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Abstract

Geographical Information Systems (GIS) play an important role in environmental
management solutions, and they are being used with increasing frequency in
environmental studies. The use of GIS technology in environmenta studies provides a
better way to manage, analyze, display and share the information.

In this thesis, | automated a process for constructing GI'S maps of odor complaints
and inspections that have been used to study odor complaints in the vicinity of three
landfills in Jefferson Parish | provided an application that integrates daily environmental
observation and monitoring data into a GIS and publishes the resulting maps through the
Internet. The user’s interaction with the web-based maps does not require any GIS
expertise.

A Web-application was also implemented for managing the list of the constructed
maps. The maps are deleted or updated through the manager application, a friendly

interface application that does not require users to have any GIS technology knowledge.



Chapter 1: Introduction

The rise of the Internet and the World Wide Web (WWW) has created many
opportunities for those involved in GIS and decision support research [1]. A Geographic
Information System (GIS) is an automated information system that is able to compile, store,
retrieve, analyze, and display mapped data. Only a decade ago, this technology was limited to a
relatively small number of colleges, universities, and local, state, and federa agencies. Today, it
is used by government officials, natural resource and social analysts, and many others. The
increased usage of GIS in many disciplines and industries, including urban development [3, 4],
environmental research and model building, urban demographic studies, and transportation
analysis[2], has intensified in the last two decades [4,5,6].

The availability of technology, software, digital datasets and professional personnel has
enabled the expansion of GIS at al kevels and in many communities [4]. Google's satellite
service further brings GIS to every ordinary citizen. This service offers rooftop photographic
views of the United States. Users can zoom to house-level detail only for areas covering about
half the population. In those parts, Google Maps sharp aerial images, taken by satellite, provide
street-level views of many homes, businesses and landmarks [15].

The integration of remote data into local GIS processing and the use of the Internet for
distributing the data have increased the availability of information and capabilities to remote
users. In the past decade this activity has greatly expanded, facilitated by the Open GIS

Consortium (OGC), which coordinate between the various stakeholders (government, private



industry, and academia) and promotes the interoperability in the geographic information industry
[4,7].

The need of the technology for coupling GIS with Web servers has encouraged GIS
vendors such as ESRI to provide products that span from the traditional GIS databases and
applications to Web publishing and global data sharing. For example, ArcGIS is one of the suite
products created by ESRI. The potential uses of such integrated GIS software are many,
including published static and dynamic maps, queries of datasets spatial and non-spatial, and the
dissemination of spatial analysis. In the GIS system, idedly the datasets are stored in the
database; they are accessed from the GIS software. This centralized data management greatly
assists web developers in making and delivering maps and data over the Internet.

In this thesis, | will report on the process of automating the integration of daily
environmental observation and monitoring data into a GIS, and the publication of the resulting
mapping by an Internet application. The environmental data consist of the odor complaints and
the inspection measurements reported relative to three landfills in Jefferson Parish | have
integrated the tabular data into the geographical datasets and published the Web maps. These
Web maps will be used in the environmental studies and analysis for solving the odor problems
generated by landfills in Jefferson Parish

My first goal was to provide the users with an easy way of creating Web-based maps that
visualize the odor problems generated at the landfills. The maps will give the engineers a
geographical view of the common sources of odors. This solution will also help engineers to
evauate the effectiveness of the techniques for reducing odors and where the techniques are

more needed.



My second goal was to show how the integration of tabular and geographical data with
GIS software (ArcSDE, and ArcIMS) can be used as a solution to environmental problems in
which the geographical information plays an important role.

The rest of this document is organized as follows. Chapter 2 provides the background of
the information related with this project, as well as a brief description of the ESRI products used
in our implementation. In Chapter 3, we review some related work.

In Chapter 4, we present the design that we followed in the implementation. Chapter 5
provides the details of the implementation. Finally, in Chapter 6 we present conclusions and

future work.



Chapter 2: Background

In this chapter, we will review the background of the project, Geographic Information
Systems, the investigation project of Jefferson Parish landfills and the software solution that has

been used for the studies of the odor complaint problems in the landfills.

2.1 Geographic Information Systems

A GIS is a System of computer software, hardware and data, and personnel to help
manipulate, analyze and present information that is tied to a spatia location [17]. There are five
general functions in a GIS: input, manipulation, management, query and anaysis, and
visualization [16, 18].

Input: Spatial and non-spatial data must be trandated into a compatible format,
which, in the case of geographical data, often involves the digitization of analog
information such as traditional paper maps.

Manipulation: Often necessary prior to analysis, in order to make different data
compatible.

Management: Typically based on relational database concepts and internal reference
structures.

Queries and analysis: The key function and strength of GIS; includes the creation of
new geographical structures through topological overlays and the identification of

variables within a given distance of an object or area.



Visudization: GIS enables the display of maps that can be tailored to specific needs,

and be rapidly and dynamically updated.

A map in a GIS assists the viewer by relating information from different sources, which
are stored in eparate layers in its dataset. The graphical information on a map is displayed as
layers, where each layer represents a particular type of feature such as streams, lakes, highways,
rivers, counties, cities, or homes. A layer may reference the data contained in various resources
such as coverages, shapefiles, geodatabases, images, and grids. The data can be stored in files or
in a GIS database [12].

GIS programs now cover a wide spectrum of complexity and cost, and many universities
and private companies offer degrees and training programs in the use of this technology. In fact,

nowadays there are many software firms such as ESRI that offer GIS services and software.

2.1.1 ArcGIS—GIS Software family from ESRI

ESRI provides software suites that span from GIS databases and desktop applications, to
web publishing and global data sharing. ESRI’s ArcGIS is an integrated collection of GIS
software products for building a complete GIS system. The key components of ArcGIS (Figure
2.1) are[19]:

Desktop GIS—ArcGIS Desktop GIS software products are used to compile, author,
analyze, map, and publish geographic information and knowledge.
Embedded GIS—ArcGIS Engine is a library of GIS desktop software components

packaged together for devel opers to build custom applications.



Server GIS—ArcGIS Server, ArclMS, and ArcSDE are used to create and manage
server-based GIS applications that share GIS functionality and data within
organizations and to many other users on the Internet.

Mobile GIS—ArcPad coupled with a wireless mobile device that is location enabled

iswidely used for data collection and GIS information access in the field.
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Figure2.1 ArcGI S Architecture [19]

ArcGIS provides a framework for implementing GIS which can be deployed on a single
desktop, or be distributed on a heterogeneous computer network of workstations and servers
(including the Web), or mobile devices. Users can deploy various parts of this system to

implement a GIS of any size — from a single-user system to large enterprise, and even societal



GIS systems. This architecture, coupled with the geodatabase, gives developers the tools to
assemble intelligent geographic information systems [19].

In this thesis, | worked with two of the components of ArcGIS, ArcSDE and ArcIMS.
ArcSDE (Arc Spatia Data Engine) is the GIS gateway to relational databases. The SDE can be
used to access and manage the GIS data stored in the geodatabase; it mainly serves as an
application server that delivers spatial data to many users and applications [9]. | used ArcSDE to
integrate spatial and non-spatial data into an Oracle database.

The ArcIMS (Arc Internet Map Server) is web publishing software; it has a well-
constructed component architecture which corsists of the spatial database, the application server,
the manager component, and the web server along with the ArcIMS connectors. The details of
these components will be described in Chapter 5. Using the ArcIMS, the GIS content provider
designs and publishes interactive web pages using the manager component. The manager
generates web pages that are stored in the web server. These web pages interact with the
application server in XML requests/responses [10]. | used ArclIMS in order to publish our maps

through the Internet.

2.2 Landfill project

As a result of odor complaints received, Jefferson Parish County has developed a
program to investigate and gather data relative to the odor complaints. This program has been
developed in conjunction with the management saff of the Jefferson Parish Department of
Environmenta Affairs and is the result of a year-long investigation conducted by CDM, Inc.
CDM is a consulting, engineering, construction and operations firm that delivers services to

public and private clients worldwide.



Strategies have been implemented in an attempt to reduce landfill odors and similar
measures have been employed successfully at other landfills throughout the country [11]. The
strategies being tested include: (1) Odor Control Management Practices, (2) Topical Application
of Odor Control Chemicals by Water Truck, and (3) Application of Chemicals via Misting
System

In the Odor Control Management Practices a software solution has been provided by the
project team. A complaint tracking and odor monitoring information Web-based system (Web
Data Collector system) has been developed, and is now currently being utilized. This system
contains the tools for capturing the information that is stored in a database. Rather than relying
on hard copy paper forms for data recording, the system provides a much more effective method
of entering and managing data. The Web Data Collector system is currently being used by the
landfill inspectors for data entry and is used by CDM personnel for data management and
analysis.

The project team decided to develop this system for the purposes of providing:

the landfill inspectors with an easy means of recording and submitting data to the
main CDM officein New Orleans

an efficient means of recording and tracking odor complaints and inspections
environmental engineers at the main office with an effective way to store, manage,
analyze, and present the recorded data.

The architecture of the system will be explained with detail in Chapter 4. There are three
sets of information being collected and maintained with the system: (1) odor complaint

information, (2) odor monitoring information, and (3) meteorological information.



Odor complaint information refers to the data recorded by the inspectors when a
complaint is received. The data recorded includes. time of complaint, complainant name,
address, contact information, odor type, and odor intensity. Odor complaint information also
includes information recorded during the response to the complaint, such as response time, odor
type, and odor readings at various locations.

The odor monitoring information refers to all data recorded on a daily basis for the odor
inspections at and around the landfills. These data include odor intensity readings at odor
checkpoints, cover inspections, sludge inspections, and chemical counter agent specifics.

The meteorological information is collected from the weather station in the scale office
located at the landfill/county is proprietary. Unfortunately, it is not currently possible to
remotely connect the Web Data Collector system to the weather station for a direct download of
the weather data, due to security issues. This problem has been solved on a monthly basis when
the weather data is manually exported from the weather station and imported into the database of
the Web Data Collector system.

The data collected with the systems is being used in a number of ways. One of the
benefits of using the system is that the database can be used in order to extract the information
based on defined criteria. One example of this would be finding the number of complaints during
given time periods Queries have also been used to extract information in order to compare the
number of complaints with meteorological data. Another aspect of using this system is the ability
to trandate the data collected onto GIS maps. This point will be explained in the next section.

The Web Data Collector system has provided a better way to record and centralize the
information. Its database is used to generate different reports that are useful resources in the

analysis to find potential solutionsto landfill odor problems.



2.3 Actual process for constructing a complaints map

The database that contains the collected information at the landfill is used as a means to
obtain different kinds of reports. A large number of types of report have been created, including
charts that represent the total number of complaints generated at a given period of time, charts
showing according to the wind speed how many complaints have been reported at a period of
time, and charts that classify the number of complaints by odor type and odor intensity.

A good source for generating GIS maps is the report matching complaints with the
corresponding wind direction and wind speed at the time the complaints were received (Figure
2.2). A GIS specidist trandates this report into a GIS map, where wind vectors are drawn
according to wind direction from the perspective of the complaint locations. Although wind
direction can vary geatly, and does not always travel in a perfect straight line, this gives us some

insight about possible odor sources.

