 

the subsequent acoustical cycles.  

Equilibrimum

Acoustic field

rarefaction compression

Local density
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There are two kinds of cavitation: stable cavitation or transient cavitation. In stable 

cavitation, a bubble oscillates about the equilibrium radius with the acoustical field for several 

cycles (Figure 5.2a). In this case, the bubble does not experience a dramatic size change and the 

evaporation and condensation processes of the solvent are quasi-reversible. Therefore, stable 

cavitation is of little use in sonochemistry. It is the transient cavitation that is useful. In transient 

cavitation, the bubble grows slowly from a very small radius. After a few oscillation cycles, it 

experiences a huge size increase, from tens to hundreds of times the equilibrium radius (Figure 

5.2b). The wall can not hold the bubble anymore and the bubble collapses. During this collapse, 

an extreme situation is created. The temperature could go as high as several thousand Kelvin and 

the pressure could reach up to a thousand atmousphere1,5-7. Under this condition, many chemical 

changes will take place. 

 

P0 = 2.7 bar 
ν= 20 kHz 
R0 = 2 mm 

P0 = 2.7 bar
ν= 20 kHz 
R0 = 20 µm

Figure 5.2. (a) Stable and (b) transient cavitation. Examples under the listed conditions2.
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5.1.2 Chemical processes in transient cavitation 

 One important chemical change in the solution under transient cavitation is the thermal 

dissociation of water8-12: 

H2O (g) → ⋅H (g) + ⋅OH (g) (5.1) 

Other species13,14 such as dissolved O2, N2 and volatile solutes can also undergo thermal 

dissociation. Once the radicals are produced, they will further react with other compounds either 

in the liquid bulk or in the bubble phase. One main reaction of these radicals is recombination 

reaction. In the case of hydroxyl and hydrogen radicals, either water, hydrogen peroxide or 

hydrogen are generated through the reactions:  

⋅H + ⋅OH → H2O  (5.2) 

⋅OH + ⋅OH → H2O2  (5.3) 

⋅H + ⋅H → H2   (5.4) 

If hydrogen peroxide does not react with other solutes, it will disproportionate into water and 

oxygen: 

H2O2 → H2O + ½ O2 (5.5) 

Since the hydrogen and hydroxyl radicals are in present relatively large amounts in aqueous 

solutions that are irradiated by ultrasound, and they are close to each other, the main products of 

the system are hydrogen, hydrogen peroxide and oxygen. The reactions of these radicals with 

other compounds are always secondary from the energy balance point of view.  

5.1.3 Some effects that influence the cavitaion and chemical processes  

Many effects have influences on cavitation and therefore on chemical processes1,4,13,15-17. 

The frequency of ultrasound determines the critical size of the cavitation bubbles. The change in 

the number of excited bubbles will have an effect on the rate of chemical reactions. The intensity 
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of ultrasound also matters. Usually, the reaction rates increase with the enhancement of power 

intensity. Temperature plays a more complicated role in the reaction. For the volatile species 

whose reactions occur in the bubble phase, higher temperature will increase the concentration of 

such species inside the bubbles, therefore increasing their reaction rates. However, for the 

nonvolatile species, sometimes the increased temperature could decrease the reaction rates. This 

is due to the condensation of water vapor inside the cavity during its collapse, which reduces the 

amount of energy available to the reactions. Different gases dissolved in the solution could 

change the physical properties of the bubble. Accordingly, the temperature or pressure during the 

collapse changes. Some of the background gases can even provide new reaction species in the 

gas phase (e.g. ozone). The sample matrix is another important influence on the reactions. Its 

effect is complicated and difficult to predict. In many cases, the matrix has a competition with 

the reactant of interest for certain radicals. Therefore, the reaction of interest could be inhibited. 

The influence of the matrix also depends on its volatility and other physical properties. 

5.1.4 Drawback and possible improvement of the method in application of pollutant degradation 

A major drawback of sonochemistry used in pollutants degradation is the fact that a large 

amount of the major reactive transients (e.g. hydroxyl radical) are consumed by the predominate 

recombination reactions. This phenomenon makes the degradation efficiency low. One 

reasonable way to improve the degradation efficiency is to inhibit the recombination reaction of 

hydroxyl radical, especially with hydrogen atoms, which regenerates water. The recombination 

of hydroxyl radical itself, which produce hydrogen peroxide, is fine since hydrogen peroxide is 

active too. The goal can be achieved by scavenging the hydrogen atoms.  With less hydrogen 

atoms, more hydroxyl radical will be available for the degradation.  