[DATE  [HOUR ‘WIND_DIRECTION WIND_SPEED COMPLAINANT ADDRESS ODOR_TYPE ODOFR_INTENSITY INSP_ODOR_TYPE INSP_ODOR_INTENSITY RAIN

1/19/2005) 6:00:00 Ph 225 7/Complainantl  Home_C1  Garbage Light Garbage Extramely Light FALSE
1/19/2005 ) B:00:00 PM 25 @ 7 Complainant2  Home_CZ Garbage Sirong Garbage toderate FALSE
1/19/2005) 5:30:00 Ph 202 11 Complainantd  Home_C3  Garbage ery Strang Garbage Maoderate FALSE
1/19/2005) 5:30:00 P 202 11 Complainanth  Home_C4  Garbage Strong Garbage Moderate FALSE
1192005 8:30:00 PM 202 0 Complainant  Home_Ch  Other toderate Other Light FALSE

Figure2.2 A match of complaints with its corresponding wind direction and wind speed.

In the construction of the map, the GIS specidist uses ArcView 3.x and ArcMap 9.x
tools. This technology is GIS software created by ESRI Company. ArcView 3.x is an older
version of the ESRI software; however it provides access to scripts, macros, and tols that are
sometimes not readily available for use with the current versions [8]. In ArcGIS, a map is
created using ArcMap, in which a set of layers that containing different features are overlaid with

one another [12].
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A map of complaints usually contains the following layers:

Addresses — All the existent addresses in Jefferson Parish

Jefferson Parish landfills

Street lines — the limits of the streets in Jefferson Parish

Addresses of the complainants — the locations of each complainant home

Wind vectors — the lines representing the complaint and its wind direction at the

time the complaint happens

During different periods of time complainant locations will change. This makes it

necessary to create a new match of complaints, with complaint locations and wind vectors each

time a new set of complaints is needed. The rest of the layers don’t suffer any changes, they are

static. The process for creating the GIS map entails the following steps:

1.

2.

Create a match of complaints

Export the result in an Excel spreadsheet file (.xIs).

Convert the xlIsfile in a dbf (dBase database format) file.

Import the dbf file into ArcMap.

Using the ArcMap Geocoding tool, geocode all the addresses of the complainants and
create the layer of points file (this is the layer of the complainants addresses).
Geocoding is the process of creating geometric representations for description
location [12].

Export the layer of complainants addresses file from ArcMap and import it into

ArcView 3.x

11



7. In ArcView 3.x, run the script for drawing the wind vectors over the layer of
complainants’ addresses. The script is written in Avenue which is the object-oriented
program native to the 3x versions of ArcView [13]. This script receives as input the
layer of complainants’ addresses which contains the starting point of the vectors. The
GIS specialist indicates to the script that the attribute of the complainants addresses
layer to be used as the lines’ bearing is the wind speed.

8. The wind vectors are created as graphics that will be converted into a layer of lines.

9. Export from ArcView the layer of wind vectors, and import it into ArcMap.

10. Use ArcMap for creating a map with the layer of complainants’ addresses, the layer
of wind vectors, and include the static layers.

11. Save in ArcMap the project that will contain al the layers for display in the map of
complaints. The GIS map will show the match of complaints with its corresponding

wind direction and wind speed at the time the complaints were received (Figure 2.3).
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LD SAL0L46. 56 Mbars

Figure 2.3 Complainants Map from September to December 2004.
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Each time a complainants vector map is requested for showing a different period of time,
the steps mentioned above must be executed by the GIS specidlist. He has to go back and forth
from ArcView to ArcMap many times, and has to repeat the entire process each time a new map
is needed. This makes the process very laborious and it can take multiple hours of work to
complete.

We have found that this process can be automated and this solution will give us the
benefits of: (1) completing the above steps ina few minutes, (2) publishing it on the Internet, and
(3) allowing the results to be examined by people that do not have GIS expertise. Our automation

will include the integration of tabular and geographical data with two of ESRI’s GIS products

ArcSDE and ArcIMS.
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Chapter 3: Related Work

In the Internet era, Geographical Information Systems (GIS) are often the convergence
point that integrates al kinds of spatial attribute data into the models -- the layers of information
in various themes. The layers can be superimposed upon each other, revealing complex spatial
relationships between variables. Thus, GIS have become an integral tool in many applications
including environmental management systems [16].

In this chapter we will describe two GIS projects that have been implemented by others.
They are: (1) an ArcIMS system for city parcel mapping and (2) a set of GIS applications to
manage and disseminate emissions activity data We studied from these projects the approach

used for publishing GIS data on the Internet.

3.1 An ArcIMS System for City Parcel Mapping.

This project refers to the construction of a land parcel management application created
for the City of Winona. Using Geographic Information Systems (GIS) and other mapping
software, the Geospatial Service Center (GSC, Department of Resource Anaysis, St. Mary’s
University) developed an intranet based parcel mapping system to allow al employees to access
the parcel data. The project’s goals were: (1) to implement an intranet based parcel viewing and
guerying system that would allow city employees to obtain information about city parcel data;
(2) to demonstrate the effectiveness and efficiency of Internet GIS access to city officias as a
means to make city data available to the public [20].

The project was completed using a variety of software products, including ArclMS,

ESRI’s Site Starters applications (Web-based Active Server Pages templates), Microsoft Access,

14



and ArcView 3.2. They also use ArclMS ActiveX Connector for allowing GIS data and maps to
be integrated into existing ASP applications, Microsoft's ActiveX controls and Internet
Information Services (11S) were also used.
The project went through the following stages:
1. identification of the datato be used
2. preparation of the data for being used in the maps
3. development of the content map
4. creation of an intranet viewer application
5. the creation of an intranet based application that includes three types of searches (the Parcel
Identification Number (PIN), owner name or address)
6. integration of the tools in a homepage

The project embraced the following specific coverages: the Winona County parcels
coverage, Winona County roads coverage, Winona City limits coverage, Winona City zoning
coverage and the Winona Rivers and Lakes coverage. These coverage files were converted into
shapefile format and used by ArcView 3.2 and ArcIMS. In addition to the GIS data, there were
three tables containing information relating to the parcels shapefile. These three tables stored the
property, legal and owner information into the database.

For preparing the data to be used in the maps, the project team used ESRI'S
Geoprocessing Wizard to clip out the parcels of the City Limits from the shapefile. Using the
Edit Tools extension, they transferred attributes from the zoning shapefile to the parcels
shapefile. The final step in data preparation included creating an image catalog of the aeria

photographs for Winona County.

15



Once the data was ready, they developed the content of the map using ArciIMS Author
tool. The data layers added to the map frame were the parcels, roads, city limits and rivers and
lakes shapefiles. The image catallog was added to the map by manualy editing the map
configuration file in a text editor. Having the file configuration of the map, they create an Image
Map Service using ArclMS Administrator tool. For the Website they used ArcIMS Designer
tool.

In the next stage of the project they created an intranet viewer application that would
allow a user to obtain parcel information by clicking on a feature button on a map. When a parcel
is clicked on a map, the Parcel Identification Number, Address, Owner Name, Legal Description,
Zoning Code and Zoning Description would be returned. In order for this to function correctly,
they required to edit the parcels shapefile several times. Using Microsoft’s Internet Information
Services Manager (11S), a virtua directory (viewer) was created hosting the viewer data folder

containing all of the viewer files (Figure 3.1).
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Identify Results

1 Feature Found

Feature
1

PIK 2210501320
Dwner COLLTMS, CHARLES R
Address 456 KIMG E,

Zoning Code FH-2

residence - 1 o 4 family
Zoning dwellings, community
Daccripion  devaloprarnt projects,

fraternities.=tc,

Figure 3.1 Viewer Application and identification results[20].

This project aso included the creation of an intranet-based applicationthat would alow a
user to search for a parcel based on Parcel Identification Number (PIN), owner name or address.
Because three different types of searches were allowed, the Site Starters searches the application
files and extracts them to three differert folders (pin, owner and address). They developed a
search application for each type of search. Finally, using Microsoft's Internet Information
Manager (11S), three directories were creating pointing to the three different search application

folders.
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A homepage was created for integrating the viewer and the three search applications. The
homepage was also designed to create an easy to use interface and help dialog for those not
familiar with GIS.

The Winona land parcel management application is a successful GIS application. In this
project, we can see that using the applications of the ArcIMS suite and other ESRI products
developers can integrate non-spatial and spatial data, and provide GIS functionality without the
logigtical costs. One of the advantages of this application is that it makes accessible the
information through the Web. This reduces the time of processing the information and gives a
more efficient service to the community. Another advantage of this application is that it does not
require the users to be GIS experts to operate the system by providing user-friendly Web pages
for the city employees. However, the access to this application is limited to an intranet where

only city employees accessed it.

3.2 GIS Applications to Manage and Disseminate Emissions Activity
Data.

The Cdifornia Regiona PM10/PM2.5 Air Quality Study (CRPAQS) is a multi-year
program involving meteorological and air quality monitoring, emission inventory development,
data analysis, and air quality smulation modeling. In the development of the database that
supports managing emissions activity, Sonoma Technology, Inc. (STI) gathered and processed
information from public records, commercia databases, and government sources to characterize
activity patterns throughout the CRPAQS domain. They compiled al the collected information

using Arcinfo over the Microsoft Access, and spatia resolved information about the emissions
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activity into the databases that are compatible with Geographic Information System (GIS)
software [21].

This project included the creation of an Internet application, through which all the
research teams can browse and query GIS data, logs, and an online archive of digita
photographs. The Internet application is caled the CRPAQS On-line Atlas (Figure 3.2) with
Regional and Site-specific Events (COARSE). The COARSE application is a Web site with
interactive mapping tools and options that allow users to explore and download information from
the CRPAQS emissions activity databases. ArcIMS, was used in conjunction with the Web
programming tool ColdFusion in the development of the applications.

The CRPAQS emissions activity data collection phase involved gathering and processing
(1) short-duration emission events data that may impact CRPAQS air quality measurements and
(2) highly resolved activity data in the immediate surroundings of selected CRPAQS monitoring

stes[21].

1 San Jose 4th St T
®
—_— — oL
Zmres Palygen I

Figure 3.2 Example of spatial emissions activity information contained in the Atlas of the CRPAQS|[21].
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Once the collected data were placed into ArcGIS format, processed, and to assure the
quality, the COARSE (Figure 3.3) Internet application was deployed. The COARSE Internet
application enables users to query and display emissions activity data for 24 CRPAQS
monitoring sites. The application interface includes mapping, navigation, data query tools, and

access to data archives (i.e., online movie archives).
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Figure3.3 COARSE [21].

The CRPAQS Orntline Atlas and the COARSE applications are good examples of GIS
applications that show how GI S technology can be used in environmental studies. CRPAQS had
a well designed database of spatial and nonspatial information that has been used as a good
source for sharing the information through the Internet among research teams that are
responsible for the analysis and interpretations of the air quality. In COARSE, | observed that the

use of the ArcIMS suite facilitated the creation of the Web applications that publish maps
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through the Internet. These maps disseminate the air quality information of any user chosen
locations. They are very intuitive and easy for non-GIS expertsto use.

There are hundreds of GIS applications for environmental studies. | have chosen the
above two because their usage is very similar to that of our project, even though we have utilized
different technology — Java-based components. A similar feature is that the systems al

emphasi ze on publishing dynamic information, the daily observation data.

21



Chapter 4: System Design

The work reported in this thesis is the result of working in conjunction with the CDM
staff on a year-long investigation of odors from Jefferson Parish landfills. When | joined in this
project, a smple Web application was in place. It is called the Web Data Collector. This system
provides the landfill inspectors with an easy means of recording and submitting data to the main
CDM officein New Orleans. It is also used as an efficient means of recording and tracking odor
complaints. This Web application has been providing the environmental engineers at the main
office with an effective way to store and manage data. To support engineering anaysis, the odor
complaint data were manually converted into maps using a GIS desktop application, ArcView.

Based on my experience in maintaining and enhancing the Web Data Collector system
and my studies on the GIS integration technologies, | successfully developed a solution that
automated the process of generating the odor complaint maps. Furthermore, | enhanced this
solution to include visualization of the landfill inspection data. In thiswork, | have combined the
information collected from the Web Data Collector and the geographical information of the area,
and generated map layers of the odor complaints and the odor inspections. In this project, | have
been using the COTS(Commercial Off-The-Shelf) GIS software products ArclMS and ArcSDE,
in order to publish the resulting maps to the Internet and manage the digital map at the enterprise
level. The programs produced in this project are helpful in the study and analysis for finding
potential solutions to the odor problems.

| believe that, in implementing this system, | have established a general-purpose framework

for integating the data that are bound to geographic coordinates into digital maps. The
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interaction of al the components of our system is reflected in our Web application. The results
are delivered to two types of viewers, the HTML Viewer and the Java Viewer. Our design
considers the following features:

integration of spatial and nontspatial information

construction of aweb application

integration of the web application with the ArclMS viewers

At the system level, my design follows the Mode-View-Controller pattern that leads to its
flexibility. In this chapter, | will first describe the Web Data Collector System, and then the
architecture of my automated map service system and discuss the design decisions that led to the

system.

4.1 Web Data Collector.

The Web Data Collector consists of a database and a number of JSP forms which provide
the landfill inspectors with the ability to enter their collected information into a Web page form.
When a form is submitted by the inspectors, the JSP calls a servlet which processes the data and
inserts them into the database. The JSP forms and the serviet are deployed in an Apache
TOMCAT version 5.0 server.

The database was designed and implemented in Microsoft Access 2000. It is a typica
relational database. The data model is shown in Figure 4.1, which is in the Third Norma Form,
Loss Less-join and preserves the functional dependency. The dynamic data are inserted and
updated by a component based on JDBC. This component handles all the database
communication required for the application. Figure 4.1 shows a diagram illustrating the
structure of the system.
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Figure4.1 Architecture of the Web Data Collector.

4.2 The Model-View-Controller Architecture of the Web Map
Application.

The Model-View-Controller (MVC) pattern is one of the most profound and earliest one in
the software design patterns establishment. It is a widely applied in interactive applications. It
divides functionality among objects involved in maintaining and presenting data to minimize the
degree of coupling between the objects. The MV C pattern brings traditional application tasks -
input, processing, and output--to the graphical user interaction model. The MVC modd is also

rigorously applied to the multi- tier Web-based enterprise applications [24].
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The architecture followed by the MV C pattern (Figure 4.2) divides applications into three
layers--model, view, and controller--and decouples their respective responsibilities. Each layer
handles specific tasks and has specific responsibilities to the other areas

A model represents business data and business logic or operations that govern access and
modification of this business data

A view renders the contents of a model. It accesses data from the model and specifies
how that data should be presented. It updates data presentation when the model changes.
A view aso forwards user input to a controller.

A controller defines application behavior. It dispatches user requests and selects views
for presentation. It interprets user inputs and maps them into actions to be performed by
the model. In a Web application, user inputs are HTTP GET and POST requests to the
Web tier. A controller selects the next view to display based on the user interactions and

the outcome of the model operations.

Model
* Encapsulates application state
* Responds fo stafe gueries
* Exposes application
runctionality
+ Notifies views of changes

P
View

Controller

View Selection
+ Defines application behavior

* Maps user actions to
model updates

« Selects view faor response

* One for each functionality

* Henders the models

* Hequests updates from models

= Sends user gestures fo controller
» Allows controller (o select view

Method Invocations
(1 1 ] Events
Figure4.2 Model View Controller Architecture [24].
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In our system (Figure 4.3) the “Model” Layer are corresponding to the business objects.

The business objects handle the data stored in the database, the objects managed by the ArcSDE

server, and the objects that create and manage the images services. The database stores the non

gpatial data that refers to the information recorded at one of the landfills for the odor complaints

and odor inspections. The ArcSDE server stores and manages the geographica information

associated with the odor complaints and inspections. The ArcSDE also stores all the data in the

same database (an Oracle database). These business objects are in charge of extracting and

updating the data (Section 5.4.1 provides the implementation details). The objects that work with

the image services communicate with the ArcIMS Spatial Server in order to request, add, or

remove any image service (Section 5.4.3 provides more details).

WWeb
Browser

Business \

Objects
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HTMLIJAW A
Viewer

2 -
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ArciMS
Application
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1 3

Arcivls
Spatial
Server

Figure4.3 MV C approach (3* indicatesthat the servlet can invoke the JSP or the ArclMSHTML/JAVA
Viewer).
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In our design, the “Controller” Layer consists of the Servlet program that handles the
users requests. When the Servlet gets the result from the business objects, if the result refers to
an error, then the Servlet redirects the control to the JSP. Otherwise, the Servlet invokes the
ArcIMS Viewer.

One of the characteristics of the GIS application is the complexity of the viewers. As
mentioned in the Background chapter, maps are composed of multiple Layers. The Layers can be
of images or vector data that have been rendered dynamically. To handle al the complexity
effectively, we have chosen the Leading GIS software products ArcIMS. Thus my tasks have
been shifted to integration and adaption: to collect to data sets from different resources, to
specify the data sources, to configure the viewer, and to create and activate the map services for
Web publication. For the viewer we are using two views the HTML viewer and the Java Viewer.
Once the users get into any viewer al the control is delegated to the ArclMS Application Server

which handles all the requests related with the map displayed in the viewers.

4.3 Integrating the COTS GIS Software Products into the System

In our system, we decided to use ArcIMS for creating the maps. Using the ArclMS Java
Connector API, we were able to establish the communication with the ArcIMS Server
Application and the ArcIM S Spatial Server in order to construct the Image Services of our maps.
We used ArcSDE to store the geographical data associated with the odor complaints and the odor

inspections.
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4.3.1 ArcIMS Architecture

ArcIMS is a GIS solution which alows us to build and deliver maps, data, and tools over
the Internet. ArclM S makes it possible to share information and data with Interret users. ArcIMS
is aso aflexible and scalable tool to publish maps and develop applications [10].

ArcIMS runs in a distributed environment and consists of both client and server
components (Figure 4.4). The ArcIMS HTML Viewer and the ArclMS Java Viewer are the
client-side components. On the server side, the ArcIMS provides three different types of
services. The ArcIMS Spatial Server, the ArclMS Application Server, and the ArcIMS
Manager, as well as the ArcIMS Application Server Connectors (for Java, ColdFusion, and

ActiveX) [10].

Viewers
Client
Server I
Web Sarver
ArciMS
Manager Connectors

I Spatial Server

g

Application
Server

Figure4.4 ArcIMS Architecture [10].
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4.3.2 Spatial Server Architecture

The ArcIMS Spatial Server Figure 4.5) is the backbone d ArcIMS. It processes the
requests for maps and the related information. The Spatial Server can perform seven services

such as the Image, Feature, Query, Geocode, Extract, Metadata, and Route services.
ArclMS Spatial Server

Spatial Server

Image
Application Festure
Server a Query
Geocode
Extract
| Metadata

Tasker Monitor Route

Figure4.5 ArcIM S Spatial Server [10].

The ArcIMS Spatial Server works with multiple Spatial Services through the use of
Virtual Servers. Virtual Servers group a number of Spatial Servers together and define the types
of requests that will be processed by them. The following six Virtual Serversinstall with ArciIMS
are the Image, Feature, Metadata, Geocode, Query, and Extract virtual servers[10].

The Image and Feature Services are used to publish maps over the Internet. The Image
and Feature Services may appear similar in a Web browser. However, an Image Server sends
snapshots of a map to the client, while a Feature Server streams map features [10]. The choice of
the Virtual Servers depends on two factors: (1) how the developer wants to deliver the map to the
users (as images or as streamed features), and (2) the level of functionadlity that the developer

wants to provide. In the implementation of our system, we chose to use the Image Server; our
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system creates map images that are displayed on the client’ s browser. This way requires the least
configuration on the client side.

The Image Server accepts shapefiles (layers), ArcSDE, and image data. It uses
information about data layers to create complete map images. The map configuration files (the
files with axl extension) contain the information about the map content and symbology. The
creation of an Image Service involves registration of a map configuration file with the ArciIMS
Application Server. When a user requests an Image Service, a map image is created on the
ArcIMS Spatia Server, and then sent to the client. A new map image is generated upon each
client’s request. The image can be sent to the client in one of the three formats — as a JPEG, GIF,
or PNG file[10].

Using the ArcIMS Java Connector API, | implemented a Java Bean that communicates
with the ArcIMS Application Server. Through the Application Server, we get access to the
Image Spatial Server. Once we have opened this channel of communication, our bean will be
able to request, add, or remove an Image Service (Figure 4.6). In our system each time users
request a map of complaints for a given period of time, an Image Service is caled in order to

show the map.
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Figure4.6 Communication with the ArcIM S Spatial server.

4.3.3 Adapting the ArclMS Viewers to Our System

In the implementation of our system we decided to provide users with two different ways
for displaying a map. We use the two viewers that come with ArcIMS: the HTML Viewer and
the Java Viewer. Using ArcIMS Designer tool we constructed two Web applications: one based
on the HTML Viewer, and the other one based on the Java Viewer. In order for making these

viewers work with different map images services, | had to make some modifications for them.
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4.33.1 HTML Viewer

Using ArclMS Designer, we create output files including the HTML and JavaScript files
(.Js) that form the foundation of the HTML Viewer. These files are allocated in the directory
structure depicted in Figure 4.7. The HTML files are used to deliver the Web page content; the

JavaScript functions allow for the user to interact with the map [22].

SiteDirectory

ArclMSparam js
HTML pages
javascnp ' e5
avascnpt Imadge
JavaScrpt Library Image files

Figure4.7 Directory Structure of the HTML Viewer [22].

For our HTML Viewer, we modified two files. Since ArclMSparam.js is the javascript
file that contains a set of variables that affect the Web pages look and behavior, we modified it as
described in Section 5.5.2. We oonverted the Viewer.htm into Viewer.jsp file. The Viewer.jsp
receives as a parameter the name of the Map Image Service to display; this will let our HTML
Viewer be able to load different Image services as described in Section 5.5.2. Our HTML Viewer
calls the files showed in the sequence as Figure 4.8. The structure of the HTML viewer directory

will be a subdirectory inside our Web application defined in the TOMCAT Server (Figure 4.9).

JZP Cortroler

l

Vigwver jsh

™,

MapFrame PostFrame hitml

Figure 4.8 Calling Sequence of the HTML viewer.

32



Tomcat Weh

SJPL web Applicdion Directary

directory

ArclmzParam js
HTMLPages, vieew jsp

Javascoript

library Images

Figure4.9 File Structure Directory of the HTML Viewer.

4.3.3.2 Java Viewer

Using ArclIMS Designer, we create our Web site based on the Java Viewer. The default
Java Viewer is a set of HTML pages and JavaScript files. The HTML files are used to load the
component of each Web page, and to interact with the applets. The Java Viewer differs from the

HTML viewer by using Java applets to display the map, the legend, and the scale bar, and to
send requests to the ArciIM S Spatial Server [23].

In our Java Viewer, we modified three files including the default.js, map.htm, and
frame.htm. With the changes we made in these files, our Java Viewer is able to load different
Map Image Services. In the case of the frame.htm, we converted it into framejsp. The framejsp
will receive the name of the Image Service to be displayed as a parameter. It passes this datum to
the default.js and the map.htm. (Section 5.5.2 will provide more details.)