 

 92

There are a few species that are more reactive with hydrogen atoms than with hydroxyl 

radical. Carbon tetrachloride is one of them. 

CCl4 + ·H → HCl + ·CCl3  (5.6) 

CCl4 + ·OH→ no reaction  (5.7) 

The rate constant of equation (5.6) is 3.8 x 107 M-1s-1.18 In contrast, it has no reaction with 

hydroxyl radical (5.7). Iodate is another compound that reacts faster with hydrogen atoms.  

IO3
-  + ·H → ·OH +IO2

-  (5.8) 

IO3
- + ·OH →   (5.9) 

The rate constant of equation (5.8) is 1.2 x 107 M-1 s-1 in pH = 4.6 solution while the rate constant 

of equation (5.9) is less than 105 M-1 s-1 in pH = 5.2 solution.19 Perfluorohexane (C6F14) is the 

third possible choice. It is fully oxidized so it is expected to be a poor hydroxyl radical 

scavenger. However, it could probably be reduced by strong reducing agent such as hydrogen 

atom (standard reduction potential for H+ + e → ·H = -2.3 V 18). Both iodate and perfluorohexane 

are much less toxic to animals and plants than carbon tetrachloride. Perfluorohexane is also 

photostable in the atmosphere.20 It seems iodate and perfluorohexane are better choices as 

additives to improve the degradation of the pollutants. However, if carbon tetrachloride was 

initially presented in the waste solutions, it probably could increase the degradation efficiency of 

co-existing pollutants while the carbon tetrachloride would also be degraded during sonication. 

 

5.2 Experimental 

Phenol (biotech grade) and acetonitrile (HPLC grade) were purchased from Acros. 

Carbon tetrachloride (spectroanalyzed), methanol (HPLC grade), and hexanes (pesticide grade) 

were purchased from Fisher. Perfluorohexane (99%) and hydroquinone (99%) were purchased 
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from Aldrich. Potassium iodate was purchased from EM Science. p-Hydroxyphenyl acetic acid 

and peroxidase (type VI-A) were purchased from Sigma. All the chemicals were used as 

received. Purified water was obtained from a Barnstead NanopureUV water treatment system.  

A concentrated stock solution of phenol was prepared by dissolving phenol in water, and 

dilute (~ 25 µM) aqueous phenol samples were prepared from the stock solution. To avoid 

photodegradation, all phenol samples were kept in the dark before and after sonication. Saturated 

aqueous CCl4, perflurohexane, or hexane solutions were prepared by adding more than the 

soluble amount of these agents into water and stirring overnight using a magnetic stirring bar. 

These solutions were prepared freshly every day. The final concentration of CCl4 in phenol 

solution was ~150 µM, that of hexane was ~14 µM, that of perfluorohexane was less than 1.5 

µM, and that of potassium iodate was 150 µM or 1 mM. All samples were sonicated using an 

ACE Glass (Vineland, NJ) 600W sonochemical apparatus operating at 20 KHz (Figure 5.3). A ½ 

in. diameter titanium probe was used with the power supply set to 50% amplitude, which 

resulted in coupling of ~ 75-90 W of acoustic power into the solution. Two probes were used, 

probe 1 and probe 2. Probe 2 introduced more energy into the system due to a better connection 

between it and the rest of sonochemical apparatus. Sonication was carried out with a 50% duty 

cycle (sonication on for 1s, off for 1s); this duty cycle helped to minimize bulk temperature 

increases. Samples were contained in an all-glass, water jacketed reaction vessel. The sonication 

was done with 20ºC water circulating through the jacket of the reaction vessel. The vessel was 

sealed with O-rings and glass stoppers during sonication. Solutions were air equilibrated and 

were sonicated under a headspace of air. The volume of sonicated samples was 50 mL. At 

regular time intervals, 1 mL aliquots were removed and analyzed by HPLC (Hewlett Packard 



 

 94

1090). The tip of the titanium probe was polished by sandpaper (#800 and #320) on a regular 

basis to maintain a smooth surface. 