The sequence of how the files are called in our application is shown in Figure 4.10.
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Frame.jsp (defaults)

Title.htm Side.htm Map.htm Sidihtm Side.htm Side.htm Bottom.htm

Toc.htm
Scalebar.htm
Toolbar.htin (functions. js) Qverview.htm

Figure4.10 Sequencein which thefiles of our Web site are called.

Since our Web application is able to call different Image Services, this implies that the
directory in which resides the files of the viewer will also contain the axl file associated with the
Image Service. The map.htm file calls for the map applet (the IMSApplet). The map.htm sets the
parameters to invoke the IMSApplet including the applet name, Java version, and the
configuration (*.ax|) file associated with the ImageService to load into the IMSApplet. The new
map will be displayed in our viewer. The directory of this application contains the html files, the
frame.jsp, default.js, other javascript files, and the axl files. The axl files refer to al the Image
Services that will be called using our modified Java Viewer. The directory structure of our Java

Viewer isshown in Figure 4.11.

Tomecat Wieh Applications

SJPL weeb Application Directory

Java

htrml=
frame jsp
clefault j=
axl files

Figure4.11 Organization of the directoriesin our Java Viewer web application.
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Chapter 5: Implementation

In this thesis work | have automated the process of creating dynamic map layers that
represent the reported odor problems around the Jefferson Parish landfills. Our approach is to
integrate the existing information into an off the shelf software (COTS) product ArcIMS and
Web maps. Users will have a Web tool in which they select the period of time that they need to
review. Once the map is displayed, they will be able to query specific information interactively.

In our system, a map consists of a number of layers and is specified by a configuration
file that makes the requests for the layers to the ArcSDE server. The map configuration file isin
the ArcXML language. Our ArcSDE server stores and manages al the map layers. The layers are
classified into static and dynamic. The static layers are those that do not change often. These
layers include the addresses, the street divisions, and the three Jefferson Parish landfills of
interest. The dynamic layers are the layers that will constantly change. Each time a user request a
map that includes a new period of time, our process will insert the information on the layers
extracted from our Oracle Database.

Having the layers specified by a configuration file, we will run the process that creates a
new ArclMS service. In our web application users will have the option to request either an
existing map or a new map. The existing map has an ArcIMS service running on the ArciMS
Application Server. In this case, the user can decide if he wants to regenerate the information. If
the user request is referring to a new map, the process will include extracting the information
from the database, inserting it into the layers, creating a new configuration map file, creating a
new ArclMS service, starting the ArcIMS service, and calling up the map. This process will take

alittle longer than the process of calling up an existing map.
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The maps can be viewed by any modern Web browser with some basic features, or by a
Java Plug-in for browsers with enhanced interactive features.

| have also provided users with a maintenance Web tool that will be used for handling the
Image Map Services. With this tool users can delete an existing map, or modify the map’s title.
The users’ interaction with the tool is very friendly and users do not require any specialized GIS

knowledge in using ArclMS.

5.1 Technology used

In this section, | introduce the technologies used in my project.

5.1.1 ArcSDE server and Java API

ArcSDE isthe ESRI GIS gateway to relational databases. SDE (Spatial Data Engine) can
be used to access and manage the GIS data stored in the geodatabase, it mainly serves as an
application server that deliver spatial data to many users and applications [9]. SDE server is
responsible for receiving the spatial data request and serving the client request with spatial data
accordingly. SDE server aso maintains the data integrity, manage the transaction and tune the
overall performance of the spatial data service [26].

ArcSDE uses standard DBMSs to define and manages geodatabases. A geodatabase is a
repository of your spatial data inside a DBMS. It contains all of your vector data, raster data,
tables, and other GIS objects. The simplest geodatabase is one that contains a number of
independent feature layers. Each feature layer can contain points, lines, polygons, or annotations

that represent geographic features (objects with location), networks and topology (objects having
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gpatial relationships with other features), annotation features, and other more specialized feature
types[27].

ArcSDE server provides a set of APIs for querying and processing spatial information
[28, 29]. These include the ArcSDE Client API for C programmers and ArcSDE Client API for
Java programmers. These APIs provide GIS functions for advanced application development.

The ArcSDE Java API provides the interfaces to process and analyze spatial information.
It contains three Java packages,

1. Client package
2. Geometry package, and
3. Projection package.

Applications created with the client package can establish a connection to an ArcSDE
instance, query a layer, and otherwise communicate with an ArcSDE server. The Geometry
package contains classes that implement the OGC (Open GIS Consortium) Geometry interfaces.
The Projection package provides classes to define coordinate systems and to transform data

between different coordinate systems.

5.1.2 ArcIMS and Java Connector API

ArcIMS (Arc Internet Map Server) is a powerful Internet-based GIS tool that enables
creating and managing geography-based websites. ArcIMS (Figure 5.1) gives the solution to the
Web developers who know little about GIS by deploying the power and functionality of GIS
over the Internet [20]. ArcIMS includes the client and the server components. The client side is

conformed by the ArciMS HTML Viewer and the ArcIMS Java Viewer. The server side
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consists of the ArclMS Spatial Server, ArclMS Application Server, the ArclMS Manager, and

ArcIMS Application Server Connectors [10].

Viewers
Client
Server I
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| ArcIMS
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>

Manager

Application
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Figure5.1 ArcIMS Architecture.

The HTML viewer is a lightweight viewer that allows users to interact with a map by
using a set of GIS tools [10]. It requires the least client-side processing of the ArcIMS Viewers.
The Java viewer has two versions the Java Standard Viewer and the Java Custom Viewer. These
viewers are “fat” clients. In order to use the Java Viewers on the client side, the user will have to
install a Java plug-in into the browser.

The ArcIMS Spatial Server is the backbone of ArclMS. The spatial server can accept
map request from Internet client. The server forwards the request to ArcSDE server that will in

turn access the geo-spatial database and retrieve the spatial data of the interest [26]. The spatia
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dataset is transmitted back to the server and the server will serve the client with a map. ArciMS
Spatial Server performs the following services:

Image- creates image files from maps created in either ArciIMS Author or

ArcMap

Feature- streams map features

Query- searches for features matching search criteria

Geocode- performs address- matching operations

Extract- creates shapefiles from selected map features

M etadata- publishes metadata

Route-cal culates routes between a set of two or more stops

The ArcIMS Application Server handles incoming requests and tracks which services are
running on which ArcIMS Spatial Servers. The Application Server hands off a request to the
appropriate Spatial Server.

ArcIMS has four applications to help users create and administer web sites. They are:
ArcIMS Manager, ArclMS Author, ArclMS Administrator, and ArcIMS Designer. ArclMS
Manager is a Web-based application that supports the three main tasks in ArclMS—map
authoring, Web site design, and site administration.

The ArcIMS Application Server Connectors connect the Web server to the ArcIMS
Application Server. The ArclMS Servlet Connector is the standard connector used with ArclMS.
The connectors reside on the Web server computer. The Java Connector communicates with the
ArcIMS Application Server viaa JSP client or a standal ore Java application.

The ArclMS Java Connector (Figure 5.2) is a set of libraries that includes a JavaBeans™

Object Model Library and arich set of custom JSP tags supported in the form of aTag Library.
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The JavaBeans and JSP tags libraries help developers to establish communication with an
ArcIMS Application Server —viaan HTTP, HTTPS, or TCP/IP connection—and begin sending
ArcXML requests to it. Once the Application Server receives the request, it processes it and

returns the appropriate response [ 30].
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Figure5.2 Java Connector Architecture [30].

The Java Connector Object Model is a collection of server-sde JavaBeans that
implement the ArcXML specification. The object model beans and their methods can be used to
implement map display functions; perform rendering and symbology; add dynamic layers, and
perform feature and spatial queries, address geocoding, projections, and metadata functions.

The Java Connector Tag Library is a collection of custom JSP tags built on the Java
Connector Object Model. This library is very helpful for those developers with little or no
knowledge of Java since they can easily develop advanced mapping applications or integrate
mapping capabilities into existing applications using the JSP Tag Library. Applications
developed using the JSP architecture encapsulate the business logic—such as database access,

security, and transaction integrity—and isolate it from the underlying complexity.
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5.1.3 ArcXML

ArcXML (The Arc Extensible Markup Language) is the protocol for communicating with
the ArcIMS Spatia Server. ArcXML works as a built-in map request language based on XML.
It is used to handle ArcIMS services, requests, and responses relate to each other and how they
interact with the ArcIMS Spatial Server. Figure 5.3 is a diagram showing the interaction
between the ArcIM S Spatial Server and configuration files, services, requests, and responses.

The communication to the ArcIMS server in ArcXML is performed in four steps:

Step 1. Developer creates a configuration file.

Step 2. Developer uses ArcIMS Administrator to start an ArclMS Service on the ArclMS

Spatia Server. The configuration file from Step 1 is the input to the service.

Step 3. The ArclMS Spatial Server receives arequest in ArcXML.

Step 4. The ArcIM S Spatial Server generates aresponse in ArcXML.

Reguests

: Responses
p: --

ArcIMS Administrator

Figure5.3 Interaction between ArcIMS and ArcXML [31]
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A map configuration file includes:

* A prolog, which is used to define the XML version and encoding.

* An ArcXML element, which isused in all ArcXML statements.

* A CONFIG eement, which isused in all configuration files.

* An ENVIRONMENT element, which is used to define the locale.

* A MAP element, which is used to define the map.

The ArcXML element works as the root element of the configuration file. Its child
element is CONFIG. The only CONFIG child elements are ENVIRONMENT and MAP.
ENVIRONMENT is used to set up information about the environment used in the ArcIMS
service. Once the environment is established, clients in one locale can access a service created in

another locale [31].

Child elements of ENVIRONMENT include the following:

* LOCALE. (Required) LOCALE is used to set the country and language for the locale of

the ArciMS site.

* UIFONT. (Required) UIFONT is used to set a default font for the diaogs in

ArcExplorer 9 and the ArcIMS Java Viewers.

* SEPARATORS. (Optiona) SEPARATORS is used to denote characters to separate X,y

coordinates and coordinate pairs.
» SCREEN. (Optional) SCREEN is used to set the resolution of the screen for the

computer generating the map configuration file.
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The dement MAP contains al the instructions for generating a map. Its child elements
include:
» PROPERTIES. The PROPERTIES section includes the initial map extent, map units,
and current projection, as well as additional instructions used for Image Services.
* WORKSPACES. The WORKSPACES section includes the location of al the data
used to create map layers.
* LAYER. One LAYER element is used for each layer in a map. LAY ER contains the

information about how the data should be symbolized.

In order to create a configuration file in ArcXML the developer has to create the file
using a basic structure (Figure 5.4), this basic structure is a template for specifying as many tag

elements as he needs for defining how the map should be displayed.

=2l version="1.0" encoding="UTF-8"7=
“ABRCEML version="1.1"=>
<CONFIG=
<ENVIEONMENT=
ZLOCALE country="US" language="en" vanant="" /">
<UIFONT color="00.0" name="Sans3enf" size="12" style="regular" /=
<SCEREEN dpi="9&" /=
<ENVIEONMENT>
<MAP>
<PROPERTIES>
< PROPERTIES=
<WORKSPACES>
< WORKSPACES>
<LAYEFR type="featmerlass" mame="SDE. UNO_SJPL OTHERLANDFILLS" visible="trus"
d="0"=

</CONFI G=
= ARCEML=

Figure5.4 ArcXML configuration file basic structure.
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5.1.4 Java XML APIs

The Java 2 Platform, Enterprise Edition (J2EE) is a set of APIs that provides solutions for
developing, deploying, and managing multi-tier server-centric applications. The J2EE platform
adds the capabilities necessary to provide a complete, stable, secure, and fast Java platform to the
enterprise level [32]. J2EE includes a set of packages for processing XML documents, these are:

javax.xml.transform
javax.xml.parsers

The javax.xml.transform package is a generic APl for processing transformation
instructions, and performing a transformation from source to result. The classes included in this
package are:

OutputKeys - Provides string constants that can be used to set output properties
for a Transformer, or to retrieve output properties from a Transformer or
Templates object.

Transformer - An instance of this abstract class can transform a source tree into a
result tree.

TransformerFactory - A TransformerFactory instance can be used to create
Transformer and Templates objects.

The javax.xml.parsers package provides classes alowing the processing of XML
documents. These classes support two types of parsers.

SAX (Smple APl for XML), an event-driven, seria-access mechanism for
accessing XML documents. This is a common protocol used for servlets and

network-oriented programs for transmitting and receiving XML documents [33].
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DOM (Document Object Model) consisting of a tree structure, where each node
contains one of the components from an XML structure. Developers can use
DOM functions for creating nodes, removing nodes, changing their contents, and
traversing the node hierarchy.
Using these two packages, developers can easily read XML files and modify them. In
this thesis work, | decided to use DOM instead of SAX because DOM provides a tree structure

of the document which makes easy modify the files.

5.2 Construction/Modification of layers

A map is a graphical presentation of geographic information [12]. The graphical
information on a map is displayed as layers, where each layer represents a particular type of
feature such as streams, lakes, highways, rivers, counties, cities, or homes. A layer may reference
the data contained in various resources such as coverages, shapefiles, geodatabases, images, and
grids. The data can be gored in files or in a GIS database In this thesis work, we stored our
geographical information in the SDE server whose repository resides in an Oracle database.

ArcSDE serves the data openly to ArcGIS Desktop, ArclIMS, and other applications.
ArcGIS Desktop is a suite of tools that includes. ArcMap, ArcCatalog, and ArcToolBox.
ArcIMS is an Internet-based GIS tool that enables creating and managing geography-based
websites. In my work, | used two tools: (1) ArcCatalog, to connect to the SDE server for
organizing and managing our GIS data, and (2) ArcIMS, for handling our Internet-GIS based

maps.
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As mentioned at the beginning of this chapter, our maps contain two types of layers, the
static layers and the dynamic layers. Each one of these types of layers requires a different
procedure to construct.

We use the ArcCatalog functionality for creating the static layers. First, we identified the
static layers. These layers include:

SDE.UNO_SJPL_ADDRESSES. Layer of addresses, this layer contains the addresses for

all the homes in Jefferson Parish.

SDE.UNO_SJPL_STREETCENTERLINES. Layer of street limits. The one that has the

street division lines of the addresses.

SDE.UNO_SJPL_JPLLANDFILL. Layer of Jefferson Parish landfills.

SDE.UNO_SJPL_OTHERLANDFILLS. Layer of landfills.

SDE.UNO_SJPL_INSPECTIONPOINTS. Layer of inspection points.

Knowing the static layers and having their shape files, we created a connection to the SDE
server by using the option in ArcCatalog “add a connection”. With this connection, we got the
access to the SDE server and we used its option called “import a shape file’ to upload each one
of the static layers. Once we have the layers in the SDE server, we can use them in our map. This
is straightforward.

On the other hand, three sets of data dynamically change. They are represented by the
dynamic layers:

SDE.UNO_SJPL_DATEMAPLINES. The layer of the lines that represent each of the

complaints reported about the landfills odor problems.
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SDE.UNO_SJPL_COMPLAINANTSADDRESSES. The layer of the points that
represent the complainant addresses. This layer contains the addresses for al the
complainants that already exist in the database.

SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES. The layer of the lines that represent the
inspections. This layer contains the information about the odor readings recorded at the
on site and off site ingpection points on a specific date. By on site points we refer to the
points that are inside one of the landfills. The off site points are those points near all the

landfills.

In the construction of the dynamic layers we use the Java SDE APl which provides the
interfaces to process and analyze spatial information. | implemented a set of classes for
managing the connection to the SDE server, construction of each layer, and updating the data in
the layers. All these classes were put in a package called edu.uno.gpl.sde. A diagram of the
classes of this package is shown in Figure 55. The classes are: Datalayer.java,
LayerComplainantsAddresses.java, LayerMapComplaintsLines.java, and

LayerlnspectionPoints.java.
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«Java Class»

(3 DataLayer
o |_addresses : String
o layer_table_CA : String «Java Class»
o |gyer_table_DateMaplines : String (© LayerMapComplaintsLines
o layer_tahle_InspectionPoints © String o out ; Printinfriter
o layer_tahble_InspectionPoints_OnOffSidelines_Map ; String @ getTime ()
o serverMame ;. String @ printout § )
o databaseMame : String @ getPointxY ()
o userame @ String @ refrieveDatasddrasses ()
o passwiord ¢ String @ init_DateMapLings_caols ()
o jnstance ¢ int @ insertData_DateMaplines ()
o gut ¢ Printwriter @ deleteRecordsin_DateMaplinges_Layer (]
& lirmitx @ double
& limity : double
@ Datalaver () «Java Class»
@ connectToSDE () (3 LayerInspectionPoints
@ openSDEConnection () o layer_table_InspectionPoints @ String
@ getTime () o layer_table_InspectionPoints_OnOffSidelines_Map @ String
@ printout (0 @ insertInspectionPoints From SDE To DB ()
@ updatel ayersDiata @ init_InspondffSide_Lines_cols ()
@ main {1 @ insertData_InspOnOffSide Lines ()
@ retrieveData () @ deleteRecordsTn_TnspOnOffSide_Laver ()
@ getShapeDetails ()
@ getPointXy { )
@ CloseSDE «Java Class»
@ CloseSDE (3 GeneratorDfServices
- getAdesses () @ checkService ()
@ createBaseTable () @ deletesenice ()
@ createComplainantsaddresseswithData () . )
® getsdetonn ( § * createService ()
@ setSdeConn () © getContents ()
@ getSecondPoint ()

Figure5.5 Diagram of classes of the Java classes defined in the edu.uno.gjpl.sde package.

The DatalLayer class is a utility class. It contains the methods for connecting and
disconnecting to the SDE server, the method for constructing a layer, the method for generating
the end point of aline, and other general methods. The methods to connect and disconnect to the
SDE server do not receive any parameters since the attributes of the connection are taken from a

property file (Figure 5.6) in which all the SDE parameters of connection are declared.

# SDE connection parameters

SIPL. 5DE. DATABASENAME=*"rmawss

SIPL. SDE. USERNAME=" % % ¥

SIPL. 5DE. PASSWORD="=sRwwss
5JIPL.5DE. INSTANCE=5151

Figure 5.6 Parameter s of the SDE connection declared in the config propertiesfile.

48



The method that constructs a layer needs the following parameters. an array of the column
names of the layer, name of the table to be associated with the layer, description of the layer, and
the type of layer to construct. The type can be single line, multiple line, single points, multiple
points, polygons, and other shapes defined by ArciMS.

The method for generating the end point of a line receives the parameters: the x value of the
start point of the line, the y value of the start point of the line, an angle, the distance of the line,
and the extent of the layer. The start points are the coordinates of the house in which a complaint
happens; the angle represents the wind direction and the distance of the line is given by the wind
speed, this data is taken from the weather information at the closest time the complaint happens;
the extent of the layer is given by the areathat is going to be covered with the map.

The LayerComplainantsAddresses class has the method for inserting data into the
SDE.UNO_SJPL_ COMPLAINANTSADDRESSES layer. The parameters of the method are: the
SDE connection, the layer, and a vector. This vector will contain all the new complainants
inserted in the table UNO_SJIPL_ COMPLAINANTSADDRESSES. When a new complainant is
created, thiswill be inserted in the Oracle database and in the SDE server. Nowadays, in the Web
Data Collector system each time a new complainant is created, the inspector needs to fill out a
form that contains the complainant’s data. This form will have to be modified in order to
standardize the syntax of the complainant’s address. In the actual form, the address of the
complainant is just a text area field, in which the inspector types in the address. However, when
the ingpector types this data, it contains many mistakes that the address then cannot be matched
(geocoded) with an actual address in Jefferson Parish. The solution to this problem will be to
create a new form in which the address of the complainant will be taken from the table of all the

addresses declared in Jefferson Parish homes. With this, we are going to ensure that the address
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will be correct. Once the complainant information will be inserted in the database this will
aready contain its geographical information for being inserted in  the
SDE.UNO_SJPL_COMPLAINANTSADDRESSES layer.

The LayerMapComplaintsLines class was implemented to handle the data of the
SDE.UNO_SJPL_DATEMAPLINES. This class has the methods for inserting and deleting data
in the layer. The method that inserts the data receives the next parameters. the SDE connection,
the layer, the database connection, and both the start-date and the end-date of the complaints
period of time. Having this information the process will start. First, | query the information in
which | match the complaints with the weather information. Here, | am assuming that the
database has the up-to date information. In the query, | match each complaint with the date of the
complaint and the closest hour that it is in the weather. The result of the match will be a set of
records that contains the information of each complaint and its respective information of the
weather at the moment the complaint happens. Once | have the response from the database each
record is going to be inserted in the SDEUNO_SIJPL_DATEMAPLINES layer. Second, from
the information | get in the database response, | have the start point of the line that represents a
complaint, however for creating the line | need to create its end point. Third, the end point of
each line is created with the information of the start-point, and the wind-direction. Fourth, with
the start and end points my method creates a line and each line with its respective complaints
information is inserted in the SDE.UNO_SJPL_DATEMAPLINES layer.

The method for deleting has the following parameters. an SDE connection, the layer, start
date, and the end date. The deleting process is going to be executed over the data that exists in
the SDE layer. The process of this method is to execute a delete query over the

SDE.UNO_SJPL_DATEMAPLINES layer usng a WHERE clause in which the start date and
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end date are going to be the limits. Once this process is executed the data will be deleted from
the SDE layer.

By using the insert and delete methods over the SDE.UNO_SIPL_DATEMAPLINES
layer, we are performing a kind of update in the layer and we are ensuring that no duplicate data
is going to exist in the layer.

The LayerlnspectionPoints class has the methods for inserting and deleting data in the
SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES layer. These methods are very similar to the
insert and delete methods of the LayerMapComplaintsLines respectively. The only differences
are that in the insert method of LayerlnspectionPoints class, we are matching the information
among the UNO_SJPL_INSPECTIONS, UNO_SJPL_INSPECTIONS_ONOFFSIDE, and the
weather information tables. But, we are using the same criteria to match the information in which
we are going to match the date and time of the inspection with the date and closest hour of the
weather data. All the next steps for inserting in the
SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES layer are going to be the same as they are in
insert method of the LayerMapComplaintsLines class. In the case of the delete method of the
LayerlnspectionPoints class, the process is exactly the same as that of the delete method of the
LayerMapComplaintsLines class.

The classes in the edu.uno.g pl.sde package can be used to update the information about
the dynamic layers in our system. The methods in these classes can easily be alled from any

other sources, and their process will be transparent for the developers.
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5.3 Web Map

5.3.1 Authoring a map

Authoring a map is the first step toward creating an Internet GIS application. ArciMS
Author helped us to add data layers, set layer symbology, limit the information that we want to
show by making spatial queries to the layers, create stored queries, and then save the edited map
as a map configuration file written by ArcXML (AXL file) [10] (Figure 5.7). With Author users
can insert layers from file-based and from SDE servers.