  Sonication products were analyzed by HPLC. Samples were injected using a 100 µL loop 

into an Econosphere C18 column (length = 25cm, id = 4.6mm).  The mobile phase was 50/50 

acetonitrile/water at 1 mL min-1.  Analytes were detected by absorbance at 254nm. 

 Hydrogen peroxide produced by sonication of pure water or water containing ~150 µM 

CCl4 was measured using the p-hydroxyphenyl acetic acid dimerization method21. 

 

 

Figure 5.3 Schematic plot of sonication apparatus used in this study. 
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5.3 Results and discussion 

5.3.1 Phenol degradation in the presence and absence of CCl4 

 Sonolysis of phenol in aqueous solution in the presence and absence of CCl4 with probe 1 

was shown in Figure 5.4a. The degradation can be fitted to a pesudo first order reaction model as 

shown in Figure 5.4b (the plot is linear with R2= 0.97-0.99).  The rate constants were calculated 

from the slope of the regression line. With probe 1, the degradation rate constant was 0.014 min-1 

in the absence of CCl4 and 0.031 min-1in the presence of CCl4. The sonolysis was repeated with 

probe 2 and it was found that the rate constants in the absence and presence of CCl4 were 0.022 

min-1 and 0.061 min-1 respectively. As can be seen, by addition of a small amount of CCl4, the 

phenol degradation efficiency was enhanced by about 2.2 ~ 2.8 times. 

Hydroquinone was identified as a major intermediate in phenol sonolysis in the presence 

and absence of CCl4.  Hydroquinone was identified by comparison of HPLC retention time with 

an authentic standard. The appearance of hydroquinone, a product of hydroxylation of phenol, 

indicates that the hydroxyl radical oxidation is an important degradation pathway in phenol 

degradation (equation 5.10).  

 

In the presence of CCl4, a substantial increase in the observed hydroquinone concentration at 

short sonication times was observed. At later times, the hydroquinone concentration decreased 

rapidly in the presence of CCl4, indicating that its further degradation was facile. On the 

contrary, in the absence of CCl4, the amount of hydroquinone produced was small at short 

sonication times and increased with longer sonication time. Figure 5.5 illustrates the  
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Figure 5.4 (a) Degradation of phenol by sonication in the presence (■) and absence (●) of CCl4 
(initially ~ 150µM) and (b) pesudo first order reaction model fitting with data in (a). 
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hydroquinone concentration as a function of sonication time (with probe 1) in the presence and 

absence of CCl4. For both phenol and hydroquinone, the observed degradation is significantly 

faster in the presence of dissolved CCl4. The observed increased degradation rates indicate that 

the CCl4 enhances sonochemical degradation of dissolved organics.  Although sonolysis of CCl4 

likely results in the formation of Cl and CCl3 radicals22,23, the data presented here suggest that 

these radicals are not the predominant cause of increased degradation rates.  The substantial 

increase in initially formed hydroquinone upon phenol sonolysis in the presence of CCl4 suggests 

that increased concentrations of hydroxyl radical are present.  During sonochemical processes a 

major sink of hydroxyl radical is recombination with hydrogen atom to reform water3.  Such 

recombination reactions are very likely since the two species are close to each other after their 

initial formation.   
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Figure 5.5 Hydroquinone levels as a function of sonication time in the presence (■) and absence 
(●) of CCl4 (initially ~ 150µM). 
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Addition of CCl4, however, traps hydrogen atoms so that they cannot recombine with hydroxyl 

radical.  The expected result of this trapping would be an increase in hydroxyl radical 

concentration.  The observed hydroquinone concentrations support the theory that more hydroxyl 

radical is available in solution in the presence of CCl4.   