Using ArclMS Author, we created the AXL file that is used as a template for generating a

new map configuration file.

Eve i Nem fam Teel L
FELE S SR OO0 DS AR LSS

+ LA |y | B

Figure5.7 ArcIMS Author used to create a map configuration file

5.3.2 Templates used for creating new AXL files

In our system each time a user request a new map, the system will create two different
AXL files. The first one is the file that is going to contain the configuration of our map. The

second AXL filewill contain the definition of the service to be called.
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5.3.2.1 Template of the configuration file

Using ArclMS Author application, we created a file in which we are defining the order of
the layers, setting up its displaying parameters, ard limiting the information of the dynamic
layers which is going to call the data that is in the range of the period of time selected by the
user. Figure 5.8 shows the structure of this file. Our map is going to include the next layers:

SDE.UNO_SJPL_OTHERLANDFILLS
SDE.UNO_SJPL_JPLLANDFILL
SDE.UNO_SJPL_ADDRESSES
SDE.UNO_SJPL_STREETCENTERLINES
SDE.UNO_SIPL_COMPLAINANTSADDRESSES
SDE.UNO_SJPL_INSPECTIONPOINTS
SDE.UNO_SJPL_DATEMAPLINES
SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES

O N o a »~ w D P

The dynamic layers (5, 7, and 8) will show the data specified in the SPATIALQUERY
tag. The SPATIALQUERY element is a child element of the LAYER tag. Thisis used to select a
subset of the layer. Applying SPATIALQUERY as a filter, we will be able to show on the
viewing map only the subset of the layer that corresponds with period of time (stat date and end
date) from which the user requests a map. Since the data outside the subset is not going to be
showed in the viewing map it will not be necessary to apply any validation when the user

interacts with the map.
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[<7xml version="1 0" encoding="UTF-§" 7>
[FARCHML werzion="1.1">
<CONFG>
“ENVIRONMENT>
“<LOCALE country="T5" l=n gua ga="en" variant="" >
LUIFONT color="0 00" nam =" SansSerif™ size="12" syle="regular” >
<SCREEN dpi="06" />
<ENVIRONMENT>
“hIAP>
<P ROPERTIES>
<ENVEL OPE minx="T62586 6688210 81" miny="3310080.52171013" maxx="TT21 TR 00277 66003"
Imaxy="331810695 5"5_1_1 & ra‘r-‘l—"lru: 1 Extent™ />

<P ROPERTIES>
W ORESPACE 5>
<EDEW ORE SPACE name="zde_ we-0" sarver="vc K" instance="port5151" datzbaza="" vzar="zda " an cvptad="tru="
Ipa zzwo rd="EBY CIM" /=
LR ORKS ACES>
“LAYER tvpe="featureclzz:” name="0THER_LANDFILL 5" vizsibla="tru=" id="0"2>
“DATASET name="5DE UNO_SIFL_OTHERLAWDFILLS" type="polr gon " workspace="sds _ws-0" >

= LAYER>
“LAYER type="featwreclzz:” name="1FL LANDFILL" vizible="trupe" id="1">
<DATASET name="3DE UNO_SIPL_IPLLANDFILL" type="polrgon" work space="sda_ws-0" />

=, I.ATER:}
“LAYER tvpe="featurec lzz:” nam =" AD DRE 55E 5" v isible="trus" id="1">
“DATASET name="5DE UNO_SIPL_ADDEE S5E 5" type="po int" work pace="sds_ws-0" />

<LAYER>
“<LAYER type="featwrec lasz"” name=" STREET 5" v izsibla="trua" id="3">
“DATASET name="5DE UNO_SIPL_STREETCENTEERLINES® type="1lne" worksgpace="=zda_wz-0" />

<LAYER=>
“<LAYER type="featurec lass” name=" COMPLAINANT 5§ ADDRESSES" visibla="trua" 15—'4 =
<DATASET name="SDE 1 O_SIPL_COMPLAINANTSADDRESSE S type="point” workspace="sda _ws-0" />
<SP ATIALQUERY whera="SDE.UNQ_SIPL_COMPLAINANT SADDEESSE SCOMPL AIN ANT _ID =
SDE.UNO_SIPL_DATEMAPLINES.COMPL AINANT D and SDEUNO_SIPL_DATE MAPLINES.DATE_COMPL AINT
|5 =t ={t= & 2po 5;1-:-3 5-01-01 000000 &=pos;} and SDE UNO_SIPL _Dr ATEMAPTINES. D ATE COMPLAINT &k =tz &apo=2003-
01-30 0000 D0& 2pose; )" jointables=" SDE UNO_SIFL _DATEMAPLINES />

<LAYEE™
<LAYER type="featwrec 253" name="INSPECTION_POINTS" visible="trua" id="5">
“DATASET name="5DE UNO_SIPL_INSPECTIONEOINT 5 type="point" work spec a="sda_ we-0" /2>

<LAYER>
“<LAYER type="featwrec lass” name=" COMPLAINTS LINES" visible="falza" id="6">
“DATAESET name="53DE UNO_SIPL_DATEMAPLINE 5" type="line" workspace="zdz_ws-{" />
<SP ATIALQUERY whera="SDE.UNC_SIFL_DATEMAPLINESDATE_COMPLAINT & st;={t: &2po=2005-01-01
00 00 00% spos; )} and SDEUNO_SIPL_DATEMADILINES DATE COMPL AINT & ¥;={ts &£ 2po 20050 1-30 0000 00 &2pos;} and
SDEUNO_SIEL_D ATEMAPLINES.COMEL ATV ANT_ID=SDEUNO_SIFL_ COMPLAINANT SADDRESSE S.COMPLAIN ANT_
D= Jaxﬂabla'—'SDE. UNO_SIPL_COMPLAINANTSADDEE SSES" />

< LAYER™>

“LAYER tyvpe="featuwreclzz:” name="INSPECTION _PFOINTS LINES" wisible="trus" id="7">
“DATASET name="5DE UNO_SIPL_IPONOFFIADE_MAPLINES" trpe="line" workspaca="zda_ wz 0"
<EPATIALQUERY where="SDE.UNO_STPL_IPONOFFSEDE_ MAPLIMESDATE INSECTION &

|5 zpoz 2005-02-15 000000 &apos;} and SDE UNO_SIFL_IPONOFFSIDE _MAFLINES.DATE_INSPECTION &

1% spoz 2005-02-15 000000 Sapos; ) sbfields=" ATL" =~

<LAYER=
<HIAT®
</CONHG>
</ ARCEML>

Figure5.8 Structure of the template for the configuration map file.

Note: Thisimageis not showing the renderers and symbols that are used for displaying the informetion
in the map.

5.3.2.2 Template of the map servicefile

This file will contain the definition of the service to be called. Each time a user requests a
new map, our system will create a new Image Service Map. In the Java Viewer a file that

contains the name of the service will be caled. We refer to this file as the map service file.



Figure 5.9 shows the structure of the file. In the IMAGESERVERWORKSPACE element, its

attribute service will refer to the new service that has been created.

[<7xml verzion="1 10" en coding="UTF-§" 7>
MARCEML warsion="1 1">
<COMHG>
“hAR>
<P ROFPERTIES>
<ENVEL OPE minx="7T62365 1232382 680 " miny="33008 7% B6OTTO790" maxx="772342.8630456753"
maxy="33183076202226905" nama="Initil Extent" />
<HIAPUNIT B vn its=" met ars’
=< PROPERTIES>
W ORKSPACE S
<IMAGESERVERW ORK PACE name="mappar_ws-0"
jur 1="http:// bbm ceh hom eip.net:BOBD 'sarv letc om . eariearimap. Exrimap” savice="UNO_5STPL _MAP JAN" />
“WORKEFACES
“LAYER tvpe="imz g=" nam="UNO_B&IPL MAP_ JAN" vizible="tru=" id="0">
“DATAEET name="UNO_SIPL_MAP _ JAN"type="imzpg" wortkpace="mapper_ws-{" >
< LAYER™>
<hIAR>
</COMNHG>
M/ARCHML>

W

Figure5.9 Structure of the service map file

5.4 Automation Process

5.4.1 Business Objects

In our system we handle two types of data, the tabular data and the geospatial data. Aswe
mentioned in Chapter 2, the tabular data refers to the information that is stored from the Web
Data Collector system and is stored in our Oracle database; the geospatial data is represented by
the layers referring to the geographic features such as the Jefferson Parish landfills, the addresses
in Jefferson Parish, the street divisions, the addresses of the complainants, the inspection points,
the complaints, and the on site and off site inspection points. Both the tabular and the geospatial
data are used to generate our web maps. In section 5.2 “Construction/Modification of layers”, we
explained how we handle the geospatial data. In this section, | am going to explain how we
manage the tabular data. | implemented the Java Beans objects and the datamanager objects

using the IBM WebSphere Studio Application Developer Integration Edition 5.1. This is a
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comprehensive integrated development environment for visually designing, constructing, testing

and deploying Web services, portals, Web applications, and Java™ 2 Enterprise Edition (J2EE)

applications [34].

The Java Beans objects represent the structure of different tables in our database. These

Java beans are:

Address — A bean whose structure corresponds with the table in the Oracle DB
called UNO SIPL_ADDRESSES.

ComplainantAddress — Its structure  corresponds  with  the  table
UNO_SJIPL_COMPLAINANTSADDRESSES.

SIPLMap — Its structure corresponds with the table called UNO_SIPL_MAPS.

These Java beans are declared in the package named edu.uno.cs.gpl.db (Figure 5.10).

Both Address and SIPLMap beans have their corresponding DataManager which is a class that

can be used for modifying the linked table in the Oracle DB to the beans. The DataManager

objects are:

DataAddresses — It is the mareger that contains the methods for modifying the
datain the UNO_SJPL_ADDRESSES table.
DataMaps — It is the manager whose methods can be used for updating the datain

the UNO_SJPL_MAPS table.
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«Java Class»
(2 DBEConnection

o connection @ Connection
o grror : Exception
@ DBConnection ()
@ close ()
closeTransaction [ )
getConnection ()
@ getError ()

@ getPreparedStatermnent ()

@ getSOLErronCode ()
@ openTransaction ()
@ setConnection ()

@ setError ()

it ()

@ main ()

o

n

«Java Class»
(& ComplainantAddress

complainant_id : Integer

mbicctid - Tatonor

@ getiddress ()

@ getarea_name [ )

@ getCornplainant_city ()

@ getCormplainant_first_name [ )
@ getComplainant_id { )

@ getComplainant_last_narme { )
@ getCormplainant_phone [ )

@ getComplainant_state ()

® -getComplainant_street_address ()
@-getObjectid ()

@ getPredi ()

@ getShapa ()

@ getst_type ()

@ getStreet ()

@ getStrest_nam ()

@ getsSuite ()

@ get ()

@ get¥e ()

@ gety ()

@ getve ()

@ getfin ()

@ setdddress ()

@ sethrea_name ()

@ setCornplainant_city ()

@ setComplainant_first_name ()
@ setComplainant_id [ )

@ setComplainant_last_name ()
@ setComplainant_phone ()

@ setComplainant_state ( )

@ setComplainant_street_address ()
@ setObjectid ()

@ setPredi ()

@ setShape ()

@ setSt_type ()

@ setStreet ()

@ setStreet_nam ()

@ setSuite ()

@ etk [ )

@ setie ()

@ ety ()

@ setve ()

@ setZip ()

«Java Class»

(® Address
objectid : int
shiape @ String
addresshurnber @ int
street @ String
SUITE ; String
ZIP tint
area_name : String
predir @ String
street_nam @ String
st_type : String
% 1 double
y 1 double
we : double
ye . double

@ Address ()

@ getaddresshurmber ()
@ getdrea_name ()
@ getChjectid ()

@ getPredir [ )

@ getShape ()

@ getSt_type ()
@-getStreet [ )

@ getStrest_nam ()
@ getSUITE ()

@ getl ()

@ getke ()

@ gety ()

@ getYe ()

@ getZIP ()

@ setAddresshurnber ()
@ setArea_name ()
@ setObjectid ()

@ setPredi ()

@ setshape ()

@ setSt_type ()

@ setStreet ()

@ setStreet_nam [ )
@ setSUITE ()

@ setX ()

@ setde ()

@ sety ()

@ setve ()

@ setZIP ()

oo oo

«Java Class»
(3 SIPLMap
startDate : Date
endDate : Date

title : String
notes : String

@ getServiceMamne ()
@ getEndDate ()

@ gethotes ()

@ getStartDate ()

@ getTitle ()

@ setEndDate ()

@ sethotes ()

@ setStartDate ()

@ setTitle ()

«lava Class»
(3 DataMaps

tableMame : String

@ insertMapDetais ()
@ updateMapDetails ()
@ insertMapDetais ()
@ deleteMap ()

@ deleteMapDetails [ )
@ getMapDetails ()

@ getMaps ()

«lava Class»
(3 Dataaddresses

o tahleMame @ String
o tableCs, ; String

@ Datatddresses ()
@ getTableMame ()
@ setTableMame ()
@ insertAddress ()
@ insertAddresses ()

@ getComplainantAddresses ()

@ getComplainantAddresses ()

Figure5.10 Diagram class of the Java classes declared in the edu.uno.cs.sjpl.db package.

In order to handle the connection to the Oracle database, | created another Java bean.
This bean is called DBConnection. It has the methods to connect and disconnect to the database.
The parameters of the connection are taken from the config properties file, where the database
parameters are declared (Figure 5.11 shows the config file). The DBConnection bean also
includes other methods for managing transactions and using prepared statements for executing

gueries in the database.
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With the datamanager objects we are able the managing the database information in a

straightforward. Also, they are reusable code.

#DB connection parameters

SJPL. JDBC_SERVER_NAME=cook. cs.uno. edu

SJIPL. JDBC_PORT=1521

SJIPL. JDBC_DATA_BASE_NAME=dbrs

SIPL. JDBC_DRIVER=0oracle. jdbc.OracleDriver

SJPL. JDBCCONNECTION_URL=Jjdbc:oracle:thin:@cook.cs.uno.edu:1521 :dbrs
SIPL.CONNECTIONPOOL_SIZE=1

SIPL.CONNECTIONPOOL_MAX=5

SIPL.CONNECTION_USE_COUNT=S

SIPL.CONNECTION_TIMEOUT=1800

SIPL.DE. USER=*#*#***#xx

S5JPL.DE. PASSWD="*"%""%%

Figureb5.11 Parameters of the database connection declared in the config propertiesfile.

5.4.2 Creation of AXL files

| implemented the CreatorAXLFile, a class that contains the methods for creating AXL
files based on template files. This class s defined in the package edu.uno.cs.gpl.util (Figure
5.12). In this class | have used the packages from the Java™™ 2 Platform Enterprise Edition, v
1.4. They are javax.xml.transformand javax.xml.parsers.

In my class, | chose to use the DOM parser because with DOM devel opers can easily get
a tree structure of the file and traversing it in different ways. These features provide the
developers an easy way to modify the elements in the XML document.

The public methods of the CreatorAXLFile classare:

createAXLMapConfig

createA XL ServiceConfig
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«Java Classs «lava Classs

(3 PropertyManager {3 CreatorAXLFile
o propertyFileMarne @ String o fileMarme @ String
o resourceBundle : ResourceBundle @ processModelist |
o grrarsFileMarne @ String @ createsXLServiceConfig ()
o resourceBundieError : ResourceBundle @ main )
@ PropertyManager () @ CreatorsXLFile )
@ getProperty () @ processModelist |
@ getResourceBundle ) @ createsXLMapConfig ()

@ getPropertyDouble ()
@ getPropertylnt ()

@ getErrorsMessage [ )
@ getMessage ()

@ getProperty )

@ getResourceBundle ()

Figure5.12 Diagram of classes defined in the edu.uno.cs.sjpl.util package.

The input value for the createAXLMapConfig method consists of the following
parameters. start time, end time, xml template file, and new xml file. The process of this method
usesthe template file for the structure of the file, and uses the start time and end time parameters
in order to change the “where’ attribute of the SPATIALQUERY eement. In the template file,
the layers that include the SPATIALQUERY elements are:
SDE.UNO_SJPL_COMPLAINANTSADDRESSES,SDE.UNO_SJPL_DATEMAPLINES, and
SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES. The SPATIALQUERY element of each layer is
going to be updated. Our process creates the new structure of the new map configuration file.
This is saved with the name passed as the new xml file parameter. The result of this method is
the map configuration file that is created in the directory where AXL files are keeping. This
directory is specified in the configurationfile properties.

The createA XL ServiceConfig method receives the following parameters. the name of the
new service to be called, name of the template file, and name of the new service map file. In this
method, we follow a very smilar process as we did with the createA XL MapConfig method. We

take the template, extract its structure, and modify the following elements. the “service”
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attribute of the IMAGESERVERWORKSPACE element, the “name” attribute of the LAYER
element, and the “name” attribute of the DATASET element (see Figure 5.9 Structure of the
service map file). The resulting configuration file is saved as the new service config map file
with the name of the parameter received. This file is stored in the directory of the Java Viewer
Website. The name of this directory is also taken from the config file properties.

By making a simple call to the methods of our class, we create automatically the
configuration map file and the configuration service map file, each time the users request a new

map that covers a different period of time.

5.4.3 ArcIMS services

In our system, each time a user requests a new map, our process is going to create a new
Image Service. ArcIMS Administrator provides the functions for managing the ArcIMS
services, the servers, and the folders. However, we wanted to make the creation of the image
service transparent for the user, so that the user does not need to use the ArcIMS Administrator
to create a new Image Service manually. With my implementation, the new image service is
created automatically. We want to leverage the most functions that we can get from ArcIMS, and
to help the users avoid using many tools in order to get a new map.

Using the Java Connector APl of ArcIMS, we created a class named
GeneratorOfServices, this is declared in the package edu.uno.cs.gpl.sde. This class has the
method for generating an image service. The input parameters of this method includes: the name
of the new service and the name of the map configuration file. The steps for creating a new
service are:

1. Open aconnection to the ArcIMS Spatia Server
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2. Setting the parameters of the new Image Service, these include: the name of the
service, the map configuration file that define the new map, the contents of the
map configuration file, the output directory where the snapshots are created, the
URL of the output directory, the size of the image, and the type of image.

3. Add the service to the Spatial Server

4. Start the service

When a user requests in our system a new map, we will cal this method and the new

service will be created.

5.5 Publishing the map on Internet

There are two process involved in the publishing a map, one of them is al the process for
constructing the map, and the other process is displaying the map on the viewer. In this section

we will review in detail the two processes.

5.5.1 Servlet in charge of controlling the process

In order to publish a map on the Internet, the users will use a browser that invokes a
servlet (the MapServlet file), which controls all the process. The MapServiet invokes the
business objects that execute the process, and it gets the result. There is aso an input form, the
JSP file (Figure 5.13), that it will be used to capture the start date and the end date. In our system
we want to provide users the tool for creating a new map of complaints and inspections by just

typing the period of time from which they want a map. Once the user defines the period of time,
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they click on the submit button, then the MapServiet will be in charge of al the process for

publishing a map.

When the MapServlet is processing the users’ request, it will follow the steps:

1.

Call the process to insert the complaints into the
SDE.UNO_SJPL_DATEMAPLINES and
SDE.UNO_SJPL_IPONOFFSIDE_MAPLINES layers.

Create the two AXL files that contain the configuration of the map for being
displayed. The first one will contain a complete configuration of the map in which the
layers from SDE have been called up, the tag to be changed in this AXL is the
SPATIALQUERY. This query will limit the data to display in the Map, in this case
the new map will only reflect the complaints and the daily inspections that correspond
exactly to the period of time specified by the user. The second file will contain the
configuration of the new service to be caled. Thisfile it is used by the Java Viewer.
This processis declared in the CreatorAXLFile class.

Create of a new service in an automatic way. This service will be added into the
ArcIMS server. The service will call the new configuration map file (AXL) created.
This process is declared in the GeneratorOf Services class.

Start the service.

Insert the new map in the UNO_SIPL_MAPS table. This process is declared in the
DataM aps class.
Invoke the viewer which will receive as a parameter the name of the new service, so

the configuration map associated with the new service will be called.

Now the user can interact with the new map
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| &7SJPL Map Generator - Microsoft Internet Explorer E]@
File Edit View Favorites Tools Help |','

QBack =1 ¥ Iﬂ lg] o - Search 77 Faverites 42 =%

Address éj http:/flabmcgh.homeip.net:3080/5IPL2/siplMap. jsp e Go

SJPL Map Generator

Create a new map:

Start Date: [01/01/2005 | mow/ddiyyyy
End Date: |01/31/2005 mm/dd vy
& HTML Viewer O Java Viewer

Existing Maps

Name Start date End date
Jan 11 01/11/2005 01/11/2005 [m™]
Jan 05 01/05/2005 01/05/2005 ]
Jan 19 01/19/2005 01/19/2005 [rm]
Jammiary 01/01/2005 01/31/2005 [m]
Jan 31 01/31/0005 01/31/0005 [rm]
Map Manager
@;‘]Dnne 4 Internet

Figure5.13 Theinput form for the users (SJIPLMap.jsp)

5.5.2 Displaying results in the viewers.

| created with the ArcIMS Designer tool two websites. one of them is based on the
HTML Viewer, and the other one is based on the Java Viewer. | refer to these websites as the
two components that | integrated into our system for displaying the maps. Once | had the
components, | proceed to adapt them so the viewers can show different Image Map Services.

When users create a Website with the ArcIMS Designer toal, this site is linked to the
service map that is going to be published on the viewer. In the HTML Viewer, this link is
declared in afile caled ArclMSparam.js. In the Java Viewer, the association of the service map

to the Web site is declared in the files default.js and default.axl.
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Since our system requires that each time the user requests a new map a new map service
has to be created, we decided that users should not have to create for each new service a new
website. To solve this issue, we improved the functionality of the two Web site components that
we handle.

In our component that is based in the HTML Viewer (Figure 5.14), we created a JSP file
called viewer.jsp. This file is based on the viewer.htm that normally handles the HTML Viewer.
Using this JSP helps us call it by passing the name of the new service and the title of the map.
Once the servlet controller is ready to publish the map, it is going to invoke the viewer.jsp with
the parameters. Then the new map will be displayed. As we mentioned above, there is an
ArclMSparam.js file associated with the map service. In order to solve this, | defined in the
viewer.jsp a JavaScript global variable that has the name of the new map service. After that, |
modified the ArclM Sparam.js. The modification was to make that the ArclM Sparam.js file takes
the name of the new map service from its parent frame that is defined in the viewer.jsp. Each
time we invoke the viewer.jsp with a new map service it changes the value of its global variable,
then ArclMSparam.js Figure 5.15, Figure 5.16) will aways take the new map service. This
action is making our component based on the HTML Viewer works dynamically for any map
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Figure5.14 Our component based on the HTML Viewer, displaying a map of complaints and inspections.