Methanol is a good hydroxyl radical scanvenger ( k = 1 x 109 M-1s-1 ).19 To further 

confirm that hydroxyl radical oxidation is a major degradation pathway, phenol sonolysis was 

repeated in the presence of 0.01M of methanol (Figure 5.6).  Compared to Figure 5.4a, phenol 

degradation was inhibited in the presence of methanol, regardless of the presence or absence of 

CCl4. The enhancement effect of CCl4 is largely eliminated by addition of methanol. This result 

indicates that the reaction of phenol with hydroxyl radical is an important pathway that is 

enhanced in the presence of CCl4.   
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Figure 5.6 Degradation of phenol with methanol by sonication in the presence (■) and absence 
(●) of CCl4 (initially ~ 150µM). 
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In the presence of CCl4 and methanol, the hydroquinone production (Figure 5.7) was diminished 

compared to the results without CCl4 alone (Figure 5.5). It further supports the conclusion that 

methanol effectively scavenged much of the increased hydroxyl radical resulting from added 

CCl4.    
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Figure 5.7 Hydroquinone levels as a function of sonication time in the presence (■) and absence 
(●) of CCl4 (initially ~ 150µM) with methanol presented in solution. 
 
5.3.2 Measurement of H2O2 produced in the sonolysis process 

A more direct probe of hydroxyl radical concentration in the solution is measurement of 

hydrogen peroxide. Two hydroxyl radicals can combine to produce hydrogen peroxide. With 

more hydroxyl radical in the solution, we assumed more hydrogen peroxide would be produced. 

Measurement of hydrogen peroxide was performed according to the p-hydroxyphenyl acetic acid 

(POHPAA) dimerization method. The proposed mechanism of this method is illustrated in 

Figure 5.819. Firstly, hydrogen peroxide oxidizes the peroxidase (3+) to peroxidase (5+). Then 

POHPAA reduces peroxidase (5+) to peroxidase (4+) and another POHPAA reduces peroxidase 

(4+) to peroxidase (3+). In the mean time two POHPAA radicals are obtained. Thirdly, the two 
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POHPAA radicals combine to produce a fluorescent dimer. The overall reactions of the method 

are: 

H2O2 + 2 POHPAA → 2 POHPAA· + H2O  (5.11) 

2 POHPAA· → (POHPAA)2    (5.12) 

The stoichiometry between H2O2 and POHPAA dimmer is 1:1. Therefore, the concentration of 

H2O2 is proportional to the intensity of fluorescence observed. 

 

 

 

Figure 5.8 Schematic plot of proposed mechanism of p-hydroxyphenyl acetic acid dimerization 
method for measuring the concentration of hydrogen peroxide.  
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Figure 5.9 shows the concentration of hydrogen peroxide in pure water and in ~150 µM 

CCl4 aqueous solution after certain sonication times. More hydrogen peroxide was detected in 

the early stage of sonication in the presence of CCl4. However, with longer sonication time, 

hydrogen peroxide decomposed by the ultrasonic energy. The data shown here is a combined 

result of producing and decomposing effects. This result indicated that more hydroxyl radical 

was produced by the presence of trace amount of CCl4, at least in the early stage of sonication. 

0

3

6

9

12

15

18

0 5 10 15 20 25 30

sonication time (min)

[h
yd

ro
ge

n 
pe

ro
xi

de
] (

uM
)

 

Figure 5.9 Concentration of hydrogen peroxide produced during the sonication in the presence 
(■)and absence (●)of CCl4 (initially ~ 150µM). 
 
5.3.3 Phenol degradation in the presence of perfluorohexane 

Sonolysis of phenol in the presence and absence of perfluorohexane with probe 1 was 

shown in Figure 5.10. Similar to degradation in the presence of CCl4, addition of 

perfluorohexane enhanced the sonolysis efficiency of phenol. To examine if the enhancement is 

due to the C-C backbone other than C-F, the experiment was repeated with hexane as an 

additive. The result was shown in Figure 5.11. 
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Figure 5.10 Degradation of phenol by sonication in the presence (■) and absence (●) of 
perfluorohexane (initially ~ 1.5µM). 
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Figure 5.11 Degradation of phenol by sonication in the presence (■) and absence (●) of hexane 
(initially ~ 14µM). 
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In comparison, addition of hexane to the system did not give any observed change in the rate of 

phenol degradation. Therefore, it is not C-C backbone that induced the enhancement. Although 

perfluorohexane has a much less aqueous solubility than CCl4, it is probably more readily 

volatilized into the gas phase due to its 20°C lower boiling point compared to CCl4. Furthermore, 

the perfluorohexane molecule is bigger than CCl4 so it has a higher possibility to meet hydrogen 

atoms. As a result, perfluorohexane had a similar enhancement effect as CCl4 despite its lower 

concentration.  