<%Epage contentType="text/html %=
<%@page pageEncoding="UTF-B"%>
<%

string servicenName = "7; )
serviceName = request.getParameter ("serviceName");
5tring title = request.getParameter ("title");

%>

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<meta http-equiv="Content-Type" content="text/html; charset=I50-§859-1">

<HTML>

<HEAD>
<SCRIPT LANGUAGE="Javascript” SRC="javascript/aimsResource.js" TYPE="text/javascript’=</SCRIPT>
<SCRIPT TYPE="text/javascript” LANGUAGE="Javascript'>

// Designer will set the next variable - theTitle
var theTitle = "<%=titleX>";

var serviceNameslIPL = "<%=serviceNamei>";

Figure5.15 Part of code of the viewer .jsp (service name global variable).
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rcIMsparam. js
javascript file with parameters specific to calling page

/4 Al
/3
’4*
1
/!

parameters File for HTML Template L3

// get machine name
var hostName = document.location. host;
// common portion of url

var esriglurb = "/servlet/com.esri.esrimap. Esrimap?servicename="

// make URL for getting mapservice cata1o?

var catURL = "http://" + hostName + esriBTurb + "catalog";

// make prefix for URL

var serverURL = "http://" + hostName + esriBlurb;

/7* : )

I parameters set by Designer =

/7

var imsurRL = "http://Tabmcgh. homeip.net:8080/servlet/com. esri.esrimap. Esrimap?serviceName=" + parent.serviceNamesIPL

var imsOvVURL = ' ttp://Tagmcgh.homeip.net:BOBO/seeretﬁcom.esrﬁ.esrimap.Esrimap?serviceName=‘ + parent.serviceNameSIPL;
var imsQueryURL = "°;
var imsGeocodeURL = "';

Figure5.16 Part of the code of ArclM Sparam.js (making reference to the parent.serviceNameSJPL global
variable)

In the case of our component based on the Java Viewer (Figure 5.17), we did something
dightly differently. We created a file name frame.jsp, this file is based on the frame.htm that is
commonly used by the Java Viewer. When we call this JSP, we are going to pass as parameters
the name of the new service file and the title of the map. The servlet controller calls frame.jsp
once the service is ready. In this component, we also made the modifications that let this
component to invoke different services. As we mentioned before the Java viewer calls the
default.axl file in which the Image Service Map is declared. For making our component works
dynamicaly with any Image Service Map, we are creating a new service configuration file
(Section 5.4.2 provides the details). The framejsp is smilar to the viewer.jsp. Each time it is
caled, it sets its service name global variable with the parameter it receives as the new service
map. Then, when the frame.jsp invokes the Javascript default.js, this will call the new service
map from the variable that is declared in the frame. jsp (Figure 5.18,Figure 5.19).

We modified our components for making them capable of calling different map services
without creating a new Web site. Thisimplies that our components, the one based on the HTML

Viewer and the other one based on the Java Viewer, are independent of the map service.

66



HE 1= 40 L

+
+-\J

=l

[CH000 2@ ¥ |+ B2

i [
Lk

oA EE

BIFEE[S

One Centimeter = 639 Meters
1:63,962 ! ) ! ¥ !
1] 1 2 3 4

HTET 032.452
Y 3,317,986.074

él

¥| SJPL_20050101_2004
¥/ INSPECTION_PQIN

A 0-2 mph
A 36 mph
/‘f = mph

¥ COMPLAINTS_LIMNE
A 0-2 mph
A 36 mph
N =6 mph

¥| INSPECTION_PQIN

¥/ COMPLAIMANTS_AL |
*

¥| STREETS
A

w| ADDRESSES

-]

Figure5.17 Our component based on the Java Viewer, displaying a map of complaints and inspections.
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function setvisibleLayers () {
var aelLayer;
var sublLayer;
S/find IMSMap Applet
var applet = parent.mapFrame.document. IMSMap;
if (applet == null)

return;

aeLayer = applet.getLayer (parent.newService);// UNO_SIPL_MAP_JAN11");
aelayer.setVisibleByInt (1);
subLayer = applet.getSublLayer (parent.newService, 'OTHER_LANDFILLS");
subLayer.setvisibleByInt (1);
asLayer = applet.getLayer (parent.newService);
asLayer.setVisibleByInt (1);
subLayer = applet.getsubLayer (parent.newservice, 'JPL_LANDFILL');
subLayer.setvisibleByInt (1);
aelLayer = applet.getLayer (parent.newService);
aelayer.setVisibleByInt (1);
subLayer = applet.getsubLayer (parent.newService, 'ADDRESSES');
subLayer.setvisibleByInt (1);
asLayer = applet.getLayer (parent.newservice);
aeLayer.setvisibleByInt (1);
subLayer = applet.getsSubLayer (parent.newService, 'STREETS');
subLayer.setVisibleByInt (1);
aelLayer = applet.getLayer (parent.newService);
aslayer.setVisibleByInt (1);
subLayer = applet.getsubLayer (parent.newservice, "COMPLAINANTS_ADDRESSES');
subLayer.setvisibleByInt (1);
aeLayer = applet.getLayer (parent.newservice);
aeLayer.setvisibleByInt (1);
subLayer = applet.getSublLayer (parent.newService, 'COMPLAINTS_LINES');
subLayer.setVisibleByInt (1);

3 applet.redraw();

Figure5.19 Part of the code of the default.js file (making reference to the parent.newService global variable).

5.6 Handling the Image Services.

In our system each time the user request a new map, a new Image Map Service will be
created in order to display the requested map. The ArcIMS Spatial Server is in charge of
controlling al the Image Services; in fact, with the ArclMS Administrator tool, the ArcIMS
users can create, delete, or update the services. In our system, we want to provide the users with
a maintenance tool that does not require learning many concepts in order to use it. | implemented
the MapManager a friendly JSP form (Figure 5.20). This MapManager is used as a maintenance

tool to administer the maps created with our system.
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Figure5.20 Map Manager

The users instead of using the ArcIMS Administrator tool will use the MapManager. The
MapManager displays alist that contains all the maps that have been create with our application.
The list of the maps is stored in an Oracle table called UNO_SIPL_MAPS (Section 5.4.1
provides the details). Even though, for the MapManager a map is internally an Image Service
that has its own configuration files, for the users the Image Maps are only maps. The user can
select dl the maps he wants to delete; he also can modify the maps’ title.

When the user clicks on the “Update” button, the MapManager invokes the MapServlet
(Section 5.5.1) which handles the processes for deleting the maps and modifying the maps' title.

The MapServliet calls two methods each one declared in a different Java class. The
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GeneratorOf Services contains the deleteService method, which will be invoked for removing the
selected Image Map Service. When an Image Map Service is deleted its configuration files will
be also deleted. The DataM aps class has the method updateM apDetails that will be called for the

MapServlet in order to update the maps' title.
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Chapter 6: Conclusions and Future Work

Geographical Information Systems have become an integral tool in a number of
applications, including environmental management [15]. The use of GIS technology in
environmental studies provides a better way to manage, anayze, display and share the
information. In this thesis we implemented a GIS Web Maps application. This tool provides the
maps of odor complaints and inspections thet will be used in the environmenta studies and
analysis of odor problems from Jefferson Parish landfills. The studies and analyses form part of
the investigation project that has been conducted by CDM Inc.

The need to identify the location of the odor problems lead the CDM staff to create GIS
maps based on the odor information, including odor complaint information, odor monitoring
information, and meteorological information, collected in its database. This database contains all
the information recorded during the daily inspections as well as complaints that have occurred in
the vicinity of the three Jefferson Parish landfills. The process for creating GIS maps was
developed by a GIS specialist at CDM. This process turned out to be very laborious because of
the many steps involved, and often people that received the maps lacked the knowledge of GIS
technology necessary for accessing and using the maps directly.

Working with the GIS specialist we found that it would be better to provide users with
maps that did not require of GIS expertise in order to access the information. In this thesis our
goals were:

to provide the users with an easy way of creating Web-based maps that can show

for an specific time of period the odor problemsof the landfills.
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to show how the integration of tabular/geographical data with GIS software
(ArcSDE, and ArcIMS) can be used as a tool in the analysis of environmental

problems in which the geographical information plays an important role.

We implemented the Map Generator tool that can be accessed through the Web. Our
application can be used by nonGIS experts and the maps generated contain information that is
as accurate and complete as the maps on which our project was based. The user only needs to
enter a start date and an end date, click on the submit button, and the map will be displayed. We
provide two options to display the maps. One is by using the ArcIMS HTML viewer that
requires less client-side processing. The second option is the ArclMS Java Viewer in which the
users will have to ingtadl a Java plug-in into the browser. Both options display as specific
information as users need from the map; they differ in the number of tools that they provide
users for interacting with the maps, and in the look and feel of their interfaces.

In our development, we learnt that combining ArcIMS and ArcSDE manages GIS
information more efficiently. ArcilMS may provide the perfect solution by bringing GIS
capabilities to nonusers of GIS by deploying the power and functionality of GIS over the
Internet [16]. ArcSDE is a powerful gateway for managing geographical data; its Java APl gives
an easy solution for processing and analyzing spatial information.

In our implementation, we also created the Map Manager. This is a web application that
will be used for handling the Images Map Services and their associated configuration files. The
users can easily administrate the images services without the need of knowledge of the ArciIMS
Administrator tool. The users can smply select the image service to be deleted and our

application takes care of the rest of the process.
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In summary, we can say that the use of GIS technology makes the analysis and modeling
of environmental data more accessible and more understandable.

As we mentioned in the chapter that describes our implementation, the addresses of the
complainants play an important role in the construction of the maps. However, until now the
format of those addresses has not follow any standardization; this is why some complainants may
not appear on the map. We are proposing to implement a new JSP form that will be used to
capture the complainants addresses in a standard way and each complainant’s address will be
associated to an actual home in the Jefferson Parish County. This will facilitate their location on
the map, and each complainant that has a complaint will be displayed on the map. This form will
replace the actual form that has been used to capture a new complainant information.

Working with CDM staff in this investigation we have developed other tools for
analyzing the odor problems. One of these tools is the Reports Generator a stand alone
application for creating the reports with the information stored in the database. The Reports
Generator is atool that was developed in Java. With this tool the user enter a start date and end
date, click on the “Create reports’ button, and the result is a set of charts that display the number
of complaintsin that period of time, the number of complaints per odor type, the number of daily
inspections, etc. Since all these applications, including the Web Data Collector System, the
Reports Generator, and the Map Generator are related with CDM'’s investigation we believe that
the integration of all of them can provide more useful resources for the anaysis of odor
problems. For example, the integration of the Reports Generator and the Maps Generator can
give as aresult maps that can contain charts explaining with tabular data what we are visualizing
in the maps. Those charts can display also data such as the average of number of complaints per

period of time, the average of the odor type recorded in the complaints per period of time, the
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average odor intensity in the on site and off site inspection points, the number of complaints by
the wind speed that was recorded at the time the complaints were reported, etc. Combining these
tools can give us an integral tool that provides more informative maps which can work more
efficiently in the studies of the odor problems. Conveying maps with graphs will give the
environmental engineers a view of the odor common sources, an easy way to compare the data

displayed on the maps, and an evaluation of the techniques effectiveness for reducing the odors.
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