5.3.4 Phenol degradation in the presence of iodate 

 Sonolysis of phenol in the presence and absence of potassium iodate is shown in Figure 

5.12. No enhancement was observed with this additive. This result is probably due to the low 

volatility of IO3
-. Since water homolysis occurs predominantly in the gas phase during 

sonication10,11, hydrogen atoms and hydroxyl radicals would be most likely to recombine in this 

region. With little gas phase IO3
- present, this species is unlikely to be able to scavenge hydrogen 

atoms before they react with hydroxyl radical. 
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Figure 5.12 Degradation of phenol by sonication in the absence of KIO3 (●) and under two KIO3 
concentrations: 1mM (■) and 150µM (▲). 
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Conclusions 

 

 The study has shown that CMCD/Fe2+/hydrophobic compound ternary complexes which 

have not been reported before are formed in aqueous solution. The binding ratio between CMCD 

and selected hydrophobic compound is 1:1 and that between CMCD and Fe2+ is predominantly 

1:1 as well. The ternary complex likely brings the reaction catalyst closer to the pollutant 

molecules and thus enhances the Fenton degradation efficiency. However, in the cases where the 

pollutant has coordination ability to Fe2+, the presence of CMCD competes with the pollutant for 

Fe2+ binding and results in reduced degradation. This result illustrates the potential of CMCD in 

protecting certain classes of compounds from being degraded or attacked. The protection effect 

may be useful in organic synthesis to keep certain compounds or certain groups of a compound 

intact.  On the other hand, effective formation of metal-cyclodextrin-guest complexes can be 

used to selectively react the guest molecule with hydroxyl radical.  In general, the role the 

cyclodextrin plays depends on the properties and interactions of all species coexisting in the 

solution. Therefore thorough study of the solution must be conducted in order to make a good 

prediction of the effect of cyclodextrin. 

 From similar investigation of HPCD, SCD, βCD and αCD, it was found that HPCD, βCD 

and αCD could bind with hydrophobic pollutants, but their binding ability to Fe2+ was small. 

SCD, on the other hand, had a relatively strong binding ability to Fe2+, but it could not 

encapsulate the pollutant molecules due to the bulky substitution groups located at the entrance 

of the cavity.   

 In comparison, the binding ability of the five cyclodextrins to the hydrophobic 

compounds under investigation is in the order (from strongest to weakest): βCD > CMCD ≅ 
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HPCD > αCD > SCD. Their binding ability to Fe2+ is in the order (from strongest to weakest): 

SCD ≅ CMCD > βCD ≅ HPCD ≅ αCD. To enhance Fenton degradation of those pollutants with 

little binding potential to Fe2+, strong binding of both pollutant molecules and Fe2+ is required.  

Therefore, natural cyclodextrins would not greatly enhance the Fenton degradation with 

their poor binding ability to Fe2+. The cyclodextrins with electron rich groups such as the 

carboxymethyl group have the potential to increase Fenton reaction efficiency. However, the 

substitution should not be too extensive and the substituted group should not be too bulky. From 

the results obtained in this study, CMCD is expected to give the biggest enhancement for the 

selected pollutants in Fenton degradation.  

 In the study of sonochemical degradation of phenol, it was found that hydroxyl radical 

oxidation is a very important degradation pathway. Addition of small amounts of CCl4 or C6F14 

can increase the sonolysis efficiency. The enhancement is due to the fact that CCl4 or C6F14 

scavenge hydrogen atoms produced from dissociation of water. Therefore the water 

recombination reaction is inhibited and more hydroxyl radical becomes available for the 

degradation. Since the water recombination reaction mainly takes place in the bubble phase, the 

hydrogen atom scavenging must also occur in the bubble phase (or at least near the bubble 

phase) to give the enhancement. The idea of scavenging hydrogen atoms to increase 

concentration of hydroxyl radical could be transformed to other fields and benefit the processes 

where hydroxyl radical is an important intermediate.  
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